
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. 1, pp. 43–120. DOI:10.13154/tosc.v2020.i1.43-120

Duel of the Titans: The Romulus and Remus
Families of Lightweight AEAD Algorithms

Tetsu Iwata1, Mustafa Khairallah2, Kazuhiko Minematsu4 and
Thomas Peyrin2,3

1 Nagoya University, Nagoya, Japan
tetsu.iwata@nagoya-u.jp

2 Nanyang Technological University, Singapore, Singapore
3 Temasek Laboratories, Nanyang Technological University (NTU), Singapore, Singapore

mustafam001@e.ntu.edu.sg,thomas.peyrin@ntu.edu.sg

4 NEC, Kawasaki, Japan
k-minematsu@nec.com

Abstract. In this article, we propose two new families of very lightweight and efficient
authenticated encryption with associated data (AEAD) modes, Romulus and Remus,
that provide security beyond the birthday bound with respect to the block-length n.
The former uses a tweakable block cipher (TBC) as internal primitive and can be
proven secure in the standard model. The later uses a block cipher (BC) as internal
primitive and can be proven secure in the ideal cipher model. Both our modes allow
to switch very easily from the nonce-respecting to the nonce-misuse scenario.
Previous constructions, such as ΘCB3, are quite computationally efficient, yet needing
a large memory for implementation, which makes them unsuitable for platforms where
lightweight cryptography should play a key role. Romulus and Remus break this barrier
by introducing a new architecture evolved from a BC mode COFB. They achieve the
best of what can be possible with TBC – the optimal computational efficiency (rate-1
operation) and the minimum state size of a TBC mode (i.e., pn ` tq-bit for n-bit
block, t-bit tweak TBC), with almost equivalent provable security as ΘCB3. Actually,
our comparisons show that both our designs present superior performances when
compared to all other recent lightweight AEAD modes, being BC-based, TBC-based
or sponge-based, in the nonce-respecting or nonce-misuse scenario.
We eventually describe how to instantiate Romulus and Remus modes using the
Skinny lightweight tweakable block cipher proposed at CRYPTO 2016, including the
hardware implementation results.
Keywords: Romulus and Remus · authenticated encryption · lightweight · tweakable
block cipher.

1 Introduction
Lightweight cryptography has become a very active research domain, as the importance
of pervasive computing and the Internet of Things (IoT) is growing. By lightweight, one
usually refers to a primitive that allows compact implementations, i.e., minimizing the
area required. In that direction, so-called serial implementations (implementations where
the subcomponents of the round function are computed serially) will provide the smallest
area on ASIC, at the cost of a much lower throughput. However, even though the area is
certainly an important criterion for many applications, other performance measures should

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-09-01, Revised: 2019-11-23, Accepted: 2020-01-23, Published: 2020-05-07

https://doi.org/10.13154/tosc.v2020.i1.43-120
mailto:tetsu.iwata@nagoya-u.jp
mailto:mustafam001@e.ntu.edu.sg,thomas.peyrin@ntu.edu.sg
mailto:k-minematsu@nec.com
http://creativecommons.org/licenses/by/4.0/

be taken into account, such as throughput, power and/or energy consumption, latency, etc.
In particular, so-called round-based implementations (implementations where the entire
round or more is computed in a cycle) are of paramount importance, as they are often the
best implementation trade-off between power consumption and energy efficiency.

Many new ciphers, hash functions, and operating modes have been recently proposed
with “lightweightness” as the main target. CAESAR competition [CAE] for authenticated
encryption has received many submissions aiming at lightweightness, and two schemes
(ACORN [Wu14] and Ascon [DEMS14]) were selected in the lightweight category. After
several years of design/break process, NIST decided to organise a competition [NIS19]
to identify the future lightweight authenticated encryption with associated data (AEAD)
standard(s). One can separate the competition candidates into several classes: ad-hoc,
sponge-based, block cipher-based, tweakable block cipher-based, etc.

Ad-hoc designs usually offer interesting performance features, but at the cost of lesser
security guaranties on the general structure of the encryption. Lightweight sponge-based
proposals have been flourishing, as they can offer sufficient security with a small internal
state. However, as we will argue later in this article, their main drawback is a lower
throughput as the internal permutation has to work on more than n bits, making them
less energy/power efficient. Block cipher (BC)- based AE/AEAD designs have been
studied for a long time, AES-GCM [MV04] and OCB [RBB03] being their most famous
representing members. While they share the great advantage of being usable with widely
deployed BC standards such as AES, most of them suffer from providing only birthday
bound security, or low performance for beyond-birthday security. This is problematic for
lightweight scenario, as 64-bit lightweight BCs seem hardly usable in order to provide
sufficient security. Tweakable Block Ciphers (TBC) were introduced by Liskov et al. at
CRYPTO 2002 [LRW02]. Since their inception, TBCs have been acknowledged as a
powerful primitive as they can be used to construct simple yet highly secure Nonce-
based or Misuse-Resistant Authenticated Encryption (NAE/MRAE) schemes, including
ΘCB3 [KR11] and SCT [PS16]. Indeed, TBC-based AEAD schemes such as ΘCB3 are very
efficient in terms of the number of primitive calls and are very secure as they achieve full
n-bit security for block size of n bits (in contrary to most BC-based modes). In contrast,
ΘCB3 needs an inverse of the TBC and a large state (the working memory beyond the
primitive), which is not suitable for lightweight devices.

Our Contributions
In this work, we present two new TBC-based AEAD operating modes, named Romulus
and Remus. They are lightweight, very efficient, and highly-secure NAE (Romulus-N
and Remus-N) and MRAE (Romulus-M and Remus-M) schemes. The overall structure of
Romulus and Remus shares similarity in part with a (TBC-based variant of) block cipher
mode COFB [CIMN17a,CIMN17b], yet, we make numerous refinements to achieve our
design goal.

The Romulus Mode. Our first proposal is Romulus. Its NAE version Romulus-N requires
fewer TBC calls than ΘCB3 thanks to the faster MAC computation for associated data,
while the hardware implementation is significantly smaller than ΘCB3 thanks to the
reduced state size and inverse-freeness (i.e, TBC inverse is not needed). In fact, thanks to
a careful integration of the TBC inside the mode, Romulus-N’s state size is comparable to
what is needed for computing the TBC alone. Moreover, it encrypts an n-bit plaintext
block by just one call of the n-bit block TBC, hence there is no efficiency loss. Romulus-N is
extremely efficient for small messages, which is particularly important in many lightweight
applications, requiring for example only 2 TBC calls to handle one associated data block

44

and one message block (in comparison, other designs like ΘCB3, OCB3, TAE, CCM require
from 3 to 5 TBC calls in the same situation).

Romulus achieves all these advantages without any security penalty, i.e., Romulus
guarantees full n-bit security in the nonce-respecting model, which is a similar security
bound to ΘCB3. In addition, the n-bit security of Romulus is proved under the standard
model, which provides a high-level assurance for security not only quantitatively but also
qualitatively. To elaborate a bit more, with a security proof in the standard model, one
can precisely connect the security status of the primitive to the overall security of the
mode that uses this primitive. In our case, for each of the members of Romulus, the best
attack on it implies a chosen-plaintext attack (CPA) in the single-key setting against the
underlying TBC, i.e., unless the TBC is broken by CPA adversaries in the single-key
setting, Romulus indeed maintains the claimed n-bit security. Such a guarantee is not
possible with non-standard models and it is often not easy to deduce the impact of a found
“flaw” of the primitive to the security of the mode. In a more general context, this gap
between the proof and the actual security is best exemplified by “uninstantiable” Random
Oracle-Model schemes [CGH98]. To evaluate the security of Romulus, with the standard
model proof, we can focus on the security evaluation of the TBC, while this type of focus
is not possible in schemes with proofs in non-standard models. We stress that we are not
discouraging the third party verification of the proofs, which is significantly important (see
e.g. [IIMP19]).

If we compare Romulus-N’s performance to other n-bit secure AE schemes that process
n-bit of data, such as conventional sponge-based AEs using a 3n-bit permutation with n-bit
rate, the state size is comparable (3n to 3.5n bits). Our advantage is that the underlying
cryptographic primitive is expected to be much more lightweight and/or faster because of
the smaller output size (3n vs n bits). This efficiency is compared in Table 1. Similarly,
Table 2 shows the efficiency of the misuse-resistant variant Romulus-M. Another interesting
feature of Romulus is that it can reduce area depending on the use cases, without harming
security. If it is enough to have a relatively short nonce or a short counter (or both),
which is common to low-power networks, we can directly save the area by truncating the
corresponding tweak length. This is possible if the internal TBC allows to reduce area if a
part of its tweak is never used. A member of Romulus (Romulus-N2) particularly benefits
from this feature. Note that this type of area reduction is not possible with conventional
permutation/sponge-based AE schemes: it only offers a throughput/security trade-off. It
goes without saying that these theoretical comparisons are meant to compare different
modes without the effect of the underlying primitive and once the modes are instantiated
and implemented, practical comparisons between different implementations are much more
important (see Section 6).

The Remus Mode. Our second proposal is Remus. It shares its basic structure with
Romulus and therefore also inherits its overall implementation advantages. The biggest
difference of Remus from Romulus is the way it instantiates a TBC. Specifically, Remus
takes an approach of utilizing the whole tweakey state [JNP14] of the TBC as a function of
the key and tweak, using a tweak-dependent key derivation. In contrast to this, in Romulus,
the TBC is used in the standard keying setting (i.e, tweakey state takes a persistent key
material and a changing tweak). The tweak-dependent key derivation allows us to use a
smaller variant of the TBC than those used by Romulus, and brings us better efficiency
and comparable bit security. The downside is that the security proof of Remus is not based
on the standard assumption of its cryptographic core (namely, the fact that TBC can be
modelled as a tweakable pseudorandom permutation) as done for Romulus. Instead, we
can prove the security of Remus by assuming the TBC as an ideal-cipher (thus ideal-cipher
model proof), or, assuming the pseudorandomness of another TBC built on top of the

45

standard BC, called ICE. The latter is a standard model proof but the assumption is still
different from the pseudorandomness assumption of the TBC. This means that Remus is not
a simple optimization of Romulus but is the consequence of trade-off between (qualitative)
security and efficiency.

We specify a set of members for Remus that have different TBC (ICE) instantiations
based on a block cipher in order to provide security-efficiency trade-offs. As with Romulus,
the overall structure of Remus is partially similar to a TBC-variant of the block cipher
mode COFB [CIMN17a,CIMN17b], yet, we make numerous refinements to achieve our
design goal. Consequently, as a mode of TBC ICE, the NAE variant Remus-N achieves a
significantly smaller state size than ΘCB3 [KR11], the typical choice for TBC-based AE
mode, while keeping the equivalent efficiency (i.e., the same number of TBC calls). Also
Remus is inverse-free (i.e, no TBC decryption routine is needed) unlike ΘCB3. For security,
it allows either classical n{2-bit security or full n-bit security depending on the variant of
ICE.

To see the superior performance of Remus-N, let us compare n-bit secure Remus-N2
with other n-bit secure AE schemes that process n bits of data, such as conventional
sponge/permutation-based AEs using a 3n-bit permutation with n-bit rate. Both have 3n
state bits and process n-bit message block per primitive call. However, the cryptographic
primitive for Remus-N2, which is an n-bit TBC with n-bit tweakey, is expected to be
much more lightweight and/or faster because of smaller output size (3n vs n bits). Since
its tweakey is n bits, it is even smaller than the members of Romulus (they are n-bit
secure and using tweakey state of 2n or 3n bits). Both sponge/permutation-based schemes
and Remus rely on non-standard models (random permutation or ideal-cipher), and we
emphasize that the security of the TBC instances that we propose to use inside Remus
have been comprehensively evaluated, not only for the single-key related-tweak setting but
also related-tweakey setting, which suggests strong reliability to be used as the ideal-cipher.
Besides, we do not weaken the TBC instance from the original (say by reducing the
number of rounds) in order to boost the throughput. This is a sharp difference from the
strategy often taken in sponge/permutation-based constructions, where in order to boost
the throughput the underlying permutation is made weaker than the stand-alone version
for which the random permutation model is assumed.

An additional feature of Remus is that it offers a very flexible security/size trade-off
without changing the throughput. In more detail, Remus contains n{2-bit secure variants
(Remus-N1 and Remus-M1) and n-bit secure variants (Remus-N2 and Remus-M2). Their
difference is only in the existence of the second (block) mask, which increases the state size.
If the latter is too big and n-bit security is overkill, it is possible to derive an intermediate
variant by truncating the second mask to (say) n{2 bits. It will be pn` n{2q{2 “ 3n{4-bit
secure. For simplicity, we did not include such variants in the official members of Remus,
however, this flexibility would be useful in practice.

Misuse Resistance. Romulus-M and Remus-M are the MRAE versions of Romulus and
Remus respectively, and they follow the general SIV construction [RS06]. However, they
reuse the components of Romulus-N and Remus-N as much as possible, simply obtained by
processing the message twice by Romulus-N or Remus-N. This allows a faster and smaller
scheme than TBC-based MRAE SCT [PS16], yet, we maintain the strong security features
of SCT. That is, Romulus-M achieves n-bit security against nonce-respecting adversaries
and n{2-bit security against nonce-misusing adversaries, while a variant of Remus-M
achieves the same security as the corresponding Remus-N variant against nonce-respecting
adversaries and n{2-bit security against nonce-misusing adversaries. Moreover, Romulus-M
and Remus-M enjoy a very useful security feature called graceful degradation introduced
in [PS16]. This ensures that the full security is almost retained if the number of nonce

46

Table 1: Efficiency comparison of nonce-based AE schemes. λ is the bit security level of
a mode. Here, pn, kq-BC is a block cipher of n-bit block and k-bit key, pn, t, kq-TBC is a
TBC of n-bit block and k-bit key and t-bit tweak, and b-Perm is an b-bit cryptographic
permutation.
Scheme

Number of
Primitive

Security State Size Rate Efficiency Inverse

Primitive Calls (λ) (S) (R) (S/R) Free

Romulus-N1
P

|A|´n
2n

T

`
P

|M |
n

T

` 1 pn, 1.5n, kq-TBC:, n “ k n n` 2.5k “ 3.5λ 1 3.5λ Yes

Romulus-N2
P

|A|´n
1.75n

T

`
P

|M |
n

T

` 1 pn, 1.2n, kq-TBC:, n “ k n n` 2.2k “ 3.2λ 1 3.2λ Yes

Romulus-N3
P

|A|´n
1.75n

T

`
P

|M |
n

T

` 1 pn, n, kq-TBC, n “ k n n` 2k “ 3λ 1 3λ Yes

Remus-N1
P

|A|
n

T

`
P

|M |
n

T

` 1 pn, kq-BC, n “ k n{2 n` k “ 4λ: 1 4λ Yes

Remus-N2
P

|A|
n

T

`
P

|M |
n

T

` 2 pn, kq-BC, n “ k n 2n` k “ 3λ 1 3λ Yes

Remus-N3
P

|A|
n

T

`
P

|M |
n

T

pn, kq-BC, n “ k{2 n´ 4 n` k “ 3λ` 8 1 3λ` 8 Yes

COFB [CIMN17a]
P

|A|
n

T

`
P

|M |
n

T

` 1 pn, kq-BC, n “ k n{2´ log2 n{2 1.5n` k “ 5.4λ; 1 5.4λ Yes

ΘCB3 7 [KR11]
P

|A|
n

T

`
P

|M |
n

T

` 1 pn, 1.5n, kq-TBC, n “ k n 2n` 2.5k “ 4.5λ 1 4.5λ No

Beetle [CDNY18]
P

|A|
n

T

`
P

|M |
n

T

` 2 2n-Perm, n “ k n´ log2 n 2n “ 2.12λ 1{2 4.24λ Yes

Ascon-128 [DEMS16]
P

|A|
n

T

`
P

|M |
n

T

` 1 5n-Perm, n “ k{2 n{2 7n “ 3.5λ 1{5 17.5λ Yes

Ascon-128a [DEMS16]
P

|A|
n

T

`
P

|M |
n

T

` 1 2.5n-Perm, n “ k n 3.5n “ 3.5λ 1{2.5 8.75λ Yes

SpongeAE 5 [BDPA11]
P

|A|
n

T

`
P

|M |
n

T

` 1 3n-Perm, n “ k n 3n “ 3λ 1{3 9λ Yes

: Can possibly be enhanced to 3λ with a different KDF and block cipher with 2k-bit key;
; Can possibly be enhanced to about 4λ with a 2n-bit block cipher;
7 1.5n-bit tweak for n-bit nonce and 0.5n-bit counter;
5Duplex construction with n-bit rate, 2n-bit capacity.

repetitions during encryption is limited (which is the main targeted scenario in practice).
Thanks to the shared components, most of the advantages of Romulus-N and Remus-N
mentioned above also hold for Romulus-M and Remus-M.

Instantiations with Skinny. As an underlying TBC, we adopt Skinny proposed at
CRYPTO 2016 [BJK`16], leading to the two submissions Romulus [IKMP19b] and Re-
mus [IKMP19a] for the NIST LWC standardization competition. See Appendix B for the
details of the instantiation. We also instantiate Remus with the new TBC TGIF-BC, leading
to another submission, TGIF [IKM`19]. The security of this TBC has been extensively
studied, and it has attractive implementation characteristics.

2 Preliminaries
2.1 Notation
Let t0, 1u˚ be the set of all finite bit strings, including the empty string ε. For X P t0, 1u˚,
let |X| denote its bit length. Here |ε| “ 0. For an integer n ě 0, let t0, 1un be the set of
n-bit strings, and let t0, 1uďn “

Ť

i“0,...,nt0, 1ui, where t0, 1u0 “ tεu. Let JnK “ t1, . . . , nu
and JnK0 “ t0, 1, . . . , n´ 1u. Let |X|n “ maxt1, r|X|{nsu.

For two bit strings X and Y , X }Y is their concatenation. We also write this as XY
if it is clear from the context. Let 0i (1i) be the string of i zero bits (i one bits), and
for instance we write 10i for 1 } 0i. Bitwise XOR of two variables X and Y is denoted by
X ‘ Y , where |X| “ |Y | “ c for some positive integer c. For binary string X of |X| ě x,
we write lmtxpXq (resp. rmtxpXq) to denote the leftmost (resp. rightmost) x bits of X.
Note that we do not use “MSB” and “LSB” for them, which is customary but depends on
endianness. Because our concrete specification (Appendix B) employs the little-endian
format, our notation intends to avoid confusion. By convention, if one of X or Y is
represented as an integer in J2cK0 we assume a standard integer-to-binary encoding, i.e.,
an integer

řn´1
i“0 xi2i for xi P t0, 1u is encoded to pxn´1 . . . x1x0q P t0, 1un. For example,

47

Table 2: Efficiency comparison of misuse-resistant AE schemes. λ is the bit security level
of a mode. Here, pn, kq-BC is a block cipher of n-bit block and k-bit key, pn, t, kq-TBC is
a TBC of n-bit block and k-bit key and t-bit tweak. x, y in the security column means
x-bit security in the nonce-respecting case, and y-bit security in the nonce-misuse case.
Scheme

Number of
Primitive

Security State Size Rate Efficiency Inverse

Primitive Calls (λ) (S) (R) (S/R) Free

Romulus-M1
P

|A|`|M |´n
2n

T

`
P

|M |
n

T

` 1 pn, 1.5n, kq-TBC:, n “ k n, n{2 n` 2.5k “ 3.5λ 2{3 5.25λ Yes

Romulus-M2
P

|A|`|M |´n
1.75n

T

`
P

|M |
n

T

` 1 pn, 1.2n, kq-TBC:, n “ k n, n{2 n` 2.2k “ 3.2λ 7{11 5λ Yes

Romulus-M3
P

|A|`|M |´n
1.75n

T

`
P

|M |
n

T

` 1 pn, n, kq-TBC, n “ k n, n{2 n` 2k “ 3λ 7{11 4.7λ Yes

Remus-M1
P

|A|`|M |
n

T

`
P

|M |
n

T

` 1 pn, kq-BC, n “ k n{2, n{2 2n “ 4λ 1{2 8λ Yes

Remus-M2
P

|A|`|M |
n

T

`
P

|M |
n

T

` 2 pn, kq-BC, n “ k n, n{2 3n “ 3λ 1{2 6λ Yes

SCT : [PS16]
P

|A|`|M |
n

T

`
P

|M |
n

T

` 1 pn, n, kq-TBC, n “ k n, n{2 4n “ 4λ 1{2 8λ Yes

SUNDAE [BBLT18]
P

|A|`|M |
n

T

`
P

|M |
n

T

` 1 pn, kq-BC, n “ k n{2, n{2 2n “ 4λ 1{2 8λ Yes

ZAE 7 [IMPS17]
P

|A|`|M |
2n

T

`
P

|M |
n

T

` 6 pn, n, kq-TBC, n “ k n, n 7n “ 7λ 1{2 14λ Yes

: Tag is n bits;
7 Tag is 2n bits.

X ‘ 1 denotes X ‘ 0c´11.

Padding. For X P t0, 1uďl of length multiple of 8 (i.e, byte string), let

padlpXq “

#

X if |X| “ l,
X } 0l´|X|´8 } len8pXq if 0 ď |X| ă l,

where len8pXq denotes the one-byte encoding of the byte-length of X (we assume that
l ă 256 bytes). Here, padlpεq “ 0l. For example, when l “ 128, len8pXq has 16 variations
(i.e., byte length 0 to 15), and we encode it to the last 4 bits of len8pXq (for example,
len8p11q “ 00001011). The case l “ 64 is similarly treated, by using the last 3 bits.

Throughout the paper, we assume inputs are byte strings, hence the above padding,
which is efficient in hardware, works fine. At the end of Section 3.1, we comment how to
extend the specifications to arbitrarily bit strings.

Parsing. For X P t0, 1u˚, let pXr1s, . . . , Xrxsq n
Ð X be the parsing of X into n-bit blocks.

Here, Xr1s }Xr2s } . . . }Xrxs “ X and x “ |X|n. Note that |Xrxs| ă n if |X| is not a
multiple of n. When X “ ε, we have Xr1s n

Ð X and Xr1s “ ε. Note in particular that
|ε|n “ 1.

Alternating Parsing. Let n and t be positive integers larger than 8. For X P t0, 1u˚,
let pXr1s, . . . , Xrxsq n,t

Ð X be the parsing of X into n-bit blocks and t-bit blocks in an
alternating order. That is, we have Xr1s }Xr2s } . . . }Xrxs “ X, where |Xris| “ n for any
odd i P t1, . . . , x´ 1u, |Xris| “ t for any even i P t1, . . . , x´ 1u, |Xrxs| P JnK if x is odd,
and |Xrxs| P JtK if x is even. When X ‰ ε, x is determined as

x “

$

’

&

’

%

2t|X|{pn` tqu if |X| ą 0 and |X| mod pn` tq “ 0
2t|X|{pn` tqu` 1 if 1 ď |X| mod pn` tq ď n

2t|X|{pn` tqu` 2 if n ă |X| mod pn` tq ă n` t.

When X “ ε, Xr1s n,tÐ X (thus x “ 1) and Xr1s “ ε.

Galois Field. An element a in the Galois field GFp2nq will be interchangeably represented
as an n-bit string an´1 . . . a1a0, a formal polynomial an´1xn´1 ` ¨ ¨ ¨ ` a1x ` a0, or an
integer

řn´1
i“0 ai2i.

48

Matrix. Let G be an nˆ n binary matrix defined over GFp2q. For X P t0, 1un, let GpXq
denote the matrix-vector multiplication over GFp2q, where X is interpreted as a column
vector. We may write G ¨X instead of GpXq.

(Tweakable) Block Cipher. A tweakable block cipher (TBC) is a keyed function rE :
K ˆ TW ˆMÑM, where K is the key space, TW is the tweak space, andM “ t0, 1un
is the message space, such that for any pK,Twq P K ˆ TW , rEpK,Tw, ¨q is a permutation
overM. We interchangeably write rEpK,Tw,Mq or rEKpTw,Mq or rETwK pMq. When TW is
singleton, it is essentially a block cipher and is simply written as E : K ˆMÑM.

2.2 Security Notions
Security Notions for NAE. We consider the standard security notions for nonce-based
AE [BN08,BRW04,Rog04b]. Let Π denote an NAE scheme consisting of an encryption
procedure Π.EK and a decryption procedure Π.DK , for secret key K chosen uniform in the
set K (denoted as K $

Ð K). For plaintext M with nonce N and associated data A, Π.EK
takes pN,A,Mq and returns ciphertext C (typically |C| “ |M |) and tag T . For decryption,
Π.DK takes pN,A,C, T q and returns a decrypted plaintext M if the authentication check
is successful, and otherwise an error symbol, K.

The privacy notion is the indistinguishability of encryption oracle Π.EK from the
random-bit oracle $ which returns random |M | ` τ bits for any query pN,A,Mq. The
adversary is assumed to be nonce-respecting (NR), i.e., nonces can be arbitrarily chosen
but must be distinct for encryption queries. We define the (NR) privacy advantage as

Advpriv
Π pAq def

“ Pr
”

K
$
Ð K : AΠ.EKp¨,¨,¨q ñ 1

ı

´ Pr
”

A$p¨,¨,¨q ñ 1
ı

,

which measures the hardness of breaking the privacy notion for A.

The authenticity notion is the probability of successful forgery via queries to Π.EK and
Π.DK oracles. We define the (NR) authenticity advantage as

Advauth
Π pAq def

“ Pr
”

K
$
Ð K : AΠ.EKp¨,¨,¨q,Π.DKp¨,¨,¨,¨q forges

ı

,

where A forges if it receives a value M 1 ‰ K from Π.DK . Here, to prevent trivial wins, if
pC, T q Ð Π.EKpN,A,Mq is obtained earlier, A cannot query pN,A,C, T q to Π.DK . The
adversary is assumed to be nonce-respecting for encryption queries.

Security Notions for MRAE. We adopt the security notions of MRAE following the
same security definitions as above, with the exception that the adversary can now repeat
nonces in encryption queries. Such an adversary is called nonce-misusing (NM)1. We write
the NM-privacy advantage as

Advnm-priv
Π pAq def

“ Pr
”

K
$
Ð K : AΠ.EKp¨,¨,¨q ñ 1

ı

´ Pr
”

A$p¨,¨,¨q ñ 1
ı

,

and the NM-authenticity advantage as

Advnm-auth
Π pAq def

“ Pr
”

K
$
Ð K : AΠ.EKp¨,¨,¨q,Π.DKp¨,¨,¨,¨q forges

ı

.

We note that while NM adversaries can repeat nonces, without loss of generality, we assume
that they do not repeat the same query. See also [RS06] for reference.

1It may also be called Nonce Repeating or Nonce Ignoring.

49

Security Notion for TBC. The security of TBC: K ˆ T ˆM ÑM is defined by the
indistinguishability from an ideal object, tweakable uniform random permutation (TURP),
denoted by rP, using chosen-plaintext, chosen-tweak queries. It is a set of independent
uniform random permutations (URPs) overM indexed by tweak T P T . Let Advtprp

rE
pAq

denote the TPRP advantage of TBC rE against adversary A. It is defined as

Advtprp
rE
pAq def

“ Pr
”

K
$
Ð K : A rEKp¨,¨q ñ 1

ı

´ Pr
”

ArPp¨,¨q ñ 1
ı

.

An adversary against privacy (authenticity) notion is called privacy (authenticity)
adversary, and if its attack resource is represented by the parameter list θ, we call it a
θ-privacy (authenticity) adversary, assuming the semantics of θ is clearly understood. For
example, θ may contain the number of queries and the total number of queried blocks etc.
This holds for other security notions as well; e.g. we write pqe, tq-TPRP-adversary to mean
CPA adversary against TBC using qe encryption queries and time complexity t.

3 Specifications
3.1 State Update Function
In this section, we specify our two new authenticated encryption modes, Romulus and
Remus. First, we describe the state update function, that is common to both designs. Let
G be an n ˆ n binary matrix defined as an n{8 ˆ n{8 diagonal matrix of 8 ˆ 8 binary
sub-matrices Gs. They are defined as

G “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Gs 0 0 . . . 0

0 Gs 0 . . . 0
...

. . .
...

0 . . . 0 Gs 0

0 . . . 0 0 Gs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, Gs “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where 0 for G represents the 8ˆ 8 zero matrix.

The state update function ρ : t0, 1un ˆ t0, 1un Ñ t0, 1un ˆ t0, 1un and its inverse
ρ´1 : t0, 1un ˆ t0, 1un Ñ t0, 1un ˆ t0, 1un are defined as

ρpS,Mq “ pS1, Cq,

where C “M ‘GpSq and S1 “ S ‘M . Similarly,

ρ´1pS,Cq “ pS1,Mq,

where M “ C ‘GpSq and S1 “ S ‘M . We note that we abuse the notation by writing
ρ´1 as this function is only the inverse of ρ according to its second parameter. For any
pS,Mq P t0, 1un ˆ t0, 1un, if ρpS,Mq “ pS1, Cq holds then ρ´1pS,Cq “ pS1,Mq. Besides,
we remark that ρpS, 0nq “ pS,GpSqq holds.

Note that other state update functions are possible, but need to fulfill the following
security condition. First, let Gpiq be an nˆn matrix that is equal to G except the pi`1q-st
to n-th rows, which are set to all zero. Here, Gp0q is the zero matrix and Gpnq “ G, and for
X P t0, 1un, GpiqpXq “ lmtipGpXqq}0n´i for all i “ 0, 8, 16, . . . , n; note that all variables
are byte strings, and lmtipXq is the leftmost i{8 bytes. Let I denote the nˆ n identity
matrix.

50

Definition 1. We say that the nˆn binary matrix G is sound if (1) G is regular (full-rank)
and (2) Gpiq ` I is regular for all i “ 8, 16, . . . , n.

We have verified the soundness of our G proposal, for a range of n including n “ 64
and n “ 128, by a computer program.

Extension to Bit Strings. When the inputs are arbitrary bit strings rather than byte
strings, we need pad`pXq to be injective on all X P t0, 1uă` and keep pad`pXq “ X when
|X| “ ` as before. For example we can use the popular 10˚ padding. We also need to
extend Definition 1 so that the second condition is changed to require Gpiq ` I is regular
for all i “ 1, . . . , n. In fact, our G fulfills this for n “ 64, 128.

3.2 Parameters
We use the following notation for the parameters of Remus and Romulus: nonce length
nl, key length k, message block length n, AD block length n ` t for Romulus or n for
Remus, counter bit length d, tag length τ . While we fix τ “ n, a tag for NAE schemes can
be truncated if needed, at the cost of decreased security against forgery (see Section 4).
We provide in Appendix B actual values of these parameters for our concrete proposed
instances.

Remus uses as internal primitive a block cipher E : KˆMÑM withM “ t0, 1un and
K “ t0, 1uk, and a mode ICmode to convert it into a TBC, ICmode P tICE1, ICE2, ICE3u (for
Ideal-Cipher Encryption). We use the term ICE to denote this family of TBCs. Each TBC
is a mapping : K ˆ T ˆMÑM, where T “ N ˆD ˆ B is the tweak space with nonce
space N “ t0, 1unl, counter space D “ J2d ´ 1K, and B “ J256K0 for domain separation
(i.e., deriving a small number of independent instances). Typically, B is represented as a
byte.

On the other hand, Romulus uses a TBC rE : K ˆ T ˆM ÑM, where K “ t0, 1uk,
M “ t0, 1un, and T “ T ˆ B ˆD. Here, T “ t0, 1ut, D “ J2d ´ 1K0, and B “ J256K0 for
parameters t and d, and B is also represented as a byte. For tweak T “ pT,B,Dq P T , T
is always assumed to be a byte string including ε, and t is a multiple of 8. T will be used
to process the nonce or an AD block, D will be used for counter, while B is for domain
separation. When the counter value is i P D, we write i to denote the i-th clocking of the
counter as a part of the tweak (e.g. see Figure 2).

NAE and MRAE Families. Romulus and Remus each have two families, Romulus-N,
Romulus-M, Remus-N and Remus-M, and each family consists of several members (the
sets of parameters). The x-N families implement nonce-based AE (NAE) secure against
Nonce-respecting adversaries, and the x-M families implement nonce Misuse-resistant AE
(MRAE) introduced by Rogaway and Shrimpton [RS06]. The names Romulus and Remus
stand for the corresponding set of two families.

3.3 TBC ICE for Remus
As described above, Remus uses ICE which consists of three variants: ICE1, ICE2 and ICE3.
Each variant consists of two main components, the key derivation function KDF : KˆN Ñ

Lˆ V, and the “core” encryption function ICEnc : pLˆ Vq ˆ pD ˆ Bq ˆMÑM. Here,
L “ K “ t0, 1uk and V “ M “ t0, 1un. The algorithm of ICEnc is shown in Figure 1
for all variants (and a more graphical representation is given in Figures 7, 8 and 9). In
addition, there is a tweakey encoding function encode : LˆD ˆ B Ñ K inside ICEnc. For
convenience, KDF for ICE1 may also be referred to as KDF1 (KDF2 and KDF3 are defined
analogously).

51

Algorithm ICEncD,BL,V pMq

1. S Ð 2DV ‘M
2. TK Ð encodepL,D,Bq
3. S Ð ETK pSq
4. C Ð 2DV ‘ S
5. return C

Figure 1: Definition of ICEnc, the core encryption routine of ICE. ICEnc is common to
all three variants of ICE, ICE1 and ICE2 and ICE3 except the definition of encode. Note
that ICE1 and ICE3 fix V “ 0n, hence effectively S Ð M (line 1) and C Ð S (line 4).
Variables L and V are assumed to be derived from the corresponding KDF taking pN,Kq,
as a pre-processing. KDFs are defined in Section 3.3.

An encryption with ICE is performed as follows. Given a tweak T “ pN,D,Bq P T , a
key K P K, and a plaintextM PM, we first derive the nonce-dependent mask values pL, V q
with KDFpN,Kq Ñ pL, V q, and then ICEnc encrypts M as ICEncpL, V,D,B,Mq Ñ C,
using the key of the internal E determined by encodepL,D,Bq. Here, ICEncpL, V,D,B, ˚q
is a permutation overM for any pL, V,D,Bq. Each variant is then defined as follows:

1. ICE1: n “ d “ k, nl ď n.

(a) KDFpN,Kq “ pL, V q where L “ GpEKpN } 0n´nlqq, V “ 0n.

(b) encodepL,D,Bq “ 2DL‘B, where multiplication is over GFp2nq.

2. ICE2: n “ d “ k, nl ď n.

(a) KDFpN,Kq “ pL, V q where L1 “ EKpN } 0n´nlq, V 1 “ EK‘1pL
1q, and L “

GpL1q and V “ GpV 1q.

(b) encodepL,D,Bq “ 2DL‘B, where multiplication is over GFp2nq.

3. ICE3: nl ď k ´ 8, d “ k ´ 8, n is arbitrary (however, it matters for the security of
the whole Remus).

(a) KDFpN,Kq “ pL, V q where LÐ pN } 0k´nlq ‘K,V Ð 0n.

(b) encodepL,D,Bq “ p2DLr1sq } pB ‘ Lr2sq, where pLr1s, Lr2sq k´8
Ð L and the

multiplication is over GFp2k´8q and applied to Lr1s. Note that |Lr1s| “ k ´ 8
and |Lr2s| “ 8.

Note that ICE1 and ICE2 differ only in the second mask V derived by their KDFs.

When ICE is working inside Remus, the corresponding KDF is performed only once
as an initialization. For ICE1 or ICE2, KDF involves one or two calls of E and matrix
multiplications by G (see above). For ICE3, KDF is just a linear operation of pN,Kq. For
each input block, ICE applies doubling to the derived mask values. Since doubling is a
sequential operation, computing ICEncD`1,B

L,V pMq after ICEncD,B
1

L,V pM
1q is easy and does not

need any additional memory.

3.4 Romulus
The specification of the NAE mode Romulus-N is shown in Figure 2, while Figure 3 gives a
more graphical representation. Similarly, the specification of the MRAE mode Romulus-M
is shown in Figure 4, while Figure 5 gives a more graphical representation.

52

To encrypt pN,A,Mq under key K, in Romulus-N, we first hash A “ pAr1s, . . . , Arasq
into the state S in line 11 in Figure 2, where Ar1s, Ar3s, Ar5s, . . . are injected into the state
with ρ, and Ar2s, Ar4s, Ar6s, . . . are processed with the TBC. We then use nonce N to
compute S “ rE

pN,wA,aq
K pSq, that could be seen as the nonce-dependent MAC value of A.

Then M is processed with ρ to generate C, where we keep using the TBC that takes N as
a part of the input. The tag T is generated as T “ Gp rE

pN,wM ,mq
K pSqq from the final state

S after the process of M .

In Romulus-M, we first hash both A and M into the state S in line 20 or 22 in Figure 4,
and then the tag T is computed as T “ Gp rE

pN,w,a`mq
K pSqq in line 24. The tag generation

may seem complex in appearance, but it simply follows the same process as Romulus-N
to hash both A and M , and the encryption part of M is similar to Romulus-N. Note that
the algorithm always assumes t “ nl. These figures adopt the concrete values of domain
separation (in the second argument of the tweak) described in Appendix B.

Although the pseudocode is identical, each member of Romulus-N and Romulus-M
shown in Tables 1 and 2 has a distinct tweakey encoding, and the underlying TBCs are
not identical in its tweak length. Each member is designed to achieve a unique tread-off
between security, efficiency, and usability (mainly on the support of maximum input
length). See Appendix B for the concrete specifications of the members of Romulus.

3.5 Remus
The specification of the nonce-based AE mode Remus-N is shown in Figure 6, and a more
graphical representation is given in Figures 7, 8, 9. Similarly, the specification of the
misuse-resistant AE Remus-M is shown in Figure 10, while a more graphical representation
is given in Figures 11 and 12.

The basic procedure of Remus-N and Remus-M follows that of Romulus-N and Romulus-
M, respectively, while we use ICE as the underlying primitive that does not take A nor M
as the input. As with Romulus, the figures adopt the concrete domain separation values
from Appendix B and use i to denote the counter value i.

4 Security Analysis
In this section, we provide security bounds of Romulus and Remus. All the corresponding
proofs will be given in Appendix A. We consider NAE notions for Romulus-N, and both NAE
and MRAE notions for Romulus-M, that is, both nonce-respecting (NR) and nonce-misusing
(NM) adversaries.

4.1 Security of Romulus
4.1.1 Security of Romulus-N

For A P t0, 1u˚, we say A has a AD blocks if it is parsed as pAr1s, . . . , Arasq n,tÐ A. Let
ã “ ta{2u` 1 which is a bound of the actual number of primitive calls for AD. Similarly,
for plaintext M P t0, 1u˚, we say M has m message blocks if |M |n “ m. The same applies
to ciphertext C. For encryption query pN,A,Mq or decryption query pN,A,C, T q of a
AD blocks and m message blocks, the number of total TBC calls is at most ã`m, which
is called the number of effective blocks of a query.

While the specification assumes an n-bit tag, we extend it to be (arbitrarily) fixed
truncated to τ P JnK bits, and show the bounds for the case of a τ -bit tag.

53

Algorithm Romulus-N.EncKpN,A,Mq
1. S Ð 0n
2. pAr1s, . . . , Arasq n,tÐ A
3. if a mod 2 “ 0 then uÐ t else n
4. if |Aras| ă u then wA Ð 26 else 24
5. Aras Ð padupArasq
6. for i “ 1 to ta{2u

7. pS, ηq Ð ρpS,Ar2i´ 1sq
8. S Ð rE

pAr2is,8,2i´1q
K pSq

9. end for
10. if a mod 2 “ 0 then V Ð 0n else Aras
11. pS, ηq Ð ρpS, V q

12. S Ð rE
pN,wA,aq
K pSq

13. pM r1s, . . . ,M rmsq n
ÐM

14. if |M rms| ă n then wM Ð 21 else 20
15. for i “ 1 to m´ 1
16. pS,Crisq Ð ρpS,M risq

17. S Ð rE
pN,4,iq
K pSq

18. end for
19. M 1rms Ð padnpM rmsq
20. pS,C 1rmsq Ð ρpS,M 1rmsq
21. Crms Ð lmt|Mrms|pC 1rmsq

22. S Ð rE
pN,wM ,mq
K pSq

23. pη, T q Ð ρpS, 0nq
24. C Ð Cr1s } . . . }Crm´ 1s }Crms
25. return pC, T q

Algorithm Romulus-N.DecKpN,A,C, T q
1. S Ð 0n
2. pAr1s, . . . , Arasq n,tÐ A
3. if a mod 2 “ 0 then uÐ t else n
4. if |Aras| ă u then wA Ð 26 else 24
5. Aras Ð padupArasq
6. for i “ 1 to ta{2u

7. pS, ηq Ð ρpS,Ar2i´ 1sq
8. S Ð rE

pAr2is,8,2i´1q
K pSq

9. end for
10. if a mod 2 “ 0 then V Ð 0n else Aras
11. pS, ηq Ð ρpS, V q

12. S Ð rE
pN,wA,aq
K pSq

13. pCr1s, . . . , Crmsq n
Ð C

14. if |Crms| ă n then wC Ð 21 else 20
15. for i “ 1 to m´ 1
16. pS,M risq Ð ρ´1pS,Crisq

17. S Ð rE
pN,4,iq
K pSq

18. end for
19. rS Ð p0|Crms| } rmtn´|Crms|pGpSqqq
20. C 1rms Ð padnpCrmsq ‘ rS
21. pS,M 1rmsq Ð ρ´1pS,C 1rmsq
22. M rms Ð lmt|Crms|pM 1rmsq

23. S Ð rE
pN,wC ,mq
K pSq

24. pη, T˚q Ð ρpS, 0nq
25. M ÐM r1s } . . . }M rm´ 1s }M rms
26. if T˚ “ T then return M else K

Algorithm ρpS,Mq
1. C ÐM ‘GpSq
2. S1 Ð S ‘M
3. return pS1, Cq

Algorithm ρ´1pS,Cq
1. M Ð C ‘GpSq
2. S1 Ð S ‘M
3. return pS1,Mq

Figure 2: The Romulus-N nonce-based AE mode. Lines of [if (statement) then X Ð x
else x1] are shorthand for [if (statement) then X Ð x else X Ð x1]. The dummy
variable η is always discarded. We use Romulus-N1 as working example. For other
Romulus-N members, the values of the bits b7 and b6 in the domain separation (specified
in Appendix B) need to be adapted accordingly.

Theorem 1. Let A be an NR privacy adversary against Romulus-N with time complexity
tA and with total number of effective blocks σpriv. Moreover, let B be an NR authenticity
adversary using qd decryption queries, with total number of effective blocks for encryption
and decryption queries σauth, and time complexity tB. Then

Advpriv
Romulus-NpAq ď Advtprp

rE
pA1q, (1)

Advauth
Romulus-NpBq ď Advtprp

rE
pB1q ` 3qd

2n `
2qd
2τ

hold for some pσpriv, tA`Opσprivqq-TPRP adversary A1, and for some pσauth, tB`Opσauthqq-
TPRP adversary B1.

Theorem 1 holds for all the members of Romulus-N. Although the bounds of Theorem 1
look as if the adversary has almost no limitation in query complexity except qd, there will
be inherent ones from the specification, say the maximum input length. This holds for all
the security claims we make.

54

0
n

n
n

ρ
Ẽ

8
,1

K

A
[1
]

A
[2
]

n
t

ρ
Ẽ

8
,3

K

A
[3
]

A
[4
]

ρ
Ẽ

8
,a
−
1

K

A
[a

−
1]

p
a
d
(A

[a
])

C
as
e
a
is
ev
en

S
ρ

Ẽ
w

A
,a

K

0n
N

w
A

∈
[2
4
,2

6
]

0
n

n
n

ρ
Ẽ

8
,1

K

A
[1
]

A
[2
]

n
t

ρ
Ẽ

8
,3

K

A
[3
]

A
[4
]

ρ
Ẽ

8
,a
−
2

K

A
[a

−
2]

A
[a

−
1]

C
as
e
a
is
o
d
d

ρ
Ẽ

w
A
,a

K

p
a
d
(A

[a
])

N

w
A

∈
[2
4
,2

6
]

S

S
n

n

t

ρ
Ẽ

4
,1

K

M
[1
]

N

C
[1
]n n

ρ
Ẽ

4
,2

K

M
[2
]

N

C
[2
]

ρ
Ẽ

w
M

, m
K

p
a
d
(M

[m
])

N

l
s
b
|M

[m
]|

C
[m

]

w
M

∈
[2
0
,2

1
]

ρ0n T

Figure 3: The Romulus-N nonce-based AE mode. (Top) process of AD with an even
number of AD blocks. (Middle) process of AD with an odd number of AD blocks. (Bottom)
Encryption. We use Romulus-N1 as working example. For other Romulus-N members, the
values of the bits b7 and b6 in the domain separation need to be adapted accordingly.

55

Algorithm Romulus-M.EncKpN,A,Mq
1. S Ð 0n
2. pXr1s, . . . , Xrasq n,tÐ A
3. if a mod 2 “ 0 then uÐ t else n
4. pXra` 1s, . . . , Xra`msq n`t´u,uÐ M
5. if m mod 2 “ 0 then v Ð u else n` t´ u
6. w Ð 48
7. if |Xras| ă u then w Ð w ‘ 2
8. if |Xra`ms| ă v then w Ð w ‘ 1
9. if a mod 2 “ 0 then w Ð w ‘ 8
10. if m mod 2 “ 0 then w Ð w ‘ 4
11. Xras Ð padupXrasq
12. Xra`ms Ð padvpXra`msq
13. xÐ 40
14. for i “ 1 to tpa`mq{2u

15. pS, ηq Ð ρpS,Xr2i´ 1sq
16. if i “ ta{2u` 1 then xÐ x‘ 4
17. S Ð rE

pXr2is,x,2i´1q
K pSq

18. end for
19. if a mod 2 “ m mod 2 then
20. pS, ηq Ð ρpS, 0nq
21. else
22. pS, ηq Ð ρpS,Xra`msq

23. S Ð rE
pN,w,a`mq
K pSq

24. pη, T q Ð ρpS, 0nq
25. if M “ ε then return pε, T q
26. S Ð T
27. pM r1s, . . . ,M rm1sq n

ÐM
28. z Ð |M rm1s|
29. M rm1s Ð padnpM rm

1sq

30. for i “ 1 to m1

31. S Ð rE
pN,36,i´1q
K pSq

32. pS,Crisq Ð ρpS,M risq
33. end for
34. Crm1s Ð lsbzpCrm1sq
35. C Ð Cr1s } . . . }Crm1 ´ 1s }Crm1s
36. return pC, T q

Algorithm Romulus-M.DecKpN,A,C, T q
1. if C “ ε then M Ð ε
2. else
3. S Ð T
4. pCr1s, . . . , Crm1sq n

Ð C
5. z Ð |Crm1s|
6. Crm1s Ð padnpCrm

1sq

7. for i “ 1 to m1

8. S Ð rE
pN,36,i´1q
K pSq

9. pS,M risq Ð ρ´1pS,Crisq
10. end for
11. M rm1s Ð lsbzpM rm1sq
12. M ÐM r1s } . . . }M rm1 ´ 1s }M rm1s
13. S Ð 0n
14. pXr1s, . . . , Xrasq n,tÐ A
15. if a mod 2 “ 0 then uÐ t else n
16. pXra` 1s, . . . , Xra`msq n`t´u,uÐ M
17. if m mod 2 “ 0 then v Ð u else n` t´ u
18. w Ð 48
19. if |Xras| ă u then w Ð w ‘ 2
20. if |Xra`ms| ă v then w Ð w ‘ 1
21. if a mod 2 “ 0 then w Ð w ‘ 8
22. if m mod 2 “ 0 then w Ð w ‘ 4
23. Xras Ð padupXrasq
24. Xra`ms Ð padvpXra`msq
25. xÐ 40
26. for i “ 1 to tpa`mq{2u

27. pS, ηq Ð ρpS,Xr2i´ 1sq
28. if i “ ta{2u` 1 then xÐ x‘ 4
29. S Ð rE

pXr2is,x,2i´1q
K pSq

30. end for
31. if a mod 2 “ m mod 2 then
32. pS, ηq Ð ρpS, 0nq
33. else
34. pS, ηq Ð ρpS,Xra`msq

35. S Ð rE
pN,w,a`mq
K pSq

36. pη, T˚q Ð ρpS, 0nq
37. if T˚ “ T then return M else K

Algorithm ρpS,Mq
1. C ÐM ‘GpSq
2. S1 Ð S ‘M
3. return pS1, Cq

Algorithm ρ´1pS,Cq
1. M Ð C ‘GpSq
2. S1 Ð S ‘M
3. return pS1,Mq

Figure 4: The Romulus-M misuse-resistant AE mode. Lines of [if (statement) then
X Ð x else x1] are shorthand for [if (statement) then X Ð x else X Ð x1]. The
dummy variable η is always discarded. We use Romulus-M1 as working example. For other
Romulus-M members, the values of the bits b7 and b6 in the domain separation (specified
in Appendix B) need to be adapted accordingly. Note that in the case of empty message,
no encryption call has to be performed in the encryption part.

4.1.2 Security of Romulus-M

For an encryption query pN,A,Mq, the number of effective blocks is ta{2u` tm{2u`2`m1,
where pAr1s, . . . , Arasq n,tÐ A, pM r1s, . . . ,M rmsq n,tÐ M (or pM r1s, . . . ,M rmsq t,nÐ M), and
pM r1s, . . . ,M rm1sq n

Ð M . For a decryption query pN,A,C, T q, it is similarly defined by
pCr1s, . . . , Crmsq n,tÐ C or pCr1s, . . . , Crmsq t,nÐ C, and pCr1s, . . . , Crm1sq n

Ð C.

Theorem 2. Let A be an NR privacy adversary against Romulus-M that uses qe encryption
queries with time complexity tA and with total number of effective blocks σpriv. Let B
be an NR authenticity adversary against Romulus-M using qe encryption queries and qd

56

0
n

n
n

ρ
Ẽ

4
0
, 1

K

A
[1
]

A
[2
]

n
t

ρ
Ẽ

4
0
, a
−
1

K

A
[a

−
1]

p
a
d
(A

[a
])

C
as
e
(a
,m

)
=

(e
ve
n
,e
ve
n
)

ρ
Ẽ

4
4
, a
+
1

K

M
[1
]

M
[2
]

n
t

ρ
Ẽ

4
4
, a
+
m
−
1

K

M
[m

−
1]

p
a
d
(M

[m
])

ρ
Ẽ

w
,a
+
m

K

0n
N

w
∈

[6
0
,.
..
,6

3
]

ρ0n T

0
n

n
n

ρ
Ẽ

4
0
,1

K

A
[1
]

A
[2
]

n
t

ρ
Ẽ

4
0
,a
−
1

K

A
[a

−
1]

p
a
d
(A

[a
])

C
as
e
(a
,m

)
=

(e
ve
n
,o
d
d
)

ρ
Ẽ

4
4
,a
+
1

K

M
[1
]

M
[2
]

n
t

ρ
Ẽ

w
,a
+
m

K

p
a
d
(M

[m
])

N

w
∈

[5
6
,.
..
,5

9
]

ρ0n T

0
n

n
n

ρ
Ẽ

4
0
,1

K

A
[1
]

A
[2
]

n
t

ρ
Ẽ

4
4
,a

K

p
a
d
(A

[a
])

M
[1
]

C
as
e
(a
,m

)
=

(o
d
d
,e
ve
n
)

ρ
Ẽ

4
4
,a
+
2

K

M
[2
]

M
[3
]

n
t

ρ
Ẽ

w
,a
+
m

K

p
a
d
(M

[m
])

N

w
∈

[5
2
,.
..
,5

5
]

ρ0n T

0
n

n
n

ρ
Ẽ

4
0
,1

K

A
[1
]

A
[2
]

n
t

ρ
Ẽ

4
4
,a

K

p
a
d
(A

[a
])

M
[1
]

C
as
e
(a
,m

)
=

(o
d
d
,o
d
d
)

ρ
Ẽ

4
4
,a
+
2

K

M
[2
]

M
[3
]

n
t

ρ
Ẽ

4
4
,a
+
m
−
1

K

M
[m

−
1]

p
a
d
(M

[m
])

ρ
Ẽ

w
,a
+
m

K

0n
N

w
∈

[4
8
,.
..
,5

1
]

ρ0n T

T
Ẽ

3
6
,0

KN

ρ
Ẽ

3
6
,1

K

M
[1
]

N

C
[1
]

n
n

n n

t

ρ
Ẽ

3
6
,2

K

M
[2
]

N

C
[2
]

ρ
Ẽ

3
6
,m

′ −
1

K

M
[m
′ −

1]
N

C
[m
′ −

1]

ρ

p
a
d
(M

[m
′]
)

l
s
b
|M

[m
′]
|

C
[m
′]

Figure 5: The Romulus-M misuse-resistant AE mode. (Top) process of AD with an
even/even, even/odd, odd/even, odd/odd number of AD blocks and M blocks, respectively.
(Bottom) Encryption. We use Romulus-M1 as working example. For other Romulus-M
members, the values of the bits b7 and b6 in the domain separation need to be adapted
accordingly.

57

Algorithm Remus-N.EncKpN,A,Mq
1. pL, V q ÐKDFpN,Kq
2. S Ð 0n
3. pAr1s, . . . , Arasq n

Ð A
4. pM r1s, . . . ,M rmsq n

ÐM
5. if |Aras| ă n then wA Ð 13 else 12
6. if |M rms| ă n then wM Ð 11 else 10
7. Aras Ð padnpArasq
8. for i “ 1 to a´ 1
9. pS, ηq Ð ρpS,Arisq

10. S Ð ICEnci,4L,V pSq
11. end for
12. pS, ηq Ð ρpS,Arasq

13. S Ð ICEnca,wAL,V pSq
14. for i “ 1 to m´ 1
15. pS,Crisq Ð ρpS,M risq

16. S Ð ICEnca`i,2L,V pSq
17. end for
18. M 1rms Ð padnpM rmsq
19. pS,C 1rmsq Ð ρpS,M 1rmsq

20. S Ð ICEnca`m,wML,V pSq
21. Crms Ð lmt|Mrms|pC 1rmsq
22. pη, T q Ð ρpS, 0nq
23. C Ð Cr1s }Cr2s } . . . }Crms
24. return pC, T q

Algorithm Remus-N.DecKpN,A,C, T q
1. pL, V q ÐKDFpN,Kq
2. S Ð 0n
3. pAr1s, . . . , Arasq n

Ð A
4. pCr1s, . . . , Crmsq n

Ð C
5. if |Aras| ă n then wA Ð 13 else 12
6. if |Crms| ă n then wC Ð 11 else 10
7. Aras Ð padnpArasq
8. for i “ 1 to a´ 1
9. pS, ηq Ð ρpS,Arisq

10. S Ð ICEnci,4L,V pSq
11. end for
12. pS, ηq Ð ρpS,Arasq

13. S Ð ICEnca,wAL,V pSq
14. for i “ 1 to m´ 1
15. pS,M risq Ð ρ´1pS,Crisq

16. S Ð ICEnca`i,2L,V pSq
17. end for
18. rS Ð p0|Crms| } rmtn´|Crms|pGpSqqq
19. C 1rms Ð padnpCrmsq ‘ rS
20. pS,M 1rmsq Ð ρ´1pS,C 1rmsq
21. M rms Ð lmt|Crms|pM 1rmsq

22. S Ð ICEnca`m,wCL,V pSq
23. pη, T˚q Ð ρpS, 0nq
24. M ÐM r1s }M r2s } . . . }M rms
25. if T˚ “ T then return M else K

Algorithm ρpS,Mq
1. C ÐM ‘GpSq
2. S1 Ð S ‘M
3. return pS1, Cq

Algorithm ρ´1pS,Cq
1. M Ð C ‘GpSq
2. S1 Ð S ‘M
3. return pS1,Mq

Figure 6: Encryption and decryption of Remus-N. It uses TBC ICE consisting of KDF and
ICEnc. Lines of [if (statement) then X Ð x else x1] are shorthand for [if (statement)
then X Ð x else X Ð x1]. The dummy variable η is always discarded. Remus-N1 is used
as a working example. Depending on the Remus-N version, an appropriate variant of ICE
will be used.

decryption queries, with total number of effective blocks for encryption and decryption
queries σauth and with time complexity tB. Then we have

Advpriv
Romulus-MpAq ď Advtprp

rE
pA1q,

Advauth
Romulus-MpBq ď Advtprp

rE
pB1q ` 5qd

2n

for some pσpriv, tA ` Opσprivqq-TPRP adversary A1, and pσauth, tB ` Opσauthqq-TPRP
adversary B1.

Theorem 3. Let A be an NM privacy adversary and let B be an NM authenticity adversary,
both are against Romulus-M, that use the same parameters as in Theorem 2, and that can
repeat a nonce at most 1 ď r ď 2n´1 times in encryption queries. Then we have

Advnm-priv
Romulus-MpAq ď Advtprp

rE
pA1q ` 4rσpriv

2n ,

Advnm-auth
Romulus-MpBq ď Advtprp

rE
pB1q ` 4rqe ` 5rqd

2n

for some pσpriv, tA ` Opσprivqq-TPRP adversary A1 and pσauth, tB ` Opσauthqq-TPRP
adversary B1.

58

N

KDF1

E

K

n n
ρ

0n

L

n

n

n

n

0n ρ

A[1]

E

2L⊕ 4

(N, 4, 1)

ρ

A[2]

E

22L⊕ 4

(N, 4, 2)

ρ

pad(A[a])

E

2aL⊕ wA

(N,wA, a)

wA ∈ [12, 13]

S

n

n

n

S ρ

M [1]

C[1]

E

2a+1L⊕ 2

(N, 2, a+ 1)

ρ

M [2]

C[2]

E

2a+2L⊕ 2

(N, 2, a+ 2)

ρ

pad(M [m])

lsb|M [m]|

C[m]

E

2a+mL⊕ wM

(N,wM , a+m)

wM ∈ [10, 11]

ρ

0n

T

Figure 7: Remus-N with ICE1 (Remus-N1). (Top) Key derivation. (Middle) Processing of
AD. (Bottom) Encryption. The domain separation B being of 8 bits only, ‘B is to be
interpreted as ‘ 0120 }B.

We note that it is possible to unify Theorems 2 and 3 into a single theorem statement,
while we chose to differentiate them for the difference of the security model, and separating
the proofs makes them more transparent.

Bit Security. Both Romulus-N and Romulus-M have n-bit security for NR-privacy and
NR-authenticity, and Romulus-M has n{2-bit security for NM-privacy and NM-authenticity,
with graceful degradation in the number of nonce repetitions [PS16], i.e., a small number
of nonce repetitions do not harm the security too much. The bounds of Romulus-N is the
same as ΘCB3 except the tiny difference in their constants.

4.2 Security of Remus
Unlike Romulus, the security of Remus relies on the Ideal-Cipher Model (ICM), that is, the
underlying E : K ˆMÑM is sampled uniformly over all the block ciphers, and can be
queried at any time for both directions: pC Ð Ep pK,xMq or xM Ð E´1p pK, pCq, where the
key input pK is a part of the query. A query to E is called a primitive query. An ordinary
(encryption/decryption) query to Remus-N or Remus-M may be called a construction query.
The framework is similar to ICM-based TBC constructions, e.g. Mennink [Men15].

4.2.1 Security of Remus-N

For A P t0, 1u˚, we say A has a AD blocks if |A|n “ a. Similarly, for plaintext M P t0, 1u˚
we say M has m message blocks if |M |n “ m. The same holds for the ciphertext C. For

59

N

KDF2

E

K

n n
ρ

0n

L

n

n

E

K ⊕ 1

ρ

0n

V

n

n

0n ρ

A[1]

E

2V 2L⊕ 68 2V

(N, 68, 1)

ρ

A[2]

E

22V 22L⊕ 68 22V

(N, 68, 2)

ρ

pad(A[a])

E

2aV 2aL⊕ wA 2aV

(N,wA, a)

wA ∈ [76, 77]

S

n

n

n

S ρ

M [1]

C[1]

E

2a+1V 2a+1L⊕ 66 2a+1V

(N, 66, a+ 1)

ρ

M [2]

C[2]

E

2a+2V 2a+2L⊕ 66 2a+2V

(N, 66, a+ 2)

ρ

pad(M [m])

lsb|M [m]|

C[m]

E

2a+mV 2a+mL⊕ wM 2a+mV

(N,wM , a+m)

wM ∈ [74, 75]

ρ

0n

T

Figure 8: Remus-N with ICE2 (Remus-N2). (Top) Key derivation. (Middle) Processing of
AD. (Bottom) Encryption. The domain separation B being of 8 bits only, ‘B is to be
interpreted as ‘ 0120 }B.

the encryption query pN,A,Mq or decryption query pN,A,C, T q of a AD blocks and m
message blocks, the total number of TBC calls is at most a`m, which is called the number
of effective blocks of a query. As before τ P JnK is the tag length.

Theorem 4. Let A be an NR privacy adversary against Remus-N using qe encryption
(construction) queries and qp primitive queries with total number of effective blocks in
encryption queries σpriv. Moreover, let B be an NR authenticity adversary against Remus-N
using qe encryption queries and qd decryption queries, with total number of effective blocks
for encryption and decryption queries σauth, and qp primitive queries. Then we have

Advpriv
Remus-N1pAq ď

9σ2
priv ` 4qpσpriv

2n `
2qp
2n ,

Advpriv
Remus-N2pAq ď

9σ2
priv ` 4qpσpriv

22n `
2qp
2n ,

Advpriv
Remus-N3pAq ď

0.5σ2
priv

2k´8 `
qpσpriv

2k ,

Advauth
Remus-N1pBq ď

9σ2
auth ` 4qpσauth

2n `
2qp
2n `

3qd
2n `

2qd
2τ ,

Advauth
Remus-N2pBq ď

9σ2
auth ` 4qpσauth

22n `
2qp
2n `

3qd
2n `

2qd
2τ ,

Advauth
Remus-N3pBq ď

0.5σ2
auth

2k´8 `
qpσauth

2k `
3qd
2n `

2qd
2τ .

60

N

0

KDF3

K

n
L

n

n

n

0n ρ

A[1]

E

2L̄⊕ 132

(N, 132, 1)

ρ

A[2]

E

22L̄⊕ 132

(N, 132, 2)

ρ

pad(A[a])

E

2aL̄⊕ wA

(N,wA, a)

wA ∈ [140, 141]

S

n

n

n

S ρ

M [1]

C[1]

E

2a+1L̄⊕ 130

(N, 130, a+ 1)

ρ

M [2]

C[2]

E

2a+2L̄⊕ 130

(N, 130, a+ 2)

ρ

pad(M [m])

lsb|M [m]|

C[m]

E

2a+mL̄⊕ wM

(N,wM , a+m)

wM ∈ [138, 139]

ρ

0n

T

Figure 9: Remus-N with ICE3 (Remus-N3). (Top) Key derivation (computing
p2DLr1sq||pB ‘ Lr2sq, we use the L̄ notation to represent the fact that the multipli-
cation is only done on Lr1s, the first k´ 8 bits of L). (Middle) Processing of AD. (Bottom)
Encryption. The domain separation B being of 8 bits only, ‘ B is to be interpreted as
‘ 0120 }B.

4.2.2 Security of Remus-M

For the encryption query pN,A,Mq or decryption query pN,A,C, T q of a AD blocks and
m message blocks, the number of total TBC calls is at most a` 2m, which is called the
number of effective blocks of a query.

Theorem 5. Let A be an NR privacy adversary against Remus-M using qe encryption
(construction) queries and qp primitive queries with total number of effective blocks in
encryption queries σpriv. Moreover, let B be an NR authenticity adversary using qe
encryption queries and qd decryption queries, with total number of effective blocks for
encryption and decryption queries σauth, and qp primitive queries. Then we have

Advpriv
Remus-M1pAq ď

9σ2
priv ` 4qpσpriv

2n `
2qp
2n ,

Advpriv
Remus-M2pAq ď

9σ2
priv ` 4qpσpriv

22n `
2qp
2n ,

Advauth
Remus-M1pBq ď

9σ2
auth ` 4qpσauth

2n `
2qp
2n `

5qd
2n ,

Advauth
Remus-M2pBq ď

9σ2
auth ` 4qpσauth

22n `
2qp
2n `

5qd
2n .

Theorem 6. Let A be an NM privacy adversary and let B be an NM authenticity adversary,
both are against Remus-M, that use the parameters as specified in Theorem 5, and can

61

Algorithm Remus-M.EncKpN,A,Mq
1. pL, V q ÐKDFpN,Kq
2. S Ð 0n
3. pAr1s, . . . , Arasq n

Ð A
4. pM r1s, . . . ,M rmsq n

ÐM
5. if |Aras| ă n then wA Ð 45 else 44
6. if |M rms| ă n then wM Ð 47 else 46
7. Aras Ð padnpArasq
8. for i “ 1 to a´ 1
9. pS, ηq Ð ρpS,Arisq

10. S Ð ICEnci,36
L,V pSq

11. end for
12. pS, ηq Ð ρpS,Arasq

13. S Ð ICEnca,wAL,V pSq
14. for i “ 1 to m´ 1
15. pS, ηq Ð ρpS,M risq

16. S Ð ICEnca`i,38
L,V pSq

17. end for
18. M 1rms Ð padnpM rmsq
19. pS, ηq Ð ρpS,M 1rmsq

20. S Ð ICEnca`m,wML,V pSq
21. pη, T q Ð ρpS, 0nq
22. if M “ ε then return pε, T q
23. S Ð T
24. for i “ 1 to m´ 1
25. S Ð ICEnci´1,34

L,V pSq
26. pS,Crisq Ð ρpS,M risq
27. end for
28. S Ð ICEncm´1,34

L,V pSq
29. pη, C 1rmsq Ð ρpS,M 1rmsq
30. Crms Ð lsb|Mrms|pC 1rmsq
31. C Ð Cr1s }Cr2s } . . . }Crms
32. return pC, T q

Algorithm Remus-M.DecKpN,A,C, T q
1. pL, V q ÐKDFpN,Kq
2. if C “ ε then M Ð ε
3. else
4. S Ð T
5. pCr1s, . . . , Crmsq n

Ð C
6. z Ð |Crms|
7. Crms Ð padnpCrmsq
8. for i “ 1 to m
9. S Ð ICEnci´1,34

L,V pSq

10. pS,M risq Ð ρ´1pS,Crisq
11. end for
12. M rms Ð lsbzpM rmsq
13. M ÐM r1s } . . . }M rms
14. S Ð 0n
15. pAr1s, . . . , Arasq n

Ð A
16. if |Aras| ă n then wA Ð 45 else 44
17. if |M rms| ă n then wM Ð 47 else 46
18. Aras Ð padnpArasq
19. for i “ 1 to a´ 1
20. pS, ηq Ð ρpS,Arisq

21. S Ð ICEnci,36
L,V pSq

22. end for
23. pS, ηq Ð ρpS,Arasq

24. S Ð ICEnca,wAL,V pSq
25. for i “ 1 to m´ 1
26. pS, ηq Ð ρpS,M risq

27. S Ð ICEnca`i,38
L,V pSq

28. end for
29. M 1rms Ð padnpM rmsq
30. pS, ηq Ð ρpS,M 1rmsq

31. S Ð ICEnca`m,wML,V pSq
32. pη, T˚q Ð ρpS, 0nq
33. if T˚ “ T then return M else K

Algorithm ρpS,Mq
1. C ÐM ‘GpSq
2. S1 Ð S ‘M
3. return pS1, Cq

Algorithm ρ´1pS,Cq
1. M Ð C ‘GpSq
2. S1 Ð S ‘M
3. return pS1,Mq

Figure 10: Encryption and decryption of Remus-M. Remus-M1 is used as a working
example.Depending on the Remus-M version, an appropriate variant of ICE will be used.

repeat a nonce at most 1 ď r ď 2n´1 times in encryption queries. Then we have

Advnm-priv
Remus-M1pAq ď

9σ2
priv ` 4qpσpriv

2n `
2qp
2n `

4rσpriv

2n ,

Advnm-priv
Remus-M2pAq ď

9σ2
priv ` 4qpσpriv

22n `
2qp
2n `

4rσpriv

2n ,

Advnm-auth
Remus-M1pBq ď

9σ2
auth ` 4qpσauth

2n `
2qp
2n `

4rqe
2n `

5rqd
2n ,

Advnm-auth
Remus-M2pBq ď

9σ2
auth ` 4qpσauth

22n `
2qp
2n `

4rqe
2n `

5rqd
2n .

We note that, as with the case of Romulus-M, Theorems 5 and 6 can be unified. We
separate them for the difference of the security model and clarity of the proofs.

Bit Security. For NAE variants, Remus-N1 and Remus-N2 have n{2-bit and n-bit security,
while Remus-N3 has mintpk´8q{2, nu-bit security, for NR-privacy and NR-authenticity. For

62

N

KDF1

E

K

n n
ρ

0n

L

n

n

n

n

0n ρ

A[1]

E

2L⊕ 36

(N, 36, 1)

ρ

A[2]

E

22L⊕ 36

(N, 36, 2)

ρ

pad(A[a])

E

2aL⊕ wA

(N,wA, a)

wA ∈ [44, 45]

S

n

n

S ρ

M [1]

E

2a+1L⊕ 38

(N, 38, a+ 1)

ρ

M [2]

E

2a+2L⊕ 38

(N, 38, a+ 2)

ρ

pad(M [m])

E

2a+mL⊕ wM

(N,wM , a+m)

wM ∈ [46, 47]

ρ

0n

T

T
n

n

n

E

L⊕ 34

(N, 34, 0)

ρ

M [1]

C[1]

E

2L⊕ 34

(N, 34, 1)

ρ

M [2]

C[2]

E

2m−1L⊕ 34

(N, 34,m− 1)

ρ

pad(M[m])

lsb|M [m]|

C[m]

Figure 11: Remus-M with ICE1 (Remus-M1). (Top) Key derivation. (Middle-Top)
Processing of AD (Middle-Bottom) Processing of M authentication (Bottom) Encryption.
The domain separation B being of 8 bits only, ‘B is to be interpreted as ‘ 0120 }B.

MRAE variants, Remus-M1 has n{2-bit security for all relevant notions (NR/NM-privacy
and authenticity), and Remus-M2 has n-bit security for NR-notions and n{2-bit security
for NM-notions with a graceful degradation with respect to nonce repetition in a similar
manner to Romulus-M.

4.3 Remarks
All the security bounds hold as long as G is sound. As explained earlier, it is also straight-
forward to extend them to inputs of any bit strings rather than bytes (see Section 3.1).
For all schemes, the basic proof strategy is similar to the proofs of iCOFB [CIMN17b], and
the recent proposal of Naito and Sugawara’s PFB mode [NS20], but we needed a careful
case analysis.

The Use of ICM. ICM has been acknowledged as a meaningful security proof model,
especially in the field of hash function constructions. As described in the introduction, we

63

N

KDF2

E

K

n n
ρ

0n

L

n

n

E

K ⊕ 1

ρ

0n

V

n

n

0n ρ

A[1]

E

2V 2L⊕ 100 2V

(N, 100, 1)

ρ

A[2]

E

22V 22L⊕ 100 22V

(N, 100, 2)

ρ

pad(A[a])

E

2aV 2aL⊕ wA 2aV

(N,wA, a)

wA ∈ [108, 109]

S

n

n

S ρ

M [1]

E

2a+1V 2a+1L⊕ 102 2a+1V

(N, 102, a+ 1)

ρ

M [2]

E

2a+2V 2a+2L⊕ 102 2a+2V

(N, 102, a+ 2)

ρ

pad(M [m])

E

2a+mV 2a+mL⊕ wM 2a+mV

(N,wM , a+m)

wM ∈ [110, 111]

ρ

0n

T

T
n

n

n

E

V L⊕ 98 V

(N, 98, 0)

ρ

M [1]

C[1]

E

2V 2L⊕ 98 2V

(N, 98, 1)

ρ

M [2]

C[2]

E

2m−1V 2m−1L⊕ 98 2m−1V

(N, 98,m− 1)

ρ

pad(M [m])

lsb|M [m]|

C[m]

Figure 12: Remus-M with ICE2 (Remus-M2). (Top) Key derivation. (Middle-Top)
Processing of AD (Middle-Bottom) Processing of M authentication (Bottom) Encryption.
The domain separation B being of 8 bits only, ‘B is to be interpreted as ‘ 0120 }B.

can also obtain standard model proofs for Remus, by assuming the intermediate TBC ICE
as a keyed primitive called tweakable pseudorandom permutation (TPRP). The standard
model proofs are actually a part of ICM proofs. Specifically, the security bounds under this
standard model will appear in the hybrid argument of ICM proofs. A similar technique
appeared in some permutation-based schemes [MMH`14,CDH`12,MRV15], where the
keyed primitive is a variant of the Even-Mansour cipher. We warn that the assumption
that ICE is a TPRP does not imply its perfect security: there are generic attacks which
work even if the underlying TBC is an ideal-cipher. Therefore, the expected bit security
levels are identical for both ICM and this standard model analyses, and we only present
the security bounds under ICM.

Tightness of the Security Bounds. We note that our security bounds are tight. Indeed,
the existing third-party analysis [Mej19] for Remus-N3 and [DJN19] for Remus-N1 and
Remus-M1 show their tightness. We emphasize that these analysis do not contradict our
security bounds.

64

5 Design Rationale of Romulus and Remus
Rationale of NAE Mode. Romulus-N has a similar structure as a mode called iCOFB,
which appeared in the full version of CHES 2017 paper [CIMN17b]. Because it was
introduced to show the feasibility of the main proposal of [CIMN17a], block cipher mode
COFB, it does not work as a full-fledged AE using conventional TBCs. Therefore, starting
from iCOFB, we apply numerous changes for improving efficiency while achieving high
security. As a result, Romulus-N becomes a much more advanced, sophisticated NAE
mode based on a TBC. The security bound of Romulus-N is essentially equivalent to ΘCB3,
having full n-bit security, since the bounds only differ in their constants.

Recently, a new mode called PFB was published by Naito and Sugawara [NS20],
which holds some similarities and design goals to Romulus-N. It uses different feedback
functions for the associated data, plaintext and ciphertext, with the purpose of providing
partial parallelizability for the encryption algorithm, where the associated data processing
and the ciphertext decryption is serial in nature, while the plaintext encryption can
be parallelized. Since our goal in Romulus and Remus is to achieve very lightweight
hardware implementations, we chose a fixed feedback function for all the parts of the
algorithm, in order to avoid additional multiplexers, given that applications of such partial
parallelizability are limited. Moreover, it was shown during the CAESAR competition that
the parallelized hardware implementations of block-cipher based modes, e.g. Deoxys, does
not provide huge performance gains as in the case of software implementations [KCP17].

By seeing Remus-N as a mode of a TBC (ICE), Remus-N also has a similar structure as
iCOFB [CIMN17b]. Assuming ICE is an ideally secure TBC, the security bound of Remus-N
is also essentially equivalent to ΘCB3, having full n-bit security. The remaining problem is
how to efficiently instantiate a TBC. We could use a dedicated TBC, or a conventional
block cipher mode (such as XEX [Rog04a]), however, they have certain limitations on
security and efficiency. To overcome such limitations, we choose to use a block cipher
with tweak-dependent key/mask derivation. This approach, initiated by Mennink [Men15],
improves the performance over earlier approaches, at the expense of the ideal-cipher model
for security. Specifically, the TBC ICE has three variants, where ICE1 and ICE2 can be
seen as a variant of XHX [JLM`17], and ICE3 is a more classical one combined with a
doubling mask [Rog04a]. Each variant has its own security level, namely, ICE1 has n{2-bit
security, ICE2 has n-bit security, and ICE3 has pn{2´ 4q-bit security. They have different
computation cost for key/mask derivations and have different state sizes. Given the n-bit
security of outer TBC-based mode, the standard hybrid argument shows that the security
of Remus-N is effectively determined by the security of the internal ICE.

Rationale of MRAE Mode. Romulus-M and Remus-M are designed as MRAE modes
following the structure of SIV [RS06] and SCT [PS16]. Romulus-M reuses the components of
Romulus-N and Remus-M reuses the components of Remus-N as much as possible to inherit
their implementation advantages and the security. In fact, this brings us several advantages
(not only for implementation aspects) over SIV/SCT. Compared with SCT, Romulus-M
needs fewer primitive calls because of the faster MAC. Moreover, Romulus-M has a smaller
state than SCT because of the single-state encryption part taken from Romulus-N (SCT
employs a variant of counter mode). Remus-M needs an equivalent number of primitive
calls as SCT. The difference is in the primitive: Remus-M uses an n-bit block cipher while
SCT uses an n-bit-block dedicated TBC. Moreover, Remus-M has a smaller state than SCT
because of the single-state encryption part taken from Remus-N.

The provable security of Romulus-M is similar to SCT: the security depends on the
maximum number of repetition of a nonce in encryption (r), and if r “ 1 (i.e., NR
adversary) we have the full n-bit security. Security will gradually decrease as r increases,

65

also known as “graceful degradation”, and even if r equals the number of encryption
queries, implying nonces are fixed, we maintain the birthday-bound, n{2-bit security.
Similarly to Remus-N, the provable security of Remus-M is effectively determined by the
internal ICE. For Remus-M2, thanks to n-bit security of ICE2, its security is also similar to
SCT. For NR-adversaries, we have the full n-bit security. Security will gradually decrease
as r increases, and even if r equals the number of encryption queries, we maintain the
birthday-bound, n{2-bit security. For Remus-M1, the security is n{2 bits for both NR and
NM adversaries due to the n{2-bit security of ICE1.

ZAE [IMPS17] is another TBC-based MRAE. Although it is faster than SCT, the state
size is much larger than SCT, Romulus-M and Remus-M.

Theoretical Efficiency Comparison. In Table 1, we compare Romulus-N and Remus-N to
ΘCB3 and a group of recently proposed lightweight AEAD modes. In the table, state size
is the minimum number of bits that the mode has to maintain during its operation, and
rate is the ratio of input data length divided by the total output length of the primitive
needed to process that input. ΘCB3 is a well-studied TBC-based AEAD mode. COFB is a
BC-based lightweight AEAD mode. Beetle is a Sponge-based AEAD mode, but it holds
a lot of resemblance to Remus-N. The comparison follows the following guidelines, while
trying to be fair in comparing designs that follow completely different approaches:

1. k “ 128 for all the designs.

2. n is the input block size (in bits) for each primitive call.

3. λ is the security level of the design.

4. For BC/TBC based designs, the key is considered to be stored inside the design, but
we also consider that the encryption and decryption keys are interchangeable, i.e.,
the encryption key can be derived from the decryption key and vice versa. Hence,
there is no need to store the master key in additional storage. The same applies for
the nonce.

5. For Sponge and Sponge-like designs, if the key/nonce are used only during initial-
ization, then they are counted as part of the state and do not need extra storage.
However, in designs like Ascon, where the key is used again during finalization, we
assume the key storage is part of the state, as the key should be supplied only once
as an input.

Our comparative analysis shows that Romulus-N is smaller and more efficient than
ΘCB3 for the same security level. Moreover, the cost of processing AD is about half that
of the message. For example, in the case of Romulus-N1, if the message and AD have
equal length, there is an extra speed up of „ 1.33x, which means that the efficiency even
increases from 3.5λ to 2.625λ, compared to 4.5λ in case of ΘCB3, which makes Romulus-N
a very promising candidate for NAE, for both short and long messages. Besides, it shows
that Remus-N achieves its goals, as Remus-N1 has a 2n-bit state, which is smaller than
COFB and equal to Beetle. Remus-N1 and COFB both have birthday security, i.e., n{2.
Beetle achieves higher security, at the expense of using a 2n-bit permutation. Our analysis
also shows that among the considered AEAD modes, Remus-N2 achieves the lowest R/S
ratio, with a state size of 3n but only an n-bit permutation. Since Remus-N3 uses a 64-bit
block cipher, we manage to achieve very small area and more relaxed state size.

A similar comparison is shown in Table 2 for Misuse-Resistant BC- and TBC-based
AEAD modes. It shows that Remus-M2 is particularly very efficient. Also, Romulus-M
is very efficient. Not only the state size is smaller, but also it is faster. For example,

66

Romulus-M1 is 25% faster (1.33x speed-up) than SCT for the same parameters, when
|A| “ 0, and it is even faster when |A| ą 0.

6 Instantiation and Efficiency of Remus and Romulus
6.1 Instantiations of Remus and Romulus
We instantiated our two modes Remus and Romulus with the lightweight tweakable block
cipher Skinny [BJK`16], which has the very interesting feature that if some part of the
tweak is not used, the corresponding area for storage can be avoided. We tried to minimize
the global control logic, the multiplexers, etc. More details about the various can be found
in Appendix B.

6.2 Software efficiency
We refer to the Skinny document for discussions on software implementations of the
various Skinny versions [BJK`16]. The Romulus mode will have little impact on the
global performance of Skinny in software as long as serial implementations are used. We
expect very little increase in ROM or RAM when compared to Skinny benchmarks. The
very performant micro-controller implementations reported in the Skinny document were
benchmarked without assuming parallel cipher calls, and without any pre-processing.
Therefore, Romulus will present a very similar performance profile as the numbers reported
on micro-controllers. Generally, using little amount of RAM, Skinny is easy and efficient
to implement using a simple table-based approach.

For high-end platforms, such as latest Intel processors, very efficient highly-parallel
bitsliced implementations of Skinny using SSE, AVX, AVX2 instructions on XMM/YMM
registers will not be directly applicable as our Romulus mode is serial in nature. However,
in a classical case of a server communicating with many lightweight devices, we note that
it would be possible to consider bitslicing the key schedule [BGLP13] of Skinny (being
relatively simple to compute) or using scheduling strategies [BLT15]. Classical table-based
implementations of Skinny will ensure acceptable performance on even legacy platforms,
while Vector Permute (vperm) might lead to better results on medium range platforms by
parallelizing the computation of the Sbox.

6.3 ASIC Efficiency
We have implemented several variants of the Romulus and Remus families in the TSMC 65nm
standard cell library, in order to have a better understanding of the ASIC performance and
cost and verify our estimations in Appendix C. The implementations use the round-based
Skinny implementation published on the Skinny website [BJK`]. The results in Table 3
show that Remus is very lightweight and efficient at the same time as it requires slightly
above 3 KGE (3.5 KGE with a simple interface) for its round-based implementation for
Remus-N1. Of course, even smaller (but slower) trade-offs are possible by going with a serial
implementation. At the other end of the spectrum in terms of security, the nonce-misuse
resistant version Remus-M2 can be implemented in less than 5 KGE and provides 128-bit
security, even in environments where randomness is not very reliable.

We have also implemented the serial, round-based and 4-round unrolled architectures
of Romulus-N1. The figures are expected to be similar for Romulus-N2 and about 550
GEs smaller, and 12„18% faster for Romulus-N3. Moreover, Remus and Romulus share
a similar structure and our experimental results show that it is very cheap to convert
the implementation to the misuse resistant variant. The implementation results of the
Romulus-N1 and Remus-N1 4-round unrolled architecture show how Romulus and Remus

67

Table 3: ASIC Implementations of Remus and Romulus using the TSMC 65nm standard
cell library.

Variant Cycles
Area Minimum Throughput Thput/Area

(GE) Delay (ns) (Gbps) (Gbps/kGE)

Nonce-respecting schemes (64-bit data security)

Remus-N1 44 3611 0.98 2.96 0.82

Remus-N1 Low Area 936 2834 0.8 0.1705 0.06

Nonce-respecting schemes (128-bit data security)

Remus-N2 Low Area 936 3700 0.8 0.1705 0.046

Remus-N2 44 4774 0.84 3.46 0.72

Remus-N2 unrolled x4 14 9278 0.98 9.14 0.98

Romulus-N1 Low Area 1264 3390 0.75 0.195 0.06

Romulus-N1 60 6220 0.5 6.133 0.98

Romulus-N1 unrolled x2 32 7978 0.5 11.1 1.39

Romulus-N1 unrolled x4 18 10008 1 9.35 0.93

ACORN [Geo17] - 6580 0.9 8.8 1.36

Ascon Low Area [Git17] 3078 4545 0.5 0.042 0.01

Ascon Basic Iterative [Git17] 6 8562 1 10.4 1.22

Nonce-misuse resistant schemes (64-bit data security)

Remus-M1 44(AD)/88(M) 3805 1.01 2.16 0.56

Nonce-misuse resistant schemes (128-bit data security)

Remus-M2 44(AD)/88(M) 4962 0.93 2.34 0.47

take advantage of the versatility of Skinny for different architectures, where the throughput
can be multiplied by 4 and the efficiency can be increased at a smaller area cost (about
75„100%).

We have implemented Romulus-N1, Remus-N1 and Remus-N2 using the byte serial
Skinny architecture and serialized feedback function for the modes. Serial implementations
for different variants of Skinny have been proposed in [BJK`16,BJK`, JMPS17]. Such
implementations can be easily adapted for other Romulus and Remus members. We have
implemented one of our smallest proposals, Remus-N1 using the byte-serial implementation
of Skinny. Without the interface, Remus-N1 requires around 2100 GEs using the TSMC
65nm standard cell library including the Skinny logic, Remus-N1 Logic and both the key
and state storage.

We compare our implementations to the ones of Ascon and ACORN, the winners of the
lightweight portfolio of the CAESAR competition. We have downloaded the implementation
of ACORN from the ATHENa benchmarking website [Geo17] that were also used as part
of the ASIC benchmarking efforts of the CAESAR competition [KHYKC17]. For Ascon,
we have downloaded the serial and round based implementations from the designers’
website [Git17], since these implementations seem to have better performance metrics
compared to the one on the ATHENa website, at the expense of using a different interface.
We have synthesized all four implementations to the same technology we are using, TSMC

68

65nm, to allow fair comparisons. We show that Romulus achieves comparable performance
(but Romulus security proofs are in the standard model) while Remus is very competitive in
terms of low area. For example, all the variants of Remus can achieve throughput above 1
Gbps for less than 5000 GEs, while the performance of Ascon drops significantly when the
area is reduced to this range. Additionally, we believe the different security models and
goals should be taken into consideration when comparing the performance, as in Romulus
and Remus we use a much stronger primitive without any round reduction. However, we
must note that Ascon is significantly better for energy efficiency using the round-based
architecture because of this difference, as the round based implementation needs only 6
cycles per primitive call. A more thorough exploration of the design space of Romulus-N1
is provided in Appendix D.

6.4 FPGA Efficiency

The FPGA results presented in Tables 4 show that the FPGA implementations of Romulus
and Remus follow the same trend as the ASIC implementations achieving between 156 and
285 Slices for the round based implementations and less than 500 Slices for the 4-round
unrolled implementations.

Table 4: FPGA Results for Remus and Romulus on the Xilinx Virtex 6 FPGA using ISE
Variant Slices LUTs Registers

Max. Freq. Throughput Throughput/Area

(MHz) (Mbps) (Mbps/Area)

Nonce-respecting schemes (64-bit data security)

Remus-N1 189 540 308 250 727.7 3.8

Remus-N1 : 550 1669 338 147.7 1358.84 2.4

Nonce-respecting schemes (128-bit data security)

Remus-N2 225 757 358 250 727.7 3.23

Romulus-N1 307 919 534 250 695 2.26

Romulus-N1 : 597 1884 528 250 2300 3.85

Lilliput-I-128 391 1506 1017 185 657.8 1.68

Lilliput-II-128 309 1088 885 185 328.9 1.06

Nonce-misuse resistant schemes (64-bit data security)

Remus-M1 220 595 322 240 348 1.58

Nonce-misuse resistant schemes (128-bit data security)

Remus-M2 279 816 397 219 317.6 1.13

:Unrolled x4.

7 Conclusions

In this article, we presented Romulus and Remus, two new families of very lightweight and
efficient authenticated encryption with associated data (AEAD) modes, providing provable
security beyond the birthday bound. Our instantiations with Skinny lightweight tweakable
block cipher are extremely efficient and have been submitted to the NIST lightweight
competition [NIS19].

69

Acknowledgments
The authors would like to thank the anonymous referees and Christoph Dobraunig for
their helpful comments and suggestions. The second and fourth authors are supported by
Temasek Laboratories, Singapore.

References
[BBLT18] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser.

SUNDAE: Small Universal Deterministic Authenticated Encryption for the
Internet of Things. IACR Trans. Symmetric Cryptol., 2018(3):1–35, 2018.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A Concrete
Security Treatment of Symmetric Encryption. In FOCS, pages 394–403. IEEE
Computer Society, 1997.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Du-
plexing the Sponge: Single-Pass Authenticated Encryption and Other Appli-
cations. In Selected Areas in Cryptography, volume 7118 of Lecture Notes in
Computer Science, pages 320–337. Springer, 2011.

[BGLP13] Ryad Benadjila, Jian Guo, Victor Lomné, and Thomas Peyrin. Implementing
Lightweight Block Ciphers on x86 Architectures. In Tanja Lange, Kristin E.
Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography - SAC
2013 - 20th International Conference, Burnaby, BC, Canada, August 14-16,
2013, Revised Selected Papers, volume 8282 of Lecture Notes in Computer
Science, pages 324–351. Springer, 2013.

[BGM04] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The Power of Verification
Queries in Message Authentication and Authenticated Encryption. IACR
Cryptology ePrint Archive, 2004:309, 2004.

[BJK`] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The Skinny
Cipher Website.

[BJK`16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In CRYPTO (2), volume 9815 of Lecture Notes in Computer Science, pages
123–153. Springer, 2016.

[BLT15] Andrey Bogdanov, Martin M. Lauridsen, and Elmar Tischhauser. Comb to
Pipeline: Fast Software Encryption Revisited. In Gregor Leander, editor,
Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul,
Turkey, March 8-11, 2015, Revised Selected Papers, volume 9054 of Lecture
Notes in Computer Science, pages 150–171. Springer, 2015.

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Rela-
tions among Notions and Analysis of the Generic Composition Paradigm. J.
Cryptology, 21(4):469–491, 2008.

[BRW04] Mihir Bellare, Phillip Rogaway, and David A. Wagner. The EAX Mode of
Operation. In FSE, volume 3017 of Lecture Notes in Computer Science, pages
389–407. Springer, 2004.

70

[CAE] CAESAR: Competition for Authenticated Encryption: Security, Applicability,
and Robustness. See http://competitions.cr.yp.to/caesar.html.

[CDH`12] Donghoon Chang, Morris Dworkin, Seokhie Hong, John Kelsey, and Mridul
Nandi. A Keyed Sponge Construction with Pseudo-randomness in the Stan-
dard Model. NIST SHA-3 2012 Workshop, 2012.

[CDNY18] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
Family of Lightweight and Secure Authenticated Encryption Ciphers. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 218–
241, 2018.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Method-
ology, Revisited (Preliminary Version). In STOC, pages 209–218. ACM,
1998.

[CIMN17a] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-Based Authenticated Encryption: How Small Can We Go? In
CHES, volume 10529 of Lecture Notes in Computer Science, pages 277–298.
Springer, 2017.

[CIMN17b] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based Authenticated Encryption: How Small Can We Go? (Full
version of [CIMN17a]). IACR Cryptology ePrint Archive, 2017:649, 2017.

[CLS17] Benoît Cogliati, Jooyoung Lee, and Yannick Seurin. New Constructions of
MACs from (Tweakable) Block Ciphers. IACR Trans. Symmetric Cryptol.,
2017(2):27–58, 2017.

[CS14] Shan Chen and John P. Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In EUROCRYPT, volume 8441 of Lecture Notes in
Computer Science, pages 327–350. Springer, 2014.

[DEMS14] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1. Submission to the CAESAR competition, 2014.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1. 2. Submission to the CAESAR Competition, 2016.

[DJN19] Nilanjan Datta, Ashwin Jha, and Mridul Nandi. REMUS [AD-INT]. NIST
Lightweight Cryptography Project Forum: https://groups.google.com/
a/list.nist.gov/forum/#!forum/lwc-forum, 2019.

[Geo17] George Mason University. ATHENa: Automated Tools for Hardware Evalua-
tion. https://cryptography.gmu.edu/athena/, 2017.

[Git17] Github. ASCON-128 Hardware Design Document. https://github.com/
IAIK/ascon_hardware/blob/master/doc/ascon_hw_doc.pdf, 2017.

[GWDE15] Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph Ehrenhöfer.
Suit up!–Made-to-Measure Hardware Implementations of ASCON. In 2015
Euromicro Conference on Digital System Design, pages 645–652. IEEE, 2015.

[IIMP19] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram Poettering.
Cryptanalysis of OCB2: Attacks on Authenticity and Confidentiality. In
CRYPTO (1), volume 11692 of Lecture Notes in Computer Science, pages
3–31. Springer, 2019.

71

http://competitions.cr.yp.to/caesar.html
https://groups.google.com/a/list.nist.gov/forum/#!forum/lwc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/lwc-forum
https://cryptography.gmu.edu/athena/
https://github.com/IAIK/ascon_hardware/blob/master/doc/ascon_hw_doc.pdf
https://github.com/IAIK/ascon_hardware/blob/master/doc/ascon_hw_doc.pdf

[IKM`19] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, Thomas Peyrin,
Yu Sasaki, Siang Meng Sim, and Ling Sun. TGIF v1. Submission to NIST
Lightweight Cryptography Project, 2019.

[IKMP19a] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Remus v1. Submission to NIST Lightweight Cryptography Project, 2019.

[IKMP19b] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Romulus v1. Submission to NIST Lightweight Cryptography Project, 2019.

[IMPS17] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message
Authentication. In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III,
volume 10403 of Lecture Notes in Computer Science, pages 34–65. Springer,
2017.

[JLM`17] Ashwin Jha, Eik List, Kazuhiko Minematsu, Sweta Mishra, and Mridul Nandi.
XHX - A Framework for Optimally Secure Tweakable Block Ciphers from
Classical Block Ciphers and Universal Hashing. LATINCRYPT 2017, 2017.
available at https://eprint.iacr.org/2017/1075.

[JMPS17] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-Sliding:
A Generic Technique for Bit-Serial Implementations of SPN-based Primitives
- Applications to AES, PRESENT and SKINNY. In Wieland Fischer and
Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer Science,
pages 687–707. Springer, 2017.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In ASIACRYPT (2), volume 8874 of
Lecture Notes in Computer Science, pages 274–288. Springer, 2014.

[KCP17] Mustafa Khairallah, Anupam Chattopadhyay, and Thomas Peyrin. Looting
the LUTs: FPGA optimization of AES and AES-like ciphers for authenticated
encryption. In International Conference on Cryptology in India, pages 282–
301. Springer, 2017.

[KHYKC17] Sachin Kumar, Jawad Haj-Yihia, Mustafa Khairallah, and Anupam Chat-
topadhyay. A Comprehensive Performance Analysis of Hardware Implemen-
tations of CAESAR Candidates. IACR Cryptology ePrint Archive, 2017:1261,
2017.

[KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of
Authenticated-Encryption Modes. In FSE, volume 6733 of Lecture Notes in
Computer Science, pages 306–327. Springer, 2011.

[LRW02] Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable Block
Ciphers. In CRYPTO, volume 2442 of Lecture Notes in Computer Science,
pages 31–46. Springer, 2002.

[Mej19] Alexandre Meje. REMUS [AD-INT]. NIST Lightweight Cryptography Project
Forum: https://groups.google.com/a/list.nist.gov/forum/#!forum/
lwc-forum, 2019.

72

https://eprint.iacr.org/2017/1075
https://groups.google.com/a/list.nist.gov/forum/#!forum/lwc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/lwc-forum

[Men15] Bart Mennink. Optimally Secure Tweakable Blockciphers. In FSE, volume
9054 of Lecture Notes in Computer Science, pages 428–448. Springer, 2015.

[MI15] Kazuhiko Minematsu and Tetsu Iwata. Tweak-Length Extension for Tweak-
able Blockciphers. In IMA Int. Conf., volume 9496 of Lecture Notes in
Computer Science, pages 77–93. Springer, 2015.

[MMH`14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart
Preneel, and Ingrid Verbauwhede. Chaskey: An Efficient MAC Algorithm
for 32-bit Microcontrollers. In Selected Areas in Cryptography, volume 8781
of Lecture Notes in Computer Science, pages 306–323. Springer, 2014.

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of Full-State
Keyed Sponge and Duplex: Applications to Authenticated Encryption. In
ASIACRYPT (2), volume 9453 of Lecture Notes in Computer Science, pages
465–489. Springer, 2015.

[MV04] David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee
Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, volume
3348 of LNCS, pages 343–355. Springer, 2004.

[NIS19] NIST. Lightweight Cryptography Project. https://csrc.nist.gov/
Projects/Lightweight-Cryptography, 2019.

[NS20] Yusuke Naito and Takeshi Sugawara. Lightweight authenticated encryption
mode of operation for tweakable block ciphers. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(1):66–94, 2020.

[Pat08] Jacques Patarin. The “Coefficients H” Technique. In Selected Areas in
Cryptography, volume 5381 of Lecture Notes in Computer Science, pages
328–345. Springer, 2008.

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated
Encryption Modes for Tweakable Block Ciphers. In CRYPTO (1), volume
9814 of Lecture Notes in Computer Science, pages 33–63. Springer, 2016.

[RBB03] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode
of operation for efficient authenticated encryption. ACM Trans. Inf. Syst.
Secur., 6(3):365–403, 2003.

[Rog04a] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC. In ASIACRYPT, volume 3329 of
Lecture Notes in Computer Science, pages 16–31. Springer, 2004.

[Rog04b] Phillip Rogaway. Nonce-Based Symmetric Encryption. In FSE, volume 3017
of Lecture Notes in Computer Science, pages 348–359. Springer, 2004.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In EUROCRYPT, volume 4004 of Lecture Notes in
Computer Science, pages 373–390. Springer, 2006.

[WGZ`16] Lei Wang, Jian Guo, Guoyan Zhang, Jingyuan Zhao, and Dawu Gu. How
to Build Fully Secure Tweakable Blockciphers from Classical Blockciphers.
In ASIACRYPT (1), volume 10031 of Lecture Notes in Computer Science,
pages 455–483, 2016.

[Wu14] Hongjun Wu. Acorn v1. Submission to the CAESAR competition, 2014.

73

https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography

A Security Proofs
Preliminaries. Throughout this section, we change the interface of ρ so that it works on
partial input X P t0, 1uďn for the second argument by applying the padding and truncation
internally: that is,

ρpS,Mq “ pS1, Cq s.t. C “M ‘ lmt|M |pGpSqq, S
1 “ S ‘ padnpMq

ρ´1pS,Cq “ pS1,Mq s.t. M “ C ‘ lmt|C|pGpSqq,

S1 “ S ‘ padnpMq “ plmt|C|pGpSqq}0 . . . q ‘ padnpCq ‘ S.

We also define ρ1 and ρ2 as the component functions of ρ, i.e., ρpS,Mq “ pρ1pS,Mq, ρ2pS,Mqq.
The inverse functions ρ´1

1 and ρ´1
2 are defined similarly.

One can see that this does not change the specification of Romulus and Remus if this ρ
is directly applied to the last block, which we assume in the following analysis.

For positive integer i and j, let piqj denote i ¨ pi´ 1q ¨ ¨ ¨ ¨ ¨ pi´ pj ´ 1qq.

A.1 Proofs of Romulus-N (Theorem 1)
We focus on the case that the underlying TBC inside Romulus-N is a TURP rP : T ˆMÑM
with T “ T ˆ B ˆD, which we simply write Romulus-N. The derivation of computational
analogues is standard [BDJR97]. What needs to be proved are

Advpriv
Romulus-NpAq “ 0, (2)

Advauth
Romulus-NpBq ď

3qd
2n `

2qd
2τ (3)

for pqe, qdq-privacy-adversary A and pqe, qdq-authenticity adversary B. Both have no
limitation in their computation time.

For A P t0, 1u˚, we say A has a AD blocks if it is parsed as pAr1s, . . . , Arasq n,t
Ð A.

Similarly for M P t0, 1u˚, we say M has m message blocks if |M |n “ m. For encryption
query pN,A,Mq or decryption query pN,A,C, T q of a AD blocks and m message blocks,
we define

ã “ ta{2u` 1.

We observe the total number of rP calls for encryption query pN,A,Mq and decryption
query pN,A,C, T q is ã`m.

Let pNi, Ai,Miq P N ˆ A ˆM be the i-th encryption query. The corresponding
response is pCi, Tiq PMˆt0, 1uτ , where |Ci| “ |Mi|. The i-th verification query is written
as pN 1i , A1i, C 1i, T 1i q and the response is Ri which is M˚

i or K. Let |Mi|n “ |Ci|n “ mi.

Proposition 1. For any S P t0, 1un and M P t0, 1uďn, let C “ ρ2pS,Mq, where we have
|M | “ |C|. Then for any C 1 P t0, 1uďn such that C 1 ‰ C and wC1 “ wC (which equals
wM), we have

ρ1pS,Mq ‰ ρ´1
1 pS,C 1q.

Proof. Let M 1 “ C 1 ‘ lmt|C1|pGpSqq. We have

ρ1pS,Mq “ S ‘ padnpMq “ S ‘ padnpC ‘ lmt|C|pGpSqqq

ρ´1
1 pS,C 1q “ S ‘ padnpM

1q “ S ‘ padnpC
1 ‘ lmt|C1|pGpSqqq, thus

ρ1pS,Mq ‘ ρ
´1
1 pS,C 1q “ padnpC ‘ lmt|C|pGpSqqq ‘ padnpC

1 ‘ lmt|C1|pGpSqqq (4)

74

When |M |p“ |C|q “ |C 1|, the last term of (4) is non-zero in the first |C| bits. When
|M | ‰ |C 1|, the padding function ensures the last padded byte has a difference, hence
the last term of (4) is non-zero in the last byte. Note that the case M “ C “ ε and
|C 1| “ n (so that padnpCq “ padnpC

1q by setting C 1 “ 0n) or the converse case (C 1 “ ε
and |C| “ n) has been excluded as we assumed wC “ w1C .

Proposition 2. For s P t0, 1un, let S1 be a uniformly distributed random variable over
t0, 1un or t0, 1unztsu. For any fixed A,A1, C, C 1 P t0, 1uďn, we have

Prrρ1pS
1, A1q “ ρ1ps,Aqs ď

1
2n ´ 1 ,

Prrρ´1
1 pS1, C 1q “ ρ´1

1 ps, Cqs ď
1

2n ´ 1 .

Proof. The first inequality holds since ρ1pS
1, A1q “ S1‘padnpA

1q. For the second inequality,
observe that

ρ´1
1 pS1, C 1q “ S1 ‘ padnpC

1 ‘ lmt|C1|pGpS
1qqq

“ S1 ‘ lmt|C1|pGpS
1qq}0˚ ‘ padnpC

1q

“ pGp|C
1
|q ` Iq ¨ S1 ‘ padnpC

1q.

From the soundness of G, the last term of above equation has point probability at most
1{p2n ´ 1q.

Proof of Privacy Bound (2). In a similar manner to ΘCB3, proving (2) is immediate
from the observation that each block in tC1, . . . , Cq, T1, . . . , Tqu is generated from the
output of rP given to G taking tweak T P T unique to each block, throughout the game.
As G is sound (Definition 1), if Y is independent and random, so is GpY q. The soundness
of G also ensures the uniformity of the last ciphertext block Crms and the tag T .

Proof of Authenticity Bound (3). We first prove the case qd “ 1 following the proof of
Naito and Sugawara [NS20].

Let pN 1, A1, C 1, T 1q denote the single verification query (here we omit the subscript), and
let p be the probability of successful forgery. Let Θe be the random variable representing
the transcripts obtained by encryption queries and responses. By convention, we can
assume the authenticity adversary B as deterministic (since the optimal adversary is always
deterministic). Moreover, we only need to consider the case that B performs q encryption
queries first and then one verification query.

Let ai and mi be the number of AD and plaintext blocks in the i-th query. We write
Xirjs and Yirjs to denote the j-th TURP input and output in the encryption, for j P JmiK.
Here, Yirjs is to encrypt Mirj ` 1s when j ă mi and Xirmis is given to rP with tweak
pNi, wMi

,miq to create Yirmis. Tag is Ti “ lmtτ pρ2pYirmis, 0nqq “ lmtτ pGpYirmisqq.

By convention, let Si be the state value after the AD process in the i-th encryption query,
i.e. the output of rP with tweak pNi, wAi , aiq (see Figure 3). Note thatXir1s “ ρ1pSi,Mir1sq.
Similarly, let a1 and m1 be AD and ciphertext block lengths of the single decryption query
pN 1, A1, C 1, T 1q, and define X 1rjs, Y 1rjs and S1 for the decryption query in the same fashion.
For such B, we have

PrrT 1 “ T˚s ď max
θePSΘe

PrrT 1 “ T˚|Θe “ θes,

75

where SΘe denotes the set of all possible values for θe, and T˚ denotes the true tag value
for pN 1, A1, C 1, T 1q. We also observe that the distribution of Θe is a joint distribution of
pCq, T q, Nq, Aq,Mqq, and Cq and T q are uniformly distributed and independent from the
values of pNq, Aq,Mqq from (2) as they are the TURP outputs taking distinct tweak.

We fix θe and write Pre to denote the conditional probability space given Θe “ θe. Also,
let pe denote the forgery probability given Θe “ θe, i.e., pe “ PrerT 1 “ T˚s “ PrrT 1 “
T˚|Θe “ θes for the fixed θe.

All Xirjs and Yirjs are determined by Θe except j “ mi: they are cut when the last
block is partial or τ ă n. For simplicity, we let encryption oracle to disclose Xirmis and
Yirmis and attach to Θe after all the encryption queries.

Let T˚ be the true tag value for decryption query, i.e.,

T˚ “ lmtτ pGpY 1rm1sqq, Y 1rm1s “ rP
pN 1,wC1 ,m

1
q
pX 1rm1sq, (5)

where wC1 is the indicator of padding for C 1. As we assumed G is regular, if Y 1rm1s is
uniformly distributed and independent from the previous variables (of transcript), the
guessing probability of tag is 1{2τ .

We do a case analysis.

Case 1: N 1 ‰ Ni for all i: since the final tweak of decryption query is pN 1, wC1 ,m1q
which has never been used before, from (5), T˚ “ lmtτ pGpY 1rm1sqq is unpredictable.
pe “ 1{2τ .

Case 2: N 1 “ Ni for some 1 ď i ď q. Wlog we let N 1 “ N1 and for simplicity omit the
subscript i: pN,A,M,C, T q means pN1, A1,M1, C1, T1q and a and m mean a1 and
m1. The same applies to Xirjs and Yirjs.

Case 2-1: C 1 ‰ C, pm,wM q ‰ pm1, wC1q. Then the final tweak values, pN,wM ,mq and
pN 1p“ Nq, wC1 ,m

1q, are different, and the latter never appeared in the encryption
queries. Thus Y 1rm1s is random from (5), and we have pe “ 1{2τ .

Case 2-2: C 1 ‰ C, pm,wM q “ pm1, wC1q. The block lengths of C and C 1 are the same,
either both have partial last blocks or full blocks. Let δ P JmK be the block index
of the last difference in C and C 1: Crδs ‰ C 1rδs and Cris “ C 1ris for all δ ă i ď m.
We have two important observations hold for any pδ,mq: the first is

rXrms “ X 1rmss ô rXrδs “ X 1rδss, (6)

which follows from the fact that, we can write as Xrms “ ΦpXrδsq and X 1rms “

ΦpX 1rδsq for some permutation Φ determined by pCrδ ` 1s, . . . , Crmsq and N and rP,
thanks to the the soundness of G. The second one is

Pr
e
rT 1 “ T˚|Xrms ‰ X 1rmss ď max

y
Pr
e
rlmtτ pGpY 1rmsqq “ y|Xrms ‰ X 1rmss (7)

ď
2n´τ

2n ´ 1 ď
2
2τ ,

which holds since Xrms ‰ X 1rms implies Y 1rms is uniform over t0, 1unztY rmsu (note
that all Xris’s and Y ris’s are fixed from Θe “ θe). Thus we have

pe ď Pr
e
rT 1 “ T˚|Xrms ‰ X 1rmss ` Pr

e
rXrms “ X 1rmss

ď
2
2τ ` Pr

e
rXrms “ X 1rmss

“
2
2τ ` Pr

e
rXrδs “ X 1rδss, (8)

76

where the last equality follows from (6). We further go into the four sub-cases, Case
2-2-1 to 2-2-4. We first describe the third and fourth cases for simplicity:

Case 2-2-3: m ą 1 and 1 ă δ ă m. We have

Pr
e
rXrδs “ X 1rδss

ď Pr
e
rXrδs “ X 1rδs|Xrδ ´ 1s “ X 1rδ ´ 1ss ` Pr

e
rXrδs “ X 1rδs|Xrδ ´ 1s ‰ X 1rδ ´ 1ss,

(9)

where the first term is 0. This is because Xrδ ´ 1s “ X 1rδ ´ 1s implies Y rδ ´ 1s “
Y 1rδ´1s, which holds as the tweaks are identical, and Crδs ‰ C 1rδs and the soundness
of ρ imply Xrδs ‰ X 1rδs. The second term is evaluated as

Pr
e
rXrδs “ X 1rδs|Xrδ ´ 1s ‰ X 1rδ ´ 1ss

ď Pr
e
rρ´1

1 pY rδ ´ 1s, Crδsq “ ρ´1
1 pY 1rδ ´ 1s, C 1rδsq|Xrδ ´ 1s ‰ X 1rδ ´ 1ss

ď Pr
e
rρ´1

1 pY rδ ´ 1s, Crδsq “ pG` IqpY 1rδ ´ 1sq ‘ C 1rδs|Xrδ ´ 1s ‰ X 1rδ ´ 1ss

ď max
yPt0,1un

Pr
e
rpG` IqpY 1rδ ´ 1sq “ y|Xrδ ´ 1s ‰ X 1rδ ´ 1ss

ď
1

2n ´ 1 ,

since Y 1rδ´1s is uniform over t0, 1unztY rδ´1su and the soundness of G (in particular,
the regularity of G`I). Thus, the r.h.s. of (9) is at most 1{p2n´1q ă 2{2n. Combined
with (8), pe ď 2{2τ ` 2{2n.

Case 2-2-4: m ą 1 and δ “ m. In a similar manner to Case 2-2-3, we have

Pr
e
rXrδs “ X 1rδss

ď Pr
e
rXrδs “ X 1rδs|Xrδ ´ 1s “ X 1rδ ´ 1ss ` Pr

e
rXrδs “ X 1rδs|Xrδ ´ 1s ‰ X 1rδ ´ 1ss,

where the first term is 0. The second term is bounded similarly:

Pr
e
rXrδs “ X 1rδs|Xrδ ´ 1s ‰ X 1rδ ´ 1ss

ď Pr
e
rρ´1

1 pY rδ ´ 1s, Crδsq “ ρ´1
1 pY 1rδ ´ 1s, C 1rδsq|Xrδ ´ 1s ‰ X 1rδ ´ 1ss

ď Pr
e
rρ´1

1 pY rδ ´ 1s, Crδsq “ pGp|C
1
rδs|q ` IqpY 1rδ ´ 1sq ‘ C 1rδs|Xrδ ´ 1s ‰ X 1rδ ´ 1ss

ď max
yPt0,1un

Pr
e
rpGp|C

1
rδs|q ` IqpY 1rδ ´ 1sq “ y|Xrδ ´ 1s ‰ X 1rδ ´ 1ss

ď
1

2n ´ 1 ,

from Proposition 2.

Case 2-2-1: m “ 1. We have δ “ 1. Let V be the input to rP that creates S for encryption
query pN,A,Mq. Here, S “ rP

pN,wA,aq
pV q and Xr1s “ ρ1pS,M r1sq “ ρ´1

1 pS,Cr1sq.
Similarly we define V 1 and S1 for decryption query pN 1, A1, C 1, T 1q. First suppose
pwA, aq “ pwA1 , a

1q. As we assumed N “ N 1, this means that both S and S1 are
created from rP

pN,wA,aq (the same tweak). Then the analysis is the same as Case
2-2-3 by replacing Xrδ ´ 1s by V and X 1rδ ´ 1s by V 1. Thus, pe ď 2{2τ ` 2{2n for

77

this case. Second, suppose pwA, aq ‰ pwA1 , a1q. Then S1 is uniformly random and
independent of S, and thus PrrXr1s “ X 1r1ss “ 1{2n and we have pe ď 2{2τ ` 1{2n
from (8). Taking the maximum, we have pe ď 2{2τ ` 2{2n.

Case 2-2-2: m ą 1 and δ “ 1. The analysis is essentially the same as Case 2-2-1: we set
V and V 1 instead of Xrδ ´ 1s and X 1rδ ´ 1s, and derive pe ď 2{2τ ` 2{2n.

Case 3: N 1 “ Ni for some i P JqK, and C 1 “ Ci and (thus) A1 ‰ Ai. We define Xirjs and
Yirjs as the j-th TURP input and output in the AD process of i-th encryption query
with ai-block AD, for j P JãiK with ãi

def
“ rpai ` 1q{2s. For example, when ai “ 3

(ãi “ 2) we have pXir1s, Yir1sq and pXir2s, Yir2sq where Si “ Yir2s, and when ai “ 4
(ãi “ 3) we have pXir1s, Yir1sq, pXir2s, Yir2sq and pXir3s, Yir3sq where Si “ Yir3s.
Note that Yirjs “ rP

Air2js,8,2j
pXirjsq for even j ď ai. Similarly to Case 2, wlog we

assume i “ 1 and abbreviate Ai as A and so on. Note that pm,wCq “ pm1, wC1q
holds. The analysis is similar to Case 2 but with some cares for differences in AD
process and encryption. We observe

rXrms “ X 1rmss ô rS “ S1s.

Also (7) holds as well. Thus

pe ď Pr
e
rT 1 “ T˚|Xrms ‰ X 1rmss ` Pr

e
rXrms “ X 1rmss

ď
2
2τ ` Pr

e
rXrms “ X 1rmss

“
2
2τ ` Pr

e
rS “ S1s. (10)

Sub-cases are as follows.

Case 3-1: pa,wAq ‰ pa1, wA1q. Then S1 is random and independent of S as tweaks are
different. Thus PrerS “ S1s “ 1{2n. From (10), pe ď 2{2τ ` 1{2n.

Case 3-2: pa,wAq “ pa1, wA1q. Let δ P JaK be the block index of the last difference in A
and A1: Arδs ‰ A1rδs and Aris “ A1ris for all δ ă i ď a.

Case 3-2-1: a “ 1. Then δ “ 1 and Aras ‰ A1ras which implies S1 ‰ S. From (10) we
have pe ď 2{2τ .

Case 3-2-2: a ą 1 and δ “ 1. The same as Case 3-2-1: we have S ‰ S1 thus pe ď 2{2τ .

Case 3-2-3: a ą 1 and 1 ă δ ă a and δ is even. Then Y 1rδ{2s is uniform and independent
of Y rδ{2s because tweaks contain different elements (Arδs and A1rδs). In the same
manner to (6), we observe rY rδ{2s “ Y 1rδ{2ss ô rS “ S1s, therefore PrerS “ S1s “
1{2n and pe ď 2{2τ ` 1{2n.

Case 3-2-4: a ą 1 and 1 ă δ ă a and δ is odd. The analysis is similar to Case 2-2-3. Let
γ be pδ ´ 1q{2. Here Xrγ ` 1s “ ρ1pY rγs, Arδsq. When γ “ 3 (the minimum case)
we slightly abuse the notation by assuming Y rγs “ Y 1rγs “ 0n. We have

Pr
e
rS “ S1s ď Pr

e
rS “ S1|Xrγs “ X 1rγs, Arδ ´ 1s “ A1rδ ´ 1ss

` Pr
e
rS “ S1|Xrγs “ X 1rγs, Arδ ´ 1s ‰ A1rδ ´ 1ss

` Pr
e
rS “ S1|Xrγs ‰ X 1rγss. (11)

For the first term of the right hand side, the conditional clause implies Y rγs “ Y 1rγs
and thus Xrγ ` 1s ‰ X 1rγ ` 1s from ρ taking different AD blocks (Arδs and A1rδs)

78

and the property of G. This also implies S ‰ S1, thus the probability is 0. For the
second term, Y 1rγs is uniform over t0, 1un (independent of Y rγs) for different tweaks,
thus Xrγ ` 1s “ X 1rγ ` 1s holds with probability 1{2n. Since Xrγ ` 1s “ X 1rγ ` 1s
is equivalent to S “ S1, the probability is 1{2n. For the third term, Y 1rγs is
either uniform over t0, 1un or t0, 1unztY rγsu, thus Xrγ ` 1s “ X 1rγ ` 1s holds with
probability at most 1{p2n ´ 1q thanks to the property of ρ. Therefore, (11) is at
most 0` 1{2n ` 1{p2n ´ 1q ă 3{2n and pe ď 2{2τ ` 3{2n.

Case 3-2-5: a ą 1 and δ “ a. Similarly to Case 3-2-3, when δ “ a is even, Y 1rδ{2s is
uniform over t0, 1un thus Xrδ{2` 1s “ X 1rδ{2` 1s (which is equivalent to S “ S1)
holds with probability 1{2n. Thus pe ď 2{2τ `1{2n. When δ “ a is odd, the analysis
of Case 3-2-4 applies. Here, Xrγ ` 1s is given to TURP taking nonce to produce S.
We have pe ď 2{2τ ` 3{2n.

Therefore, for any fixed Θe “ θe, pe ď 3{2n ` 2{2τ holds for all cases. Thus the
authenticity bound for qd “ 1 is 3{2n ` 2{2τ . Using the generic conversion of the bound
for qd “ 1 to qd ě 1 [BGM04], we conclude the proof of (3).

A.2 Security bounds of ICE in Remus
The internal TBC of Remus (ICE) is a variant of XHX [JLM`17], though the proof cannot
be directly derived from that of XHX. We first prove the security of ICE, and then prove
the security of Remus-N as a mode of ICE. Following [Men15,WGZ`16, JLM`17], the
relevant security notion is defined as follows.

Definition 2. Let rE : K ˆ T ˆM Ñ M be a TBC of (key, tweak, message) space
pK, T ,Mq. Assume rE internally invokes an ideal cipher E : K1 ˆM Ñ M which is
uniform over the set of all block ciphers, possibly multiple times for its encryption and
decryption. Note that because E can be accessed freely, rE must involve key K

$
Ð K

in its computation. Let rP : T ˆM ÑM be the TURP. We define Tweakable Strong
Pseudorandom Permutation (TSPRP)-advantage of rE as

Advtsprp
rE

pAq def
“ |PrrAp rE, rE

´1
q,pE,E´1

q ñ 1s ´ PrrAprP,rP
´1
q,pE,E´1

q ñ 1s|,

where E is independent of rP and K inside rEK .

This advantage shows the indistinguishability of rEK from TURP rP, for adversaries
accessing both encryption and decryption direction for both the construction (rEK in
the real and rP in the ideal world) and the primitive (E in the both worlds). In this
sense, a query to the former oracle will be called a construction query (c-query for short),
and the latter will be called a primitive query (p-query for short). An adversary that
uses qc c-queries and qp p-queries are called pqc, qpq-adversary, without a constraint on
time complexity. By convention, if oracles are p rE, rE´1q and pE,E´1q (resp. prP, rP

´1
q and

pE,E´1q), we say the adversary is in the real world (resp. the ideal world). We first show
the TSPRP-advantage bounds of ICE1 and ICE2 and ICE3.

Security Bounds of ICE. We write pT,M,Cq P T ˆMˆM (tweak, plaintext, ciphertext)
to denote the tuple of query-response obtained from a construction query, and p pK, pX, pY q P
K1 ˆMˆM (key, plaintext, ciphertext) to denote that from a primitive query.

We have the following security bounds for ICE.

79

Algorithm GICE1KpT,Mq
// ν P t0, nu

1. pN,D,Bq Ð T
2. LÐ EKpN } 0n´nlq
3. V Ð EK‘q1pLq
4. if ν “ 0 then V Ð 0n
5. H1 Ð 2DV
6. H2 Ð 2DL‘q B
7. X ÐM ‘H1

8. Y Ð EH2pXq
9. C Ð Y ‘H1

10. return C

Algorithm GICE2KpT,Mq
// |K| “ k, |N | “ nl ď k ´ 8

1. pN,D,Bq Ð T
2. LÐ K ‘ pN}0k´nlq
3. pLr1s, Lr2sq k´8,8

Ð L
4. H2 Ð p2DLr1sq } pLr2s ‘Bq
5. C Ð EH2pMq
6. return C

Figure 13: Abstraction of ICE1 and ICE2 (GICE1) and ICE3 (GICE2).

Lemma 1. For any pqc, qpq-adversary A,

Advtsprp
ICE1 pAq ď

9q2
c ` 4qcqp

2n `
2qp
2n ,

Advtsprp
ICE2 pAq ď

9q2
c ` 4qcqp

22n `
2qp
2n ,

Advtsprp
ICE3 pAq ď

0.5q2
c

2k´8 `
qc ¨ qp

2k .

Abstraction of ICE. We consider a TBC called GICE1 which generalizes ICE1 and ICE2
by introducing parameter ν P t0, nu so that it derives L and V as ICE1 but 2DV for
D P D is set to 0n when ν “ 0, for any D. When ν “ n, 2DV is computed over GFp2nq
and xored to the state. Figure 13 shows GICE1. We also abstract ICE1 and ICE2 w.r.t.
the tweakey encoding and domain separation; the former is arbitrary injective mapping
and the latter is a byte xored to the last byte of 2DL. For non-empty, possibly different
length of binary strings, X and Y , let X ‘q Y denote the xor of X and Y , where the
shorter one is prepended with zeros. Then 2DL ‘q B denotes 2DL ‘ p0n´8}Bq. Here,
K1 “ K “ t0, 1un. An abstraction of ICE3 is presented as GICE2 in Figure 13. Note
that the game allows decryption queries to GICE1 and GICE2, as well as bidirectional
queries to E; they are straightforward and omitted in the figure. We have |K| “ k and
|N | “ nl ď k ´ 8. Doubling is defined over GFp2k´8q. Note that in ICE3 we have k “ 128,
nl “ 96.

Proofs of Lemma 1, for ICE1 and ICE2. We have the following lemma for GICE1.

Lemma 2. For any pqc, qpq-adversary A,

Advtsprp
GICE1pAq ď

9q2
c ` 4qcqp
2n`ν `

2qp
2n .

Setting ν “ 0 gives the proof for ICE1, and ν “ n gives the proof for ICE2.

In the following we prove Lemma 2. The proofs are based on Patarin’s Coefficient-H
technique [Pat08].

Since the game is purely information-theoretic, we can assume wlog that A is deter-
ministic. We also assume that A never repeats queries.

80

Once a deterministic A is fixed, we can define the probability space of the transcript
(the query-response pairs, which may include some additional variables to help analysis)
defined as Θ “ θ. We say θ is attainable if PridealrΘ “ θs ą 0, i.e. the probability under
the ideal world is non-zero. Now we introduce the fundamental lemma of the Coefficient-H
technique (see e.g. [Pat08,CS14] for details).

Lemma 3. Assume that the set of all attainable transcripts is partitioned into the two
disjoint sets, GoodT and BadT. If there exists ε1 and ε2 such that for any θ P GoodT,

PrrealrΘ “ θs

PridealrΘ “ θs
ě 1´ ε1 and Pr

ideal
rΘ P BadTs ď ε2,

then the advantage of A is bounded by ε1 ` ε2.

Transcript in the Real World. We use the variables presented in Figure 13. Thus,
for query-response tuple pT,M,Cq, we have H1 “ 2DV , and H2 “ 2DL ‘q B, and
X “ M ‘ H1, and Y “ C ‘ H1, where Y “ EH2pXq. The transcript is defined as
Θ “ pΘc,Θp,Θaq, where Θc “ pTip“ pNi, Di, Biqq,Mi, CiqiPJqcK, Θp “ p pKi, pXi, pYiqiPJqpK,
and Θa “ pLi, ViqiPJqcK Y tKu. We have some remarks. First, Θa is hidden information
and is attached to Θ after all (construction and primitive) queries are made, but before
making the final decision. This allows to determine all input/output of E invoked in the
game from Θ, which simplifies the analysis. A similar trick has been commonly used in
many Coefficient-H-based proofs. Note that Θ does not contain the directions of queries
(encryption or decryption) as such information is irrelevant. Note that Ni may repeat from
the definition of the game. Let cN be the number of unique Ni’s in c-queries.

Without loss of generality, the adversary is deterministic and has no duplicate queries,
no redundant queries, e.g., a pair of encryption query pT,Mq Ñ C and decryption query
pT,Cq Ñ M . For random variable in a transcript, we may write the assignment by the
corresponding lower case letter, e.g. K “ k and H2

i “ h2
i etc.

Transcript in the Ideal World. Using two additional (secret) n-bit URPs, P1 and P2,
we have K $

Ð K, Li Ð P1pNiq, and Vi Ð P2pNiq. Moreover, a TURP rP encrypts as
Ci Ð rPpTi,Miq when i-th c-query is an encryption query or Mi Ð rP

´1
pTi, Ciq when i-th

c-query is a decryption query.

Bad Event Definitions. Let INj be a set of (Key, Plaintext) input to E, where j P J4K
denotes the type of input:

IN1 “ pK,NiqiPJqcK,

IN2 “ pK ‘q 1, LiqiPJqcK,
IN3 “ pH

2
i , XiqiPJqcK,

IN4 “ p pKi, pXiqiPJqpK.

Similarly, let OUj for j P J4K be a set of (Key, Ciphertext) output of E:

OU1 “ pK,LiqiPJqcK,

OU2 “ pK ‘q 1, ViqiPJqcK,
OU3 “ pH

2
i , YiqiPJqcK,

OU4 “ p pKi, pYiqiPJqpK.

For pi, jq P J4K2, let BIi,j be a non-trivial collision event in the elements of INi and
INj , except BI1,4 and BI2,4, which are defined as key-input collision for the sake of

81

simplicity. In a similar manner, we define BOi,j for pi, jq P J4K2 as a non-trivial collision
event in the elements of OUi and OUj , See below for the exact definitions. Let (the bad
event) BadT be the set of transcripts satisfying one of BIi,j or BOi,j .

Core Idea of the Proof. The analysis below is basically a variant of the proof of XHX
which can be seen as an extension of the proof of XTX [MI15]. The (so-called) bad events
are all BIi,j and BOi,j for pi, jq P J4K2 and the occurrence of any of bad event implies a
win of the adversary. Note that some cannot be possible by definition (see below). For
example, when BI3,3 occurs for i-th and j-th c-queries (directions of queries do not matter)
in the real world, we have Yi “ Yj equivalent to H1

i ‘ Ci “ H1
j ‘ Cj with probability one,

which is observable in the transcripts (as H1 and H2 are computable). However, when
BI3,3 occurs in the ideal world, H1

i ‘ Ci “ H1
j ‘ Cj occurs with a negligible probability,

implying a distinguisher. Similar arguments apply to BO3,3. To evaluate the separation
between KDF and main encryption, and the separation between input-output tuples of E
created from p-queries and c-queries, we need more bad events.

We describe the definitions of BIi,j and BOi,j and their possibilities, the probability
of event in the ideal world. For completeness, we list all the events including those not
possible in the both worlds. All probabilities in this case analysis is about the ideal world.

• BI1,1 “ r
Dpi, jq P JqcK2, i ‰ j : pK,Niq “ pK,Njq, Ni ‰ Njs

This is not possible for the both worlds.

• BI1,2 “ r
Dpi, jq P JqcK2 : pK,Niq “ pK ‘q 1, Ljqs

This is not possible for the both worlds.

• BI2,2 “ r
Dpi, jq P JqcK2, i ‰ j : pK ‘q 1, Liq “ pK ‘q 1, Ljq, Ni ‰ Njs

This is not possible for both worlds (for the ideal world, when Ni ‰ Nj then Li ‰ Lj).

• BI1,3 “ r
Dpi, jq P JqcK2 : pK,Niq “ pH2

j , Xjqs

This is possible for the both worlds. The maximum pairwise (i.e., between two
queries) probability for the ideal world is

PrrK “ 2DjLj ‘q Bjs ¨ PrrNi “Mj ‘ 2DjVj |K “ 2DjLj ‘q Bjs

ď max
c

PrrK “ cs ¨max
d,e

PrrVj “ d|Lj “ es

“
1
2n ¨

1
2ν .

We remark that when ν “ 0 we have Vj “ 0n thus the above holds true.
The total (i.e., @pi, jq P JqcK2) probability is at most cN ¨ qc{2n`ν ď q2

c{2n`ν .

• BI2,3 “ r
Dpi, jq P JqcK2 : pK ‘q 1, Liq “ pH2

j , Xjqs

This is possible for both worlds. The maximum pairwise probability is

PrrK ‘q 1 “ 2DjLj ‘q Bjs ¨ PrrLi “Mj ‘ 2DjVj |K ‘q 1 “ 2DjLj ‘q Bjs

ď max
c

PrrK “ cs ¨max
d,e

PrrVj “ d|Lj “ es

“
1
2n ¨

1
2ν .

The total probability is at most q2
c{2n`ν .

• BI3,3 “ r
Dpi, jq P JqcK2, i ‰ j : pH2

i , Xiq “ pH
2
j , Xjqs

This is possible for both worlds. The maximum pairwise probability is:

Prr2DiLi ‘q Bi “ 2DjLj ‘q Bjs

¨ PrrMi ‘ 2DiVi “Mj ‘ 2DjVj |2DiLi ‘q Bi “ 2DjLj ‘q Bjs

82

This is zero when Ti “ Tj (H1
i “ H1

j , H2
i “ H2

j , Mi ‰ Mj), or when Ti ‰ Tj ,
Ni “ Nj , Di “ Dj , Bi ‰ Bj . When Ti ‰ Tj and Ni ‰ Nj , it is at most

max
c

PrrLi ‘ Lj “ cs ¨max
d,e

PrrVi ‘ Vj “ d|Li ‘ Lj “ es ď
1

2n ´ 1
2n´ν

2n ´ 1 .

When Ti ‰ Tj , Ni “ Nj , Di ‰ Dj , it is at most

max
c

PrrLi “ cs ¨max
d,e

PrrVi “ d|Li “ es ď
1
2n

1
2ν .

Thus the pairwise probability is at most 2
2n ¨

2
2ν ď

4
2n`ν .

The total probability is at most 4
`

qc
2
˘

{2n`ν ď 2q2
c{2n`ν .

• BI1,4 “ r
Dj P JqpK : K “ pKjs

This is possible for both worlds. The maximum pairwise probability is 1{2n, and the
total probability is at most qp{2n.

• BI2,4 “ r
Dj P JqpK : K ‘q 1 “ pKjs

This is possible for the both worlds. The maximum pairwise probability is 1{2n, and
the total probability is at most qp{2n.

• BI3,4 “ r
Dpi, jq P JqcKˆ JqpK : pH2

i , Xiq “ p pKj , pXjqs

This is possible for the both worlds. The maximum pairwise probability is

Prr2DiLi ‘q Bi “ pKjs ¨ PrrMi ‘ 2DiVi “ pXj |2DiLi ‘q Bi “ pKjs ď
1
2n ¨

1
2ν .

The total probability is at most qcqp{2n`ν .

• BI4,4 “ r
Dpi, jq P JqpK2, i ‰ j : p pKi, pXiq “ p pKj , pXjqs

This is not possible for the both worlds.

• BO1,1 “ r
Dpi, jq P JqcK2, i ‰ j : pK,Liq “ pK,Ljq, Ni ‰ Njs

This is not possible for the both worlds.

• BO1,2 “ r
Dpi, jq P JqcK2 : pK,Liq “ pK ‘q 1, Vjqs

This is not possible for the both worlds.

• BO2,2 “ r
Dpi, jq P JqcK2, i ‰ j : pK ‘q 1, Viq “ pK ‘q 1, Vjq, Ni ‰ Njs

This is not possible for both worlds: for the ideal world, when Ni ‰ Nj then Vi ‰ Vj .

• BO1,3 “ r
Dpi, jq P JqcK2 : pK,Liq “ pH2

j , Yjqs
This is possible for both worlds. The maximum pairwise probability is

PrrK “ 2DjLj ‘q Bjs ¨ PrrLi “ Cj ‘ 2DjVj |K “ 2DjLj ‘q Bjs

ď max
c

PrrK “ cs ¨max
d,e

PrrVj “ d|Lj “ es

“
1
2n ¨

1
2ν .

The total probability is at most q2
c{2n`ν .

• BO2,3 “ r
Dpi, jq P JqcK2 : pK ‘q 1, Viq “ pH2

j , Yjqs
This is possible for both worlds. The maximum pairwise probability is

PrrK ‘q 1 “ 2DjLj ‘q Bjs ¨ PrrVi “ Cj ‘ 2DjVj |K ‘q 1 “ 2DjLj ‘q Bjs

ď max
c

PrrK “ cs ¨ PrrVi ‘ 2DjVj “ Cj |K ‘q 1 “ 2DjLj ‘q Bjs

ď
1
2n ¨ PrrVi ‘ 2DjVj “ Cj |K ‘q 1 “ 2DjLj ‘q Bjs.

83

This is at most 1{2n when ν “ 0. When ν “ n, it is at most

1
2n ¨

#

maxe Prrp2Dj ` 1qVi “ Cj , |Lj “ es ď 1
2n if Ni “ Nj

maxe PrrVi “ 2DjVj ‘ Cj |Lj “ es ď 1
2n´1 if Ni ‰ Nj

ď
1
2n ¨

1
2n ´ 1 ď

2
22n ,

where Ni “ Nj includes the case i “ j. The total probability is thus bounded by
2q2
c{2n`ν .

• BO3,3 “ r
Dpi, jq P JqcK2, i ‰ j : pH2

i , Yiq “ pH
2
j , Yjqs

This is possible for the both worlds. The maximum pairwise probability is

Prr2DiLi ‘q Bi “ 2DjLj ‘q Bjs

¨ PrrCi ‘ 2DiVi “ Cj ‘ 2DjVj |2DiLi ‘q Bi “ 2DjLj ‘q Bjs.

With the same analysis as BI3,3, this is bounded by 4{2n`ν . Thus, the total
probability is at most 4

`

qc
2
˘

{2n`ν ď 2q2
c{2n`ν .

• BO1,4 “ r
Dpi, jq P JqcKˆ JqpK : pK,Liq “ p pKj , pYjqs

This is possible for both worlds. The maximum pairwise probability is 1{22n.
The total probability is at most qcqp{22n.

• BO2,4 “ r
Dpi, jq P JqcKˆ JqpK : pK ‘q 1, Viq “ p pKj , pYjqs

This is possible for the both worlds. The maximum pairwise probability is 1{2n ¨1{2n.
The total probability is at most qc ¨ qp{22n

• BO3,4 “ r
Dpi, jq P JqcKˆ JqpK : pH2

i , Yiq “ p
pKj , pYjqs

This is possible for both worlds. The maximum pairwise probability is

Prr2DiLi ‘q Bi “ pKjs ¨ PrrCi ‘ 2DiVi “ pYj |2DiLi ‘q Bi “ pKjs ď
1
2n ¨

1
2ν .

The total probability is at most qcqp{2n`ν .

• BO4,4 “ r
Dpi, jq P JqpK2, i ‰ j : p pKi, pYiq “ p pKj , pYjqs

This is not possible for the both worlds.

Sum of Bad Event Probabilities. Bad event probability is the sum of all sub-bad-event
probabilities:

Pr
ideal

rΘ P BadTs “ q2
c{2n`ν
looomooon

BI1,3

` q2
c{2n`ν
looomooon

BI2,3

` 2q2
c{2n`ν

loooomoooon

BI3,3

` qp{2n
loomoon

BI1,4

` qp{2n
loomoon

BI2,4

` qcqp{2n`ν
loooomoooon

BI3,4

` q2
c{2n`ν
looomooon

BO1,3

` 2q2
c{2n`ν

loooomoooon

BO2,3

` 2q2
c{2n`ν

loooomoooon

BO3,3

` qcqp{22n
looomooon

BO1,4

` qcqp{22n
looomooon

BO2,4

` qcqp{2n`ν
loooomoooon

BO3,4

“
8q2
c ` 2qcqp
2n`ν `

2qp
2n `

q2
c ` 2qcqp

22n

ď
9q2
c ` 4qcqp
2n`ν `

2qp
2n . (12)

Good Event Probability Ratio. We introduce some notations. For the multiset S, let
unipSq be the set of all unique elements of S. Let

• T 7 “ tT 71 , . . . , T 7αu “ unipT q for T “ tT1, . . . , Tqcu. Let tpjq be the multiplicity of T 7j
in T . We have

řα
j“1 tpjq “ qc.

84

• pK7 “ t pK71, . . . , pK
7

βu “ unippKq for pK “ t pK1, . . . , pKqpu. Let pkpjq be the multiplicity of
pK7j in pK. We have

řβ
j“1

pkpjq “ qp.

• H27 “ tH27
1 , . . . ,H

27
γ u “ unipH2q for H2 “ tH2

1 , . . . ,H
2
qcu. Let h27pjq be the multi-

plicity of h27
j in H2. We have

řγ
j“1 h

27pjq “ qc.

Recall that K and K ‘q 1 and all elements of pK7 are distinct for any good transcript. We
fix a good transcript pΘc “ θc,Θp “ θp,Θa “ θaq, which determines the assignments of all
internal variables, e.g., as K “ k or H2

1 “ h2
1. For i P JγK, let

Σpiq “

$

’

&

’

%

2n ´ pkpjq if there exists j P JγK s.t. h27
i “

pk7j
2n ´ cN if h27

i P tk, k ‘q 1u
2n otherwise.

Note that for the first case, h27
i R tk, k ‘q 1u holds from the absence of BI1,4 and BI2,4,

and for the second case, KDF invokes keys k and k ‘q 1 cN times.

Since θp and θa determine 2n ´ Σpiq input/output pairs of Eh27
i
p˚q for i P JγK, Σpiq

denotes the number of inputs and outputs of random permutation Eh27
i
p˚q still undetermined

with Θp “ θp and Θa “ θa.

Transcript Probability in the Ideal World. For any attainable θ “ pθc, θp, θaq R BadT,
we have

Pr
ideal

rΘ “ θs “ Pr
ideal

rΘc “ θc|Θp “ θp,Θa “ θas ¨ Pr
ideal

rΘp “ θp|Θa “ θas ¨ Pr
ideal

rΘa “ θas.

We derive each term as

Pr
ideal

rΘa “ θas “ Pr
ideal

rK “ k, `7i “ P1pN
7

i q, V
7

i “ P2pN
7

i q, i P JcN Ks “
1
2n ¨

ˆ

1
p2nqcN

˙2
,

and

Pr
ideal

rΘp “ θp|Θa “ θas “ Pr
ideal

rEppki, pxiq “ pyi, i P JqpK|Θa “ θas “
β
ź

j“1

1
p2nq

pkpjq

.

Finally, we have

Pr
ideal

rΘc “ θc|Θp “ θp,Θa “ θas “ Pr
ideal

rrPpti, xiq “ yi, i P JqcK|Θp “ θp,Θa “ θas

“

α
ź

j“1

1
p2nqtpjq

.

Transcript Probability in the Real World. With the same decomposition of transcript
variables as before, we derive each term (here, a sampled value of L is written as L “ `).

Pr
real
rΘa “ θas “ Pr

real
rK “ k, `7i “ Epk,N 7i q, V

7

i “ Epk ‘q 1, `7iq, i P JcN Ks “
1
2n ¨

ˆ

1
p2nqcN

˙2
,

and

Pr
real
rΘp “ θp|Θa “ θas “ Pr

real
rEppki, pxiq “ pyi, i P JqpK|Θa “ θas “

β
ź

j“1

1
p2nq

pkpjq

.

85

Note that pki R tk, k ‘q 1u holds from goodness of transcript. Finally, we have

Pr
real
rΘc “ θc|Θp “ θp,Θa “ θas “ Pr

real
rEph2

i , xiq “ yi, i P JqcK|Θp “ θp,Θa “ θas

“

γ
ź

j“1

1
pΣpjqqh27pjq

.

We remark that Σpjq is fixed from H1 and H2, which is determined from the conditional
clause. Also, being a good transcript, when h2

i “ h2
j we have xi ‰ xj , yi ‰ yj .

Now it is easy to confirm the following proposition.

Proposition 3. For any positive integer Q, pQqi`j ď pQqi ¨ pQqj for any i, j such that
i, j, i` j P JQK.

We have
γ
ź

j“1

1
pΣpjqqh27pjq

ě

α
ź

j“1

1
p2nqtpjq

.

This follows from Proposition 3 and the simple fact that a pair of different H2 values must
be created from a pair of different tweaks. Since the probability distribution of pΘp,Θaq is
identical in both worlds, we have

PrrealrΘ “ θs

PridealrΘ “ θs
“

PrrealrΘc “ θc|Θp “ θp,Θa “ θas

PridealrΘc “ θc|Θp “ θp,Θa “ θas

“

γ
ź

j“1

1
pΣpjqqh27pjq

¨

α
ź

j“1
p2nqtpjq ě 1. (13)

From (12) and (13) and Lemma 3, we prove Lemma 2.

Proofs of Lemma 1, for ICE3. We have the following lemma for GICE2.

Lemma 4. For pqc, qpq-adversary A, we have

Advtsprp
GICE2pAq ď

0.5q2
c

2k´8 `
qc ¨ qp

2k .

We prove Lemma 4; it will also imply the proof of Lemma 1 for ICE3.

Since the essential proof ideas are shared with the proof of GICE1, we only briefly
describe the proof of GICE2. We similarly define the transcript: there is no H1 and
H2 “ 2DLr1s }Lr2s ‘B, where L “ K ‘ pN } 0k´nlq and pLr1s, Lr2sq k´8

Ð L. Let N denote
N } 0k´nl and pN r1s, N r2sq k´8

Ð N and pKr1s,Kr2sq k´8
Ð K so that Lr1s “ N r1s ‘Kr1s and

Lr2s “ N r2s ‘Kr2s. In the ideal world, we use TURP as Ci Ð rPpTi,Miq and random
K

$
Ð K (there is no additional URPs as we do not need KDF involving encryption). We

observe that there are two bad events. The first is a key-input collision between two
c-queries of different tweaks: H2

i “ H2
j such that Ti ‰ Tj for pi, jq P JqcK2. The pairwise

probability for this bad event is

Pr
ideal

rH2
i “ H2

j s “ Pr
ideal

r2DiLir1s “ 2DjLjr1s, Lir2s ‘ Ljr2s “ Bi ‘Bjs. (14)

We do a case analysis for Ti ‰ Tj . When Di ‰ Dj , (14) is at most

Pr
ideal

r2DiLir1s “ 2DjLjr1ss ď Pr
ideal

rp2Di ‘ 2Dj qKr1s “ 2DiNir1s ‘ 2DjNjr1ss

ď
1

2k´8

86

from the property of doublings. When Di “ Dj but Ni ‰ Nj , it implies N ir1s ‰ N jr1s,
as we assumed nl ď k ´ 8. Since 2DiLir1s ‘ 2DjLjr1s equals 2DipN ir1s ‘N jr1sq ‰ 0 (i.e.
a non-zero element of GFp2k´8q), it implies (14) is 0.

Finally, when Di “ Dj , Ni “ Nj , and Bi ‰ Bj , because Lir2s ‘ Ljr2s “ 08, (14) is 0
too. Therefore, the first bad event has probability

`

qc
2
˘

{2k´8 ď 0.5q2
c{2k´8.

The second bad event is a key-input collision between a c-query and a p-query. Since
K is independent of the query responses, it is easy to see that

Pr
ideal

r2DiLir1s }Lir2s ‘Bi “ pKjs ď
1
2k

for any pi, jq P JqcKˆ JqpK, hence the second bad event probability is qc ¨ qp{2k.

Similarly to GICE1, we apply Lemma 3 and obtain ε2 “ 0.5q2
c{2k´8 ` qc ¨ qp{2k. We

can also derive ε1 “ 0 in a similar manner to the case of GICE1. Thus the advantage is at
most 0.5q2

c{2k´8 ` qc ¨ qp{2k, which concludes the proof of Lemma 4.

A.3 Proofs of Remus-N (Theorem 4).
Idealized Remus-N. We reinterpret Remus-N as a mode of TBC rE, which is instantiated
by ICE in the concrete specification. When the underlying TBC is TURP rP, we write the
mode as TRemus-N. It is similar to Romulus-N (with TURP) but has a different counter
treatment and AD processing. See Figure 14.

Lemma 5. For pqe, qdq-privacy-adversary A and pqe, qdq-authenticity adversary B,

Advpriv
TRemus-NpAq “ 0, (15)

Advauth
TRemus-NpBq ď

3qd
2n `

2qd
2τ . (16)

Proof of Lemma 5. The proof of Lemma 5 is similar to those of (2) and (3).

Proof of Privacy Bound (15). With the same reasoning as Romulus-N, due to the
uniqueness of the tweak values for all invoked rP calls, the privacy bound is zero.

Proof of Authenticity Bound (16). We first prove the case qd “ 1. Let pN 1, A1, C 1, T 1q
denote the single verification query (here we omit the subscript), and let p be the probability
of successful forgery. Let Θe be the random variable representing the transcripts obtained
by encryption queries and responses. By convention, we can assume B as deterministic
(since the optimal adversary is always deterministic). Moreover, we only need to consider
the case that B performs qe encryption queries first and then one verification query.

Let ai and mi be the number of AD and plaintext blocks in i-th query (for Remus both
are n-bit blocks, hence ai “ |Ai|n and mi “ |Mi|n).

As in the proof of Romulus, we write Xirjs and Yirjs to denote the j-th TURP input
and output in the encryption, for j P JmiK, where Yirjs is to encrypt Mirj ` 1s when
j ă mi and Xirmis is given to rP with tweak pNi, wMi

, ai `miq to create Yirmis. Tag is
Ti “ lmtτ pρ2pYirmis, 0nqq “ lmtτ pGpYirmisqq. Similarly, let Virjs and Wirjs be the j-th
TURP input and output in the AD processing j P JaiK. Let Si “Wirais be the state value
after the AD process in i-th encryption query, which is also used to encrypt Mir1s if exists.
Note that Xir1s “ ρ1pSi,Mir1sq.

87

Algorithm TRemus-N.EncpN,A,Mq
1. S Ð 0n
2. pAr1s, . . . , Arasq n

Ð A
3. pCr1s, . . . , Crmsq n

Ð C
4. if |Aras| ă n then wA Ð 13 else 12
5. if |Crms| ă n then wC Ð 11 else 10
6. Aras Ð padnpArasq
7. for i “ 1 to a´ 1
8. pS, ηq Ð ρpS,Arisq

9. S Ð rP
N,i,4

pSq
10. end for
11. pS, ηq Ð ρpS,Arasq

12. S Ð rP
N,a,wA

pSq
13. for i “ 1 to m´ 1
14. pS,M risq Ð ρ´1pS,Crisq

15. S Ð rP
N,a`i,2

pSq
16. end for
17. rS Ð p0|Crms| } rmtn´|Crms|pGpSqqq
18. C 1rms Ð padnpCrmsq ‘ rS
19. pS,M 1rmsq Ð ρ´1pS,C 1rmsq
20. M rms Ð lmt|Crms|pM 1rmsq

21. S Ð rP
N,a`m,wC

pSq
22. pη, T˚q Ð ρpS, 0nq
23. M ÐM r1s }M r2s } . . . }M rms
24. if T˚ “ T then return M else K

Algorithm TRemus-N.DecpN,A,C, T q
1. S Ð 0n
2. pAr1s, . . . , Arasq n

Ð A
3. pCr1s, . . . , Crmsq n

Ð C
4. if |Aras| ă n then wA Ð 13 else 12
5. if |Crms| ă n then wC Ð 11 else 10
6. Aras Ð padnpArasq
7. for i “ 1 to a´ 1
8. pS, ηq Ð ρpS,Arisq

9. S Ð rP
N,i,4

pSq
10. end for
11. pS, ηq Ð ρpS,Arasq

12. S Ð rP
N,a,wA

pSq
13. for i “ 1 to m´ 1
14. pS,M risq Ð ρ´1pS,Crisq

15. S Ð rP
N,a`i,2

pSq
16. end for
17. rS Ð p0|Crms| } rmtn´|Crms|pGpSqqq
18. C 1rms Ð padnpCrmsq ‘ rS
19. pS,M 1rmsq Ð ρ´1pS,C 1rmsq
20. M rms Ð lmt|Crms|pM 1rmsq

21. S Ð rP
N,a`m,wC

pSq
22. pη, T˚q Ð ρpS, 0nq
23. M ÐM r1s }M r2s } . . . }M rms
24. if T˚ “ T then return M else K

Algorithm ρpS,Mq
1. C ÐM ‘GpSq
2. S1 Ð S ‘M
3. return pS1, Cq

Algorithm ρ´1pS,Cq
1. M Ð C ‘GpSq
2. S1 Ð S ‘M
3. return pS1,Mq

Figure 14: A TBC-based abstraction of Remus-N. Here the TBC is a TURP rP having
the same I/O as GICE1 and GICE2. Lines of [if (statement) then X Ð x else x1] are
shorthand for [if (statement) then X Ð x else X Ð x1]. The dummy variable η is
always discarded. As an example, this abstracts Romulus-N1. In fact ρ has been redefined
in the proof so that it directly accepts the final partial block and does padding internally
(see Preliminaries at the beginning of this section).

88

Similarly, let a1 and m1 be AD and ciphertext block lengths of the single decryption
query pN 1, A1, C 1, T 1q, and define X 1rjs, Y 1rjs and S1 for the decryption query in the same
fashion.

For such B, we have

p “ PrrT 1 “ T˚s ď max
θePSΘe

PrrT 1 “ T˚|Θe “ θes

where SΘe denotes the set of all possible values for θe, and T˚ denotes the true tag value
for pN 1, A1, C 1, T 1q. We also observe that

PrrΘes “ PrrCq, T q, Nq, Aq,Mqs

and the probability PrrCq, T qs is uniform and independent of the values of pNq, Aq,Mqq

from (1) as they are the TURP outputs taking distinct tweak.

We fix θe and write Pre to denote the conditional probability space given Θe “ θe.

All Xirjs and Yirjs are determined by Θe except j “ mi: they are cut when the last
block is partial or τ ă n. For simplicity, we let encryption oracle to disclose Xirmis and
Yirmis and attach to Θe after the all encryption queries.

Let T˚ be the true tag value for decryption query, i.e.

T˚ “ lmtτ pGpY 1rm1sqq, Y 1rm1s “ rP
pN 1,wC1 ,a

1
`m1q

pX 1rm1sq, (17)

where wC1 is the indicator of padding for C 1. As we assumed G is regular, if Y 1rm1s is
completely random from the previous variables (of transcript), the guessing probability of
tag is 1{2τ .

We do a case analysis.

Case 1: N 1 ‰ Ni for all i. Since the final tweak of decryption query is pN 1, wC1 , a1 `m1q
which has never been used before, from (17), T˚ “ lmtτ pGpY 1rm1sqq is unpredictable.
pe “ 1{2τ .

Case 2: N 1 “ Ni for some 1 ď i ď q. Wlog we let N 1 “ N1 and for simplicity omit the
subscript i, i.e, pN,A,M,C, T qmeans pN1, A1,M1, C1, T1q, and a andmmean a1 and
m1. The same applies to Xirjs and Yirjs. When a variable X defined at encryption
and X 1 defined at decryption are given rP of identical tweak (either thorough ρ or
directly), we say X and X 1 are coupled. For example, when a “ a1, V ris and V 1ris
for i P Ja´ 1K are coupled, and V ras and V 1ras are coupled iff wA “ wA1 .

Case 2-1: C 1 ‰ C, pa`m,wM q ‰ pa1`m1, wC1q. Then the final tweak values, pN,wM , a`
mq and pN 1p“ Nq, wC1 , a

1 `m1q, are different, and the latter never appeared in the
encryption queries. Thus Y 1rm1s is random from (17), and we have pe “ 1{2τ .

Case 2-2: C 1 ‰ C, pa`m,wM q “ pa1`m1, wC1q, a “ a1 (thus) m “ m1. Then the analysis
is the same as Case 2-2 of Romulus (note that S and S1 are created by rP taking the
identical tweak). We have pe ď 2{2τ ` 2{2n.

Case 2-3: C 1 ‰ C, pa`m,wM q “ pa1 `m1, wC1q, a ‰ a1 (thus) m ‰ m1.

Case 2-3-1: a1 ă a. Let b “ a´ a1 ą 0, thus m1 “ m` b. We define δ for 0 ď δ ď m as
the block index of M (or C, i.e. message of encryption query) of the last difference
between C and C 1, where we seek the difference from the last of ciphertext blocks.
That is, when δ ą 0, Crδs ‰ C 1rδ` bs and Cris “ C 1ri` bs for any δ ă i ď m. When
δ “ 0 it means C is a postfix of C 1. We remark that C ‰ C 1 comes from b ą 0 (i.e.

89

the block lengths are different). Note that the last X-values are Xrms for encryption
query and X 1rm` bs for decryption query and both go to rP

pN,wM ,a`mq to produce
tags.

If δ ą 1, the analysis is the same as Case 2-2 of Romulus; more specifically, as C is
not a postfix of C 1, we can apply the same analysis as Romulus on Crδs, . . . , Crms
and C 1rδ` bs, . . . , C 1rm1s, where Crδs and C 1rδ` bs are coupled and so on, with case
analysis on the difference between the coupled Xrδs and X 1rδ ` bs.

If δ “ 0, it implies C is a postfix of C 1. Then, the processing of Aras and that of
Crbs take different tweaks, pN,wA, aq and pN,B, aq for B indicating “encryption”
(e.g. B “ 2 for Remus-N1), where the latter never appears in encryption. Thus Y 1rbs
is random and independent of W ras which is coupled. The mapping Y 1rbs Ñ X 1rm1s
and W ras Ñ Xrms are the same permutation, hence (in the same analysis as Case
2-2 of Romulus) we have pe “ 2{2τ ` 2{2n. The remaining case is δ “ 1. This is
the same as the case δ “ 0: the different tweaks pN,wA, aq and pN,B, aq make the
coupled Xr1s and X 1rb` 1s independent irrespective of the difference between Cr1s
and C 1rb`1s, and the mappings Xr1s Ñ Xrms and X 1rb`1s Ñ X 1rm1s are identical.
Therefore, pe “ 2{2τ ` 2{2n holds for the all cases of δ.

Case 2-3-2: a1 ą a. Let b “ a1´a ą 0, thus m “ m1`b. The analysis is mostly symmetric
to Case 2-3-1. We define δ in the same way: when δ ą 1 we have the same analysis
as Case 2-3-1, and when δ “ 1 we claim W 1ra1s is random and independent of Y rbs
which is coupled with W 1ra1s, while the latter process is the identical permutation.
Thus pe “ 2{2τ ` 2{2n.

Case 3: N 1 “ Ni for some i P JqK, and C 1 “ Ci and (thus) A1 ‰ Ai. As in the analysis
of Case 2, wlog we assume i “ 1 and abbreviate Ai as A and so on. Note that
pm,wM q “ pm

1, wC1q holds.

Case 3-1: a ‰ a1. It implies a `m ‰ a1 `m1 thus the final tweaks of encryption and
decryption are different, thus pe “ 1{2n in this case.

Case 3-2: a “ a1, thus pa`m,wM q “ pa1`m1, wC1q. The analysis of this case is the same
as Case 3 of Romulus. Specifically the analysis is obtained from Case 3-2 of Romulus,
by setting all even AD blocks for both encryption and decryption to N . We note
that we have fewer sub-cases than Romulus as an AD block never goes to tweak input
in Remus. The difference between Romulus and TBC-based Remus in encryption part
(only in the final tweak derivation and values of domain separation) does not change
the proof, as Case 3-2 of Romulus only uses the fact that the encryption process is
a permutation of S once we fix message and rP. Thus, as in Case 3-2 of Romulus,
pe “ 2{2τ ` 3{2n.

Therefore, for any fixed Θe “ θe, pe ď 3{2n ` 2{2τ holds for all cases. Thus the
authenticity bound for qd “ 1 is 3{2n ` 2{2τ . Following the generic conversion from
qd “ 1 and qd ě 1 which multiplies qd to the above, we conclude the proof of authenticity
bound (16).

This concludes the proof of Lemma 5.

90

Deriving the Final Bounds. By combining Lemma 5 and Lemma 1, we have

Advpriv
Remus-N1pAq ď Advtsprp

ICE1 pA
1q `Advpriv

TRemus-NpAq

ď

˜

9σ2
priv ` 4σpriv ¨ qp

2n `
2qp
2n

¸

` 0,

Advpriv
Remus-N2pAq ď Advtsprp

ICE2 pA
1q `Advpriv

TRemus-NpAq

ď

˜

9σ2
priv ` 4σpriv ¨ qp

22n `
2qp
2n

¸

` 0,

Advpriv
Remus-N3pAq ď Advtsprp

ICE3 pA
1q `Advpriv

TRemus-NpAq

ď

˜

0.5σ2
priv

2k´8 `
qp ¨ σpriv

2k

¸

` 0

for privacy, where A1 is pσpriv, qpq-adversary. Similarly,

Advauth
Remus-N1pBq ď Advtsprp

ICE1 pB
1q `Advauth

TRemus-NpBq

ď

ˆ

9σ2
auth ` 4σauth ¨ qp

2n `
2qp
2n

˙

`

ˆ

3qd
2n `

2qd
2τ

˙

,

Advauth
Remus-N2pBq ď Advtsprp

ICE2 pB
1q `Advauth

TRemus-NpBq

ď

ˆ

9σ2
auth ` 4σauth ¨ qp

22n `
2qp
2n

˙

`

ˆ

3qd
2n `

2qd
2τ

˙

,

Advauth
Remus-N3pBq ď Advtsprp

ICE3 pB
1q `Advauth

TRemus-NpBq

ď

ˆ

0.5σ2
auth

2k´8 `
qp ¨ σauth

2k

˙

`

ˆ

3qd
2n `

2qd
2τ

˙

,

for authenticity, where B1 is pσauth, qpq-adversary. This concludes the proof of Theorem 4.

A.4 Proofs of Romulus-M (Theorem 2 and Theorem 3)
We consider Romulus-M that uses a TURP rP as the underlying TBC.

Nonce-Respecting Privacy. It is easy to see that the privacy is perfect, since for an
encryption query pNi, Ai,Miq, all the TBC calls to compute the output pCi, Tiq take
distinct tweak values from the nonce-respecting assumption.

Nonce-Misusing Privacy. We start with analyzing a TURP rP : T ˆM Ñ M with
T “ T ˆ B ˆ D used in Romulus-M. Let RF be a random function that has the same
domain and range as rP. Consider A that makes q queries and can repeat a tweak at most
r times. We first claim that A has a small advantage in distinguishing between rP and RF.
Let Advprf

rP
pAq “ Pr

“

ArPp¨,¨q ñ 1
‰

´ Pr
“

ARFp¨,¨q ñ 1
‰

. In the real case, the oracle returns
C “ rPpT,Mq for a TURP rP. In the ideal case, the oracle returns C “ RFpT,Mq for a
random function RF. A makes at most q queries and can use the same T at most r times.
We have the following lemma.

Lemma 6. Let A be an adversary as above. Then Advprf
rP
pAq ď rq{2n.

Proof. Consider the simulation of rP with the lazy-sampling, where we always return
Ci

$
Ð t0, 1un for the i-th query pTi,Miq. For each i P JqK, there are at most r previous

queries that share the same tweak Ti, and the simulation is successful if Ci does not collide

91

with the corresponding r ciphertext blocks. That is, for each i, the simulation fails with
probability at most r{2n, and since A makes at most q queries, the result follows.

In the encryption algorithm of Romulus-M in Figure 4, we refer to the mapping
pN,A,Mq ÞÑ T as the MAC part, and this corresponds to lines 1–24. We next show that
the MAC part is a PRF. Let A be an adversary that makes q queries of the form pN,A,Mq,
where the same N can be repeated at most r times. For pN,A,Mq, the MAC oracle,
which we write MAC, returns T by following the definition of the MAC part. We define
Advprf

MACpAq “ Pr
“

AMACp¨,¨,¨q ñ 1
‰

´Pr
“

A$p¨,¨,¨q ñ 1
‰

, where $ always returns T $
Ð t0, 1un.

We have the following lemma.

Lemma 7. Let A be an adversary as above. Then Advprf
MACpAq ď 4rq{2n.

Proof. We without loss of generality assume that A makes q queries, and let Q “

tpN1, A1,M1q, . . . , pNq, Aq,Mqqu be the set of queries. Consider the real case where
we have the MAC oracle, and let T1, . . . , Tq be the outputs of the oracle. We first replace
all the rP

p¨,¨,¨q
p¨q calls in line 23 of the MAC oracle with RFp¨,¨,¨qp¨q, i.e, all the last calls of

rP to compute Ti is now replaced with a random function, and let MAC1 be the resulting
oracle. Since A can repeat the same nonce at most r times, we observe that rP in line 23 is
called q times with the same tweak at most r times, so we use Lemma 6 to obtain

Advprf
MACpAq ď

rq

2n `Advprf
MAC1pAq.

Consider two distinct inputs pN,A,Mq and pN 1, A1,M 1q of MAC1, and suppose that we
run lines 1–12. For pN,A,Mq, Xr1s, . . . , Xras and Xra`1s, . . . , Xra`ms are defined, and
w is defined in line 10. The corresponding values X 1r1s, . . . , X 1ra1 `m1s and w1 are also
defined for pN 1, A1,M 1q. We say that, if pN,w, a`mq “ pN 1, w1, a1 `m1q, then pN,A,Mq
and pN 1, A1,M 1q have the same type. We then run lines 13–24 to compute T and T 1, and
let Sra `ms be the input value of RFpN,w,a`mqp¨q to compute T and S1ra1 `m1s be the
input value of RFpN

1,w1,a1`m1q
p¨q to compute T 1. We observe that, if Sra`ms ‰ S1ra1`m1s

holds for any distinct pN,A,Mq, pN 1, A1,M 1q P Q with the same type, then the output
distribution of MAC1 is the same as that of $.

We modify the definition of MAC1 as follows. For the i-th query pNi, Ai,Miq, we choose
Ti

$
Ð t0, 1un, and return Ti to A. All the q queries and responses are now fixed, and

then we run lines 1–22 of the code of MAC1. We say that a bad event occurs if we have
Sra ` ms “ S1ra1 ` m1s for some two distinct queries pN,A,Mq, pN 1, A1,M 1q P Q with
the same type. We observe that unless the bad event occurs, this modification does not
change the output distribution of MAC1, since the random function RF can interpolate q
input-output pairs with probability 1{2qn.

We use the following claim, which is proved after completing the proof of Lemma 7.

Claim. For two distinct queries pN,A,Mq, pN 1, A1,M 1q P Q with the same type, we have
PrrSra`ms “ S1ra1 `m1ss ď 3{2n.

For each i P JqK, the i-th query pNi, Ai,Miq can cause the bad event with probability
at most 3r{2n, since, among pN1, A1,M1q, . . . , pNi´1, Ai´1,Mi´1q, there are at most r
queries that have the same type as pNi, Ai,Miq. Therefore, the probability of the bad
event is at most 3rq{2n as A makes at most q queries. This shows Advprf

MAC1pAq ď 3rq{2n,
and we have the lemma.

92

Proof of Claim. We follow the analysis in [NS20]. Let p “ PrrSra `ms “ S1ra1 `m1ss.
We use the notation defined in lines 1–22 of MAC1, and let Sr2j ´ 1s be the input of
rP
pXr2js,x,2j´1q

p¨q and rSr2j ´ 1s be the output. S1r2j ´ 1s and rS1r2j ´ 1s are defined
analogously. We break the case as follows.

Case 1: a “ a1 (and hence m “ m1). Let δ be the largest index δ P Ja `mK such that
Xrδs ‰ X 1rδs. We have Xrjs “ X 1rjs for all δ ` 1 ď j ď a`m.

If δ ě 2 is even, we observe that Sra`ms “ S1ra`ms holds iff rSrδ´ 1s “ rS1rδ´ 1s,
since the function that maps rSrδ´ 1s to Sra`ms is a permutation over t0, 1un from
the soundness of G. Therefore,

p “ PrrrSrδ ´ 1s “ rS1rδ ´ 1ss

holds. Since rS1rδ ´ 1s is uniformly random over t0, 1un, we obtain p “ 1{2n in this
case.

If δ “ 1, we must have Sr1s ‰ S1r1s, and this implies p “ 0.

If δ ě 3 is odd, we proceed as follows.

p ď PrrSra`ms “ S1ra`ms | Srδ ´ 2s “ S1rδ ´ 2s ^Xrδ ´ 1s “ X 1rδ ´ 1ss
` PrrSra`ms “ S1ra`ms | Srδ ´ 2s “ S1rδ ´ 2s ^Xrδ ´ 1s ‰ X 1rδ ´ 1ss
` PrrSra`ms “ S1ra`ms | Srδ ´ 2s ‰ S1rδ ´ 2ss

The first term is 0, since we have Srδs ‰ S1rδs and this ensures Sra`ms ‰ S1ra`ms.
The second term is at most 1{2n, since rS1rδ ´ 2s is uniformly random over t0, 1un.
The third term is at most 1{p2n´ 1q, since rS1rδ´ 2s is uniformly random over t0, 1un
or over t0, 1unztrSrδ ´ 2su. Overall, we have

p ď 0` 1
2n `

1
2n ´ 1 ď

3
2n

when δ ě 3, and for Case 1.

Case 2: a ‰ a1 (and hence m ‰ m1). Let δ be the largest index δ P Ja `mK such that
Xrδs ‰ X 1rδs.

Let amax “ maxta, a1u. Note that we have amax ě 2 since we have a ě a1 ` 1 ě 2
or a1 ě a` 1 ě 2, and a and a1 cannot be 0 from the definition of the alternating
parsing. There are two cases to consider.

• If δ P tamax ` 1, . . . , a`mu, then we can follow the same analysis as in Case 1,
and we obtain p ď 3{2n.

• If δ P JamaxK, then we have the following unique tweaks depending on a and a1:

– pAras, 40, a´ 1q (if a is even and a ě a1 ` 1)

– pAra´ 1s, 40, a´ 2q (if a is odd and a ě a1 ` 1)

– pA1ra1s, 40, a1 ´ 1q (if a1 is even and a1 ě a` 1)

– pA1ra1 ´ 1s, 40, a1 ´ 2q (if a1 is odd and a1 ě a` 1)

In either case, the output of rP with the above tweak is uniformly random over
t0, 1un, and we have p ď 1{2n.

Combining Cases 1 and 2, we have p ď 3{2n for any case.

93

Next, we focus on the analysis of the encryption part: pN,Mq ÞÑ pC, T q, where
T

$
Ð t0, 1un is chosen uniformly at random, and C is computed with rP as in [PS16]. More

precisely, let ENC be an oracle that takes pN,Mq as input, internally chooses T $
Ð t0, 1un,

and returns pC, T q by executing lines 25–36 of the encryption algorithm of Romulus-M
in Figure 4. Let A be an adversary that makes q queries pNi,Miq, where the same
Ni can be repeated at most r times, and the total block length of Mi is at most σ
blocks, i.e., if pMir1s, . . . ,Mirmisq

n
Ð Mi, then m1 ` ¨ ¨ ¨ ` mq ď σ. For pNi,Miq, the

encryption oracle, which we write ENC, returns pCi, Tiq by following the steps stated above.
We define Advpriv$

ENC pAq “ Pr
“

AENCp¨,¨q ñ 1
‰

´ Pr
“

A$p¨,¨q ñ 1
‰

, where $ always returns
pCi, Tiq

$
Ð t0, 1u|Mi|`n. We have the following lemma.

Lemma 8. Let A be an adversary as above. Then Advpriv$
ENC pAq ď 2rσ{2n.

Proof. We first replace all the calls to rP in line 31 with a random function RF, and let
ENC1 be the resulting encryption scheme. Observe that rP is called at most σ times in total,
and the same tweak is used at most r times. We can therefore use Lemma 6 to obtain

Advpriv$
ENC pAq ď

rσ

2n `Advpriv$
ENC1 pAq.

For pNi,Miq, let Sirjs be the input value of RFpNi,36,jq
p¨q for 0 ď j ď mi ´ 1. Note that

Sir0s “ Ti. For each i P JqK, we say that a bad event occurs if there exist i1 P Ji´ 1K and
0 ď j ď mintmi´1,mi1 ´1u such that Ni1 “ Ni and Si1rjs “ Sirjs. That is, the bad event
occurs if there exists a previous query pNi1 ,Mi1q that has the same nonce as pNi,Miq and
if one of the inputs of RFpNi,36,jq

p¨q with the same index j collides. It is easy to see that
unless the bad event occurs, the output distribution of ENC1 is the same as that of $. We
see that the i-th query pNi,Miq can cause the bad event with probability at most rmi{2n,
and hence we obtain

Advpriv$
ENC1 pAq ď

ÿ

iPJqK

rmi

2n ď
rσ

2n ,

and this concludes the proof of Lemma 8.

Finally, we consider the privacy of Romulus-M. Recall that we are analyzing A that
makes at most qe encryption queries, can repeat a nonce at most r times, and the total
effective blocks is at most σpriv blocks.

We see that Romulus-M can be described as follows. For pN,A,Mq, we let T Ð

MACpN,A,Mq and C Ð ENCpN,Mq, where we use T as the internal randomness of ENC,
and return pC, T q.

Let ρ be a random function that has the same domain and range as MAC, and let
Romulus-M1 be Romulus-M where we use ρ instead of MAC. From Lemma 7, we have

Advnm-priv
Romulus-MpAq ď

3rqe
2n `Advnm-priv

Romulus-M1pAq.

Given pN,A,Mq, T is uniformly random in Romulus-M1, and hence we can use Lemma 8
to obtain

Advnm-priv
Romulus-M1pAq ď

rσpriv

2n ,

and this gives Advnm-priv
Romulus-MpAq ď 3rqe{2n ` 3rσpriv{2n ď 4rσpriv{2n in Theorem 3.

94

Nonce-Respecting Authenticity. Without loss of generality, we assume that B makes qe
encryption queries, and does not repeat a query.

We give B direct access to an oracle rP
p¨,36,¨q

p¨q, i.e., B can now compute Z “ rP
pN,36,iq

pXq
for any pN, i,Xq of its choice. This only increases the advantage of B, and observe that
for an encryption query pNi, Ai,Miq, B can compute Ci from Ti and the oracle rP

p¨,36,¨q
p¨q,

and that for a decryption query pN 1, A1, C 1, T 1q, B can compute M 1 from T 1, C 1, and the
oracle rP

p¨,36,¨q
p¨q. We now modify the game as follows:

• For an encryption query pNi, Ai,Miq, we only return Ti.

• Instead of making a decryption query pN 1, A1, C 1, T 1q, we ask B to make a verification
query of the form pN 1, A1,M 1, T 1q.

With this modification, we can focus on the analysis of the MAC part. Note that we call
pN 1, A1,M 1, T 1q a verification query (instead of a decryption query).

For an encryption query pNi, Ai,Miq, we run lines 1–24 of the encryption algorithm
and return Ti, and B can compute Ci by using the oracle rP

p¨,36,¨q
p¨q. For a decryption

query pN 1, A1, C 1, T 1q, B can compute the corresponding M 1 by using rP
p¨,36,¨q

p¨q, and for
a verification query pN 1, A1,M 1, T 1q, we run lines 1–24 of the encryption algorithm and
return 1, indicating B wins the game, iff T˚ “ T 1, where T˚ is defined in line 24. Let p be
the probability of successful forgery of B in this game.

We first consider B that makes single verification query pN 1, A1,M 1, T 1q, i.e., qd “ 1.
We can assume that B is deterministic, and we only need to consider the case that B makes
qe encryption queries first and then makes one verification query.

Let pN 1, A1,M 1, T 1q be the verification query of a1 AD blocks andm1 message blocks, i.e.,
pA1r1s, . . . , A1ra1sq n,tÐ A1 and pM 1r1s, . . . ,M 1rm1sq

n,t
Ð M 1 (or pM 1r1s, . . . ,M 1rm1sq

t,n
Ð M 1).

We do a case analysis.

Case 1: pN 1, w1, a1`m1q ‰ pNi, wi, ai`miq for all i. Since the final tweak of the verification
query is pN 1, w1, a1 `m1q, which has never been used before, T˚ is unpredictable,
and we have p “ 1{2n.

Case 2: pN 1, w1, a1 `m1q “ pNi, wi, ai `miq for some i P JqK. The analysis of this case
is almost identical to the proof of Claim in Lemma 7. From the nonce-respecting
assumption, pNi, wi, ai`miq is unique, and we omit the subscript and write pN,w, a`
mq for pNi, wi, ai `miq. Let S1ra1 `m1s be the input value of rP

pN 1,w1,a1`m1q
p¨q to

compute T˚ and Sra`ms be the input value to compute T .

Now in this case, rP to compute T˚ “ GprP
pN 1,w1,a1`m1q

pS1ra1 `m1sqq takes the same
tweak as the tweak to compute T “ GprP

pN,w,a`mq
pSra ` msqq, and A wins iff

T˚ “ T 1.

We follow the notation defined in lines 1–24 of the encryption algorithm, and let
S1r2j ´ 1s be the input of rP

pX1r2js,x,2j´1q
p¨q and rS1r2j ´ 1s be the output. Sr2j ´ 1s

and rSr2j ´ 1s are defined analogously. We further break the case as follows.

Case 2-1: a1 “ a (and m1 “ m). Let δ be the largest index δ P Ja1 ` m1K such that
X 1rδs ‰ Xrδs. We have X 1rjs “ Xrjs for all δ ` 1 ď j ď a1 `m1.

If δ ě 2 is even, we have S1ra1 `m1s “ Sra1 `m1s iff rS1rδ ´ 1s “ rSrδ ´ 1s, since the

95

function that maps rS1rδ ´ 1s to S1ra1 `m1s is a permutation over t0, 1un, and that

p ď
2
2n ` PrrrS1rδ ´ 1s “ rSrδ ´ 1ss

by following the same analysis as Romulus-N. Since rS1rδ ´ 1s is uniformly random
over t0, 1un, we obtain p ď 2{2n ` 1{2n “ 3{3n in this case.

If δ “ 1, we must have S1r1s ‰ Sr1s, and this implies p ď 2{2n.

If δ ě 3 is odd, we proceed as follows.

PrrS1ra1 `m1s “ Sra1 `m1ss

ď PrrS1ra1 `m1s “ Sra1 `m1s | S1rδ ´ 2s “ Srδ ´ 2s ^X 1rδ ´ 1s “ Xrδ ´ 1ss
` PrrS1ra1 `m1s “ Sra1 `m1s | S1rδ ´ 2s “ Srδ ´ 2s ^X 1rδ ´ 1s ‰ Xrδ ´ 1ss
` PrrS1ra1 `m1s “ Sra1 `m1s | S1rδ ´ 2s ‰ Srδ ´ 2ss

The first term is 0, since S1rδs ‰ Srδs ensures S1ra1 `m1s ‰ Sra1 `m1s. The second
term is at most 1{2n, since rS1rδ ´ 2s is uniformly random over t0, 1un. The third
term is at most 1{p2n ´ 1q, since rS1rδ ´ 2s is uniformly random over t0, 1un or over
t0, 1unztrSrδ ´ 2su. Overall, we have

p ď
2
2n ` 0` 1

2n `
1

2n ´ 1 ď
5
2n

for Case 2-1.

Case 2-2: a1 ‰ a (and hence m1 ‰ m). Let δ be the largest index δ P Ja1 `m1K such that
X 1rδs ‰ Xrδs. Let amax “ maxta1, au.

• If δ P tamax ` 1, . . . , a1 `m1u, then we follow the same analysis as in Case 2-1,
and we obtain p ď 5

2n .

• If δ P JamaxK, then we have the following unique tweaks depending on a1 and a:

– pA1ra1s, 40, a1 ´ 1q (if a1 is even and a1 ě a` 1)

– pA1ra1 ´ 1s, 40, a1 ´ 2q (if a1 is odd and a1 ě a` 1)

– pM 1ra´ a1s, 44, a´ 1q (if a is even and a1 ď a´ 1)

– pM 1ra´ a1 ´ 1s, 44, a´ 2q (if a is odd and a1 ď a´ 1)

In either case, the output of rP with the above tweak is uniformly random over
t0, 1un, and we have p ď 2{2n ` 1{2n “ 3{2n for Case 2-2.

Therefore, we have p ď 5{2n for any case.

When the adversary can make qd decryption queries, we use the generic conversion to
obtain p ď 5qd{2n in Theorem 2.

Nonce-Misusing Authenticity. We give direct access to an oracle rP
p¨,36,¨q

p¨q to the ad-
versary as in the nonce-respecting case. Let p be the probability of successful forgery of
B in the modified game, and we consider the game based on the MAC part. We note
that the MAC part is very similar to the NaT construction in [CLS17], and we follow
its analysis. We write the MAC part as T Ð MACpN,A,Mq, and the proof is based on
Patarin’s Coefficient-H technique [Pat08]. Our adversary B makes qe encryption queries
pNi, Ai,Miq and qd verification queries pN 1j , A1j ,M 1

j , T
1
jq, and we consider a distinguishing

game between the real world pMAC,Verq and the ideal world pRand,Rejq.

96

In the real world, for an encryption query pNi, Ai,Miq, the MAC oracle computes
Ti Ð MACpNi, Ai,Miq following the specification and returns Ti to B, and for a decryption
query pN 1j , A1j ,M 1

j , T
1
jq, the Ver oracle computes T˚j “ MACpN 1j , A1j ,M 1

jq, and returns K
if T 1j ‰ T˚j . Otherwise Ver returns J to B. In the ideal world, Rand oracle returns
Ti

$
Ð t0, 1un to B, and for a decryption query, Rej returns K. Let

p˚ “ Pr
“

BMAC,Ver ñ 1
‰

´ Pr
“

BRand,Rej ñ 1
‰

.

We have p ď p˚, and we focus on the analysis of p˚.

In the real world, we execute lines 1–24 of the encryption algorithm of Romulus-M,
and let Kh be all the “keys” used to execute lines 1–22, i.e., the randomness of rP used to
compute the tags except for the last calls. In the ideal world, Kh is generated randomly
following the real world by the simulation of rP, i.e., Kh is generated exactly as in the real
world. We disclose Kh to B after making all the encryption and verification queries but
before it outputs the decision bit. This only increases the advantage of B.

Let τ “ pτe, τv,Khq be all the queries of B and responses from the oracles, and additional
information that B gains, which we call the transcript, where

#

τe “ ppN1, A1,M1, T1q, . . . , pNqe , Aqe ,Mqe , Tqeqq,

τv “ ppN
1
1, A

1
1,M

1
1, T

1
1, b

1
1q, . . . , pN

1
qd
, A1qd ,M

1
qd
, T 1qd , b

1
qd
qq.

Here, b1i P tJ,Ku, and it holds that b1i “ K for all i in the ideal world. A transcript is
attainable if the probability to obtain the transcript in the ideal world is non-zero, and let
Θ be the set of all attainable transcripts. We let Θideal and Θreal denote the probability
distributions of the transcript in the ideal world and in the real world, respectively. Based
on these notation, we restate the Coefficient-H technique [Pat08] as follows.

Lemma 9. For a distinguisher B, let Θ “ GoodTY BadT be a partition of the set of all
attainable transcripts. If there exist ε1 and ε2 such that for any τ P GoodT,

PrrΘreal “ τ s

PrrΘideal “ τ s
ě 1´ ε1,

and PrrΘideal P BadTs ď ε2, then the distinguishing advantage of B is bounded by ε1 ` ε2.

For an encryption query pNi, Ai,Miq, let Sirai`mis be the input state of rP
pNi,wi,ai`miq

in line 23. Similarly, for a verification query pN 1j , A1j ,M 1
j , T

1
jq, let S1jra1j `m1js be the input

state of rP
pN 1j ,w

1
j ,a

1
j`m

1
jq in line 23. We say that two encryption queries pNi, Ai,Miq and

pNj , Aj ,Mjq have the same type if pNi, wi, ai`miq “ pNj , wj , aj `mjq. Similarly, we say
that an encryption query pNi, Ai,Miq and a verification query pN 1j , A1j ,M 1

j , T
1
jq have the

same type if pNi, wi, ai `miq “ pN
1
j , w

1
j , a

1
j `m

1
jq.

We are now ready to define a bad transcript. We say that τ “ pτe, τv,Khq is bad if

• there exist two encryption queries pNi, Ai,Miq and pNj , Aj ,Mjq with the same type
such that Sirai `mis “ Sjraj `mjs or Ti “ Tj , or

• there exist an encryption query pNi, Ai,Miq and a verification query pN 1j , A1j ,M 1
j , T

1
jq

with the same type such that Sirai `mis “ S1jra
1
j `m

1
js and Ti “ T 1j .

Otherwise we say that a transcript is good. Note that the second event cannot happen in
the real world, since the verification oracle returns J for the query pN 1j , A1j ,M 1

j , T
1
jq, and

this is impossible for an attainable transcript. Let BadT be the set of bad transcripts, and
GoodT be the set of good transcripts.

97

We first show that, in the ideal world, the probability of obtaining the bad transcript
is small.

Lemma 10. PrrΘideal P BadTs ď 4rqe
2n `

3rqd
2n .

We first consider the first condition. Fix pNi, Ai,Miq, where we have qe choices. We
then fix pNj , Aj ,Mjq that has the same type as pNi, Ai,Miq. We have at most r ´ 1
choices. We have PrrTi “ Tjs “ 1{2n from the randomness of Ti and Tj . We also have
PrrSirai ` mis “ S1jra

1
j ` m1jss ď 3{2n from the analysis of Cases 2-1 and 2-2 of the

nonce-respecting case, or the Claim in the proof of Lemma 7 in the nonce-misusing privacy
proof. Therefore, the first condition can occur with probability at most

pr ´ 1qqe
2n `

3pr ´ 1qqe
2n “

4pr ´ 1qqe
2n . (18)

For the second condition, we fix a verification query pN 1j , A1j ,M 1
j , T

1
jq, where we have

qd choices, and there are at most r encryption queries that have the same type as the
verification query. Let pNi, Ai,Miq be one of them.

• If pN 1j , A1j ,M 1
j , T

1
jq is queried after pNi, Ai,Miq, then we must have Ti ‰ T 1j , or

pAi,Miq ‰ pA
1
j ,M

1
jq. If Ti ‰ T 1j , then the condition cannot be satisfied. If pAi,Miq ‰

pA1j ,M
1
jq, then we have PrrSirai `mis “ S1jra

1
j `m

1
jss ď 3{2n as above.

• If pN 1j , A1j ,M 1
j , T

1
jq is queried before pNi, Ai,Miq, then we have PrrTi “ T 1js “ 1{2n.

Overall, the second condition can occur with probability at most
3rqd
2n , (19)

and we obtain the lemma from (18) and (19).

We next show that the ratio of the interpolation probabilities is close to one.

Lemma 11. PrrΘreal “ τ s

PrrΘideal “ τ s
ě 1´ 2qd

2n .

Fix a transcript τ P GoodT. Let ppN1, w1, a1 `m1q, . . . , pNqe , wqe , aqe `mqeqq be a list
of the qe nonces used in encryption queries and associated tweak values to determine the
type of the queries. Let µi be the multiplicity of pNi, wi, ai`miq, i.e., the number of times
that pNi, wi, ai `miq appears in the list. Note that we have µi ď r for 1 ď i ď qe. We
also let R be the number of representative elements of the list, i.e., R is the number of
elements when we see tpN1, w1, a1 `m1q, . . . , pNqe , wqe , aqe `mqequ as a set. Without loss
of generality, we may assume that µ1, . . . , µR represent the multiplicity of representative
elements.

In the ideal world, the Rand oracle returns a random string and the Rej oracle returns
K, and hence we have

PrrΘideal “ τ s “ PrrKh “ Khs ¨
1

p2nqqe ,

where PrrKh “ Khs denotes the probability over rP that we obtain Kh as the randomness
to execute lines 1–22. Note that in the ideal world, Kh is generated by following the same
procedure as in the real world.

In the real world, the following equalities and inequalities have to be satisfied.

MACpNi, Ai,Miq “ Ti for all i P JqeK, (20)
MACpN 1j , A1j ,M 1

jq ‰ T 1j for all j P JqdK, (21)

98

where we say that rP is compatible with pτe,Khq if all the equalities in (20) are satisfied,
and rP is compatible with pτv,Khq if all the inequalities in (21) are satisfied. We say that
rP is compatible with τ “ pτe, τv,Khq if it is compatible with pτe,Khq and pτv,Khq. Let
Comppτq be the set of all rP’s that are compatible with τ . Then we have

PrrΘreal “ τ s “ PrrKh “ Khs ¨ PrrrP P Comppτqs,

where PrrKh “ Khs denotes the probability over rP that we obtain Kh as the randomness
to execute lines 1–22, and the last probability is taken over rP that induces Kh. Now by
following exactly the same argument as in [CLS17], we obtain

PrrrP P Comppτqs ě 1
ś

iPJRKp2nqµi

ˆ

1´ qd
2n ´ r

˙

. (22)

To see this, we define

λeq “ tpTw1, S1ra1 `m1s, T1q, . . . , pTwqe , Sqeraqe `mqes, Tqequ,

λineq “ tpTw
1
1, S

1
1ra

1
1 `m

1
1s, T

1
1q, . . . , pTw

1
qd
, S1qdra

1
qd
`m1qds, T

1
qd
qu

where Twi “ pNi, wi, ai `miq for i P JqeK and Tw1j “ pN 1j , w1j , a1j `m1jq for j P JqdK. Here,
λeq is a permutation equalities list, and λineq is a permutation inequalities list. That is,
we require rP

Twi
pSirai `misq “ Ti holds for all i P JqeK and rP

Tw1j
pS1jra

1
j `m

1
jsq ‰ T 1j holds

for all j P JqdK. We also have λeq X λineq “ H, and [CLS17, Lemma 3] gives (22).

We can now compute the ratio as
PrrΘreal “ τ s

PrrΘideal “ τ s
ě

ˆ

1´ qd
2n ´ r

˙

ź

iPJRK

p2nqµi
p2nqµi

ě 1´ 2qd
2n (23)

from p2nqµi{p2nqµi ě 1 and 1 ď r ď 2n´1.

Overall, from Lemma 9, Lemma 11, and (23), we have

p˚ ď
4rqe
2n `

3rqd
2n `

2qd
2n ď

4rqe
2n `

5rqd
2n

in Theorem 3.

A.5 Proofs of Remus-M (Theorem 5 and Theorem 6)
We start with defining the abstraction of TRemus-M based on a TURP rP that has the
same I/O as GICE1. TRemus-M is defined in Figure 15, and we first show the following
lemma.

Lemma 12. For pqe, σprivq-privacy-adversary A and pqe, qdq-authenticity adversary B, we
have

Advpriv
TRemus-MpAq “ 0,

Advnm-priv
TRemus-MpAq ď

4rσpriv

2n ,

Advauth
TRemus-MpBq ď

5qd
2n ,

Advnm-auth
TRemus-MpBq ď

4rqe
2n `

5rqd
2n ,

where the adversaries can repeat a nonce in encryption queries at most r times in the
nonce-misuse cases.

The proofs are similar to those of Romulus-M.

99

Algorithm TRemus-M.EncKpN,A,Mq
1. S Ð 0n
2. pAr1s, . . . , Arasq n

Ð A
3. pM r1s, . . . ,M rmsq n

ÐM
4. if |Aras| ă n then wA Ð 45 else 44
5. if |M rms| ă n then wM Ð 47 else 46
6. Aras Ð padnpArasq
7. for i “ 1 to a´ 1
8. pS, ηq Ð ρpS,Arisq

9. S Ð rP
N,i,36

pSq
10. end for
11. pS, ηq Ð ρpS,Arasq

12. S Ð rP
N,a,wA

pSq
13. for i “ 1 to m´ 1
14. pS, ηq Ð ρpS,M risq

15. S Ð rP
N,a`i,38

pSq
16. end for
17. M 1rms Ð padnpM rmsq
18. pS, ηq Ð ρpS,M 1rmsq

19. S Ð rP
N,a`m,wM

pSq
20. pη, T q Ð ρpS, 0nq
21. if M “ ε then return pε, T q
22. S Ð T
23. for i “ 1 to m´ 1
24. S Ð rP

N,i´1,34
pSq

25. pS,Crisq Ð ρpS,M risq
26. end for
27. S Ð rP

N,m´1,34
pSq

28. pη, C 1rmsq Ð ρpS,M 1rmsq
29. Crms Ð lsb|Mrms|pC 1rmsq
30. C Ð Cr1s }Cr2s } . . . }Crms
31. return pC, T q

Algorithm TRemus-M.DecKpN,A,C, T q
1. if C “ ε then M Ð ε
2. else
3. S Ð T
4. pCr1s, . . . , Crmsq n

Ð C
5. z Ð |Crms|
6. Crms Ð padnpCrmsq
7. for i “ 1 to m

8. S Ð rP
N,i´1,34

pSq
9. pS,M risq Ð ρ´1pS,Crisq
10. end for
11. M rms Ð lsbzpM rmsq
12. M ÐM r1s } . . . }M rms
13. S Ð 0n
14. pAr1s, . . . , Arasq n

Ð A
15. if |Aras| ă n then wA Ð 45 else 44
16. if |M rms| ă n then wM Ð 47 else 46
17. Aras Ð padnpArasq
18. for i “ 1 to a´ 1
19. pS, ηq Ð ρpS,Arisq

20. S Ð rP
N,i,36

pSq
21. end for
22. pS, ηq Ð ρpS,Arasq

23. S Ð rP
N,a,wA

pSq
24. for i “ 1 to m´ 1
25. pS, ηq Ð ρpS,M risq

26. S Ð rP
N,a`i,38

pSq
27. end for
28. M 1rms Ð padnpM rmsq
29. pS, ηq Ð ρpS,M 1rmsq

30. S Ð rP
N,a`m,wM

pSq
31. pη, T˚q Ð ρpS, 0nq
32. if T˚ “ T then return M else K

Algorithm ρpS,Mq
1. C ÐM ‘GpSq
2. S1 Ð S ‘M
3. return pS1, Cq

Algorithm ρ´1pS,Cq
1. M Ð C ‘GpSq
2. S1 Ð S ‘M
3. return pS1,Mq

Figure 15: Encryption and decryption of TRemus-M, a TBC-based abstraction of Remus-
M. It uses a TBC rP that has the same I/O as GICE1. Remus-M1 is used as a working
example.

100

Nonce-Respecting Privacy. We see that for an encryption query pNi, Ai,Miq, all the
TBC calls to compute the output pCi, Tiq take distinct tweak values from the nonce-
respecting assumption. Therefore, the privacy is perfect.

Nonce-Misusing Privacy. Similarly to the analysis of Romulus-M, we define the MAC
part and encryption part. In the encryption algorithm of TRemus-M in Figure 15, the
MAC part corresponds to lines 1–20, and is a mapping pN,A,Mq ÞÑ T .

We show that the MAC part is a PRF. Let A be an adversary that makes q queries and
can repeat a nonce at most r times. Let MAC be an oracle that implements the MAC part,
and let Advprf

MACpAq “ Pr
“

AMACp¨,¨,¨q ñ 1
‰

´ Pr
“

A$p¨,¨,¨q ñ 1
‰

, where $ always returns
T

$
Ð t0, 1un. We have the following lemma.

Lemma 13. Let A be an adversary as above. Then Advprf
MACpAq ď 4rq{2n.

Proof. Wlog, assume thatAmakes q queries, and letQ “ tpN1, A1,M1q, . . . , pNq, Aq,Mqqu

be the set of queries. Suppose that A has MAC as the oracle, and we first replace all the
rP
p¨,¨,¨q

p¨q calls in line 19 with RFp¨,¨,¨qp¨q, which is a random function that has the same
domain and range as rP. Let MAC1 be the resulting oracle. We use Lemma 6 to obtain

Advprf
MACpAq ď

rq

2n `Advprf
MAC1pAq.

For two distinct inputs pN,A,Mq and pN 1, A1,M 1q of MAC1, we say that, if pN, a `
m,wM q “ pN

1, a1 `m1, w1M q, then pN,A,Mq and pN 1, A1,M 1q have the same type. Let
Sra`ms be the input of RFpN,a`m,wM qp¨q and S1ra1`m1s be the input of RFpN

1,a1`m1,w1M qp¨q.
If Sra`ms ‰ S1ra1`m1s holds for any distinct pN,A,Mq, pN 1, A1,M 1q P Q with the same
type, then the output distribution of MAC1 is the same as that of $.

We modify MAC1 as follows. For the i-th query pNi, Ai,Miq, we return Ti
$
Ð t0, 1un.

Then q queries and responses are fixed. A bad event is defined as the event that Sra`ms “
S1ra1 `m1s for some two distinct queries pN,A,Mq, pN 1, A1,M 1q P Q with the same type.
Unless the bad event occurs, this modification does not change the output distribution of
MAC1.

We have the following claim. The proof is given after completing the proof of Lemma 13.

Claim. For two distinct queries pN,A,Mq, pN 1, A1,M 1q P Q with the same type, we have
PrrSra`ms “ S1ra1 `m1ss ď 3{2n.

Now with the same reasoning as in the proof of Lemma 7, the probability of the bad
event is at most 3rq{2n, and we have the lemma.

Proof of Claim. Again, we rely on the approach in [NS20]. Let p “ PrrSra`ms “ S1ra1`

m1ss. Let Srjs be the input of rP
p¨,j,¨q

p¨q and rSrjs be the output. We also define S1rjs and
rS1rjs. For pAr1s, . . . , Arasq n

Ð A and pM r1s, . . . ,M rmsq n
Ð M , let X “ pXr1s, . . . , Xra`

msq “ pAr1s, . . . , padnpArasq,M r1s, . . . , padnpM rmsqq, and let δ be the largest index δ P
Ja`mK such that Xrδs ‰ X 1rδs. We break the case as follows.

Case 1: a “ a1 (and hence m “ m1) and wA “ w1A. If δ “ 1, we must have Sr1s ‰ S1r1s,
and this implies p “ 0.

101

If δ ě 2, we proceed as follows.

p ď PrrSra`ms “ S1ra`ms | Srδ ´ 1s “ S1rδ ´ 1s ^ T rδ ´ 1s “ T 1rδ ´ 1ss
` PrrSra`ms “ S1ra`ms | Srδ ´ 1s “ S1rδ ´ 1s ^ T rδ ´ 1s ‰ T 1rδ ´ 1ss
` PrrSra`ms “ S1ra`ms | Srδ ´ 1s ‰ S1rδ ´ 1ss

Here, T rδ ´ 1s denotes the tweak value of rP
p¨,δ´1,¨q

for pN,A,Mq, and T 1rδ ´ 1s is
that for pN 1, A1,M 1q. The first term is 0, since Srδs ‰ S1rδs holds and this implies
Sra`ms ‰ S1ra`ms. The second term is at most 1{2n, since rS1rδ´ 1s is uniformly
random over t0, 1un. The third term is at most 1{p2n´1q, since rS1rδ´1s is uniformly
random over t0, 1un or over t0, 1unztrSrδ ´ 1su.

Overall, we have

p ď 0` 1
2n `

1
2n ´ 1 ď

3
2n

when δ ě 2, and for Case 1.

Case 2: a “ a1 (and hence m “ m1) and wA ‰ w1A. If δ P ta ` 1, . . . , a `mu, then the
analysis of Case 1 applies, and we have p ď 3{2n. If δ P JaK, then T 1ras is unique
and hence rS1ras is uniformly random over t0, 1un. We have p ď 1{2n.

Overall, we have p ď 3{2n for Case 2.

Case 3: a ‰ a1 (and hence m ‰ m1). Let amax “ maxta, a1u. There are two cases to
consider.

• If δ P tamax ` 1, . . . , a`mu, then we can follow the same analysis as in Case 1,
and we obtain p ď 3{2n.

• If δ P JamaxK, then we have the following unique tweaks depending on a and a1:

– pN, a,wAq (if a ě a1 ` 1)

– pN 1, a1, w1Aq (if a1 ě a` 1)

In either case, the output of rP with the above tweak is uniformly random over
t0, 1un, and we have p ď 1{2n.

By taking the maximum of Cases 1–3, we have p ď 3{2n for any case.

Next, we analyze the encryption part: pN,Mq ÞÑ pC, T q, where T $
Ð t0, 1un is chosen

uniformly at random, and C is computed with rP. We see that the encryption part of
TRemus-M is the same as that of Romulus-M with minor differences in the tweak values.
We define ENC, Advpriv$

ENC pAq, and the adversary A as in Romulus-M, and we have the
following lemma.

Lemma 14. Let A be an adversary as in Lemma 8. Then Advpriv$
ENC pAq ď 2rσ{2n.

We now consider the privacy of TRemus-M. Consider A that makes at most qe queries,
can repeat a nonce at most r times, and the total number of effective blocks is at most
σpriv blocks.

Then with the same analysis as Romulus-M, we obtain Advnm-priv
TRemus-MpAq ď 3rqe{2n `

3rσpriv{2n ď 4rσpriv{2n in Lemma 12.

102

Nonce-Respecting Authenticity. As in the analysis of Romulus-M, we give B the direct
access to an oracle rP

p¨,¨,34q
p¨q, and modify the game as follows:

• For an encryption query pNi, Ai,Miq, we only return Ti.

• Instead of making a decryption query pN 1, A1, C 1, T 1q, we ask B to make a verification
query of the form pN 1, A1,M 1, T 1q.

We focus on the analysis of the MAC part. Let p be the probability of successful forgery
of B in this game.

We first focus on the case qd “ 1, and consider B that makes single verification query
pN 1, A1,M 1, T 1q.

We assume that B is deterministic, and that B makes qe encryption queries first and
then makes one verification query.

We do a case analysis. Let pN 1, A1,M 1, T 1q be the verification query of a1 AD blocks
and m1 message blocks.

Case 1: pN 1, a1`m1, w1M q ‰ pNi, ai`mi, wMiq for all i. The final tweak of the verification
query pN 1, a1 `m1, w1M q was not used before, T˚ is uniformly random over t0, 1un,
and we have p “ 1{2n.

Case 2: pN 1, a1 ` m1, w1M q “ pNi, ai ` mi, wMiq for some i P JqeK. From the nonce-
respecting assumption, pNi, ai `mi, wMiq is unique, and we write pN, a`m,wM q
for it. Let S1ra1 ` m1s be the input value of rP

pN 1,a1`m1,w1M q
p¨q, and Sra ` ms be

the input value of rP
pN,a`m,wM q

p¨q. Also, we let S1rjs be the input of rP
p¨,j,¨q

p¨q for
pN 1, A1,M 1q, and rS1rjs be the output. Srjs and rSrjs are defined analogously. Let
δ be the largest index δ P Ja1 ` m1K such that X 1rδs ‰ Xrδs. We have X 1rjs “
Xrjs for all δ ` 1 ď j ď a1 ` m1. Note that X 1 “ pX 1r1s, . . . , X 1ra1 ` m1sq “
pA1r1s, . . . , padnpA

1ra1sq,M 1r1s, . . . , padnpM
1rm1sqq, and similarly for X. We further

break the case as follows.

Case 2-1: a1 “ a (and m1 “ m) and w1A “ wA. By following the analysis of Romulus-N,
we have

p ď
2
2n ` PrrS1rδs “ Srδss.

If δ “ 1, we must have S1r1s ‰ Sr1s, and this implies p ď 2{2n.

If δ ě 2, then we have

PrrS1ra1 `m1s “ Sra1 `m1ss

ď PrrS1ra1 `m1s “ Sra1 `m1s | S1rδ ´ 1s “ Srδ ´ 1s ^ T 1rδ ´ 1s “ T rδ ´ 1ss
` PrrS1ra1 `m1s “ Sra1 `m1s | S1rδ ´ 1s “ Srδ ´ 1s ^ T 1rδ ´ 1s ‰ T rδ ´ 1ss
` PrrS1ra1 `m1s “ Sra1 `m1s | S1rδ ´ 1s ‰ Srδ ´ 1ss,

where T 1rδ´1s is the tweak value of rP
p¨,δ´1,¨q

for pN 1, A1,M 1q, and T rδ´1s is that for
pN,A,Mq. The first term is 0 from S1rδs ‰ Srδs which ensures S1ra1`m1s ‰ Sra1`m1s.
The second term is at most 1{2n, since rS1rδ ´ 1s is uniformly random over t0, 1un.
The third term is at most 1{p2n´ 1q, since rS1rδ´ 1s is uniformly random over t0, 1un
or over t0, 1unztrSrδ ´ 1su. Overall, we have

p ď
2
2n ` 0` 1

2n `
1

2n ´ 1 ď
5
2n

103

for Case 2-1.

Case 2-2: a1 “ a (and hence m1 “ m) and w1A ‰ wA. If δ P ta1 ` 1, . . . , a1 `m1u, then
with the same analysis as in Case 2-1, and we have p ď 5{2n. If δ P Ja1K, then T 1ra1s
is unique and hence rS1ra1s is uniformly random over t0, 1un. We have p ď 3{2n.

Overall, we have p ď 3{2n for Case 2-2.

Case 2-3: a1 ‰ a (and hence m1 ‰ m). Let amax “ maxta1, au.

• If δ P tamax ` 1, . . . , a1 `m1u, then we follow the same analysis as in Case 2-1,
and we obtain p ď 5

2n .

• If δ P JamaxK, then we have the following unique tweaks:

– pN 1, 38, aq (if a ě a1 ` 1)

– pN 1, w1A, a1q (if a1 ě a` 1)

In either case, the output of rP with the above tweak is uniformly random over
t0, 1un, and we have p ď 2{2n ` 1{2n “ 3{2n for Case 2-3.

Therefore, we have p ď 5{2n for any case.

When the adversary can make qd decryption queries, we use the standard conversion
to obtain p ď 5qd{2n in Lemma 12.

Nonce-Misusing Authenticity. The proof is almost identical to that of Romulus-M. We
give the direct access to an oracle rP

p¨,34,¨q
p¨q to the adversary, and let p be the probability

of successful forgery of B in the modified game of the MAC part, which is defined as in
the nonce-respecting case. B makes qe encryption queries and qd verification queries.

For the i-th encryption query pNi, Ai,Miq, we compute Ti Ð MACpNi, Ai,Miq, and
return Ti to B. Then B outputs pN 1j , A1j ,M 1

j , T
1
jq for j P JqdK, and B wins if T 1j “ T˚j , where

T˚j “ MACpN 1j , A1j ,M 1
jq.

We modify this game into a distinguishing game as in the analysis of Romulus-M. In
the real world, for an encryption query, the MAC oracle computes Ti Ð MACpNi, Ai,Miq

following the specification and returns Ti to B, and for a verification query, the Ver oracle
computes T˚j “ MACpN 1j , A1j ,M 1

jq, and returns K if T 1j ‰ T˚j . Otherwise Ver returns J to
B. In the ideal world, Rand oracle returns Ti

$
Ð t0, 1un to B, and for a decryption query,

Rej returns K. Let

p˚ “ Pr
“

BMAC,Ver ñ 1
‰

´ Pr
“

BRand,Rej ñ 1
‰

.

We have p ď p˚, where p is the success probability in the original game, and we focus on
the analysis of p˚.

For two encryption queries pNi, Ai,Miq and pNj , Aj ,Mjq, we say that they share the
same type if the tweak values pNi, ai`mi, wMiq and pNj , aj`mj , wMjq used in the final rP
calls are the same. Similarly, for an encryption query pNi, Ai,Miq and a verification query
pN 1j , A

1
j ,M

1
j , T

1
jq, they share the same type if pNi, ai `mi, wMiq “ pN

1
j , a

1
j `m

1
j , wM

1
jq.

We see that the reset of the analysis of p˚ follows that of Romulus-M, where the difference
is the details of the evaluation of PrrSirai`mis “ Sjraj`mjss, where Sirai`mis denotes the
input value of rP

pNi,ai`mi,wMiq
p¨q for an encryption query pNi, Ai,Miq, and PrrSirai`mis “

S1jra
1
j ` m1jss, where S1jra1j ` m1js denotes the input value of rP

pN 1j ,a
1
j`m

1
j ,wM

1
jq
p¨q for a

104

verification query pN 1j , A1j ,M 1
j , T

1
jq, which can be both bounded from above by 3{2n from

the analysis of the nonce-respecting case.

Overall, we have

p˚ ď
4rqe
2n `

3rqd
2n `

2qd
2n ď

4rqe
2n `

5rqd
2n

in Lemma 12.

Deriving the Final Bounds. In the nonce-respecting case, by combining Lemma 12 and
Lemma 1, we have

Advpriv
Remus-M1pAq ď Advtsprp

ICE1 pA
1q `Advpriv

TRemus-MpAq

ď

˜

9σ2
priv ` 4qpσpriv

2n `
2qp
2n

¸

` 0,

Advpriv
Remus-M2pAq ď Advtsprp

ICE2 pA
1q `Advpriv

TRemus-MpAq

ď

˜

9σ2
priv ` 4qpσpriv

22n `
2qp
2n

¸

` 0

for privacy, where A1 is pσpriv, qpq-adversary. Similarly,

Advauth
Remus-M1pBq ď Advtsprp

ICE1 pB
1q `Advauth

TRemus-MpBq

ď

ˆ

9σ2
auth ` 4qpσauth

2n `
2qp
2n

˙

`
5qd
2n ,

Advauth
Remus-M2pBq ď Advtsprp

ICE2 pB
1q `Advauth

TRemus-MpBq

ď

ˆ

9σ2
auth ` 4qpσauth

22n `
2qp
2n

˙

`
5qd
2n ,

for authenticity, where B1 is pσauth, qpq-adversary. In the nonce-misusing case, we have

Advnm-priv
Remus-M1pAq ď Advtsprp

ICE1 pA
1q `Advnm-priv

TRemus-MpAq

ď

˜

9σ2
priv ` 4qpσpriv

2n `
2qp
2n

¸

`
4rσpriv

2n ,

Advnm-priv
Remus-M2pAq ď Advtsprp

ICE2 pA
1q `Advnm-priv

TRemus-MpAq

ď

˜

9σ2
priv ` 4qpσpriv

22n `
2qp
2n

¸

`
4rσpriv

2n

for privacy, where A1 is pσpriv, qpq-adversary. Similarly,

Advnm-auth
Remus-M1pBq ď Advtsprp

ICE1 pB
1q `Advnm-auth

TRemus-MpBq

ď

ˆ

9σ2
auth ` 4qpσauth

2n `
2qp
2n

˙

`

ˆ

4rqe
2n `

5rqd
2n

˙

,

Advnm-auth
Remus-M2pBq ď Advtsprp

ICE2 pB
1q `Advnm-auth

TRemus-MpBq

ď

ˆ

9σ2
auth ` 4qpσauth

22n `
2qp
2n

˙

`

ˆ

4rqe
2n `

5rqd
2n

˙

,

for authenticity, where B1 is pσauth, qpq-adversary. This concludes the proof of Theorems 5
and 6.

105

Table 5: Members of Romulus.
Family Name rE k nl n t d τ

Remus-N
Romulus-N1 Skinny-128-384 128 128 128 128 56 128
Romulus-N2 Skinny-128-384 128 96 128 96 48 128
Romulus-N3 Skinny-128-256 128 96 128 96 24 128

Remus-M
Romulus-M1 Skinny-128-384 128 128 128 128 56 128
Romulus-M2 Skinny-128-384 128 96 128 96 48 128
Romulus-M3 Skinny-128-256 128 96 128 96 24 128

B Instantiation of Romulus and Remus with Skinny
Endian. For both Romulus and Remus, we employ little endian for byte ordering: an
n-bit string X is received as

X7X6 . . . X0 }X15X14 . . . X8 } . . . }Xn´1Xn´2 . . . Xn´8,

where Xi denotes the pi ` 1q-st bit of X (for i P JnK0). Therefore, when c is a multiple
of 8 and X is a byte string, msbcpXq and lsbcpXq denote the last (rightmost) c bytes
of X and the first (leftmost) c bytes of X, respectively. For example, lsb16pXq “
pX7X6 . . . X0 }X15X14 . . . X8q and msb8pXq “ pXn´1Xn´2 . . . Xn´8q with the above X.
Since our specification is defined over byte strings, we only consider the above case for msb
and lsb functions (i.e., the subscript c is always a multiple of 8). One can interpret lsbi
and msbi as lmti and rmti in the specification of Section 3.

B.1 Instantiating Romulus with Skinny
We propose three versions of Romulus-N and three versions of Romulus-M when instantiated
with Skinny. We provide in Table 5 the parameters for these variants.

B.1.1 The LFSR

We use LFSRs for counter. For positive integer c, lfsrc is a one-to-one mapping lfsrc :
J2c ´ 1K0 Ñ t0, 1uczt0cu defined as follows. For positive integer c, let Fcpxq be the
lexicographically-first polynomial among the the irreducible degree c polynomials of a
minimum number of coefficients. Specifically Fcpxq for c P t56, 24u are

F56pxq “ x56 ` x7 ` x4 ` x2 ` 1,
F24pxq “ x24 ` x4 ` x3 ` x` 1,

and
lfsrcpDq “ 2D mod Fcpxq.

Note that we use lfsrcpDq as a block counter, so most of the time D changes incre-
mentally with a step of 1, and this enables lfsrcpDq to generate a sequence of 2c ´ 1
pairwise-distinct values. From an implementation point of view, it should be implemented
in the sequence form, xi`1 “ 2 ¨ xi mod Fcpxq.

Let pzc´1 } zc´2 } . . . } z1 } z0q denote the state of c-bit LFSR. In our modes, these LFSRs
are initialized to 1 mod Fcpxq, i.e., p071 } 0c´8q, in little-endian format. Incrementation of

106

LFSRs is defined as follows: for c “ 56,

zi Ð zi´1 for i P J56K0zt7, 4, 2, 0u,
z7 Ð z6 ‘ z55,

z4 Ð z3 ‘ z55,

z2 Ð z1 ‘ z55,

z0 Ð z55.

Similarly, for c “ 24,

zi Ð zi´1 for i P J24K0zt4, 3, 1, 0u,
z4 Ð z3 ‘ z23,

z3 Ð z2 ‘ z23,

z1 Ð z0 ‘ z23,

z0 Ð z23.

Our LFSRs are also called doubling over GFp2cq in the context of modes [Rog04a].

B.1.2 The Tweakey Encoding

Domain Separation. We will use a domain separation byte B to ensure appropriate
independence between the tweakable block cipher calls and the various versions of Romulus.
Let B “ pb7}b6}b5}b4}b3}b2}b1}b0q be the bitwise representation of this byte, where b7 is
the MSB and b0 is the LSB (see also Figure 16). Then, we have the following:

- b7b6b5 will specify the parameter sets. They are fixed to:

• 000 for Romulus-N1

• 001 for Romulus-M1

• 010 for Romulus-N2

• 011 for Romulus-M2

• 100 for Romulus-N3

• 101 for Romulus-M3

Note that all nonce-respecting modes have b5 “ 0 and all nonce-misuse resistant
modes have b5 “ 1.

- b4 is set to 1 once we have handled the last block of data (AD and message chains are
treated separately), to 0 otherwise.

- b3 is set to 1 when we are performing the authentication phase of the operating mode
(i.e., when no ciphertext data is produced), to 0 otherwise. In the special case where
b5 “ 1 and b4 “ 1 (i.e., last block for the nonce-misuse mode), b3 will instead denote
if the number of message blocks is even (b5 “ 1 if that is the case, 0 otherwise).

- b2 is set to 1 when we are handling a message block, to 0 otherwise. Note that in the case
of the misuse-resistant modes, the message blocks will be used during authentication
phase (in which case we will have b3 “ 1 and b2 “ 1). In the special case where
b5 “ 1 and b4 “ 1 (i.e., last block for the nonce-misuse mode), b3 will instead denote
if the number of message blocks is even (b5 “ 1 if that is the case, 0 otherwise).

- b1 is set to 1 when we are handling a padded AD block, to 0 otherwise.
- b0 is set to 1 when we are handling a padded message block, to 0 otherwise.

107

The reader can refer to Table 6 to obtain the exact specifications of the domain
separation values depending on the various cases.

b7 b6 b5 b4 b3 b2 b1 b0

padded AD

message block

(or M even)parameter

sets

last block

auth.

(or AD even)
padded M

Figure 16: Domain separation when using the tweakable block cipher

Table 6: Domain separation byte B of Romulus. Bits b7 and b6 are to be set to the
appropriate value according to the parameter sets.

b7 b6 b5 b4 b3 b2 b1 b0 int(B) case

Romulus-N

- - 0 0 1 0 0 0 8 A main
- - 0 1 1 0 0 0 24 A last unpadded
- - 0 1 1 0 1 0 26 A last padded
- - 0 0 0 1 0 0 4 M main
- - 0 1 0 1 0 0 20 M last unpadded
- - 0 1 0 1 0 1 21 M last padded

Romulus-M

- - 1 0 1 0 0 0 40 A main
- - 1 0 1 1 0 0 44 M auth main
- - 1 1 1 1 1 1 63 w: (even,even,padded,padded)
- - 1 1 1 1 1 0 62 w: (even,even,padded,unpadded)
- - 1 1 1 1 0 1 61 w: (even,even,unpadded,padded)
- - 1 1 1 1 0 0 60 w: (even,even,unpadded,unpadded)
- - 1 1 1 0 1 1 59 w: (even,odd,padded,padded)
- - 1 1 1 0 1 0 58 w: (even,odd,padded,unpadded)
- - 1 1 1 0 0 1 57 w: (even,odd,unpadded,padded)
- - 1 1 1 0 0 0 56 w: (even,odd,unpadded,unpadded)
- - 1 1 0 1 1 1 55 w: (odd,even,padded,padded)
- - 1 1 0 1 1 0 54 w: (odd,even,padded,unpadded)
- - 1 1 0 1 0 1 53 w: (odd,even,unpadded,padded)
- - 1 1 0 1 0 0 52 w: (odd,even,unpadded,unpadded)
- - 1 1 0 0 1 1 51 w: (odd,odd,padded,padded)
- - 1 1 0 0 1 0 50 w: (odd,odd,padded,unpadded)
- - 1 1 0 0 0 1 49 w: (odd,odd,unpadded,padded)
- - 1 1 0 0 0 0 48 w: (odd,odd,unpadded,unpadded)
- - 1 0 0 1 0 0 36 M enc main

Tweakey Encoding. We specify the following tweakey encoding functions for implement-
ing TBC rE : K ˆ T ˆMÑM. The tweakey encoding is a function

encodem,t : K ˆ T Ñ KT ,

where KT “ t0, 1um is the tweakey space. As defined earlier, T “ T ˆ B ˆD, K “ t0, 1uk
and T “ t0, 1ut, D “ J2d ´ 1K0, B “ J256K0.

108

Table 7: Members of Remus.
Family Name E ICmode k nl n d τ

Remus-N
Remus-N1 Skinny-128/128 ICE1 128 128 128 128 128
Remus-N2 Skinny-128/128 ICE2 128 128 128 128 128
Remus-N3 Skinny-64/128 ICE3 128 96 64 120 64

Remus-M Remus-M1 Skinny-128/128 ICE1 128 128 128 128 128
Remus-M2 Skinny-128/128 ICE2 128 128 128 128 128

• Case pm, tq “ p384, 128q: this variant is used for Romulus-N1 and Romulus-M1. The
encode function is defined as follows:

encode384,128pK,T,B,Dq “ lfsr56pDq }B } 064 }T }K

• Case pm, tq “ p384, 96q: this variant is used for Romulus-N2 and Romulus-M2. The
encode function is defined as follows:

encode384,96pK,T,B,Dq “ lfsr24pD1q }B }T }K } lfsr24pD2q } 0104,

where D1, D2 P Ds with Ds “ J224 ´ 1K. The set D is defined as D “ Ds ˆ Ds,
and the components are determined from D as D1 “ pD{p224 ´ 1qq ` 1 and D2 “
pD mod p224´1qq`1. For the first 224´1 cycles starting from D “ 0 (but note that
D “ 1 is the initial value in our scheme and D “ 0 is not used), D1 is fixed to 1 and
D2 takes all integers of J224 ´ 1K. For the next 224 ´ 1 cycles, D1 is fixed to 2 and
D2 takes all values of J224 ´ 1K again, and so on. We stress that the counter cycle
is p224 ´ 1q2 which is slightly smaller than the original range of D. One can also
interpret D as a two-dimensional vector: for example, if D1 “ 0231 and D2 “ 02014,
then D “ p0231 } 02014q. In this case, the initial value of D is r071016, 071016s, in
little-endian format.

• Case pm, tq “ p256, 96q: this variant is used for Romulus-N3 and Romulus-M3. The
encode function is defined as follows:

encode256,96pK,T,B,Dq “ lfsr24pDq }B }T }K

For plaintext M P t0, 1un and tweak T “ pT,B,Dq P T ˆBˆD, rE
pT,B,Dq
K pMq denotes

encryption of M with m-bit tweakey state encodem,tpK,T,B,Dq. Tweakey encode is
always implicitly applied, hence the counter D is never arithmetic in the tweakey state.
To avoid confusion, we may write D (in particular when it appears in a part of tweak) in
order to emphasize that this is indeed an LFSR counter. One can interpret D as a state of
the LFSR after D clocks (but in that case it is a part of the tweakey state and not a part
of input of encode).

B.2 Instantiating Remus with Skinny
We propose three versions of Remus-N and two versions of Remus-M when instantiated
with Skinny. We provide in Table 7 the parameters for these variants.

Doubling over a Finite Field. For any positive integer c, we assume GFp2cq is defined
over the lexicographically-first polynomial among the irreducible degree c polynomials

109

of a minimum number of coefficients. We use two fields: GFp2cq for c P t128, 120u. The
primitive polynomials are:

x128 ` x7 ` x2 ` x` 1 for c “ 128,
x120 ` x4 ` x3 ` x` 1 for c “ 120.

Let Z “ pzc´1zc´2 . . . z1z0q for zi P t0, 1u, i P JcK0 be an element of GFp2cq. A
multiplication of Z by the generator (polynomial x) is called doubling and written as
2Z [Rog04a]. An i-times doubling of Z is written as 2iZ, and is efficiently computed from
2i´1Z (see below). Here, 20Z “ Z for any Z. When Z “ 0n, i.e., zero entity in the field,
then 2iZ “ 0n for any i ě 0.

To avoid confusion, we may write D (in particular when it appears in a part of tweak)
in order to emphasize that this is indeed a doubling-based counter, i.e., 2DX for some
key-dependent variable X. One can interpret D as 2D (but in that case it is a part of
tweakey state or a coefficient of mask, and not a part of input of ICE).

On bit-level, doubling Z Ñ 2Z over GFp2cq for c “ 128 is defined as

zi Ð zi´1 for i P J128K0zt7, 2, 1, 0u,
z7 Ð z6 ‘ z127,

z2 Ð z1 ‘ z127,

z1 Ð z0 ‘ z127,

z0 Ð z127.

Similarly, for GFp2120q, we have

zi Ð zi´1 for i P J120K0zt4, 3, 1, 0u,
z4 Ð z3 ‘ z119,

z3 Ð z2 ‘ z119,

z1 Ð z0 ‘ z119,

z0 Ð z119.

B.2.1 The TBC ICE

The three variants of ICE are defined as follows. See Section 3.3 for reference.

• ICE1: n “ 128, nl “ 128, d “ 128, k “ 128 and it uses Skinny-128/128 as its building
block E.

• ICE2: n “ 128, nl “ 128, d “ 128, k “ 128 and it uses Skinny-128/128 as its building
block E.

• ICE3: n “ 64, nl “ 96, d “ 120, k “ 128 and it uses Skinny-64/128 as its building
block E.

B.2.2 Block Counters and Domain Separation

Domain Separation. We will use a domain separation byte B to ensure appropriate
independence between the tweakable block cipher calls and the various versions of Remus.
Let B “ pb7}b6}b5}b4}b3}b2}b1}b0q be the bitwise representation of this byte, where b7 is
the MSB and b0 is the LSB (see also Figure 17). Then, we have the following:

- b7b6b5 will specify the parameter sets. They are fixed to:

110

• 000 for Remus-N1

• 001 for Remus-M1

• 010 for Remus-N2

• 011 for Remus-M2

• 100 for Remus-N3

Note that all nonce-respecting modes have b5 “ 0 and all nonce-misuse resistant
modes have b5 “ 1.

- b4 is set to 0.
- b3 is set to 1 once we have handled the last block of data (AD and message chains are

treated separately), to 0 otherwise.
- b2 is set to 1 when we are performing the authentication phase of the operating mode

(i.e., when no ciphertext data is produced), to 0 otherwise. In the special case where
b5 “ 1 and b4 “ 1 (i.e., last block for the nonce-misuse mode), b3 will instead denote
if the number of message blocks is even (b5 “ 1 if that is the case, 0 otherwise).

- b1 is set to 1 when we are handling a message block, to 0 otherwise. Note that in the case
of the misuse-resistant modes, the message blocks will be used during authentication
phase (in which case we will have b3 “ 1 and b2 “ 1). In the special case where
b5 “ 1 and b4 “ 1 (i.e., last block for the nonce-misuse mode), b3 will instead denote
if the number of message blocks is even (b5 “ 1 if that is the case, 0 otherwise).

- b0 is set to 1 when we are handling a padded block (associated data or message), to 0
otherwise.

The reader can refer to Table 8 to obtain the exact specifications of the domain
separation values depending on the various cases.

b7 b6 b5 b4 b3 b2 b1 b0

message block

auth.

parameter

sets

0

last block

padded

Figure 17: Domain separation when using the tweakable block cipher

111

Table 8: Domain separation byte B of Remus. Bits b7 and b6 are to be set to the
appropriate value according to the parameter sets.

b7 b6 b5 b4 b3 b2 b1 b0 int(B) case

Remus-N

- - 0 0 0 1 0 0 4 A main
- - 0 0 1 1 0 0 12 A last unpadded
- - 0 0 1 1 0 1 13 A last padded
- - 0 0 0 0 1 0 2 M main
- - 0 0 1 0 1 0 10 M last unpadded
- - 0 0 1 0 1 1 11 M last padded

Remus-M

- - 1 0 0 1 0 0 36 A main
- - 1 0 1 1 0 0 44 A last unpadded
- - 1 0 1 1 0 1 45 A last padded
- - 1 0 0 1 1 0 38 M auth main
- - 1 0 1 1 1 0 46 M auth last unpadded
- - 1 0 1 1 1 1 47 M auth last padded
- - 1 0 0 0 1 0 34 M enc main

112

C Hardware Implementations
C.1 General Architecture and Hardware Estimates
The goal of the design of Romulus and Remus is to have a very small area overhead over
the underlying TBC, specially for the round-based implementations. In order to achieve
this goal, we set two requirements:

1. There should be no extra Flip-Flops over what is already required by the TBC, since
Flip-Flops are very costly (4 „ 7 GEs per Flip-Flop).

2. The number of possible inputs to each Flip-Flop and outputs of the circuits have
to be minimized. This is in order to reduce the number of multiplexers required,
which is usually one of the cause of efficiency reduction between the specification
and implementation.

One of the advantages of Skinny as a lightweight TBC is that it has a very simple
datapath, consisting of a simple state register followed by a low-area combinational circuit,
where the same circuit is used for all the rounds, so the only multiplexer required is
to select between the initial input for the first round and the round output afterwards
(Figure 18(a)), and it has been shown that this multiplexer can even have lower cost
than a normal multiplexer if it is combined with the Flip-Flops by using Scan-Flops
(Figure 18(b)) [JMPS17]. However, when used inside an AEAD mode, challenges arise,
such as how to store the key and nonce, as the key scheduling algorithm will change these
values after each block encryption. The same goes for the block counter. In order to avoid
duplicating the storage elements for these values; one set to be used to execute the TBC
and one set to be used by the mode to maintain the current value, we studied the relation
between the original and final value of the tweakey. Since the key scheduling algorithm
of Skinny is fully linear and has very low area (most of the algorithm is just routing and
renaming of different bytes), the full algorithm can be inverted using a very small circuit
that costs 64 XOR gates for Romulus-N1 and 0 gates for Remus. Moreover, the LFSR
computation required between blocks can be implemented on top of this circuit, costing 3
extra XOR gates. This operation can be computed in parallel to ρ, such that when the
state is updated for the next block, the tweakey key required is also ready. This costs
only „ 67 XOR gates as opposed to „ 320 Flip-Flops that will, otherwise, be needed
to maintain the tweakey value. Hence, the mode was designed with the architecture in
Figure 18(b) in mind, where only a full-width state-register is used, carrying the TBC
state and tweakey values, and every cycle, it is either kept without change, updated with
the TBC round output (which includes a single round of the key scheduling algorithm) or
the output of a simple linear transformation, which consists of ρ{ρ´1, the unrolled inverse
key schedule and the block counter. In order estimate the hardware cost of Romulus-N1
the mode we consider the round based implementation with an n{4-bit input/output bus:

• 4 XOR gates for computing G.

• 64 XOR gates for computing ρ.

• 67 XOR gates for the correction of the tweakey and counting.

• 56 multiplexers to select whether to choose to increment the counter or not.

• 320 multiplexers to select between the output of the Skinny round and lt.

This adds up to 135 XOR gates and 376 multiplexers. For estimation purposes assume
an XOR gate costs 2.25 GEs and a multiplexer costs 2.75 GEs, which adds up to 1337.75
GEs. In the original Skinny paper [BJK`16], the authors reported that Skinny-128-384
requires 4, 268 GEs, which adds up to „ 5, 605 GEs. This is „ 1.4 KGEs smaller than the

113

state state

Skinny Skinny

input

input

(a) Overview of the round based architec-
ture of Skinny.

state

Skinny lt

input

output

(b) Overview of the round based architec-
ture of Remus. lt: The linear transformation
that includes ρ, block counter and inverse
key schedule.

Figure 18: Expected architectures for Skinny and Remus

round based implementation of Ascon [GWDE15]. Moreover, a smart design can make
use of the fact that 64 bits of the tweakey of Skinny-128-384 are not used, replacing 64
Flip-Flops by 64 multiplexers reducing an extra „ 200 GEs. In order to design a combined
encryption/decryption circuit, we show below that the decryption costs only extra 32
multiplexers and „ 32 OR gates, or „ 100 GEs. A similar analysis is done for Romulus-N2
and Romulus-N3, estmating that they would cost 1, 217 and 1, 073 GEs, respectively, on
top of there corresponding Skinny variant, or 5, 485 and 4, 385 GEs, respectively.

These estimations show that Romulus-N is not just competitive theoretically but it can
be a very attractive option practically for low area applications. For example, the 8-bit
implementation of ACORN, the smallest implementation publicly available for all the round
3 candidates of the CAESAR competition, costs 5, 900 GEs, as shown in [KHYKC17]. If
we assume around „ 1, 000 GEs as the cost of the CAESAR Hardware API included in
that design, as reported in [GWDE15], then Romulus-N3 is still smaller than that. Besides,
we believe the area can be even lower using serial implementations of Skinny, which cost
„ 3, 000 GE for Skinny-128-384 and „ 2, 000 GEs for Skinny-128-256, a gain of more than
1, 000 GEs compared to the round-based implementation.

Another possible optimization is to consider the fact that most of the area of Skinny
comes from the storage elements, hence, we can speed up Romulus to almost double the
speed by using a simple two-round unrolling, which costs „ 1, 000 GEs, as only the logic
part of Skinny needs replication, which is only ă 20% increase in terms of area.

Romulus-M is estimated to have almost the same area as Romulus-N, except for an
additional set of multiplexers in order to use the tag as an initial vector for the encryption
part. This indicates that it can be a very lightweight choice for high security applications.

For the serial implementations we followed the currently popular bit-sliding frame-
work [JMPS17] with minor tweaks. The state of Skinny is represented as the Feedback-Shift

114

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 Sa Sb

Sc Sd Se Sf SBox

RC

RTK
ρ

input

0x00

len

output

0x00

Figure 19: Serial state update function used in Romulus and Remus.

Table 9: Practical state size of Romulus and Remus variants.
Variant State Size
Romulus-N1 448`Op1q
Remus-N1 256`Op1q
Remus-N2 384`Op1q
Remus-M1 256`Op1q
Remus-M2 384`Op1q

Register which typically operates on 8 bits at a time, while allowing the 32-bit MixColumns
operation, given in Figure 19.

It can be viewed in Figure 19 that several careful design choices such as a lightweight
serializable ρ function without the need of any extra storage and a lightweight padding/trun-
cation scheme allow the low area implementations to use a very small number of multiplexers
on top of the Skinny circuit for the state update, three 8-bit multiplexer to be exact, two
of which have a constant zero input, and „ 22 XORs for the ρ function and block counter.
For the key update functions, we did several experiments on how to serialize the operations
and we found the best trade-off is to design a parallel/serial register for every tweakey,
where the key schedule and mode operations are done in the same manner of the round
based implementation, while the AddRoundKey operation of Skinny is done serial as shown
in Figure 19.

Usually there is a disparity between the theoretical estimate of the state size of a mode
and the practical implementations. However, our practical implementations show that our
theoretical estimates match exactly our implementations for both round based and serial
implementations up to a constant term that covers the round constants of Skinny and the
Finite State Machine of the API/interface, as shown in Table 9.

C.2 Hardware Implementations Costs
Hardware Cost of Remus-N1. The overhead of Remus-N1 is mostly due to the doubling
(3 XORs) and ρ operations (68 XORs, assuming the input/output bus has width of 32 bits).
Moreover, we need 2 128-bit multiplexers to select the input to the tweakey out of four
positive values: K, S (after applying the KDF function), lt, or the Skinny round key. We
assume a multiplexer costs „ 2.75 GEs and an XOR gate costs „ 2.25 GEs. In total, this

115

adds up to „ 864 GEs on top of Skinny-128/128. In the original Skinny paper [BJK`16],
the authors reported that the round-based implementation of Skinny-128/128 costs „ 2, 391
GEs. So we estimate that Remus-N1 should cost „ 3, 255 GEs, which is a very small figure,
compared to not just TBC based AEAD modes, but in general. For example, ACORN, the
smallest CAESAR candidate, costs „ 5, 900 GEs. Besides, two further optimizations are
applicable. First, we can use the serial Skinny-128/128 implementation, which costs „ 600
GEs less. The other direction is to unroll Skinny-128/128 to a 2- or 4-round implementation,
reducing the number of cycles, at the cost of 1 KGEs per extra round. We do acknowledge
that this huge gain in area comes at the cost of reduced security (birthday security).
In order to design a combined encryption/decryption circuit, we show below that the
decryption costs only extra 32 multiplexers and „ 32 OR gates, or „ 100 GEs.

Hardware Cost of Remus-N2. Remus-N2 is similar to Remus-N1, with an additional mask
V . Hence, the additional cost comes from the need to store and process this mask. The
storage cost is simply 128 extra Flip-Flops. However, the processing cost can be tricky,
especially since we adopt a serial concept for the implementation of ρ. Hence, we also
adopt a serial concept for the processing of V . We assume that V will be updated in
parallel to ρ and we merge the masking and ρ operations. Consequently, we need 64 XORs
for the masking, 3 XORs for doubling, 5 XORs in order to correct the domain separation
bits after each block (note that 3 bits are fixed), and 1 Flip-Flop for the serialization of
doubling. Overall, we need „ 800 GEs on top of Remus-N1, „ 4, 055 GEs overall, which is
again smaller than almost all other AEAD designs (except other Remus variants), while
achieving BBB security.

Hardware Cost for Remus-N3. Remus-N3 uses Skinny-64/128 as the TBC (via the mode
ICE3). According to our estimations, it requires 224 multiplexers, 32 XOR gates for the
KDF function, 68 XORs for ρ, 24 XOR gates for correcting the Tweakey and 3 XOR gates
for the counting. This adds up to „ 743 GEs on top of Skinny-64/128, which costs 1, 399
GEs. So we estimate that Remus-N3 costs 2, 439 GEs, which is a very small figure for any
round-based implementation of an AEAD mode.

The arguments about serialization, unrolling and decryption are the same for all
Remus-N variants. Thanks to the shared structure, these arguments also generally apply
to Remus-M.

C.3 Primitives Choices
LFSR-Based Counters. The NIST call for lightweight AEAD algorithms requires that
such algorithms must allow encrypting messages of length at least 250 bytes while still
maintaining their security claims. This means that using a TBC whose block size is 128
bits, we need a block counter of a period of at least 246. While this can be achieved by a
simple arithmetic counter of 46 bits, arithmetic counters can be costly both in terms of area
(3 „ 5 GEs/bit) and performance (due to the long carry chains which limit the frequency
of the circuit). In order to avoid this, we decided to use LFSR-based counters which can
be implemented using a handful of XOR gates (3 XORs « 6 „ 9 GEs). This, in addition
to the architecture described above, makes the cost of counter almost negligible. For
Remus, these counters are either dedicated counter, in the case of Remus-N3, or consecutive
doubling of the key L, which is equivalent to a Galois LFSR. This, in addition to the
architecture described above, makes the cost of counter almost negligible.

Counter Separation (Romulus-N2 and Romulus-M2). For Romulus-N2 and Romulus-M2,
we used two LFSRs instead of one, such that the second LFSR is updated only when
the first LFSR performs a full period. The rationale for that is to provide an even more

116

lightweight variant of Romulus-N1 and Romulus-M1. The maximum input length imposed
by NIST is quite large. In practice, the users may only need a support of input length up
to „ 228 bytes instead. In this case, the second LFSR does not need to be implemented.
This saves 64 „ 128 Flip-Flops.

Smaller D for Romulus-N3. The goal of Romulus-N3 is to fit the Remus algorithm in
Skinny-128-256, which is faster and smaller than Skinny-128-384. In most lightweight
applications, the amount of data to be sent under the same key is small. Hence, Romulus-
N3 represents a variant targeted at such applications that is faster and smaller than the
other variants and can encrypt up to „ 256 MBs of data.

Tag Generation. Considering hardware simplicity, the tag is the final output state
(i.e., the same way as the ciphertext blocks), as opposed to the final state S of the TBC. In
order to avoid branching when it comes to the output of the circuit, the tag is generated
as GpSq instead of S. In hardware, this can be implemented as ρpS, 0nq, i.e., similar to
the encryption of a zero vector. Consequently, the output bus is always connected to the
output of ρ and a multiplexer is avoided.

Padding. The padding function used in Remus is chosen so that the padding information
is always inserted in the most significant byte of the last block of the message/AD. Hence,
it reduces the number of decisions for each byte to only two decisions (either the input
byte or a zero byte, except the most significant byte which is either the input byte or
the byte length of that block). Besides, it is also the case when the input is treated as a
string of words (16-, 32-, 64- or 128-bit words). This is much simpler than the classical 10˚
padding approach, where every word has a lot of different possibilities when it comes to
the location of the padding string. Besides, usually implementations maintain the length
of the message in a local variable/register, which means that the padding information is
already available, just a matter of placing it in the right place in the message, as opposed
to the decoder required to convert the message length into 10˚ padding.

Padding Circuit for Decryption. One of the main features of Remus is that it is inverse
free and both the encryption and decryption algorithms are almost the same. However,
it can be tricky to understand the behavior of decryption when the last ciphertext block
has length ă n. In order to understand padding in the decryption algorithm, we look at
the ρ and ρ´1 functions when the input plaintext/ciphertext is partial. The ρ function
applied on a partial plaintext block is shown in Equation (24). If ρ´1 is directly applied
to padnpCq, the corresponding output will be incorrect, due to the truncation of the last
ciphertext block. Hence, before applying ρ´1 we need to regenerate the truncated bits. It
can be verified that C 1 “ padnpCq ‘ msbn´|C|pGpSqq. Once C 1 is regenerated, ρ´1 can be
computed as shown in Equation (25):

«

S
1

C
1

ff

“

„

1 1
G 1

 „

S

padnpMq

and C “ lsb|M |pC
1

q. (24)

C
1

“ padnpCq ‘ msbn´|C|pGpSqq and
„

S
1

M

“

„

1‘G 1
G 1

 „

S

C
1

. (25)

While this looks like a special padding function, in practice it is simple. First of all,
GpSq needs to be calculated anyway. Besides, the whole operation can be implemented in

117

two steps:

M “ C ‘ lsb|C|pGpsqq,

S
1

“ padnpMq ‘ S

which can have a very simple hardware implementation, as discussed in the next paragraph.

Encryption-Decryption Combined Circuit. One of the goals of Romulus and Remus is to
be efficient for implementations that require a combine encryption-decryption datapath.
Hence, we made sure that the algorithm is inverse free, i.e., it does not used the inverse
function of Skinny or GpSq. Moreover, ρ and ρ´1 can be implemented and combined using
only one multiplexer, whose size depends on the size of the input/output bus. The same
circuit can be used to solve the padding issue in decryption, by padding M instead of C.
The tag verification operation simply checks if ρpS, 0nq equals to T , which can be serialized
depending on the implementation of ρ.

Choice of the G Matrix. We chose the position of G so that it is applied to the output
state. This removes the need of G for AD processing, which improves software performance.
In Section 3.1, we listed the security condition for G, and we choose our matrix G so that
it meets these conditions and suits well for various hardware and software platforms.

We noticed that for lightweight applications, most implementations use an input/output
bus of width ď 32. Hence, we expect the implementation of ρ to be serialized depending
on the bus size. Consequently, the matrix used in iCOFB can be inefficient as it needs a
feedback operation over 4 bytes, which requires up to 32 extra Flip-Flops in order to be
serialized, something we are trying to avoid in Remus. Moreover, the serial operation of ρ
is different for byte, which requires additional multiplexers.

However, we observed that if the input block is interpreted in a different order, both
problems can be avoided. First, it is impossible to satisfy the security requirements of G
without any feedback signals, i.e., G is a bit permutation.

• If G is a bit permutation with at least one bit going to itself, then there is at least
one non-zero value on the diagonal, so I `G has at least 1 row that is all 0s.

• If G is a bit permutation without any bit going to itself, then every column in I `G
has exactly two 1’s. The sum of all rows in such matrix is the 0 vector, which means
the rows are linearly dependent. Hence, I `G is not invertible.

However, the number of feedback signals can be adjusted to our requirements, starting
from only 1 feedback signal. Second, we noticed that the input block/state of length n bits
can be treated as several independent sub-blocks of size n{w each. Hence, it is enough
to design a matrix Gs of size w ˆ w bits and apply it independently n{w times to each
sub-block. The operation applied on each sub-block in this case is the same (i.e., as we
can distribute the feedback bits evenly across the input block). Unfortunately, the choice
of w and Gs that provides the optimal results depends on the implementation architecture.
However, we found out that the best trade-off/balance across different architectures is
when w “ 8 and Gs uses a single bit feedback.

In order to verify our observations, we generated a family of matrices with different
values of w and Gs, and measured the cost of implementing each of them on different
architectures.

118

D ASIC Design Space Exploration of Romulus-N1
In this section we provide a full list of different ASIC implementation trade-offs Romulus-N1,
showing the design range of our proposals. First we study the impact of different number
of round-unrolling, where Rx means round-based implementation with x round unrolling.
We vary the operating frequency from the maximum possible frequency till 125 MHz and
see the impact on throughput, area, power and energy. The results are given in Table 10.

Table 10: The design space of Romulus-N1 using the TSMC-65 ASIC technology: (unrolled)
round-based implementations
Arch. Critical Area Power Energy Energy Throughput Throughput Throughput Thput/Area

Path (ns) (GE) (mW) (Enc block) (pJ) (Auth block) (pJ) (Enc only) (Mbps) (Auth only) (Mbps) (|A| “ |M |) (Mbps)
R1 0.5 6220 0.8 24 12.8 4267 8000 6133 0.98
R1 0.66 5877 0.72 28.5 15.2 3232 6060 4647 0.79
R1 0.75 5864 0.65 29.25 15.6 2844 5333 4089 0.69
R1 1 5860 0.53 31.8 16.9 2133 4000 3067 0.52
R1 2 5860 0.35 42 22.4 1067 2000 1533 0.26
R1 4 5860 0.25 60 32 533 1000 767 0.13
R1 8 5772 0.22 105.6 56.3 266 500 383 0.07
R2 0.5 7978 0.99 15.84 8.91 8000 14200 11100 1.39
R2 0.66 7161 0.78 16.47 9.2 6060 10758 8410 1.17
R2 0.75 6860 0.71 17.04 9.5 5333 9467 7400 1.07
R2 1 6727 0.56 17.92 10.08 4000 7100 5550 0.82
R2 2 6635 0.38 24.32 13.68 2000 3550 2775 0.41
R2 4 6635 0.29 60 20.88 1000 1775 1388 0.2
R2 8 6635 0.25 64 36 500 888 694 0.1
R4 0.8 12766 1.1 15.84 9.68 8888 14500 11694 0.91
R4 1 10008 0.77 13.86 8.47 7111 11600 9356 0.93
R4 2 8740 0.46 16.56 10.12 3555 5800 4678 0.53
R4 4 8740 0.36 25.92 15.84 1775 2900 2339 0.26
R4 8 8740 0.32 46.08 28.16 889 1450 1170 0.13
R8 1.6 18679 1.2 21.12 14.4 7250 10662 8956 0.48
R8 2 15133 0.89 19.58 13.35 5800 8530 7165 0.47
R8 4 12990 0.51 22.44 15.3 2900 4265 3582 0.28
R8 8 12990 0.45 39.6 27 1450 2132 1791 0.14

Second, in Table 11, we study the byte serial architecture based on the bit-sliding
technique, following the same methodology.

Table 11: The design space of Romulus-N1 using the TSMC-65 ASIC technology: byte
serial implementations
Arch. Critical Area Power Energy Energy Throughput Throughput Throughput Thput/Area

Path (ns) (GE) (mW) (Enc block) (pJ) (Auth block) (pJ) (Enc only) (Mbps) (Auth only) (Mbps) (|A| “ |M |) (Mbps)
S1 0.75 3390 0.5 489 247.5 131 259 195 0.06
S1 1 3318 0.5 652 330 98 194 146 0.04
S1 2 3318 0.29 756 383 49 97 73 0.02
S1 4 3318 0.2 1043 528 25 49 37 0.01
S1 8 3318 0.15 1565 792 12 24 18 0.005

Finally, in Table 12, we study the 3-share threshold implementation of both the byte
serial architecture (PS) and the single round architecture (P1). The implementations are
based on the threshold implementations provided by the Skinny team [BJK`16].

Table 12: The design space of Romulus-N1 using the TSMC-65 ASIC technology: byte
serial implementations
Arch. Critical Area Power Energy Energy Throughput Throughput Throughput Thput/Area

Path (ns) (GE) (mW) (Enc block) (pJ) (Auth block) (pJ) (Enc only) (Mbps) (Auth only) (Mbps) (|A| “ |M |) (Mbps)
PS 0.75 5163 0.79 772 391 131 259 195 0.04
PS 1 5158 0.62 808 409 98 194 146 0.03
PS 2 5154 0.40 1043 529 49 97 73 0.01
PS 4 5154 0.27 1408 713 25 49 37 0.007
PS 8 5154 0.21 2190 1110 12 24 18 0.003
P1 0.5 8386 1.2 36 19.2 4267 8000 6133 0.73
P1 0.66 8101 0.89 35.2 18.7 3232 6060 4647 0.57
P1 0.75 8048 0.8 36 19.2 2844 5333 4089 0.51
P1 1 8048 0.69 41.4 22.1 2133 4000 3067 0.38
P1 2 8048 0.46 55.2 29.4 1067 2000 1533 0.19
P1 4 8048 0.35 84 44.8 533 1000 767 0.095
P1 8 8048 0.28 134.4 51.6 266 500 383 0.05

119

The results show that the best throuput/area trade off is acheived by the R2 architecture,
which processes two rounds on the TBC per cycle. The minimum energy is acheived
by 4-round unrolling (the R4 architecture), as it requires only 18 cycles per block for
encryption and 11 cycles per block for associated data. The serial implementation can
be as low as 3.3 KGE, which is extremely low for a mode with full n-bit security and
standard model security proofs. On the other hand, for about 8 KGE, we can have a
performantthreshold implementation protected against side-channel attacks.

120

	Introduction
	Preliminaries
	Notation
	Security Notions

	Specifications
	State Update Function
	Parameters
	TBC ICE for Remus
	Romulus
	Remus

	Security Analysis
	Security of Romulus
	Security of Romulus-N
	Security of Romulus-M

	Security of Remus
	Security of Remus-N
	Security of Remus-M

	Remarks

	Design Rationale of Romulus and Remus
	Instantiation and Efficiency of Remus and Romulus
	Instantiations of Remus and Romulus
	Software efficiency
	ASIC Efficiency
	FPGA Efficiency

	Conclusions
	Security Proofs
	Proofs of Romulus-N (Theorem 1)
	Security bounds of ICE in Remus
	Proofs of Remus-N (Theorem 4).
	Proofs of Romulus-M (Theorem 2 and Theorem 3)
	Proofs of Remus-M (Theorem 5 and Theorem 6)

	Instantiation of Romulus and Remus with Skinny
	Instantiating Romulus with Skinny
	The LFSR
	The Tweakey Encoding

	Instantiating Remus with Skinny
	The TBC ICE
	Block Counters and Domain Separation

	Hardware Implementations
	General Architecture and Hardware Estimates
	Hardware Implementations Costs
	Primitives Choices

	ASIC Design Space Exploration of Romulus-N1

