TACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2017, No. 4, pp. 1-38. DOI:10.13154/tosc.v2017.14.1-38

Farfalle: parallel permutation-based cryptography

Guido Bertoni®, Joan Daemen®?, Seth Hoffert,
Michaél Peeters!, Gilles Van Assche! and Ronny Van Keer!

! STMicroelectronics, Diegem, Belgium
joan@cs.ru.nl,seth.hoffert@gmail.com,michael-tosc@noekeon.org,gilles-tosc@noekeon.
org,ronny.vankeer@st.com

2 Radboud University, Nijmegen, The Netherlands

3 Security Pattern, Brescia, Italy
g.bertoni@securitypattern.com

Abstract. In this paper, we introduce Farfalle, a new permutation-based construction
for building a pseudorandom function (PRF). The PRF takes as input a key and a
sequence of arbitrary-length data strings, and returns an arbitrary-length output. It
has a compression layer and an expansion layer, each involving the parallel application
of a permutation. The construction also makes use of LESR-like rolling functions for
generating input and output masks and for updating the inner state during expansion.
On top of the inherent parallelism, Farfalle instances can be very efficient because
the construction imposes less requirements on the underlying primitive than, e.g.,
the duplex construction or typical block cipher modes. Farfalle has an incremental
property: compression of common prefixes of inputs can be factored out. Thanks
to its input-output characteristics, Farfalle is really versatile. We specify simple
modes on top of it for authentication, encryption and authenticated encryption, as
well as a wide block cipher mode. As a showcase, we present KRAVATTE, a very
efficient instance of Farfalle based on KECCAK-p[1600, n,] permutations and formulate
concrete security claims against classical and quantum adversaries. The permutations
in the compression and expansion layers of KRAVATTE have only 6 rounds apiece
and the rolling functions are lightweight. We provide a rationale for our choices and
report on software performance.

Keywords: pseudorandom function - permutation-based cryptography - KECCAK

1 Introduction

Until recently, symmetric cryptography was dominated by block ciphers. With the
exception of some dedicated stream ciphers, standards and commercial products performed
encryption, authentication, authenticated encryption on top of a block cipher, often the
AES [23], and even hashing is done with block-cipher-based modes. For a couple of decades,
a lot of innovation has been brought to block cipher-based cryptography in the form of
the definition of new modes, particularly for authentication and authenticated encryption.

Upon closer inspection of these modes, one can see a tendency towards modes that do
not use the inverse mapping of the block cipher. Remarkably, the support for this inverse
mapping imposes a separation of the processing of the b = k 4+ n bits of the input, with
k the key length and n the block size. Namely, the key is processed in a key schedule
and the data in the data path, and there can be no diffusion from the data path to the

Licensed under Creative Commons License CC-BY 4.0. [D)sr |
Received: 2017-09-01, Accepted: 2017-11-01, Published: 2017-12-15


https://doi.org/10.13154/tosc.v2017.i4.1-38
mailto:joan@cs.ru.nl, seth.hoffert@gmail.com, michael-tosc@noekeon.org, gilles-tosc@noekeon.org, ronny.vankeer@st.com
mailto:joan@cs.ru.nl, seth.hoffert@gmail.com, michael-tosc@noekeon.org, gilles-tosc@noekeon.org, ronny.vankeer@st.com
mailto:g.bertoni@securitypattern.com
http://creativecommons.org/licenses/by/4.0/

2 Farfalle: parallel permutation-based cryptography

key schedule. This strongly limits the potential diffusion as illustrated by the birthday
bounds in both block size (most modes are only secure up to 20/2 block cipher queries
with b the block length) and key length (security against multi-target attacks in absence of
global nonces is only 2¥/2 with k the key length). So we think using a block cipher in a
mode that does not use its inverse is a waste. Well-known examples of block cipher-based
functions that do not use the inverse mapping are counter mode encryption and any block
cipher-based authentication. In addition, the NIST hash function standards SHA-1 and
SHA-2 [47, 48] can be seen as building on top of block ciphers without the need of the
inverse mapping.

As opposed to block ciphers, cryptographic permutations do not make a distinction between
key and data input and hence do not suffer from this limitation. Their use gained popularity
in the years 2000, in particular during the SHA-3 competition, as several candidates were
based on this type of primitive. Furthermore, the selection of the permutation-based
KECCAK sponge function as the SHA-3 standard gave increased visibility to this type
of cryptographic primitive [11, 49]. We introduced the concept of sponge functions in
2007, initially aimed at hashing, although soon after we developed modes for efficient
encryption, authentication and authenticated encryption. For the latter we had to do some
refactoring, leading to the (full-state) keyed duplex construction [22]. Today, sponge-based
cryptography has become a full-fledged alternative to its block cipher-based counterpart.

Yet, the sponge and duplex constructions are inherently serial. The bulk of the computation
consists of the repeated evaluation of a permutation, and for every evaluation we need
the output of the previous one. Modern high-end CPUs are so powerful that evaluating
n permutations simultaneously is faster than evaluating them in sequence. For hashing,
optimal performances can be obtained by using tree hashing. A concrete example of a
hash function that can exploit a high degree of parallelism is KANGAROOTWELVE [15].
For separate authentication or encryption, similar techniques can be applied. However,
for duplex-based authenticated encryption, the amount of available parallelism must be
known in advance. An example of a mode for authenticated encryption that supports
configurable parallelism is Motorist, the mode underlying KEYAK [14].

Also, the sponge and duplex constructions limit the number of output bits per evaluation
of the permutation to » = b — ¢, with b the width of the permutation and ¢ a parameter,
called the capacity, that determines the security strength. Depending on the mode of use
and the adversary’s capabilities, in order to achieve s bits of security, one must take c
somewhere between s and 2s. Consequently, for a security strength of 128 bits, the rate
r is 128 to 256 bits smaller than the permutation width. This restricts the underlying
permutation to have some minimum width, and for relatively small widths the efficiency is
not optimal.

To address these concerns, we set out to define a parallelizable counterpart for sponge-based
cryptography. The ambition quickly became to have permutation-based modes for all
keyed operations in symmetric cryptography that can exploit arbitrary parallelism and
that can make use of permutations as small as the birthday bound (b = 2s). We called the
result Farfalle.

Similarly to sponges, the Farfalle offering is built around a (composite) primitive and
modes on top of it. This primitive is a pseudorandom function (PRF) that takes as input
a key and a string (or a sequence of strings), and produces an arbitrary-length output. To
an adversary not knowing the key, these output bits look like independent uniformly-drawn
random bits. Such a PRF is a powerful primitive that can readily be used as a message
authentication codes (MAC), a stream cipher or a key derivation function. With some
very simple modes, one can turn it into an authenticated encryption scheme and even a
block cipher supporting variable block length.



Guido Bertoni et al. 3

In more details, Farfalle builds a PRF from a b-bit cryptographic permutation, or a
family of permutations possibly with different numbers of rounds. The constructed PRF
takes as input a key and a sequence of arbitrary-length data strings, and it generates an
arbitrary-length output. It consists of a mask derivation, a compression layer and an
expansion layer, each of them involving the parallel application of a permutation. The
compression layer applies one of the permutations to input blocks, each blinded with a
rolling b-bit input mask, and it (bitwise) adds their outputs in a b-bit accumulator. For the
expansion layer, the accumulator is subject to a permutation and then used as a rolling
state to generate the output. Each output block is the sum of the output mask and the
result of a permutation applied to the rolling state.

We depict the compression and expansion stages of Farfalle in Figure 1. The construction
aims for simplicity and efficiency and has some features in common with the sponge
construction [7]. As in sponges, the inverse of the permutation is not used. Another
interesting feature it has in common with sponges is the ability to compute it for incremental
inputs. While in sponges this is modeled by the duplex construction [9], in Farfalle this is
achieved by the fact that the contribution of input strings to the accumulator only depends
on their value and position in the input.

Farfalle can be seen as a parallelizable counterpart of the sponge for keyed applications. In
particular, its permutation calls can be performed in parallel as soon as the input masks
have been generated. This can be exploited on many platforms, including on modern
processors with single-instruction multiple-data (SIMD) units. Moreover, it can be made
very efficient as the number of rounds in the permutations can be taken much smaller than
in sponge-based modes, thanks to the fact that in Farfalle an adversary never has access
to both the input and the output of a permutation call.

Thanks to its input-output characteristics, Farfalle is really versatile. We specify concrete
modes on top of it for authentication, encryption and authenticated encryption, as well as
a wide block cipher mode.

Farfalle can be instantiated with any cryptographic permutation. In particular, we
instantiate it with the KECCAK-p permutations and with a rolling function similar to
those proposed in [29], attach concrete security claims to it and call the result KRAVATTE.
Reference and optimized code for KRAVATTE is available in KECCAKTOOLS and in the
KECCAK code package, respectively [12, 16].

1.1 Overview of the paper

After introducing our notation and the main components of Farfalle in Section 2, we specify
the Farfalle construction in Section 3. In Section 4 we define (authenticated) encryption
modes: a session-supporting mode for authenticated encryption (AE), a synthetic initial
value (SIV) AE mode and a wide block cipher. Section 5 gives a rationale for the basic
construction and Section 6 discusses some prior art for Farfalle and its modes. In Section 7
we specify KRAVATTE, a concrete instance of Farfalle making use of KECCAK-p, the
permutation underlying KECCAK, make a security claim and provide some rationale.
Finally, Section 8 is dedicated to an analysis of linear rolling functions that can be used in
conjunction with any permutation with low algebraic degree.



4 Farfalle: parallel permutation-based cryptography

2 Notation and components

In this section we introduce notation related to strings and the two types of functions used
in Farfalle: permutations and rolling functions.

2.1 Strings

Farfalle operates on strings of bits, that we will just call strings in the following. Inside
Farfalle, strings are processed in chunks of b bits, where b is the width of the underlying
permutations. We use uppercase characters for arbitrary-length strings and lowercase
characters for b-bit strings.

We denote the length of a string X by |X|. The set of strings of length n is Z% and the
set of strings of any length is Z3.

When applied to strings, the + operator is the bitwise addition, a.k.a. modulo 2 addition
or exclusive-or (XOR). The || operator is the concatenation.

Converting an input string to an array of b-bit strings requires a padding rule. We use
simple padding that appends a single 1-bit followed by the minimum number of 0-bits
resulting in a string with a length that is a multiple of b. We write P = pad10*(M). The
string P can be seen as an array of b-bit blocks p;. It is convenient to have index 7 start
from a value of our choice I. We denote this as P = p;,pr41 - ..Pr+n-1, with n denoting
the number of n-bit blocks in P.

A sequence of m strings M©) to M1 is denoted M(™ D o...0o MM o M The
notation deliberately reminds of the composition of functions. The set of all sequences of
at least one string is (Z3)7.

Farfalle yields a PRF that returns a string of arbitrary output length. In our notation,
we let the length of this string be determined by the context. In particular, X + F (M)
means that the required output length of Fx (M) is |X|. In some cases it is convenient
to skip the first ¢ bits of the output. For this we use the notation X + Fx (M) < ¢ to
indicate that we take the output starting from offset g, i.e., the bits ¢ to ¢+ |X| —1 of the
output produced by Fg (M).

2.2 Permutations

Farfalle makes use of four cryptographic permutations, each operating on b-bit strings:
pp for deriving the initial mask from the key K

Pc in the compression layer

pa between the compression and expansion layer

Pe in the expansion layer

Specific security requirements apply for each of them, see Section 5. It is however not a
security requirement that they are different. One may specify instances of Farfalle where
the four permutations are the same. We think the way to instantiate the most efficient
Farfalle instances is by taking a permutation with a variable number of rounds and tuning
the rounds for the four different cases to optimize the ratio efficiency vs. safety margin.



Guido Bertoni et al. 5

2.3 Rolling functions

A rolling function, denoted as roll, is a permutation of Z4. Farfalle makes use of two rolling
functions, each operating on b-bit strings:

roll. for generating masks that are added to the input blocks in the compression layer
roll to update the internal state during expansion

We write roll(k) for the result after applying the rolling function once and roll’(k) for the
result after applying it ¢ times.

Typically, roll, is a lightweight linear function with huge order, like updating functions of
linear feedback shift registers. The main security requirement is the following. Informally,
an adversary not knowing k shall not be able to predict the mask value rolli(k) for any 4
in a reasonable range nor the difference between any pair of mask values roll’,(k) + roll? (k)
for any 7 # j in that range. The combination with permutations of low algebraic degree
introduces an additional security requirement: the set {roll’(k)[0 < i < n} shall not
contain high-dimensional affine spaces for n a reasonable value (see Section 8.1).

The requirements for the rolling function roll, depend on the algebraic degree of p. If the
algebraic degree is relatively high, a function that qualifies as roll. also qualifies as rolle.
However, if p, has a relatively low algebraic degree, roll, must be non-linear due to the
existence of certain attacks (see Section 5.3 for a more in-depth discussion). Naturally,
roll, should have a negligible amount of states in short cycles (preferably none) as they
would lead to periodic output sequences. The absence of high-dimensional affine spaces
remains a requirement, but for a non-linear rolling function it is very unlikely that these
exist.

Finally, with the eye on parallelizability, we wish the computation of both roll. and roll,
to be lightweight and allow the computation of several iterations simultaneously.

3 Specification of Farfalle

We define Farfalle, a PRF construction that takes as input a variable-length secret key
K and a data string sequence, and returns an extract of the output stream at a desired
offset and for a desired length. It makes use of four permutations and two rolling functions.
Informally, Farfalle consists of three parts. First, the key derivation computes a b-bit mask
k from the key K. Then, the compression layer computes a b-bit accumulator from the
data string sequence using the mask k. And finally, the expansion layer computes a b-bit
rolling state from the accumulator and then generates the output from the rolling state
and a mask derived from k. We provide the definition in Algorithm 1 and an illustration
in Figure 1.

The compression layer applies a permutation p. to b-bit blocks, each the sum of a data
block and a rolling mask roll’ (k) with 4 the index of the block in the sequence and (bitwise)
adds them into the accumulator z. It enjoys a rather powerful incremental property. The
block index 7 only depends on the length and number of input blocks accumulated already.
Clearly, if multiple Farfalle computations share the same data block x with the same block
index, their contribution to the accumulator is the same and p(z + roll’.(k)) needs to be
computed only once. A special case of this is Farfalle applied to multiple string sequences
with a common prefix and the same initial mask k.

Note that to separate input strings, the value of the index for the first block of M) is



6 Farfalle: parallel permutation-based cryptography

k/

Pe —P— 20
k/

Pe D— 21

)
H—=

Figure 1: The Farfalle construction.

Algorithm 1 Definition of Farfalle[py, pc, pd, Pe, r0llc, rolle]

Parameters: b-bit permutations py, pc, pa andp, and rolling functions roll.and rolle.
Input:

key K € Z5, |K| <b—1

input string sequence M~V o...0 M) ¢ (73)*

requested length n € N and offset ¢ € N
Output: string Z € Z7

K’ = pad10*(K)
k «— po(K') {mask derivation}

x + 0P

I1+0

for j running from 0 to m — 1 do
M = pad10*(M©))
Split M in b-bit blocks my to myry,—1
T4 x+ Zi[:f_lpc(mi + roll’ (k))
I« I+ p+1{skip the blank index}

k'« rolll (k)

Y < pa(z)
while all the requested n bits are not yet produced do
produce b-bit blocks as z; = pe(roll(y)) + &’
Z + n successive bits from concatenation of zp||z1]|22 . .. starting from bit with index g.

return Z =0"+ Fy (M(m_l) o~--oM(0)) <q




Guido Bertoni et al. 7

K||10*

blank index { k

Figure 2: A closer look at the compression of example string sequence B o A in Farfalle.

2 higher than that for the last block of MU~ There is hence a block index value for
which there is no contribution to the accumulator. We call this a blank indez, a concept
elucidated in Figure 2.

While the application of the rolling function in the compression layer of Farfalle is essentially
serial, the application of p. for index i can be done as soon as the input block has been
formed and roll’ (k) is available. Hence if roll. is relatively lightweight, the main part of
the computation, namely the evaluations of p., can be done in parallel.

The compression and expansion layers of Farfalle require a secret mask & of exactly b bits.
We wish to accommodate variable-length keys and for that purpose we generate the initial
mask k by applying py, to the padded user key K.

The expansion layer computes the rolling state y from the accumulator z simply by applying
a permutation pq and uses the rolling state in a stream generator. For an output block
with index 7, it applies a permutation p, to the rolling state rollZ (y) and (bitwise) adds
the mask &’ to the result before presenting it at the output.

4 Modes of use

Farfalle can be readily used for MAC computation, key derivation and keystream generation.
It allows amortizing the computation of k£ among different computations with the same
key K.

We now define three (authenticated) encryption modes on top of Farfalle.



8 Farfalle: parallel permutation-based cryptography

These modes are parameterized by tag length ¢ and/or an alignment unit length ¢ to
prevent shifting buffers by small amounts (bit or bytes). We assume that for any given
key the parameter values are fixed. If there are instances of any of these modes with
different parameters or different modes altogether, we assume their keys have been chosen
independently. In other words, we claim no security for different mode instances with the
same key or with different modes with the same key.

4.1 Session-supporting authenticated encryption scheme

In many use cases where one wishes confidentiality, authentication is required too and it
makes sense to offer a scheme that provides both: an authenticated encryption scheme.
Doing this with a PRF is simple: one enciphers the plaintext by adding to it the output of
a PRF applied to a nonce and computes a tag on the ciphertext (and possibly metadata).
Often, one does not only want to protect a single message, but rather a session where
multiple messages are exchanged, such as in the Transport Layer Security (TLS) protocol
[27] or the Secure Shell (SSH) protocol [52]. Examples of session-supporting authenticated
encryption schemes are the CAESAR submissions KEYAK [14] and KETJE [13]. They
require only a nonce at the startup of the session and each tag authenticates all messages
already sent in the session.

We define a session-supporting authenticated encryption scheme similar to the Motorist
mode defined in [14]. The session keeps track of a history that is presented to an
(incrementable) PRF for generating tags and keystream. Starting a session initializes the
history to a nonce N. From then on, it supports messages consisting of metadata A and/or
plaintext P. The wrapping of a message consists of three phases. First, Farfalle-SAE adds
to the plaintext, if non-empty, the output of the incremental PRF applied to the history
in order to generate the ciphertext. Second, it appends the metadata and/or ciphertext to
the history. Finally, it generates the tag by applying the PRF to the history. Note that a
tag authenticates the complete history of the session. Unwrapping is similar.

Farfalle-SAE has two parameters: the tag length ¢ and an alignment unit length £. It
reserves the first ¢ bits of the PRF output for tags and takes keystream from the PRF
output stream from an offset that is the smallest multiple of £ not shorter than ¢. Moreover,
Farfalle-SAE applies domain separation between metadata and ciphertext strings in the
history to skip the first phase for plaintext-only messages or the second phase for metadata-
only or even empty messages. We provide a formal specification in Algorithm 2.

Clearly, this mode requires the PRF to have the incremental property. When instantiated
with Farfalle, the mask derivation must be done only once and in every call to Farfalle only
the recently appended string must be compressed. Like in Motorist [14], the initialization
returns a tag that can be sent along with the nonce (sender) or verified at the beginning
of a session (receiver).

4.2 SIV authenticated encryption scheme

Farfalle-SAE, as well as Motorist, requires the management of nonces: each session shall be
started with a unique combination of key and nonce. Nonce management is perceived as a
difficult task by some, and for that audience we define a so-called synthetic initial value
(SIV) authenticated encryption scheme [51, 38]. SIV authenticated encryption schemes have
the feature that one can securely encipher different plaintexts with the same key without
requiring the overhead of nonce management. It simply uses the tag computed over the
message as a nonce for the encryption function and security only breaks down when two



Guido Bertoni et al. 9

Algorithm 2 Definition of Farfalle-SAE[F, ¢, {]
Parameters: PRF F, tag length ¢ € N and alignment unit length ¢ € N

Initialization taking key K € Zj and nonce N € Z3, and returning tag T € Z}
offset =/ [ﬂ the smallest multiple of ¢ not smaller than ¢

history < N

T + 0" + Fk (history)

return T

Wrap taking metadata A € Z; and plaintext P € Zj, and returning ciphertext C' € Z|2P|
and tag T € Z}
C < P + F (history) < offset
if |[A] > 0 OR |P| =0 then
history < AJ|0 o history
if [P| > 0 then
history <— C|1 o history
T <+ 0' + Fk (history)
return C|T

Unwrap taking metadata A € Z3, ciphertext C' € Z} and tag T € Z%, and returning
plaintext P € ch‘ or an error
P + C + Fk (history) < offset
if |[A] > 0 OR |C| = 0 then
history < A[|0 o history
if |C| > 0 then
history < C|1 o history
T’ + 0! + Fg (history)

if 7" =T then
return P
else

return error!




10 Farfalle: parallel permutation-based cryptography

messages have the same tag. SIV modes were originally proposed for key transport, but
system architects that are not sure about their ability to manage nonces now also propose
it for other use cases. An example is the mode GCM-SIV [32] that was proposed to the
Internet Research Task Force (IRTF) and the Crypto Forum Research Group (CFRG) as
specified in a RFC [31].

Farfalle-SIV takes as input a secret key K, an arbitrary-length plaintext P and arbitrary-
length metadata A and returns a ciphertext C' with the same length as the plaintext and a
fixed-length tag T'. It first computes the tag by applying a PRF to P o A and enciphers P
by adding to it the output of the PRF applied to T o A. We provide a formal specification
in Algorithm 3.

Algorithm 3 Definition of Farfalle-SIV[F, ]
Parameters: a PRF F and tag length t € N

Wrap taking metadata A € Z3 and plaintext P € Z3, and returning ciphertext C € Z|2P|
and tag T € Z}

T+ 0+ Fi (Po A)

return C,T

Unwrap taking metadata A € Z3, ciphertext C' € Z3 and tag T € Z&, and returning

plaintext P € Z‘zc‘ or an error
TI<—Of+FK(POA)
if 7" =T then
return P
else
return error!

The security of this mode relies on Farfalle to be a PRF. For confidentiality, it requires
that all messages that are enciphered with the same key and that have the same metadata
A result in a different tag 7. Two distinct messages with colliding tags will use the same
keystream to encipher their plaintexts and hence the sum of their ciphertexts will be equal
to the sum of their plaintexts. For a chosen value of the parameter ¢, the probability of a
tag collision occurring in n messages is upper bounded by n?/2*!. For example, if in an
application it is reasonable to assume that only 240 messages with the same (or empty)
metadata and the same key will be processed, and one is willing to accept a risk of a
collision up to 2749, tags of length 128 bits will do the job. For tag collisions between
messages with different metadata A there is no security problem as the keystream also
depends on the metadata A.

When instantiated with Farfalle, the mask derivation and the compression of A that are in
common to both calls to Fix () must be done only once, thanks to the incremental property.

4.3 Wide block cipher

There are use cases where it would be practical to have a block cipher with a custom
block size, or where the block size is adaptable to the task at hand and that supports
next to the key an additional diversification parameter, called a tweak. Examples include
disk encryption, where the block size would equal the size of sectors. Another example is
encryption in the Tor anonymity network [50]. Here every block of data must be encrypted



Guido Bertoni et al. 11

recursively multiple times in such a way that the cryptogram is not longer than the
plaintext and this joint encryption must achieve a certain authentication. This can be
achieved with a tweakable wide block cipher with a width of 509 bytes.

We define a tweakable wide block cipher based on two PRFs. The global construction is
an instantiation of the HHFHFH mode as presented by Dan Bernstein at the Symmetric
Cryptography Dagstuhl seminar in January 2016 [5], that is in turn based on work of Naor
and Reingold [46], that is based on a paper by Stefan Lucks [42], that builds further on
work of Luby and Rackoff [41].

It takes as input a secret key K, an arbitrary-length plaintext P and an arbitrary-length
tweak W and returns a ciphertext C' of same length as the plaintext. It performs a 4-round
Feistel network to the plaintext. The latter is split into a left and a right part, with length
determined by the function split[b, /]. This function takes the block length n and returns
the length of the left part ny, which is a multiple of the given alignment unit length /.
The function G (corresponding to F o H in HHFHFH) used in the two middle rounds
must be a PRF and takes as input part of the intermediate result and the tweak. The
function H used in the first and last round does not necessarily have to be a PRF but
must be differentially uniform. We provide a formal specification of the split function in
Algorithm 4 and of the Feistel network in Algorithm 5. A rationale for the split function
is given at the end of this section.

A (tweakable) wide block cipher can be converted to an authenticated encryption scheme
by applying a very simple mode [34]. The metadata is used as tweak and as encipherment
input one uses the plaintext with some agreed verifiable redundancy, such as 8 bytes
equal to zero appended to the end. The cryptogram is the encipherment output. One
can authenticate the cryptogram by verifying that the decipherment output ends in the
agreed fixed string. This verification process can be performed before full decipherment is
completed, allowing for early rejection of unauthentic cryptograms. As observed in [2], in
comparison to SIV, a wide block cipher mode has the advantage of smaller overhead for
the same forgery resistance. We provide a formal specification in Algorithm 6.

The wide block cipher in principle supports any length. However, the generic security
it can achieve is limited by the ability to generate collisions in the left or right part of
the intermediate result. Such collisions become likely as soon as the number of processed
blocks reaches 2min(ne.mr)/2 < 9n/4 - For this reason, one cannot claim a security level
higher than the width divided by 4 and hence the width cannot be taken too small.

When instantiating H and G with two instances of Farfalle that have the same permutation
for py, the mask derivation can be pre-computed. Similarly, the compression of the tweak
W can be shared among the computations of Gk (R||1 o W) and Gk (L||0 o W).

4.3.1 Rationale for the split function

The function split[b, /] returns a value ny, that minimizes my + mpg, where my, is the
number of b-bit blocks to hold the L string in Algorithm 5 and mpg is defined similarly for
R. We further require that L is aligned on /¢ bits, i.e., that ny is a multiple of /. More
precisely, the number of blocks at the left is my = [2£*2], since Algorithm 5 requires
appending one frame bit for domain separation and Farfalle adds one bit of padding. As
¢ > 2 and we want that ny|¢, these two bits are absorbed in a buffer of at least ¢ bits that
ensures the alignment, and we can equivalently write mp = [”LTH] Similarly, the number
of blocks at the right is mpr = (”RTHW Because of the domain separation bits, padding
bits and buffer for alignment, the total number of blocks my, + mpg is at least ¢ as defined
in Algorithm 4. An optimal solution means my + mg = q.

This function split[b, £] addresses an additional requirement, namely that min(nz,ng) is



12 Farfalle: parallel permutation-based cryptography

Algorithm 4 Definition of split[b, £]
Parameters: permutation width b € N and alignment unit length ¢ € N, satisfying
¢>2and ¢b
Input: block length n € N

if n <2b— (¢ + 2) then

=25

q = [“H+2] ] ie., ¢ is smallest multiple of b that n + ¢+ 2 fits in
x = |logy(q — 1)], i.e., @ is largest integer such that 2% < ¢
np = (q—2%)b—¢

return njy = split(n)

Algorithm 5 Definition of encryption in Farfalle-WBC[H, G, {]
Parameters: two PRFs H and G and alignment unit length ¢ € N

Encipher taking key K € Z3, tweak W € Z3 and plaintext P € Z3 and returning
ciphertext C € Z|2P‘

L gets first split(|P|) bits of P and R the remaining ones

Rg + Ro + Hi(L||0), with Rg the first min(b, |R|) bits of R

L+ L+Gg(R||[loW)

R+ R+ Gk (L||[0oW)

Ly < Lo+ Hg(R||1), with Lo the first min(b, |L|) bits of L

return C <+ the concatenation of L and R

Algorithm 6 Definition of Farfalle-WBC-AE[H, G, t, /]

Parameters: two PRFs H and G, the expansion length ¢ € N and alignment unit
length ¢/ € N

Wrap taking key K € Z3%, metadata A € Z3 and plaintext P € Z%, and returning
ciphertext C € Z|2P‘+t

P’ + P||0*

return C <« Encipher(K, A, P’)

Unwrap taking key K € Z%, metadata A € Z3 and ciphertext C' € Z3, and returning

plaintext P € Z‘zc‘_t or an error
L gets first split(|C]) bits of C and R the remaining ones
Lo+ Lo+ Hg(R||1), with Lg the first min(b, |L|) bits of L
R+ R+ Gk (L]|0o A)
if |[R|>b+t then
if the last ¢ bits of R # 0! then return error!
L+ L+Gk(R||1oA)
Ry + Ro + Hk(L||0), with Ry the first b bits of R
else
L+ L+ Gk (R||10oA)
Ry < Ro + Hk(L||0), with Ry the first min(b, |R|) bits of R
if the last ¢ bits of L||R # 0° then return error!
P '+ L||R
return P < the first |C| — ¢ bits of P’




Guido Bertoni et al. 13

not too small, to take into account the difference uniformity of Hg with output truncated
to ny, or ng bits. The function split distinguishes between two cases.

e For n < 2b — (¢ + 2), we have m, = mpr = 1. The function split maximizes
min(ng,nr) within the constraint that ny, is a multiple of £. More precisely, it is
easy to show that |ny, — ng| < /.

e Forn > 2b—(¢+2), we first translate the requirement on the lengths to min(ng,ng) >
b — £. Algorithm 4 realizes this by taking ny, = mpb— £ > b — £ for some number of
blocks my, > 1 on the left side. For the right side, we have ¢ > 3, so that mp > 2
and ng > b — 1. Second, ny, is a multiple of £ bits since b is a multiple of ¢. Then,
we reach optimality since ng = n — (mpb — £) and thus mgr = [”R—Hw =q—my.
(Note that this works independently of the choice of my,.) Finally, the function splits
these g blocks into the largest power of two for R. As the parallelism degree is often
a power of two, this enables its optimal exploitation.

5 Rationale for Farfalle

A Farfalle function loaded with a secret key K can be distinguished from a random function
in several ways. We list here the types of attack that have played an important role in
shaping Farfalle and that impose criteria on the used permutations and rolling functions:

1. accumulator collision: finding two input strings leading to identical accumulators;
2. weaknesses in the mask derivation;
3. distinguishing the output for a single input from a random string
e retrieving rolling state and mask using algebraic attacks
e detecting bias in the output sequence using higher-order differentials
e detecting bias in the output sequence using correlation propagation
4. distinguishing the output for multiple inputs from random strings;
5. finding the values of y and k from input-output pairs.

We discuss these attacks in the following subsections.

5.1 Accumulator collision

Recall that the accumulator is the value 2 that sums the contributions of p.(m; + roll’(k)).
Finding two string sequences M and M’ leading to the same value of the accumulator can
be used to attack Farfalle. The difficulty of finding collisions in the accumulator is based
on the differential propagation properties of p. and is helped by the fact that before being
subject to p., each input blocks m; is whitened with the rolling input mask rolli(k) and
that the accumulator cannot be directly observed. One may attempt to generate such
collisions in several ways. We describe them in this subsection.

5.1.1 Sets of input blocks that contribute 0 to the accumulator

The simplest method, at least conceptually, is to form M’ by appending a block at the
end of M and hope its b-bit contribution to the accumulator is zero. Succeeding in doing
this is equivalent to successfully guessing k.



14 Farfalle: parallel permutation-based cryptography

One may try to append two blocks where the input to the permutation is equal: m; +
roll’ (k) = my,1 + roll’™ (k). The ability of the adversary to do this critically relies on her
ability to predict roll’ (k) + roll:™! (k), imposing the requirement for the rolling function
that it shall be hard to predict k 4 roll(k) for unknown k. This attack can be generalized
by not only appending blocks to M, but also putting input blocks in M’ where there are
blank indices in M. Then it shall be hard to predict k + rollg(k) for unknown k and any
offset 0 in a reasonable range.

Appending multiple blocks and saying something meaningful on their joint contribution to
the accumulator is possible if the permutation has sufficiently low algebraic degree and
the rolling function allows predicting mask differences. Basically, if one chooses the input
blocks such that the corresponding inputs to p. form an affine space of sufficient dimension,
their joint contribution is zero. We refer to Section 8.1 for more explanation. This imposes
a requirement on the rolling function that a sequence of masks with reasonable index
values shall not contain an affine space of dimension higher than the algebraic degree of
the permutation.

5.1.2 Input block variants swapping p. inputs

One may try to construct M’ from M by modifying two input blocks m; and m; into
m} and m}, such that the input to p. for m; equals that of m;- and vice versa. This
will just swap the contribution of blocks ¢ and j to the accumulator. As the addition is
commutative, the joint contribution is the same in both cases. This boils down to finding
m; + roll’ (k) = mj + roll’ (k) and a similar expression for m; and m/. The ability of the
adversary to come up with such input blocks again critically depends on her ability to
predict k + roll‘s(k) for unknown k and any offset 0 in a reasonable range.

5.1.3 High-probability differentials in p,

Another approach exploits high-probability differentials in p.. One applies two different
inputs M and M’ that have the same length but differ in a limited number of blocks,
denoted as active. Due to the invertibility of p., the smallest number of active blocks that
may lead to a collision is 2. Let the difference in the first block be A and that in the
second block A’. We have a collision if these differences propagate to the same difference
through the permutation. Assuming the adversary does not know the mask values for the
active blocks, the probability of a collision is

Pr(collision) = Z DP(A,v)DP(A,7), (1)

ol

with DP(xz,y) the differential probability of differential (x,y) over p.. The differential
probabilities DP(A, 7) for fixed A and varying +y can be seen as a vector with 2° components,
all positive and summing to 1. Equation (1) can be seen as an inner product of such
vectors. From this it follows that the highest values can be obtained by taking A = A/,
yielding:
Pr(collision) = Z DP?(A, 7). (2)
¥

This presents a clear criterion for pc.

In the initial rounds an adversary may try to guide the difference propagation by making
assumptions on the masks roll‘(k) and roll’ (k) and choose the corresponding message
blocks m; and m; to satisfy certain conditions in the propagation. If the number of bits
to be guessed is smaller than the number of conditions to be satisfied, this may result in
some gain. This hence presents a criterion for the rolling function.



Guido Bertoni et al. 15

5.2 Properties of the mask derivation

To derive the mask k, we apply the p, permutation to a variable-size key K after padding
it in a reversible way. This ensures that no collision can happen between different keys,
even with different sizes.

We would like to highlight two properties that we expect from the mask derivation.

e As explained in Section 5.1, the adversary should have no effective way to predict
the value of k -+ roll’ (k) for reasonable values of §. Otherwise, she can easily produce
accumulator collisions, e.g., by swapping input blocks.

e Regarding differential attacks, the input to p., namely, m; + rolli(k), should look
sufficiently random to an adversary, so as to prevent her from choosing input values
that significantly decreases the workload to propagate a difference according to a
differential trail.

To satisfy these properties, we express the requirement on py, that for every matrix M of
rank 7, the min-entropy of M X k is close to the minimum of r and the min-entropy of the
key K. This encompasses the first property when roll. is a linear function, our preferred
option as illustrated by KRAVATTE (see Section 7.4.2), by choosing M =1+ rollg7 with I
the identity matrix. For the second property, when p. employs a degree-two round function
(also our preferred choice), the conditions on the absolute values for the propagation of
differences are linear. Hence, by choosing M accordingly, this requirement ensures that
the difference cannot be propagated with a higher probability than expected.

5.3 Distinguishing the output from a random string (single input)

Clearly, one may have a collision in the sequence of roll?(y) values if there is a short cycle
or if different accumulator values x and z’ lead to rolling state values y = pq(z) and
y' = pa(z’) such that rollg(y’ ) = y for some reasonably small value of §. As a consequence,
the rolling function roll, must be chosen such that the states are in very long cycles.

Every output block depends on an output mask and a rolling state. Hence, it requires
at least two output blocks to determine the value of the rolling state and/or the output
mask. When performing an algebraic attack using two output blocks, the adversary must
solve a system of equations with unknown variables spread over two full instances of the
permutation pe.

At first sight, attempts to improve the situation by using more than two output blocks
would lead to an overdetermined system of equations with even more variables and due
to the application of the rolling function to the rolling state, every additional output
block would introduce many additional variables. However, as pointed out by a team of
cryptanalysts who reported to us their attacks [20] on a preliminary version of KRAVATTE,
the following techniques can be applied:

Meet-in-the-middle They express bits of the intermediate state after ¢ rounds of p, as
polynomials of bits of the rolling state rollg(y) on the one hand and as polynomials
of the output mask &’ on the other, using the knowledge of an output block z;. This
gives rise to a set of polynomial equations with monomials in bits of y and in bits of
k’. The number of monomials in y is limited by the algebraic degree of ¢ rounds of pe,
and the number of monomials in &’ is limited by the algebraic degree of n — g inverse
rounds of p.. Thanks to the fact that the bits of rollg(y) can be expressed linearly
as bits of y, more equations can be obtained without introducing new monomials by
repeating this for many output blocks z;.



16 Farfalle: parallel permutation-based cryptography

Linearization The non-linear equations can be converted to a system of linear equations by
considering the monomials as independent variables (let us call them the monomial
variables) and solving the system of equations using linear algebra.

Elimination of monomials by exploiting linear recurrence If roll, is linear, the bits of
rollg (y) satisfy a linear recurrence equation. Referring to prior art in the cryptanaly-
sis of filtered LFSRs, the attackers show that the monomials in roll. satisfy the same
linear recurrence relations and hence so do the monomial variables. This allows elim-
inating the monomial variables in roll? (y) from the system of linear equations above,
leaving only monomial variables in k’. This dramatically reduces the complexity of
the attack.

Although this requires a substantial amount of output blocks and takes a considerable
effort even for choices of p, that have a relatively small degree, it still may be feasible
with data and computational complexity that would break a reasonable security claim.
One may protect against this attack by adopting a permutation p, with higher algebraic
degree, e.g., by taking more rounds, but this has a negative impact on the efficiency of the
expansion phase.

Taking a closer look at the attack techniques, we see that they strongly rely on the linearity
of roll,. First of all, generating more equations for more output blocks does not introduce
new monomials because the bits of rollé (y) are linear functions of the bits of y. Second, the
elimination of monomials in y also requires roll, to be linear. This strongly suggests that
using a non-linear rolling function for roll, would provide protection against the described
attacks, without the need to take a higher-degree permutation p.. Moreover, it is very
likely that even a very small amount of non-linearity in roll, is sufficient for reasonable
choices of p,. The attacks described in [20] require huge numbers of output blocks and
hence imply many iterations of the rolling function roll,. For this reason, we recommend
adopting a lightweight non-linear rolling function for rolle.

Another method to distinguish the output is to find biases in linear combinations (parities)
of output bits using the correlation properties of the permutation. Consider the case where
these bits are spread across two blocks. The output block with index ¢ + j is completely
determined by the output block with index 5 and the output mask: pe_l(ziﬂ» +k) =
roll’ (p.~1(z; + k)), or equivalently

Ziyj =k + (peorolll o pe 1) (2 + k).

The sign of the bias in any parity of output bits szj —+ uTziJrj depends on k, but its
amplitude is independent of k and equal to the absolute value of

Z Corry, o ron: (u, w)Corry, (v, w).

w

If roll, is non-linear, it is likely that the accumulated non-linearity in rollé(w) will make
this harder to exploit with increasing ¢. This comes down to a joint criterion for p, and
roll,.

5.4 Distinguishing the output from a random string (multiple inputs)

We now describe a distinguishing attack that requires 2¢ chosen input strings with d — 1
the algebraic degree of p. o pq. For a given key K, we compute Farfalle for 2¢ input strings,
each consisting of d input blocks and one block of padding. Each string has the form
m(A) = md°||m|| ... ||m3i’11, where \ € Z¢ and m? # m} for all i.



Guido Bertoni et al. 17

If we denote 7; = pe(m? + roll’(k)) and rf = pe(m} + roll*(k)) and 7, = r; + 7 # 0, then
the value of the accumulator for the input string with label A is @ =), r; 4+, Ajrj. Over
the space of input strings, this is an affine space. So summing the Farfalle outputs for
these input strings corresponds to taking the d-th derivative of the function applied to the
accumulator. If this function has degree less than d, this sum becomes zero. Hence, we
can use this to distinguish the Farfalle output from a random string. Clearly, this imposes
a criterion on the algebraic degree of p, o pq. Note that this works independently from the
algebraic degree of p. and of the concrete values of the blocks m? and m}.

In [33] Jian Guo and Ling Song published an attack on the Farfalle instance KRAVATTE
that improves upon the one described above. By guessing a number of bits of ¥’ one can
partially peel off the non-linear step of the last round of p,, and thus strongly reduce the
number of inputs. Later, this attack was extended in [20] by partially peeling off two
non-linear layers. These improvements illustrate that one should take some margin in the
choice of ps 0 pq: one should consider the algebraic degree for p, o pq taking into account
that it may be possible to peel off some rounds of p,.

5.5 Finding the value of k£ from input-output pairs

Finally, finding the value of k from input-output pairs can be seen as a variant to doing key
retrieval in an Even-Mansour [28] cipher, where the permutation is p, o pq o p.. Here the
complete spectrum of classical block cipher attacks can be applied. The main differences
are that in Farfalle an adversary has the additional degree of freedom of exploiting roll’,(y)
to alter the rolling state that forms the intermediate state after pq o p. rounds, and that in
most Even-Mansour use cases an adversary can query the inverse cipher, which is not the
case for Farfalle.

A key point for Farfalle is that the marginal cost for processing an input block is executing
Pe, for generating an output block is executing p, but that an adversary performing an
attack using input-output pairs must span pe o pq © pec.

6 Comparison with prior art

We describe the prior art for Farfalle in Section 6.1, for the session-supporting authenticated
encryption mode in Section 6.2, for the SIV authenticated encryption mode in Section 6.3
and finally for the wide block cipher in Section 6.4.

6.1 Farfalle

The Farfalle construction reminds of the keyed sponge construction, with most efficient
version the full-width keyed sponge [8, 1, 45, 22]. It differs in that the keyed sponge is
strictly serial while Farfalle consists of two main layers that are by themselves parallel. The
keyed sponge can be duplexed, i.e., incremental inputs can be processed, with consequence
that the partial input and output to an underlying permutation f are available to the
adversary. Duplexing works in Farfalle too but in a slightly different manner and never leads
to the input and output of a single call to p., pq or p. being available to the adversary. This
implies that for equal safety margins in Farfalle one can afford to take permutations with
less rounds than in the keyed sponge. Moreover, in the sponge construction the (squeezing)
rate is limited to b— ¢ with ¢ the capacity. As the capacity determines the security strength,



18 Farfalle: parallel permutation-based cryptography

the sponge construction tends to become less efficient for small permutation widths. In
Farfalle, one can plug in much smaller permutations for the same target security strength.
The size is basically limited by the birthday bound on having collisions in the input to p.
OT Pe-

Farfalle can readily be used for MAC computation, keystream generation, key derivation
and as building blocks in more elaborate schemes. Its computational cost is a single
permutation py, for setting up the key, the single call to pq and then one execution of p. per
input block and one execution of p, per output block. We compare to some similar MAC
modes (setting aside the fact that these modes do not support arbitrary-length outputs):

Protected counter sum This is a method proposed in [3] to build an unpredictable func-
tion with arbitrary-length input from an unpredictable function with fixed-length
input. The Farfalle mode, with its output restricted to a single block, can be seen
as an instantiation of this method. In Farfalle, the unpredictable function with
fixed-length input is implemented with a permutation, where the rolling function
(implicitly) codes the block index. The permutations pgq and p. and the whitening of
the output with a mask take the place of the final call of the unpredictable function in
the protected counter sum. Farfalle has several key ideas in common with protected
counter sums, but there are also some differences. The most important differences are
that Farfalle has an arbitrarily extendable output and that Farfalle has the ambition
to be unpredictable (in the terminology of [3]) even if the underlying building blocks
are not unpredictable as such.

PMAC This is a block cipher mode for MAC computation proposed in [17] and a variant
of protected counter sum. The random function is instantiated by a block cipher and
it has a specific coding for the counter block in the inputs. The compression layer
of Farfalle is similar to PMAC as it performs the block cipher calls in parallel and
(bitwise) adds their outputs. In PMAC the input blocks are b bits and before applying
the block cipher, their value is offset by a rolled version (with rolling function based
on a Gray code) of a b-bit secret k derived from the user key K with a block cipher
call. The tag is obtained by offsetting the accumulator with a rolled version of k£ and
applying the block cipher to the result.

Alred This was one of the first permutation-based modes proposed for MAC computation
in [24, 26] and is mostly known for the instance Pelican-MAC based on AES [25].
The main difference with Farfalle is that it is strictly serial and can therefore not
take advantage of available parallelism (e.g., pipelining in the AES-NI instructions)
in resources. On the other hand, it shares with Farfalle that never an input and
output to a permutation f is available and uses that to reduce the number of rounds
in f drastically compared to more generic modes such as CBC-MAC or C-MAC.
Moreover, the output length of Alred is limited to the width of the underlying block
cipher and it does not support multiple input strings.

MARVIN This is a mode for MAC computation proposed in [36, 35] that was inspired
at the same time by Alred and by PMAC and uses both a block cipher and a
permutation. The compression layer of Farfalle is similar to that of MARVIN that
applies a permutation to the input blocks in parallel and (bitwise) adds their outputs
in an accumulator. The input blocks to the permutation calls are formed in a way
similar to PMAC, but here a variant of Hugo Krawczyk’s cryptographic CRC [37] is
used for rolling. In MARVIN, all input blocks pass through the permutation before
being added into the accumulator. Moreover, the tag is obtained by applying the
block cipher to the accumulator offset with the secret k£ and some constants coding
message and tag lengths.



Guido Bertoni et al. 19

We can also compare to some stream cipher modes (setting aside the fact that these modes
do not support arbitrary-length inputs):

Counter mode of a block cipher In counter mode, a priori no distinction is made between
the long-term nonce and the short-term block index. Depending on the size of the
nonce, an adversary can apply differences of large choice and observe corresponding
outputs.

Mode underlying Salsa and ChaCha These stream ciphers proposed in [4] can be consid-
ered as a mode on top of a permutation. This is very close to counter mode of a
block cipher, where the block cipher is rather of type Even-Mansour. The adversary
can partially choose the input of the expanding permutation while in Farfalle the
chosen input first passes through p. and pg.

Finally, we can compare to the pseudorandom function HS1 that is used in the CAESAR
submission HS1-SIV [38]. This pseudorandom function uses two strongly different functions
for compression and for expansion: a differentially uniform hash function for compression
and ChaCha (in a non-standard mode) for expansion. The expansion part is purely parallel
but the compression part has only limited parallelizability. Farfalle has the advantages that
it can be constructed with a single cryptographic permutation and that it takes sequences
of input strings rather than a single one, simplifying the modes built on top of it.

6.2 Session-based authenticated encryption mode

For Farfalle-SAE a comparison with duplex-based session-supporting authenticated en-
cryption seems appropriate. The most recent mode realizing this is the Motorist mode
underlying KEYAK [14]. Functionally, Farfalle-SAE and Motorist are almost the same.
The difference is in the way this is realized. Motorist supports parallelism but it is limited
and must be determined or negotiated at session setup. Farfalle-SAE on the other hand is
fully parallel for each metadata A or plaintext P.

When considering protection against differential power analysis (DPA) or differential
electromagnetic analysis (DEMA), Motorist offers a high level of leakage resilience. Its
key is only applied at session setup. From that point on, the state evolves and its value
depends on all input received. If nonce uniqueness is respected, state values for different
sessions will be completely decorrelated and a DPA/DEMA attack can only be applied to
the session setup phase. The consequence is that DPA countermeasures such as masking
must only be applied during that phase. The same level of protection at the mode level
cannot be achieved with Farfalle-SAE but, in the conclusions, we sketch how a Farfalle
variant could be built that would achieve similar protection.

6.3 SIV authenticated encryption mode

Our mode Farfalle-SIV is a close variant of the SIV construction [51]. The SIV construction
was proposed mostly for the purpose of key wrapping and that was later adopted in the
CAESAR submission HS1-SIV [38] for authenticated encryption. The main advantage of
Farfalle-SIV in comparison to these two examples is the following. In the original SIV
construction, the input consists of only metadata A and plaintext P. These are subject to
a first keyed PRF that results in a tag (called IV) that serves as input to a second keyed
PRF for generating the keystream. In case the two inputs have colliding tags, the same
keystream is used to encipher two different plaintexts. In HS1-SIV this is addressed by
having an additional nonce that is input to both PRFs and having a tag collision is only



20 Farfalle: parallel permutation-based cryptography

problematic if also the same nonce is used for both messages.

In contrast, Farfalle-SIV has no dedicated nonce, but the metadata A are input in both
PRFs. So now there is only a problem if there is a tag collision and if the two message
have the same metadata A. Thanks to the incremental property of Farfalle, the only cost
this incurs is the caching of the contribution of the metadata to the accumulator.

6.4 Wide block cipher

The novelty of Farfalle-WBC with respect to HHFHFH [5] is that thanks to the incremental
property of Farfalle, the compression of the tweak must be done only once.

Another tweakable wide block cipher construction is AEZ-Core proposed in the CAESAR
submission AEZ [34]. It is not easy to compare Farfalle-WBC with AEZ-Core, as the
former is based on permutations and the latter on tweakable block ciphers. Although it is

hard to measure simplicity, we feel that Farfalle-WBC is a significantly simpler construction
than AEZ-Core.

7 Kravatte: Farfalle based on Keccak-p

In this section, we present a Farfalle instance based on KECCAK-p, the permutation
underlying KEcCAK, KEYAK and KETJE and standardized in FIPS 202 [11, 13, 14, 49].

Definition 1. KRAVATTE is Farfalle[py, pc, pa, Pe, rolle, rolls] with the following parame-
ters:

® Py, = Dpe = pa = pe = KECCAK-p[1600, n, = 6],
e roll. as specified below, and
e roll, as specified below.

The rolling function roll, applies a linear transformation to the five lanes of the plane
y = 4 of the KECCAK-p state and leaves the other 20 lanes unchanged. If we denote the
five lanes before the transformation by (zo, z1, 22,23, x4) then the transformation maps
them to (z1, 2,23, x4, x5) With

x5 = (o K 7))+ 21+ (21> 3),

where < denotes a cyclic shift (or rotation) to the left and > a shift to the right.

The rolling function roll, applies a non-linear transformation to the ten lanes of the planes
y =4 and y = 3 of the KECCAK-p state and leaves the other 15 lanes unchanged. If we
denote the ten lanes before the transformation by (xg,x1, 2, x3, x4, Ts5, Ts, T7, Ts, Tg) then
the transformation maps them to (z1, ze, x3, 24, Ts5, Tg, X7, Tg, Tg, T10) With

10 = (o K 7) + (21 <« 18) + 29 - (1 > 1),

where “-” denotes bitwise multiplication in GF(2).

In the standard KECCAK-p notation, with arithmetic on z taken modulo 64, roll; can be



Guido Bertoni et al. 21

expressed as follows:

alz][4] < al[z + 1][4] Vo # 4
a[4][4][2] < a[0][4][z — 7] + a[1][4][2] + a[1][4][z + 3] Vz <60
al4][4][z] « a[0][4][z — 7] + a[1][4][z] Vz > 60

Similarly, roll, can be expressed as follows:

alz][3] + a[z + 1][3] Vo #4

al4][3] « a[0][4]

a[z][4] < alz + 1][4] Vo # 4
al4][4][z] < al0][3][z — 7] + a[1][3][z — 18] + a[2][3][z] a[1][3][z + 1] Vz < 62
a[4][4][#] < a[0][3][z — 7] + a[1][3][z — 18] z =63

7.1 Security claim

We make the following security claim on KRAVATTE.

Claim 1. Let K = (Kop,...,K,_1) be an array of u secret keys, each uniformly and
independently chosen from Z5 with k < 320. Then, the advantage of distinguishing the
array of functions KRAVATTE, () with i € Z,, from an array of random oracles RO(3, ),

is at most
uN+() N M  JuN' N

2K + 92256 + 2137 + ok/2—1 + 2127 ° (3)

Here,

e N is the computational complexity expressed in the (computationally equivalent)
number of executions of KECCAK-p[1600, n, = 6],

e N’ is the quantum computational complexity expressed in the (equivalent) number
of quantum oracle accesses to KECCAK-p[1600,n, = 6], and

e M is the online or data complexity expressed in the total number of input and output
blocks processed by KRAVATTEK;, (+).

In (3), the first term accounts for the effort to find one of the u secret keys by exhaustive
search, and for the probability that two keys are equal. The second term expresses that
the complexity of recovering the accumulator or any rolling state inside KRAVATTE must
be as hard as recovering 256 secret bits. The third term expresses the effort to find a
collision in the accumulator. The number 137 in the denominator follows the lower bound
on differential trails inside KECCAK-p as detailed in Section 7.4.1.

The fourth and fifth terms only apply if the adversary has access to a quantum computer.
The fourth term accounts for a quantum search (or quantum amplification algorithm) to
find a k-bit key among u possibilities [30, 19]. The probability of success after N’ iterations
is sin? (2N’ 4+ 1) 0) with 6 = arcsin \/u/2%. We upper bound this as 2N’y/u/2%. The
fifth term similarly accounts for a quantum search over 256 secret bits.

Note that we assume that KRAVATTE is implemented on a classical computer. In other
words, we do not make claims w.r.t. adversaries who would make quantum superpositions
of queries to the device implementing KRAVATTE and holding its secret key(s).



22 Farfalle: parallel permutation-based cryptography

We limit ourselves to fixed-length keys that are chosen uniformly and independently to
keep our claim simple. As the rolling function roll. operates on 320 bits of the state, its
support, and leaves the remaining 1280 bits invariant, one could craft a distribution of K
such that k£ always has a particular key-independent value in the support of roll.. This
would allow switching blocks as the difference between the masks of two different blocks,
k + roll® (k), is known for any 8. Despite the fact that this key distribution would be fairly
artificial and involves the definition of p, !, it is non-trivial to express a security claim
that would only exclude pathological cases like the described example. So although we
expect the construction to be secure for nonuniformly chosen and variable-length keys too,
we restrict the claim to randomly drawn keys.

In the multi-user setting, we require the keys to be independently drawn. If an adversary
can manipulate K, such as in so-called unique keys that consist of a long-term key with a
counter appended, we recommend hashing the key and the counter with a proper hash
function such as KANGAROOTWELVE [15].

7.2 Kravatte-SIV and -SAE

Functions and schemes based on KRAVATTE follow the same naming conventions as for
Farfalle and adopt specific values for the parameters. In particular:

e KRAVATTE-SIV has t = 256,
o KRAVATTE-SAE has ¢t = 128 and ¢ = 8.

7.3 Kravatte-WBC and -WBC-AE

The wide block cipher and the authenticated encryption scheme based on it make use of two
Farfalle instances: one for H and one for G. In KRAVATTE-WBC, the latter is instantiated
with KRAVATTE and the former is a variant of KRAVATTE that we call SHORT-KRAVATTE.
SHORT-KRAVATTE has the same parameters as KRAVATTE, with the sole exception of pgq
that is the identity function instead of KECCAK-p[1600, n, = 4]. In addition, we set the
following parameters:

e KRAVATTE-WBC has ¢ = 8,
e KRAVATTE-WBC-AE has ¢t = 128 and ¢ = 8.

Making joint use of KRAVATTE and SHORT-KRAVATTE is not something we support in
general, as it is specific to the definition of KRAVATTE-WBC. We make a dedicated security
claim on KRAVATTE-WBC.

Claim 2. Let K = (Ko,...,K,—_1) be an array of u secret keys, each uniformly and
independently chosen from Zf5 with k < 320 and let Pk, (-) with i € Z,, be instances of
KRAVATTE-WBC. FEach of these instances support two interfaces:

Encipherment denoted as C = Pk, (W, P) taking as input a tweak and a plaintext and
returning a cryptogram;

Decipherment denoted as P = PKfl(VV, C) taking as input a tweak and a cryptogram
and returning a plaintext.

We express as Adv®™'P the probability of distinguishing Py, (W,-) from an array of uniformly
and independently drawn random permutations m; w,, indexed by the key index i, the value
of W and the length n = |P| = |C|, where the adversary can query the inverse permutations.



Guido Bertoni et al. 23

Let Nynin be the minimum length n among all the queries. When n, > 512 bits, Adv°P'P
s claimed to be upper bounded by

M2
(3)+ Gor=a - (4)

Here, N, N' and M are as in Claim 1, except that M also counts the number of input and
output blocks processed by SHORT-KRAVATTE.

The terms in (4) are those of Claim 1 and an additional term. This additional term covers
the case of an adversary attempting a collision in one of the branches of the Feistel network.
For small values of nyin, we believe there are no better attacks than generic ones. In
particular, when n < 3184, the size of either branch is at least ”T_e bits, thanks to the
definition of split[b, ] function, and this explains the additional term. We do not explicitly
care about the case nyi, > 3184, as this additional term becomes negligible compared to

the term in M in (3).

7.4 Rationale for the design choices

7.4.1 The number of rounds in p.

The choice of taking 6 rounds for p. is motivated by the difficulty of generating collisions
in the accumulator. Our investigations of differential propagation in KECCAK-p provide
evidence that differentials with high DP over a small number of rounds are dominated
by a single trail [11, 10]. For our reasoning in this paragraph, we explicitly assume
that this is the case for all differentials with relatively high DP over 5 and 6 rounds of
KECcCAK-p. Hence, for any such differential (A,~) there exists one trail @ from A to v
with DP(A,~) ~ DP(Q) = 27%(@). We will denote such a dominant trail by Q(A,~).

Using our assumption, we can substitute the differentials in Equation (2) in Section 5.1 by
trails, yielding:

Pr(collision) ~ Z DPQ(Q(A7 7)) = Z 9—2w(Q(A7))
¥ v

In iterated primitives with a round function of degree 2 such as KECCAK-p, the DP of a
round differential (or equivalently, its weight) only depends in the difference pattern at
the input of a round. Let us apply this to our 6-round trails Q(A,¥):

Q —A X0omopol @ xomopol a2 X0mopol @ xomopoh @ xomopol ds X07opol

The weight of its last-round differential (gs,~y) is fully determined by g5 and we can express
it as w(gs). The output difference v is a value that is compatible with g5 through the
round function. There are exactly 2¥(%5) output differences that can be reached from gs,
with exactly the same DP. Hence, for each trail Q(A,~), the 2%(45) — 1 other trails with
the same first five difference patterns have the same weight. The set of 2¥(%) six-round
trails that have the same sequence of differences as Q(A,7), except the last one, have the
same weight. In [21, 44] such sets of trails are called trail prefizes. For the weight of a trail
prefix, we take the weight of any trail in it. Clearly, Q(A,~) is in trail prefix Q' (A, gs).



24 Farfalle: parallel permutation-based cryptography

For our approximation of the collision probability above, we can now write:

Pr(collision) ~ Z 27 2w(Q(A)) (5)
~ compatible with g5
_ 9wlas)9—2w(Q'(Aq5))

— 972w(Q'(A,g5))+w(as)

— 9~ W(Q'(A,45))—w(Q'(A,q1))

Summarizing, Equation (5) gives the probability of a collision if we apply two messages
that differ in two blocks, with the same difference A, making the following assumptions:

e There is a single difference g5 such that DP(A, g5) >> DP(A,a) for any a # g5 ,
e The differential DP(A, g5) is dominated by a single trail.

If we apply n message pairs to KRAVATTE with the given difference, the probability to have
an accumulator collision within at least one such pair is close to n times the expression of
Equation (5). However, there can also be collisions between members of different pairs. Due
to the symmetry in KECCAK-p, we can increase the total collision probability significantly
by choosing the values of the pairs in a careful way.

For difference propagation, the round function of KECCAK-p is invariant with respect
to translation in the direction of the z-axis. If the round differential (a,b) has some
weight w(a), then any round differential (¢ <« 7,b <« 7) has the same weight, where
(a <« 7,b < 7) denotes (a, b) circularly shifted (or rotated) along z by some offset 7. This
carries over to trails and hence if Q'(A, ¢5) has some weight, Q' (A << 7, ¢5 <« 7) has the
same weight.

We can use this to boost the collision probability in the following way. As a starter, we
apply four messages M, M’', M" and M"" such that M; + M = M/ + M!” = A and
M; + M) = M] + M]" = A <« 1 and the same for blocks with index j. This set has two
pairs with difference A, two with difference A <« 1 and two with difference (A << 1) + A.
The former four pairs each have a collision probability given by Equation (5). The latter
two pairs have an input difference (A <« 1) + A that typically does not have a low-weight
5-round trail prefix starting from it. Hence, this structure of 4 inputs has a collision
probability four times that of Equation (5). The two differences A and A < 1 can be
seen as basis vectors of a two-dimensional vector space. We can generalize this by adding
A« 2, A « 3, etc. as additional basis vectors. Each additional basis vector adds
another difference and hence in a hypercube of dimension d there are in total d2¢~! pairs
with collision probability of Equation (5). This technique reaches its limit when we have
exhausted all shift offsets, i.e., when d = 64. A 64-dimensional vector space has 26364 = 269
pairs with each a collision probability given by Equation (5).

Applying n inputs with n = n’2%% for an integer n’ and with the inputs structured in
vector spaces described as above, gives rise to the following collision probability:

Pr(collision) =~ 726997 W(Q'(A,05)) =w(Q'(A,04)) — 25— W(Q'(A,5))—w(Q'(Aa4)

It is easy to see that w(Q'(A,q5)) + w(Q'(A, ¢4)) is lower bounded by the sum of the
lower bound for 5-round trail weights plus that for 6-round trails. The lower bounds of 50
for the weight of trails in KECCAK-p[1600, n, = 5] and of 92 in KECCAK-p[1600, n, = 6]
are directly applicable [21]. Taking these would result in an estimation of the collision
probability of n2792759%5 = n27137  Note that no trails have been found of the given
weights and that it is likely that the best trails have much higher weight, leading to an
even lower collision probability.



Guido Bertoni et al. 25

7.4.2 The rolling function roll.

The rolling function roll. restricted to the last plane is a linear transformation of maximum-
order. As a consequence, each mask value with non-zero last plane will be in a cycle of
length 2320 — 1. Mask values with a last plane equal to zero form fixed points for our
rolling function. We think the probability that a user key K maps to such a mask value is
negligible.

As the new value of x4 only depends on xy and 1, this allows the parallel computation of
four subsequent iterations.

Examining Equation (5) reveals that the weight of the first round differential in the trails
Q' contributes twice to the exponent. This is based on the assumption that the absolute
values of the inputs are randomized sufficiently by the (unknown) mask difference so
that there is not exploitable overlap in guessing bits at the input of y for the two active
blocks. To achieve this, the rolling function roll. operates on a full plane and the difference
between any two inputs to p. is spread over the full plane. The application of 8, p and w
spreads this difference over all bits of the state at the input of the non-linear step x of
the first round. Hence, the conditions imposed by the first round differentials translate to
conditions on different bit parities of the p. input.

An important purpose of roll. is to avoid affine spaces of large dimensions. This aspect is
discussed in more details in Section 8.5.

7.4.3 The rolling function roll,

The choice of roll, is motivated by the need to counter the attack described in [20] and
summarized in Section 5.3.

It is a lightweight non-linear invertible function written as a recursion on ten lanes of
64 bits. The non-linear term is the bitwise product of two lanes, one of which is shifted
by one position to remove symmetry along the z axis. Linear diffusion is achieved by
two additional terms in the recursion. Because of its lightness, the diffusion takes several
iterations, but it should be enough to counteract the aforementioned attack that requires
a very large number of output blocks.

Compared to roll., the support roll, is on 10 lanes. As the new value of xg only depends
on xg, 1 and z9, this allows the parallel computation of eight subsequent iterations. If
the support was only on 5 lanes, this would have either restricted the parallelism of roll,
or the choice of the recursion.

7.4.4 Short-Kravatte

The requirement for SHORT-KRAVATTE is that for any differential (A, o), its mean (or
expected) DP over all keys K, denoted as EDP(A, o), is below some limit €. Clearly, if
the output is only n bits, then € is at best 2. We conjecture that for SHORT-KRAVATTE,
with output 1600 — 8 bits, € is below 27137, We base this conjecture on the fact that
SHORT-KRAVATTE has 12 rounds between its input and output, and it is likely that the
best attack is to try constructing a collision in the accumulator. For block length of the
block cipher below 3184 bits the output of SHORT-KRAVATTE is truncated to roughly half
this block length and for block cipher width below 274 bits € will inevitably be larger than

27137'
7.4.5 The number of rounds in pg and p,

For p. we estimate that taking 6 rounds is sufficient. The difference between any pair of
rolling state values is unknown and can cover two full planes. Moreover, this difference is



26 Farfalle: parallel permutation-based cryptography

very likely to be outside the column parity kernel and hence it will quickly propagate to
high-weight differences [11]. As for the attacks described in [20], we believe the 6 rounds
of pe combined with the non-linearity of roll, provides a non-negligible safety margin.

Moreover, with respect to the attack exploiting many messages that form an affine space
in the accumulator, the fact that p, o pq has 12 rounds would require peeling off quite some
rounds to reduce the dimension of the affine space to values that correspond to reasonable
data complexity.

The result is that between any input and any output of KRAVATTE, there are always 18
rounds. We believe this to be sufficient to resist known types of cryptanalysis.

7.5 Implementations

Reference and optimized code for KRAVATTE are available in KECCAKTOOLS and in the
KECCAK code package, respectively [12, 16].

Following a similar work we did for the KANGAROOTWELVE extendable output function [15],
we report on the speed of our current optimized implementation on the Intel® Core™ i5-
6500 (Skylake). This processor supports the AVX2 instruction set with bitwise operations
on 256-bit registers. Using these instructions, we can exploit the parallelism present in
KRAVATTE and efficiently evaluate 4 instances of the KECCAK-p permutation at once on a
single core.

We list the result in Table 1, not only of KRAVATTE itself, but also of KRAVATTE-SAE,
KRAVATTE-SIV and KRAVATTE-WBC. It reports on number of cycles for in- and outputs
that are short (below 200 bytes) and of intermediate size 4096 bytes and the number of
cycles per byte for long in- and outputs. In general, one can observe a discontinuity as
the input/output size crosses a multiple of 200 bytes. In Table 1 this is apparent for
KRAVATTE-WBC: the first bump occurs just below 400 bytes, the point where the right
part of the plaintext becomes two blocks instead of one (the left part remains 1 block).



Guido Bertoni et al. 27
Table 1: Performance measured on Skylake (single core).
Kravatte
mask derivation 475  cycles
input and output less than 200 bytes 1240 cycles
MAC computation use case:
4096-byte input, output less than 200 bytes 3640 cycles
long inputs 0.58 cycles/byte
Stream encryption use case:
input less than 200 bytes, 4096-byte output 3650 cycles
long outputs 0.59 cycles/byte
Kravatte-SAE
Processing of metadata:
metadata less than 200 bytes, no plaintext 1410 cycles
metadata of 4096 bytes, no plaintext 3860 cycles
long metadata 0.61 cycles/byte
Processing of plaintext:
plaintext less than 200 bytes, no metadata 1420 cycles
plaintext of 4096 bytes, no metadata | 7710 cycles
long plaintexts 1.39  cycles/byte
Kravatte-SIV
plaintext and metadata both less than 200 bytes | 3320 cycles
plaintext of 4096 bytes, metadata less than 200 bytes | 8710 cycles
long plaintexts 1.43  cycles/byte
Kravatte-WBC
< 398 bytes | 5930 cycles
< 598 bytes | 7410 cycles
< 798 bytes | 8990 cycles
< 998 bytes | 9530 cycles
2048 bytes | 13080 cycles
4096 bytes | 15760 cycles
8192 bytes | 23420 cycles
16384 bytes | 40220 cycles
long block lengths 2.10 cycles/byte




28 Farfalle: parallel permutation-based cryptography

8 Non-linearity properties of linear rolling functions

In this section, we give some background on how a linear rolling function can contribute to
the resistance against higher-order differential attacks. We explain higher-order differential
attacks in the context of Farfalle in Section 8.1. Section 8.2 explains how we can investigate
the resistance a rolling function can offer against such attacks and Section 8.3 gives
a formula to estimate these characteristics. Finally, in Section 8.4 we report on some
experiments on toy-size rolling functions that confirm our estimations.

8.1 Higher-order differential attacks

For building py, pc, pq and p. we have in mind iterating a round function consisting of a
non-linear layer and a linear layer. We think non-linear layers of algebraic degree 2 are
an excellent choice for several reasons. Among others, this brings the study of difference
propagation and correlation to the realm of linear algebra. The downside is that an
n,-round permutation only has algebraic degree at most 2"r.

Permutations of low algebraic degree are vulnerable to attacks exploiting higher-order
differentials [39]. We denote a vector space (over GF(2)) by (v;), with {v;} a set of linearly
independent vectors that forms its basis. Its dimension is the number of basis vectors. An
affine space is a vector space translated over an offset (vector) a that is not in the basis and
we denote it as a + (v;). Its dimension is that of the vector space (v;). In a higher-order
differential attack, one exploits the fact that the (bitwise) sum of the output of a function
of algebraic degree d over an affine space of dimension m is a function of algebraic degree
at most d — m of the bits of a. Often, one can even reduce this degree by choosing the
vector space (v;) appropriately. One could attack Farfalle by attempting to construct an
input string such that the corresponding sequence of inputs to p. form an affine space
of dimension higher than d. The contribution of such a string to the accumulator, i.e.,
the sum of the images of these inputs through p., is zero. Similarly, if an adversary could
identify, in the sequence of rolling state values rollg(y), a subset that forms an affine space
of dimension higher than d, the corresponding output blocks of p, would sum to zero,
yielding a distinguisher.

Clearly, these attacks can be prevented by taking sufficiently many rounds n, and by
limiting the maximum number of blocks in Farfalle. However, for computational efficiency
and latency, we wish to limit the number of rounds. Therefore, adopting a rolling function
that prevents forming affine spaces at the input of p. and at the input of p. is a more
interesting countermeasure against higher-order algebraic attacks.

Let us take a look at the problem of generating four input blocks m; to Farfalle for index
values a, b, ¢ and d such that the input blocks to p. form an affine space of dimension
2 for an adversary that does not know the mask k. Four binary vectors A, B, C, D form
an affine space iff they sum to zero, i.e., A+ B 4+ C + D = 0. This affine space can be
expressed as A+ (vg,v1) with vg = A+ B and v; = A+ C, yielding A = A+0, B = A+,
C=A+wv; and D = A+ vy + v;. So the adversary must generate the input blocks m;
such that mg + roll®(k) + my + roll’ (k) + m. + roll°(k) +mg + roll?(k) = 0 or equivalently

Ma 4 My + me + mg = roll” (k) + roll’ (k) + roll(k) + roll* (k). (6)

The adversary only has to guess the sum in the righthand side of Equation (6) and any set
of input blocks summing to that value will do. It follows that for this to be infeasible, the
sum at the righthand side must be hard to predict for unknown k. For a linear rolling
function, the sum in the righthand side of Equation (6) is a linear function of k that can



Guido Bertoni et al. 29

be written as M x k with M a matrix that only depends on indices a, b, ¢, d. If this matrix
has rank 7, knowing the righthand side of Equation (6) requires correctly guessing r bits.
So we must choose our rolling function such that there are no indices a, b, ¢,d in range
[0, n] for some reasonable value of n that give a matrix M of low rank.

Generating sets of input blocks that form an affine space of higher dimension is even harder
because multiple such equations must be satisfied. This is because any affine space has
several subspaces of smaller dimensions. For example, a set of input blocks with indices
a,b,c,d,e, f,g,h form an affine 3-dimensional space if four equations like Equation (6) are
satisfied with following index sets: {a,b,c,d},{e, f,g,h},{a,b,e, f},{a,c,e,g}. Note that
the indices can be grouped differently. In general, a set of 2¢ input blocks forms an affine
d-dimensional space if 2¢ — d equations like Equation (6) are satisfied.

8.2 Subspace properties of linear rolling mask sequences

Any linear permutation acting on e bits can be expressed as a multiplication of the
e-bit vector k with a non-singular binary matrix R, so roll(k) = R x k. Iterating the
rolling function corresponds to exponentiating the matrix: roll’(k) = R! x k. So now
we consider the affine spaces in sets {R7 x kli < j < i+ n}. A priori, this leaves
many cases to investigate as there is a huge number of possible rolling functions R,
namely [, . (2e — 2d) ~ 2671 Moreover, even for a single rolling function there are
three parameters: k,7 and n. Fortunately, this can be greatly simplified by considering
equivalence.

We can transform R into F = P x R x P~ for P any non-singular matrix and prove
following lemma.

Lemma 1. Let F =P x R x P~ and I an index set of cardinality 2% for some d. Then,
{RJ x k|j € I} is an affine space iff {F/ x (P x k)|j € I} is an affine space.

Proof. Clearly F/ = P x R/ x P71, Then we can write {F/ x (P xk)|j € I} as
{P x R x k|j € I'}. This is simply equal to {R’ x k|j € I} where P is applied to all its
elements. As an affine space remains an affine space after applying a linear mapping to its
elements, this is an affine space. The proof for the other direction is similar. O

By choosing P carefully, we can obtain a matrix F with a particularly simple structure,
called the Frobenius normal form of R [40]. It follows that we can focus our attention to
such matrices. For the rolling functions we are interested in, we can simplify even more.
In particular, we aim for rolling functions with the mazimum-order property: the iterated
application to a non-zero mask k results in a single cycle of length 2¢ — 1.

The Frobenius normal form of a maximum-order mapping simply corresponds to the update
function of a linear feedback shift register (LFSR) with the minimal polynomial of the
Frobenius normal form as feedback polynomial [40]. It follows that we can limit our analysis
to state sequences of LFSRs with primitive feedback polynomials. The state of such an
LFSR at time ¢ is simply z'k(z) mod p(z) with p(z) its feedback polynomial and k(x) its
initial state. So, the sequences we investigate are now {z'k(x) mod p(z)|0 < t < n}.

Let us now return to our problem at the end of Section 8.1, in particular, the righthand
side of Equation (6) now becomes k(z)(z® +z° + ¢ +z?) mod p(z): it is the multiplication
of k(x) with a sum of four monomials. As these are elements in a field, their sum is simply
another field element. Let 2% + 2 4+ 2¢ + 2% mod p(z) = d(z). There are now two cases:
Either d(z) is zero or it is non-zero. If zero, the lefthand side of Equation (6) is also zero
and the adversary has an easy job in forming an affine space: she just has to choose m;



30 Farfalle: parallel permutation-based cryptography

values that sum to zero. If d(z) # 0, guessing the lefthand side of Equation (6) implies
guessing k fully as k(z) can be computed from it by multiplying with the multiplicative
inverse of d(z). It follows that for the latter case the success probability of forming an
affine space of dimension 2 is 27°¢.

It follows that it should be hard to find a subset of a sequence of mask values that forms
an affine space. In general, the property that we wish to have is that for any sequence
{rollV (k)| < i < j+n} to contain an affine space of high dimension, n must be very large.

Multiplication by k(z) modulo p(x) is an invertible linear mapping that can be factored out
and hence we can limit our analysis to sequences {z' mod p(z)|0 <t < n}. In particular,
we will study the so-called affine span profile of a primitive polynomial.

Definition 2. The affine span for dimension d of a primitive polynomial p(z) is the
minimum length of a sequence {z’ mod p(x)|0 < i < n} containing an affine space of
dimension d. We denote it as Ly, (p(z), d),

We call the sequence of values Lyin(p(x),d) for increasing d the affine span profile of p(x).

For the case d = 2 there is an interesting alternative description. As four vectors ¢, u, v
and w form an affine space iff t + v + v+ w = 0, Lyin(p(2),2) is the smallest value of
n such that there exist values nq,no smaller than n such that 1 + 2™ + 2™ + 2" =0
(mod p(z)). In other words, n is the degree of the polynomial with smallest degree and
Hamming weight 4 that is a multiple of p(x). For higher dimensions (d > 2), there must
be multiple such polynomials.

8.3 Estimating the affine span profile

In this section, we try to estimate the affine span profile of primitive polynomials using
combinatorics and making randomness assumptions. We can verify the quality of our
estimations by actually computing affine span profiles for primitive polynomials of relatively
low degree.

Lemma 2. The probability that a random set of 2% vectors of dimension e forms an affine
space s _
[lo<ica2 -2
2e_1 T
(3421) [ogica 2t — 2/

Proof. The total number of possible vector spaces of dimension d of e-bit vectors is (see
e.g. [18])

H0§i<d 26 -2’
HO§i<d 24 — 2¢

An affine space is a vector space shifted over an offset. If we select the offset from the
space orthogonal to the vector space, each choice will give another affine space. So, we
choose the offset from a space with dimension e — d and hence the total number of affine
spaces of dimension d of e-bit vectors is:

2¢ H0§i<d 2 —2°
24 [To<ica 24 -2

The total probability is this expression divided by the total number of different sets of
e-bit vectors of cardinality 2¢, namely @d)

2¢ H0§i<d 2° -2 H0§i<d 2 —2°

@Z)Qd HOSKd 2d—2i (gft:i) H0§i<d 2d —2i




Guido Bertoni et al. 31

O

For the sake of our estimation we assume a sequence of successive LFSR states behaves
like a sequence of different random independent values. A subsequence of length n of
the LFSR states has (272) subsets. As discussed in Section 8.1, these can however not be
considered independent. Namely, if 2¢ elements with indices in some index set I form
an affine space, this is also the case for the elements in positions I + j. This partitions
the (272) subsets of the length-n sequence in classes and in each class all subsets are affine
spaces or none are. Each class has exactly one member with smallest index equal to 0 and

hence we can fix the smallest index to 0. The total number of classes is hence (272:11).
If we assume that modulo this symmetry property, a sequence of LFSR states behaves like
a sequence of different random independent values, the expected number of affine spaces

of dimension d in a subsequence of length n of an e-bit LFSR is:

(;111) H0§i<d 2° -2 . (n— 1)(2"1—1) H0§i<d 26 -2
(5220 Tocica2? =20 (2° = D@y [Togica 2! — 2

In order to manipulate this expression so that it can be used for our estimations, we simplify

it by making a number of approximations, namely (n — 1)(ga_1) = n2'-1 (2¢ — 1)(ga_1) =

2¢(2"=1) and [To<icq 2 — 2" &~ 24, These approximations are justified as long as 2¢ < 2°

and 2¢ < n. This yields

d
n2 -1

9(2¢-1—d)e H0<i<d 9d _9i "

(7)

We can now estimate Ly, (p(z), d) for some dimensions d and e. A set of n random vectors
is likely to contain an affine space of dimension d if the expected number as expressed in
Equation (7) equals 1. Setting it equal to 1 and solving for n yields

Lin(p(z), d) = o (15155 )e H (24— 27) o

0<i<d

If we express Lmin(p(),d) by its logarithm with base 2: Luyin(p(z),d) = 2¥ we obtain a

simple expression:
d
V= (1—2d1>€+€(d) 5

with €(d) the binary logarithm of the rightmost term of Equation (8). Table 2 lists the
coefficients for computing Equation (8) for small dimensions.

Table 2: Coefficients for estimating the affine span values.

d 2 3 4 5 6 7

(1 _ L) 1 4 11 26 5T 120
2d—1 3 7 15 31 63 127

e(d) 0.86 1.06 0.95 0.75 0.54 0.37

8.4 Experimental verification

Clearly, we agree with John von Neumann that assuming a sequence of successive LFSR
states behaves like a sequence of different random independent values puts us in a state of
sin. To verify the validity of Equation (8) we have done some experimental verification.



32 Farfalle: parallel permutation-based cryptography

affine span

92 | | | | | | | |
5 10 15 20 25 30 35 40 45 50

degree of the feedback polynomial

Figure 3: Measured affine span of some primitive pentanomials (marks) vs. estimates
(lines).

We started with primitive trinomials and found that their affine span for dimension 2 does
not obey Equation (8). Namely primitive trinomials systematically exhibit a low value
Lin(p(x),2). The reason is that low-degree multiples of trinomials exist with Hamming
weight 4. For trinomial 1+ 2%+ 2¢ we have (1 + 2% + 2¢) (1 + 2%) = 1+ 22+ 2¢ +20T¢. It
follows that Ly (14 2%+ 2¢,2) = a+e. This does not generalize to primitive polynomials
of higher Hamming weight. Naturally, this does not mean that no similar effects would
exist for other types of polynomials, but in our experiments, we did not observe any.

We further computed the affine span values for small dimension d (2, 3 and 4) for the
pentanomials listed in [53] of degrees e from 8 to 48. We report the results in Figure 3.
Although we see large deviations (up to a factor 5) between the measured and estimated
values, the estimates clearly give the trend. The largest deviations occur for dimension 2
and as the dimension grows, the deviations get smaller.

8.5 Application to Kravatte’s rolling function roll,

We found the rolling function roll, in KRAVATTE using the method proposed in [29], which
goes as follows. We try candidate rolling functions with an efficient implementation until
we have found one that is maximum-order. Many candidates can be generated by varying
some parameters of a simple linear mapping. For each candidate, we determine the minimal
polynomial of the sequence formed by one bit of the state using the Berlekamp-Massey
algorithm [43]. We check whether this is a primitive polynomial of degree e and if so, we
have found a maximum-order rolling function. In the notation adopted in [29], the rolling
function roll. looks like this:

(w0, 1, 2, T3, T4) = (X1, T2, 3, T4, (o K 7) + 21 + (1> 3)) ,

where << denotes a cyclic shift (or rotation) to the left and > a shift to the right.



Guido Bertoni et al. 33

The subspace properties of the rolling function are determined by its minimal polynomial:

1+1,58 +I74 +l‘86 +I102 +$116 +l‘118 +93122 +$129 +I134+1’137+I138 +l’144
+.’13148 +.Z'186 +LE187+J}189 -‘1-1)195 +.’1?197 +$203 +1}211 +LL‘214 +I215 +$218 —‘1-37221
+£L’223 +£L‘229 +.’[230 -|—£U231 —|—£E232 _,_1,239 +£L’244 +$246 +.’£250 -|—(E251 _'_1,253 +1,256
+3?257 +$259 _1_33260 —|—$261 +$262 _,’_$265 +J,‘267 +.13272 —|—.Z‘273 —|—$275 —|—J}276 +$279

+£E281 -|-{L‘282 +JJ285 _~_$287 +x292 +$293 -|—(E295 +{L‘296 +1’303 +$305 +£L'313 +$320

As this is not a trinomial, we expect the Equation (8) in Section 8.3 to give a reliable
estimate for the affine span profile. In particular, it predicts that we would have to generate
a sequence of more than 2'9% masks even before we see an affine space of dimension 2.

9 Conclusions and future work

Farfalle is a versatile new construction for keyed functions in permutation-based symmet-
ric cryptography. It can be seen as an inherently parallelizable counterpart of sponge
and duplex. It can better exploit resources available on high-end CPUs such as SIMD
instructions. Yet, the full-state keyed duplex remains the better choice if low-memory
usage is a priority. Note also that Farfalle is inherently keyed and hence is no substitute
for sponge-based hashing.

When considering protections against side-channel attacks, duplex-based modes seem to
offer better resilience. Yet, achieving something similar for Farfalle-SAE could be done by
extending Farfalle, where a third rolling function rolls would be applied on the output mask
k’. This way, the output masks would also evolve at every block. The rolling functions
roll. and roll, would have to affect all bits of the mask and should rather provide some
mixing and non-linearity to all bits instead of just moving part of the bits. A suitable
choice would be a single round of a cryptographic permutation operating on the full b-bit
string. For dealing with multiple Farfalle calls with the same key, or with incremental
inputs, it would be necessary to introduce the ability to take as initial mask the final mask
of the previous call. Notice that the introduction of leakage resilience goes at the expense
of some parallelism as the rolling function becomes heavier.

Acknowledgments

We are very grateful to the authors of [33, 20], namely Colin Chaigneau, Thomas Fuhr,
Henri Gilbert, Jian Guo, Jérémy Jean, Jean-René Reinhard and Ling Song, for timely
communicating to us their findings. We would also like to thank Monika Seidlova for
her investigations on higher-order differential attacks, Kay Lukas for his investigations of
rolling functions and Joost Renes for his help on finite fields.

References

[1] E. Andreeva, J. Daemen, B. Mennink, and G. Van Assche, Security of keyed sponge
constructions using a modular proof approach, Fast Software Encryption - 22nd
International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised



34

Farfalle: parallel permutation-based cryptography

=

[18]

Selected Papers (Gregor Leander, ed.), Lecture Notes in Computer Science, vol. 9054,
Springer, 2015, pp. 364-384.

C. Badertscher, C. Matt, Ueli Maurer, P. Rogaway, and B. Tackmann, Robust
authenticated encryption and the limits of symmetric cryptography, Cryptography and
Coding - 15th IMA International Conference, IMACC 2015, Oxford, UK, December
15-17, 2015. Proceedings (Jens Groth, ed.), Lecture Notes in Computer Science, vol.
9496, Springer, 2015, pp. 112-129.

D. J. Bernstein, How to stretch random functions: The security of protected counter
sums, J. Cryptology 12 (1999), no. 3, 185-192, https://cr.yp.to/papers.html#
stretch.

, The Salsa20 family of stream ciphers, 2007, Document ID:
31364286077dcdff8e4509{9f3139ad, http://cr.yp.to/papers.html#salsafamily.

__, Some challenges in heavyweight cipher design, 2016, Presented at Dagstuhl
seminar on Symmetric Cryptography. Schloss Dagstuhl.

G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and R. Van Keer,
Farfalle: parallel permutation-based cryptography, Cryptology ePrint Archive, Report
2016/1188, 2016, https://eprint.iacr.org/2016/1188.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, On the indifferentiability
of the sponge construction, Advances in Cryptology — Eurocrypt 2008 (N. P. Smart,
ed.), Lecture Notes in Computer Science, vol. 4965, Springer, 2008, http://sponge.
noekeon.org/, pp. 181-197.

, Cryptographic sponge functions, January 2011, http://sponge.noekeon.

org/.

, Duplexing the sponge: single-pass authenticated encryption and other applica-
tions, Selected Areas in Cryptography (SAC), 2011.

, On alignment in KeEccAk, ECRYPT II Hash Workshop 2011, 2011.

., The KECCAK reference, January 2011, http://keccak.noekeon.org/.

G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, KECCAKTOOLS
software, September 2015, https://github.com/gvanas/KeccakTools.

, CAESAR submission: KETJE v2, September 2016, http://ketje.noekeon.
org/.

, CAESAR submission: KEYAK v2, document version 2.2, September 2016,
http://keyak.noekeon.org/.

, KANGAROOTWELVE: fast hashing based on KECCAK-p, Cryptology ePrint
Archive, Report 2016/770, 2016, http://eprint.iacr.org/2016/770.

, KECCAK code package, June 2016, https://github.com/gvanas/
KeccakCodePackage.

J. Black and P. Rogaway, A block-cipher mode of operation for parallelizable message
authentication, Advances in Cryptology - EUROCRYPT 2002, International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Amsterdam, The
Netherlands, April 28 - May 2, 2002, Proceedings (L. R. Knudsen, ed.), Lecture Notes
in Computer Science, vol. 2332, Springer, 2002, pp. 384-397.

C. Bouillaguet, Etudes d’hypothéses algorithmiques et attaques de primitives cryp-
tographiques, thése de doctorat, Université Paris Diderot, 2011.


https://cr.yp.to/papers.html#stretch
https://cr.yp.to/papers.html#stretch
http://cr.yp.to/papers.html#salsafamily
https://eprint.iacr.org/2016/1188
http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/
https://github.com/gvanas/KeccakTools
http://ketje.noekeon.org/
http://ketje.noekeon.org/
http://keyak.noekeon.org/
http://eprint.iacr.org/2016/770
https://github.com/gvanas/KeccakCodePackage
https://github.com/gvanas/KeccakCodePackage

Guido Bertoni et al. 35

[19] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Quantum amplitude amplification
and estimation, Contemporary Mathematics 305 (2002), 53-74.

[20] C. Chaigneau, T. Fuhr, H. Gilbert, J. Guo, J. Jean, J.-R. Reinhard, and L. Song,
Key-recovery attacks on full KRAVATTE, private communications.

[21] J. Daemen and G. Van Assche, Differential propagation analysis of KECCAK, Fast
Software Encryption 2012, 2012.

[22] J. Daemen, B. Mennink, and G. Van Assche, Full-state keyed duplex with built-in
multi-user support, IACR Cryptology ePrint Archive 2017 (2017), 498.

[23] J. Daemen and V. Rijmen, The design of Rijndael — AES, the advanced encryption
standard, Springer-Verlag, 2002.

, A new MAC construction ALRED and a specific instance ALPHA-MAC,
Fast Software Encryption (H. Gilbert and H. Handschuh, eds.), Lecture Notes in
Computer Science, vol. 3557, Springer, 2005, pp. 1-17.

, The Pelican MAC function, IACR Cryptology ePrint Archive 2005 (2005),

[24]

[25]

, Refinements of the ALRED construction and MAC security claims, IET
information security 4 (2010), 149-157.

[27] T. Dierks and E. Rescorla, The transport layer security (TLS) protocol version 1.2,
Network Working Group of the IETF, RFC 5246, August 2008.

[28] S. Even and Y. Mansour, A construction of a cipher from a single pseudorandom
permutation, J. Cryptology 10 (1997), no. 3, 151-162.

[29] R. Granger, P. Jovanovic, B. Mennink, and S. Neves, Improved masking for tweakable
blockciphers with applications to authenticated encryption, Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part I (Marc Fischlin and Jean-Sébastien Coron, eds.), Lecture Notes in Computer
Science, vol. 9665, Springer, 2016, pp. 263—-293.

[30] L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings
of the 28th Annual ACM Symposium on the Theory of Computing, May 1996 (Gary L.
Miller, ed.), ACM, 1996, pp. 212-219.

[31] S. Gueron, A. Langley, and Y. Lindell, AES-GCM-SIV: Nonce misuse-resistant
authenticated encryption, CFRG Internet-Draft, draft-irtf-cfrg-gemsiv-04, February
2017.

[32] S. Gueron and Y. Lindell, GCM-SIV: full nonce misuse-resistant authenticated encryp-
tion at under one cycle per byte, Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA, October 12-6, 2015
(Indrajit Ray, Ninghui Li, and Christopher Kruegel, eds.), ACM, 2015, pp. 109-119.

[33] J. Guo and L. Song, Cube attack against full Kravatte, Cryptology ePrint Archive,
Report 2017/1026, 2017, https://eprint.iacr.org/2017/1026.

[34] V. Tung Hoang, T. Krovetz, and P. Rogaway, Robust authenticated-encryption AEZ
and the problem that it solves, Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I (Elisabeth Oswald
and Marc Fischlin, eds.), Lecture Notes in Computer Science, vol. 9056, Springer,
2015, pp. 15-44.


https://eprint.iacr.org/2017/1026

36 Farfalle: parallel permutation-based cryptography

[35] M. A. Simplicio Jr. and P. S. L. M. Barreto, Revisiting the security of the ALRED
design and two of its variants: Marvin and LetterSoup, IEEE Trans. Information
Theory 58 (2012), no. 9, 6223-6238.

[36] M. A. Simplicio Jr., P. d’A. F. F. S. Barbuda, P. S. L. M. Barreto, T. C. M. B. Carvalho,
and C. B. Margi, The MARVIN message authentication code and the LETTERSOUP
authenticated encryption scheme, Security and Communication Networks 2 (2009),
no. 2, 165-180.

[37] H. Krawczyk, LFSR-based hashing and authentication, Advances in Cryptology -
CRYPTO 94, 14th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 21-25, 1994, Proceedings (Y. Desmedt, ed.), Lecture Notes
in Computer Science, vol. 839, Springer, 1994, pp. 129-139.

[38] T. Krovetz, HS1-SIV (v2), 2015, Submission to CAESAR competition.

[39] X. Lai, Higher order derivatives and differential cryptanalysis, Communications and
Cryptography (R. E. Blahut, D.J. Costello, U. Maurer, and T. Mittelholzer, eds.),
The Springer Series in Engineering and Computer Science, vol. 276, Springer US,
1994, pp. 227-233 (English).

[40] D. Lay, S. Lay, and J. McDonald, Linear algebra and its applications, 5 ed., Pearson,
2016.

[41] M. Luby and C. Rackoff, How to construct pseudorandom permutations from pseudo-
random functions, SIAM J. Comput. 17 (1988), no. 2, 373-386.

[42] S. Lucks, Faster Luby-Rackoff ciphers, Fast Software Encryption, Third International
Workshop, Cambridge, UK, February 21-23, 1996, Proceedings (Dieter Gollmann,
ed.), Lecture Notes in Computer Science, vol. 1039, Springer, 1996, pp. 189-203.

[43] J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Information
Theory 15 (1969), no. 1, 122-127.

[44] S. Mella, J. Daemen, and G. Van Assche, New techniques for trail bounds and
application to differential trails in Keccak, TACR Trans. Symmetric Cryptol. 2017
(2017), no. 1, 329-357.

[45] B. Mennink, R. Reyhanitabar, and D. Vizar, Security of full-state keyed sponge
and duplex: Applications to authenticated encryption, Advances in Cryptology -
ASTACRYPT 2015, New Zealand, 2015 (T. Iwata and J. H. Cheon, eds.), LNCS, vol.
9453, Springer, 2015, pp. 465-489.

[46] M. Naor and O. Reingold, On the construction of pseudorandom permutations: Luby-
Rackoff revisited, J. Cryptology 12 (1999), no. 1, 29-66.

[47) NIST, Federal information processing standard 180-1, secure hash standard, April
1995.

, Federal information processing standard 180-2, secure hash standard, August
2002.

, Federal information processing standard 202, SHA-3 standard: Permutation-
based hash and extendable-output functions, August 2015, http://dx.doi.org/10.
6028/NIST.FIPS.202.

[50] The Tor Project, Tor project: Anonymity online, https://www.torproject.org/.


http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
https://www.torproject.org/

Guido Bertoni et al. 37

[61] P. Rogaway and T. Shrimpton, Deterministic authenticated-encryption: A provable-
security treatment of the key-wrap problem, IACR, Cryptology ePrint Archive 2006
(2006), 221.

[52] T. Ylonen and C. Lonvick, The secure shell (SSH) protocol architecture, Network
Working Group of the IETF, RFC 4251, January 2006.

[63] M. Zivkovié¢, Table of primitive binary polynomials, Math. Comp 63 (1994), 38-5.



38 Farfalle: parallel permutation-based cryptography

A Versions of Kravatte

As work in progress, the definition of KRAVATTE has evolved since its first appearance on
the IACR ePrint archive [6].

e “KRAVATTE initial release”, as in [6, version 20170101:153600]. There was only a
written definition, without any implementation. The number of rounds was 6 for py,
pe and pe. The definition of Farfalle did not include pq then.

e “KRAVATTE 6644”, as in [6, version 20170717:134002]. The specifications came with
reference code in [12, commit of July 17th, 2017] and with optimized code in [16,
commit of July 18th, 2017]. Compared to the previous version, the definition of
Farfalle underwent significant improvements, and KRAVATTE followed accordingly.
We increased the number of rounds to (6, 6,4, 4) for (py, pe, Pd, Pe) mainly to address
the high-order differential attack described in Section 5.4. A more detailed log of the
changes can be found in Appendix B of [6, version 20170717:134002].

e “KRAVATTE Achouffe”; as in this paper. In the light of the attacks in [33, 20], we
increased the number of rounds to (6,6,6,6) for (py, pc, pd,Pe) and switched to a
non-linear rolling function for roll,.



	Introduction
	Overview of the paper

	Notation and components
	Strings
	Permutations
	Rolling functions

	Specification of Farfalle
	Modes of use
	Session-supporting authenticated encryption scheme
	SIV authenticated encryption scheme
	Wide block cipher

	Rationale for Farfalle
	Accumulator collision
	Properties of the mask derivation
	Distinguishing the output from a random string (single input)
	Distinguishing the output from a random string (multiple inputs)
	Finding the value of k from input-output pairs

	Comparison with prior art
	Farfalle
	Session-based authenticated encryption mode
	SIV authenticated encryption mode
	Wide block cipher

	Kravatte: Farfalle based on Keccak-p
	Security claim
	Kravatte-SIV and -SAE
	Kravatte-WBC and -WBC-AE
	Rationale for the design choices
	Implementations

	Non-linearity properties of linear rolling functions
	Higher-order differential attacks
	Subspace properties of linear rolling mask sequences
	Estimating the affine span profile
	Experimental verification
	Application to Kravatte's rolling function rollc

	Conclusions and future work
	Versions of Kravatte

