Revisiting Variable Output Length XOR Pseudorandom Function

Srimanta Bhattacharya and Mridul Nandi
Indian Statistical Institute, Kolkata.

Fast Software Encryption 2018
Bruges, Belgium
March, 2018

Outline

1 Introduction

- Basic Problem
- Motivation
- Differences of WOR samples
- Our Contribution

2 Applications

- XORP $^{e_{K}}[w]$ Construction
- Security Definitions
- Privacy Security of Authenticated Encryption

3 Mirror Theory and χ^{2} Method

- Mirror Theory
- χ^{2} Method

4 Proof Outline

Basic Problem:

Basic Problem:

- Let \mathscr{G} be a set of size N.

Basic Problem:

- Let \mathscr{G} be a set of size N.
- Given a without replacement (WOR) random sample of size $\bar{\sigma}$ from \mathscr{G}

Basic Problem:

Let \mathscr{G} be a set of size N.

- Given a without replacement (WOR) random sample of size $\bar{\sigma}$ from \mathscr{G}
- Goal is to generate a pseudorandom sample of size σ.

Basic Problem:

Total variation distance from a truly random WR sample is negligible

Let \mathscr{G} be a set of size N.

- Given a without replacement (WOR) random sample of size $\bar{\sigma}$ from \mathscr{G}
- Goal is to generate a pseudorandom sample of size σ.

Basic Problem:

Let \mathscr{G} be a set of size N.

- Given a without replacement (WOR) random sample of size $\bar{\sigma}$ from \mathscr{G}
- Goal is to generate a pseudorandom sample of size σ.
- The original sample (with $\sigma=\bar{\sigma}$) ?

Basic Problem:

Let \mathscr{G} be a set of size N.

- Given a without replacement (WOR) random sample of size $\bar{\sigma}$ from \mathscr{G}
- Goal is to generate a pseudorandom sample of size σ.
- The original sample (with $\sigma=\bar{\sigma}$) ?
- Distance between a random WOR sample and a random WR sample $\approx \frac{\sigma(\sigma-1)}{2 N}$.

Basic Problem:

- Let \mathscr{G} be a set of size N.
- Given a without replacement (WOR) random sample of size $\bar{\sigma}$ from \mathscr{G}
- Goal is to generate a pseudorandom sample of size σ.
- The original sample (with $\sigma=\bar{\sigma}$) ?
- Distance between a random WOR sample and a random WR sample $\approx \frac{\sigma(\sigma-1)}{2 N}$.

Negligible only when $\sigma \ll \sqrt{N}$

Basic Problem:

- Let \mathscr{G} be a set of size N.
- Given a without replacement (WOR) random sample of size $\bar{\sigma}$ from \mathscr{G}
- Goal is to generate a pseudorandom sample of size σ.
- The original sample (with $\sigma=\bar{\sigma}$) ?
- Distance between a random WOR sample and a random WR sample $\approx \frac{\sigma(\sigma-1)}{2 N}$.
Can we generate a pseudorandom sample for which the total variation distance becomes negligible even for $\sigma>\sqrt{N}$?

"Luby-Rackoff backwards" (PRFs from PRPs) Bellare et al., 2000.

"Luby-Rackoff backwards" (PRFs from PRPs) Bellare et al., 2000.

- Block cipher based PRFs.

Bellare et al., 2000, Nandi, 2009, Iwata and Kurosawa, 2003, Black and Rogaway, 2002, Luykx et al., 2016.
"Luby-Rackoff backwards" (PRFs from PRPs) Bellare et al., 2000.

- Block cipher based PRFs.

Bellare et al., 2000, Nandi, 2009, Iwata and Kurosawa, 2003, Black and Rogaway, 2002, Luykx et al., 2016.

- PMAC_Plus Yasuda, 2011, Datta et al., 2017,

LightMAC+ Naito, 2017 and 3kf9 Zhang et al., 2012.

[^0]"Luby-Rackoff backwards" (PRFs from PRPs) Bellare et al., 2000.

- Block cipher based PRFs.

Beyond birthday bound security Bellare et al., 2000, Nandi, 2009, Iwata and Kurosawa, 2003, Black and Rogaway, 2002, Luykx et al., 2016.

- PMAC_Plus Yasuda, 2011, Datta et al., 2017,

LightMAC+ Naito, 2017 and 3kf9 Zhang et al., 2012.

Differences of WOR Samples:

Differences of WOR Samples:

$$
T^{\bar{\sigma}}:=\left(T_{1,1}, \ldots, T_{1, w}, \ldots, T_{i, 1}, \ldots, T_{i, w}, \ldots, T_{q, 1}, \ldots, T_{q, w}\right) \leftarrow \text { wor } \mathscr{G} .
$$

Differences of WOR Samples:

Abelian group under the group operation "+"("-" inverse)

$$
\begin{aligned}
& \bar{\sigma}=q w \text { with } w \geq 2 \\
& \qquad T^{\bar{\sigma}}:=\left(T_{1,1}, \ldots, T_{1, w}, \ldots, T_{i, 1}, \ldots, T_{i, w}, \ldots, T_{q, 1}, \ldots, T_{q, w}\right) \leftarrow \text { wor } \mathscr{G} .
\end{aligned}
$$

Differences of WOR Samples:

$$
\begin{gathered}
T^{\bar{\sigma}}:=\left(T_{1,1}, \ldots, T_{1, w}, \ldots, T_{i, 1}, \ldots, T_{i, w}, \ldots, T_{q, 1}, \ldots, T_{q, w}\right) \leftarrow \text { wor } \mathscr{G} . \\
S^{\sigma}:=\left(S_{1,1}, \ldots, S_{1, w-1}, \ldots, S_{i, 1}, \ldots, S_{i, w-1}, \ldots, S_{q, 1}, \ldots, S_{q, w-1}\right) .
\end{gathered}
$$

Differences of WOR Samples:

$$
\begin{aligned}
& T^{\bar{\sigma}}:=\left(T_{1,1}, \ldots, T_{1, w}, \ldots, T_{i, 1}, \ldots, T_{i, w}, \ldots, T_{q, 1}, \ldots, T_{q, w}\right) \leftarrow \text { wor } \mathscr{G} . \\
& \sigma=q(w-1) \\
& S^{\sigma}:=\left(S_{1,1}, \ldots, S_{1, w-1}, \ldots, S_{i, 1}, \ldots, S_{i, w-1}, \ldots, S_{q, 1}, \ldots, S_{q, w-1}\right) .
\end{aligned}
$$

Differences of WOR Samples:

$$
\begin{gathered}
T^{\bar{\sigma}}:=\left(T_{1,1}, \ldots, T_{1, w}, \ldots, T_{i, 1}, \ldots, T_{i, w}, \ldots, T_{q, 1}, \ldots, T_{q, w}\right) \leftarrow \text { wor } \mathscr{G} . \\
\left.S^{\sigma}:=S_{1,1}, \ldots, S_{1, w-1}, \ldots, S_{i, 1}, \ldots, S_{i, w-1}, \ldots, S_{q, 1}, \ldots, S_{q, w-1}\right) .
\end{gathered}
$$

Differences of WOR Samples:

$$
T^{\bar{\sigma}}:=\left(T_{1,1}, \ldots, T_{1, w}, \ldots, T_{i, 1}, \ldots, T_{i, w}, \ldots, T_{q, 1}, \ldots, T_{q, w}\right) \leftarrow \text { wor } \mathscr{G} .
$$

$$
S^{\sigma}:=\left(S_{1,1}, \ldots, S_{1, w-1}, \ldots, S_{i, 1}, \ldots, S_{i, w-1}, \ldots, S_{q, 1}, \ldots, S_{q, w-1}\right)
$$

$$
S_{1,1}=T_{1,1}-T_{1, w} \quad S_{1, w-1}=T_{1, w-1}-T_{1, w}
$$

$$
S_{q, w-1}=T_{q, w-1}-T_{q, w}
$$

Differences of WOR Samples:

$$
\begin{gathered}
T^{\bar{\sigma}}:=\left(T_{1,1}, \ldots, T_{1, w}, \ldots, T_{i, 1}, \ldots, T_{i, w}, \ldots, T_{q, 1}, \ldots, T_{q, w}\right) \leftarrow \text { wor } \mathscr{G} . \\
S^{\sigma}:=\left(S_{1,1}, \ldots, S_{1, w-1}, \ldots, S_{i, 1}, \ldots, S_{i, w-1}, \ldots, S_{q, 1}, \ldots, S_{q, w-1}\right) . \\
R^{\sigma}:=\left(R_{1,1}, \ldots, R_{1, w-1}, \ldots, R_{i, 1}, \ldots, R_{i, w-1}, \ldots, R_{q, 1}, \ldots, R_{q, w-1}\right) \leftarrow \mathrm{wr} \mathscr{G} .
\end{gathered}
$$

Differences of WOR Samples:

$$
\begin{gathered}
T^{\bar{\sigma}}:=\left(T_{1,1}, \ldots, T_{1, w}, \ldots, T_{i, 1}, \ldots, T_{i, w}, \ldots, T_{q, 1}, \ldots, T_{q, w}\right) \leftarrow \text { wor } \mathscr{G} . \\
S^{\sigma}:=\left(S_{1,1}, \ldots, S_{1, w-1}, \ldots, S_{i, 1}, \ldots, S_{i, w-1}, \ldots, S_{q, 1}, \ldots, S_{q, w-1}\right) . \\
R^{\sigma}:=\left(R_{1,1}, \ldots, R_{1, w-1}, \ldots, R_{i, 1}, \ldots, R_{i, w-1}, \ldots, R_{q, 1}, \ldots, R_{q, w-1}\right) \leftarrow \mathrm{wr} \mathscr{G} .
\end{gathered}
$$

$$
\text { What is }\left\|S^{\sigma}-R^{\sigma}\right\| ? ?
$$

Theorem (Pseudorandomness of S)

$$
\left\|S^{\sigma}-R^{\sigma}\right\| \leq \frac{\sqrt{2} w^{2} q}{N}+\frac{w(w-1) q}{2 N}
$$

Theorem (Pseudorandomness of S)

$$
\left\|S^{\sigma}-R^{\sigma}\right\| \leq \frac{\sqrt{2} w^{2} q}{N}+\frac{w(w-1) q}{2 N}
$$

Moreover, when $w=2$ and $(\mathscr{G},+)=\left(\{0,1\}^{n}, \oplus\right)$, we have

$$
\left\|S^{\sigma}-R^{\sigma}\right\| \leq\left(\frac{2(N-1) q^{3}}{(N-2 q)^{4}}\right)^{\frac{1}{2}}+\frac{q}{N}
$$

Theorem (Pseudorandomness of S)

$$
\left\|S^{\sigma}-R^{\sigma}\right\| \leq \frac{\sqrt{2} w^{2} q}{N}+\frac{w(w-1) q}{2 N}
$$

Moreover, when $w=2$ and $(\mathscr{G},+)=\left(\{0,1\}^{n}, \oplus\right)$, we have

$$
\left\|S^{\sigma}-R^{\sigma}\right\| \leq\left(\frac{2(N-1) q^{3}}{(N-2 q)^{4}}\right)^{\frac{1}{2}}+\frac{q}{N}
$$

Theorem (Variable width case)

Let $w_{1}, w_{2}, \ldots, w_{q} \geq 2, \bar{\sigma}=\sum_{i} w_{i}$, and $w_{\max }=\max _{i} w_{i}$. Then,

$$
\left\|S^{\prime \bar{\sigma}}-R^{\prime \bar{\sigma}}\right\| \leq \frac{(1+\sqrt{2}) \bar{\sigma} w_{\max }}{N}
$$

Theorem (Pseudorandomness of S)

$$
\left\|S^{\sigma}-R^{\sigma}\right\| \leq \frac{\sqrt{2} w^{2} q}{N}+\frac{w(w-1) q}{2 N}
$$

Moreover, when $w=2$ and $(\mathscr{G},+)=\left(\{0,1\}^{n}, \oplus\right)$, we have

$$
\left\|S^{\sigma}-R^{\sigma}\right\| \leq\left(\frac{2(N-1) q^{3}}{(N-2 q)^{4}}\right)^{\frac{1}{2}}+\frac{q}{N}
$$

Theorem (Variable width case)

Let $w_{1}, w_{2}, \ldots, w_{q} \geq 2, \bar{\sigma}=\sum_{i} w_{i}$, and $w_{\max }=\max _{i} w_{i}$. Then,

$$
\left\|S^{\prime \bar{\sigma}}-R^{\prime \bar{\sigma}}\right\| \leq \frac{(1+\sqrt{2}) \bar{\sigma} w_{\max }}{N}
$$

Theorem (Pseudorandomness of S)

$$
\left\|S^{\sigma}-R^{\sigma}\right\| \leq \frac{\sqrt{2} w^{2} q}{N}+\frac{w(w-1) q}{2 N}
$$

Bound is tight.
Moreover, when $w=2$ and $(\mathscr{G},+)=\left(\{0,1\}^{n}, \oplus\right)$, we have

$$
\left\|S^{\sigma}-R^{\sigma}\right\| \leq\left(\frac{2(N-1) q^{3}}{(N-2 q)^{4}}\right)^{\frac{1}{2}}+\frac{q}{N}
$$

Improves the result of Dai et al., 2017

Theorem (Variable width case)

Let $w_{1}, w_{2}, \ldots, w_{q} \geq 2, \bar{\sigma}=\sum_{i} w_{i}$, and $w_{\max }=\max _{i} w_{i}$. Then,

$$
\left\|S^{\prime \bar{\sigma}}-R^{\prime \bar{\sigma}}\right\| \leq \frac{(1+\sqrt{2}) \bar{\sigma} w_{\max }}{N}
$$

$\mathrm{XORP}^{e_{K}}[w]$ Construction

$\mathrm{XORP}^{e_{K}}[w]$ Construction

$\operatorname{XORP}[w](x)=\left(e_{K}\left(x \|\langle 0\rangle_{s}\right) \oplus e_{K}\left(x \|\langle 1\rangle_{s}\right)\right)\|\cdots\|\left(e_{K}\left(x \|\langle 0\rangle_{s}\right) \oplus e_{K}\left(x \|\langle w-1\rangle_{s}\right)\right)$ where $s \leq\left\lceil\log _{2} w\right\rceil, x \in\{0,1\}^{n-s}$ and $\langle i\rangle_{s}$ is the s-bit representation of i.

$\mathrm{XORP}^{e_{K}}[w]$ Construction

$\operatorname{XORP}[w](x)=\left(e_{K}\left(x \|\langle 0\rangle_{s}\right) \oplus e_{K}\left(x \|\langle 1\rangle_{s}\right)\right)\|\cdots\|\left(e_{K}\left(x \|\langle 0\rangle_{s}\right) \oplus e_{K}\left(x \|\langle w-1\rangle_{s}\right)\right)$ where $s \leq\left\lceil\log _{2} w\right\rceil, x \in\{0,1\}^{n-s}$ and $\langle i\rangle_{s}$ is the s-bit representation of i.

$$
\begin{array}{c|c|c}
T_{i, w} & T_{i, 1} & T_{i, w} \\
T_{i, w-1}
\end{array}
$$

$\mathrm{XORP}^{e_{K}}[w]$ Construction

$\operatorname{XORP}[w](x)=\left(e_{K}\left(x \|\langle 0\rangle_{s}\right) \oplus e_{K}\left(x \|\langle 1\rangle_{s}\right)\right) \| \cdots \mid\left(e_{K}\left(x \|\langle 0\rangle_{s}\right) \oplus e_{K}\left(x \|\langle w-1\rangle_{s}\right)\right)$
where $s \leq\left\lceil\log _{2} w\right\rceil, x \in\{0,1\}^{n-s}$ and $\langle i\rangle_{s}$ is the s-bit representation of i.

$$
S_{i, 1}
$$

$$
S_{i, w-1}
$$

$\mathrm{RF}_{m \rightarrow p} \leftarrow \mathrm{wr} \mathrm{Func}_{m \rightarrow p}$.

Set of all functions from
$\{0,1\}^{m}$ to $\{0,1\}^{p}$
$\mathrm{RF}_{m \rightarrow p} \leftarrow{ }_{\mathrm{wr}}$ Func $_{m \rightarrow p}$.
$\mathrm{RF}_{m \rightarrow p} \leftarrow \mathrm{wr} \mathrm{Func}_{m \rightarrow p} . \mathrm{RP}_{p} \leftarrow \mathrm{wr} \mathrm{Perm}_{p}$.

Set of all permutations of $\{0,1\}^{p}$

$\mathrm{RF}_{m \rightarrow p} \leftarrow \mathrm{wr}$ Func $_{m \rightarrow p} . \mathrm{RP}_{p} \leftarrow \mathrm{wr}$ Perm $_{p}$.

- $\mathrm{RF}_{m \rightarrow p} \leftarrow \mathrm{wr}$ Func $_{m \rightarrow p} . \mathrm{RP}_{p} \leftarrow \mathrm{wr}$ Perm ${ }_{p}$.
- Let \mathscr{A} be a distinguisher,
- $\mathrm{RF}_{m \rightarrow p} \leftarrow \mathrm{wr}$ Func $_{m \rightarrow p} . \mathrm{RP}_{p} \leftarrow$ wr Perm ${ }_{p}$.
- Let \mathscr{A} be a distinguisher,
- $f: \mathscr{K} \times\{0,1\}^{m} \rightarrow\{0,1\}^{p}$ be a keyed function.
- $\mathrm{RF}_{m \rightarrow p} \leftarrow \mathrm{wr}$ Func $_{m \rightarrow p} . \mathrm{RP}_{p} \leftarrow \mathrm{wr}$ Perm $_{p}$.
- Let \mathscr{A} be a distinguisher,
- $f: \mathscr{K} \times\{0,1\}^{m} \rightarrow\{0,1\}^{p}$ be a keyed function.

PRF-advantage of \mathscr{A} against f

$$
\operatorname{Adv}_{f}^{\mathrm{prf}}(\mathscr{A})=\left|\operatorname{Pr}\left[\mathscr{A}^{f_{K}} \rightarrow 1: K \leftarrow_{\mathrm{wr}} \mathscr{K}\right]-\operatorname{Pr}\left[\mathscr{A}^{\mathrm{RF}_{m \rightarrow p}} \rightarrow 1\right]\right| .
$$

- $\mathrm{RF}_{m \rightarrow p} \leftarrow \mathrm{wr}$ Func $_{m \rightarrow p} . \mathrm{RP}_{p} \leftarrow$ wr Perm $_{p}$.
- Let \mathscr{A} be a distinguisher,
- $f: \mathscr{K} \times\{0,1\}^{m} \rightarrow\{0,1\}^{p}$ be a keyed function.

PRF-advantage of \mathscr{A} against f

$$
\operatorname{Adv}_{f}^{\mathrm{prf}}(\mathscr{A})=\left|\operatorname{Pr}\left[\mathscr{A}^{f_{K}} \rightarrow 1: K \leftarrow_{\mathrm{wr}} \mathscr{K}\right]-\operatorname{Pr}\left[\mathscr{A}^{\mathrm{RF}_{m \rightarrow p}} \rightarrow 1\right]\right| .
$$

PRP-advantage of \mathscr{A} against a keyed permutation f (in this case $m=p$)

$$
\operatorname{Adv}_{f}^{\operatorname{prp}}(\mathscr{A})=\left|\operatorname{Pr}\left[\mathscr{A}^{f_{K}} \rightarrow 1: K \leftarrow \mathrm{wr} \mathscr{K}\right]-\operatorname{Pr}\left[\mathscr{A}^{\mathrm{RP}} \rightarrow 1\right]\right| .
$$

We assume (w.l.o.g.)

We assume (w.l.o.g.)
 \mathscr{A} does not repeat its queries.

We assume (w.l.o.g.)

After the random choices are made everything is deterministic.

- \mathscr{A} does not repeat its queries.

We assume (w.l.o.g.)

- \mathscr{A} does not repeat its queries.
$\square \mathscr{A}$ deterministic.

We assume (w.l.o.g.)

- \mathscr{A} does not repeat its queries.
$\square \mathscr{A}$ deterministic.

Information theoretic security. \mathscr{A} is computationally unbounded. Runs with best random coins.

We assume (w.l.o.g.)

- \mathscr{A} does not repeat its queries.
$\square \mathscr{A}$ deterministic.
- \mathscr{A} sends q queries Q_{1}, \ldots, Q_{q}.

We assume (w.l.o.g.)

- \mathscr{A} does not repeat its queries.
- \mathscr{A} deterministic.
- \mathscr{A} sends q queries Q_{1}, \ldots, Q_{q}.
- Gets $X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ if the it is f_{K} oracle.

We assume (w.l.o.g.)

- \mathscr{A} does not repeat its queries.
- \mathscr{A} deterministic.
- \mathscr{A} sends q queries Q_{1}, \ldots, Q_{q}.
- Gets $X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ if the it is f_{K} oracle. $R^{q}:=\left(R_{1}, \ldots, R_{q}\right)$ if the it is $\mathrm{RF}_{m \rightarrow p}$ oracle.

We assume (w.l.o.g.)

- \mathscr{A} does not repeat its queries.
- \mathscr{A} deterministic.
- \mathscr{A} sends q queries Q_{1}, \ldots, Q_{q}.
- Gets $X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ if the it is f_{K} oracle. $R^{q}:=\left(R_{1}, \ldots, R_{q}\right)$ if the it is $\mathrm{RF}_{m \rightarrow p}$ oracle.

$$
\operatorname{Pr}_{X}
$$

We assume (w.l.o.g.)

- \mathscr{A} does not repeat its queries.
- \mathscr{A} deterministic.
- \mathscr{A} sends q queries Q_{1}, \ldots, Q_{q}.
- Gets $X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ if the it is f_{K} oracle. $R^{q}:=\left(R_{1}, \ldots, R_{q}\right)$ if the it is $\mathrm{RF}_{m \rightarrow p}$ oracle.

$$
\begin{gathered}
\left(R_{1}, \ldots, R_{q}\right) \leftarrow \mathrm{wr}\{0,1\}^{p} \\
\operatorname{Pr}_{R}
\end{gathered}
$$

$$
\mathbf{A d v}_{f}^{\mathrm{prf}}(\mathscr{A})=\left|\operatorname{Pr}_{R}(\mathscr{E})-\operatorname{Pr}_{X}(\mathscr{E})\right| \leq\left\|\operatorname{Pr}_{R}-\operatorname{Pr}_{X}\right\|
$$

We assume (w.l.o.g.)

- \mathscr{A} does not repeat its queries.
$-\mathscr{A}$ deterministic.
- \mathscr{A} sends q queries Q_{1}, \ldots, Q_{q}.
- Gets $X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ if the it is f_{K} oracle. $R^{q}:=\left(R_{1}, \ldots, R_{q}\right)$ if the it is $\mathrm{RF}_{m \rightarrow p}$ oracle.

$$
\begin{aligned}
& \mathbf{A d v}_{f}^{\operatorname{prf}}(\mathscr{A})=\left|\operatorname{Pr}_{R}(\mathscr{E})-\operatorname{Pr}_{X}(\mathscr{E})\right| \leq\left\|\operatorname{Pr}_{R}-\operatorname{Pr}_{X}\right\| . \\
& \mathscr{E}=\left\{x^{q} \in\{0,1\}^{p}: \mathscr{A}\left(x^{q}\right)=1\right\}
\end{aligned}
$$

Corollary

- e_{K} is a blockcipher over $\{0,1\}^{n}$ with a randomly chosen key K.

Corollary

- e_{K} is a blockcipher over $\{0,1\}^{n}$ with a randomly chosen key K.
- Adversary \mathscr{A} makes at most q queries to $\mathrm{XORP}^{e_{K}}[w]$ or to $\mathrm{RF}_{(n-s) \rightarrow n(w-1)}$.

Corollary

- e_{K} is a blockcipher over $\{0,1\}^{n}$ with a randomly chosen key K.
- Adversary \mathscr{A} makes at most q queries to $\mathrm{XORP}^{e_{K}}[w]$ or to $\mathrm{RF}_{(n-s) \rightarrow n(w-1)}$.
- Then there is an adversary \mathscr{B} making at most $q w$ queries to e_{K} or to the random permutation $R P_{n}$ such that

Corollary

- e_{K} is a blockcipher over $\{0,1\}^{n}$ with a randomly chosen key K.
- Adversary \mathscr{A} makes at most q queries to $\mathrm{XORP}^{e_{K}}[w]$ or to $\mathrm{RF}_{(n-s) \rightarrow n(w-1)}$.
- Then there is an adversary \mathscr{B} making at most $q w$ queries to e_{K} or to the random permutation $R P_{n}$ such that

Corollary

- e_{K} is a blockcipher over $\{0,1\}^{n}$ with a randomly chosen key K.
- Adversary \mathscr{A} makes at most queries to $\mathrm{XORP}^{e_{K}}[w]$ or to $\mathrm{RF}_{(n-s) \rightarrow n(w-1)}$.
- Then there is an adversary \mathscr{B} making at most qw queries to e_{K} or to the random permutation $R P_{n}$ such that

$$
\operatorname{Adv}_{\mathrm{XORP}^{e} K[w]}^{\mathrm{prf}}(\mathscr{A}) \leq \operatorname{Adv}_{e_{K}}^{\mathrm{prp}}(\mathscr{B})+\frac{(1+\sqrt{2}) q w^{2}}{N}
$$

Variable width

Nonce respecting

$$
\operatorname{Adv}_{\mathrm{XORP}^{e_{K}[*]}}^{\mathrm{prf}}(\mathscr{A}) \leq \operatorname{Adv}_{e_{K}}^{\mathrm{prp}}(\mathscr{B})+\frac{(1+\sqrt{2}) w_{\max } \times \bar{\sigma}}{N}
$$

Corollary

- e_{K} is a blockcipher over $\{0,1\}^{n}$ with a randomly chosen key K.
- Adversary \mathscr{A} makes at most q queries to $\mathrm{XORP}^{e_{K}}[w]$ or to $\mathrm{RF}_{(n-s) \rightarrow n(w-1)}$.
- Then there is an adversary \mathscr{B} making at most qw queries to e_{K} or to the random permutation $R P_{n}$ such that

$$
\operatorname{Adv}_{\mathrm{XORP}^{e} K[w]}^{\operatorname{prf}}(\mathscr{A}) \leq \operatorname{Adv}_{e_{K}}^{\mathrm{prp}}(\mathscr{B})+\frac{(1+\sqrt{2}) q w^{2}}{N}
$$

Variable width

 $\max _{i} w_{i}$$$
\operatorname{Adv}_{\mathrm{XORP}^{e} K[*]}^{\mathrm{prf}}(\mathscr{A}) \leq \operatorname{Adv}_{e_{K}}^{\mathrm{prp}}(\mathscr{B})+\frac{(1+\sqrt{2}) w_{\max } \times \bar{\sigma}}{N}
$$

- Fix the parameters: width $w, s=\left\lceil\log _{2} w\right\rceil$, maximum number of blocks $\ell_{\text {max }}$, and $r=\left\lceil\log _{2} \ell_{\max } / w\right\rceil$.
- Fix the parameters: width $w, s=\left\lceil\log _{2} w\right\rceil$, maximum number of blocks $\ell_{\text {max }}$, and $r=\left\lceil\log _{2} \ell_{\text {max }} / w\right\rceil$.
- $M=M_{1}\|\cdots\| M_{\ell} \in\left(\{0,1\}^{n}\right)^{\ell}, P \in\{0,1\}^{m}, \ell=w \ell^{\prime} \leq \ell_{\max }$, $m=n-(r+s)>0$.
- Fix the parameters: width $w, s=\left\lceil\log _{2} w\right\rceil$, maximum number of blocks $\ell_{\text {max }}$, and $r=\left\lceil\log _{2} \ell_{\text {max }} / w\right\rceil$.
- $M=M_{1}\|\cdots\| M_{\ell} \in\left(\{0,1\}^{n}\right)^{\ell}, P \in\{0,1\}^{m}, \ell=w \ell^{\prime} \leq \ell_{\max }$, $m=n-(r+s)>0$.
$\operatorname{CENC}_{K}(P, M):=\|_{i=0}^{\ell^{\prime}-1} \operatorname{XORP}^{e_{K}}[w]\left(P \|\langle i\rangle_{r}\right) \oplus\left(M_{w i}\|\cdots\| M_{w(i+1)-1}\right)$.
- Fix the parameters: width $w, s=\left\lceil\log _{2} w\right\rceil$, maximum number of blocks $\ell_{\text {max }}$, and $r=\left\lceil\log _{2} \ell_{\max } / w\right\rceil$.
- $M=M_{1}\|\cdots\| M_{\ell} \in\left(\{0,1\}^{n}\right)^{\ell}, P \in\{0,1\}^{m}, \ell=w \ell^{\prime} \leq \ell_{\max }$, $m=n-(r+s)>0$.
$\operatorname{CENC}_{K}(P, M):=\|_{i=0}^{\ell^{\prime}-1} \operatorname{XORP}^{e_{K}}[w]\left(P \|\langle i\rangle_{r}\right) \oplus\left(M_{w i}\|\cdots\| M_{w(i+1)-1}\right)$.

Theorem (PRF-security of CENC)

For every nonce-respecting distinguisher \mathscr{A} making at most $\bar{\sigma}$ many queries there is an adversary \mathscr{B} making at most $\bar{\sigma}$ many queries such that

$$
\operatorname{Adv}_{\mathrm{CENC}}^{\mathrm{prf}}(\mathscr{A}) \leq \mathbf{A d v}_{e_{K}}^{\mathrm{prp}}(\mathscr{B})+\frac{(1+\sqrt{2}) w \bar{\sigma}}{N}
$$

- Fix the parameters: width $w, s=\left\lceil\log _{2} w\right\rceil$, maximum number of blocks $\ell_{\text {max }}$, and $r=\left\lceil\log _{2} \ell_{\text {max }} / w\right\rceil$.
- $M=M_{1}\|\cdots\| M_{\ell} \in\left(\{0,1\}^{n}\right)^{\ell}, P \in\{0,1\}^{m}, \ell=w \ell^{\prime} \leq \ell_{\max }$, $m=n-(r+s)>0$.
$\operatorname{CENC}_{K}(P, M):=\|_{i=0}^{\ell^{\prime}-1} \operatorname{XORP}^{e_{K}}[w]\left(P \|\langle i\rangle_{r}\right) \oplus\left(M_{w i}\|\cdots\| M_{w(i+1)-1}\right)$.

Theorem (PRF-security of CENC)

For every nonce-respecting distinguisher \mathscr{A} making at most $\bar{\sigma}$ many queries there is an adversary \mathscr{B} making at most $\bar{\sigma}$ many queries such that

$$
\operatorname{Adv}_{\mathrm{CENC}}^{\mathrm{prf}}(\mathscr{A}) \leq \mathbf{A d v}_{e_{K}}^{\mathrm{prp}}(\mathscr{B})+\frac{(1+\sqrt{2}) w \bar{\sigma}}{N}
$$

Improvement over the query range $w \bar{\sigma} \leq \frac{N}{67}$ in Iwata et al., 2016

- Nonce based authenticated encryption.
- Nonce based authenticated encryption.
- Provides birthday bound security.
- Nonce based authenticated encryption.
- Provides birthday bound security.

> Due to PRP-PRF switching lemma

- Nonce based authenticated encryption.
- Provides birthday bound security.
- CAESER aims to get better constructions.
- Nonce based authenticated encryption.
- Provides birthday bound security.
- CAESER aims to get better constructions. Modified GCM (mGCM):
The construction:
- Nonce based authenticated encryption.
- Provides birthday bound security.
- CAESER aims to get better constructions. Modified GCM (mGCM):
The construction: Let
- Nonce based authenticated encryption.
- Provides birthday bound security.
- CAESER aims to get better constructions.

Modified GCM (mGCM):

The construction: Let
e_{K} - underlying random permutation.

- Nonce based authenticated encryption.
- Provides birthday bound security.
- CAESER aims to get better constructions.

Modified GCM (mGCM):

The construction: Let
e_{K} - underlying random permutation.

- Nonce based authenticated encryption.
- Provides birthday bound security.
- CAESER aims to get better constructions.

Modified GCM (mGCM):

The construction: Let

- e_{K} - underlying random permutation.
- H - hash key chosen uniformly at random from $\{0,1\}^{n}$.
- Nonce based authenticated encryption.
- Provides birthday bound security.
- CAESER aims to get better constructions.

Modified GCM (mGCM):

The construction: Let

- e_{K} - underlying random permutation.
- H - hash key chosen uniformly at random from $\{0,1\}^{n}$.
- $M=\left(m_{1}, \ldots, m_{\ell}\right)$ an ℓ-block message.
- Nonce based authenticated encryption.
- Provides birthday bound security.
- CAESER aims to get better constructions.

Modified GCM (mGCM):

The construction: Let

- e_{K} - underlying random permutation.
- H - hash key chosen uniformly at random from $\{0,1\}^{n}$.
- $M=\left(m_{1}, \ldots, m_{\ell}\right)$ an ℓ-block message.
- Nonce $P \in\{0,1\}^{n-s}$.
- Nonce based authenticated encryption.
- Provides birthday bound security.
- CAESER aims to get better constructions.

Modified GCM (mGCM):

The construction: Let

- e_{K} - underlying random permutation.
- H - hash key chosen uniformly at random from $\{0,1\}^{n}$.
- $M=\left(m_{1}, \ldots, m_{\ell}\right)$ an ℓ-block message.
- Nonce $P \in\{0,1\}^{n-s}$.

$$
s \text { is such that } \ell<2^{s}-1 \text { for longest message }
$$

- Nonce based authenticated encryption.
- Provides birthday bound security.
- CAESER aims to get better constructions.

Modified GCM (mGCM):

The construction: Let

- e_{K} - underlying random permutation.
- H - hash key chosen uniformly at random from $\{0,1\}^{n}$.
- $M=\left(m_{1}, \ldots, m_{\ell}\right)$ an ℓ-block message.
- Nonce $P \in\{0,1\}^{n-s}$.

1 Compute ciphertext $C=\left(c_{1}, \ldots, c_{\ell}\right)$

$$
c_{i}=m_{i} \oplus e_{K}\left(P \|\langle i\rangle_{s}\right) \oplus e_{K}\left(P \|\langle s-1\rangle_{s}\right) .
$$

- Nonce based authenticated encryption.
- Provides birthday bound security.
- CAESER aims to get better constructions.

Modified GCM (mGCM):

The construction: Let

- e_{K} - underlying random permutation.
- H - hash key chosen uniformly at random from $\{0,1\}^{n}$.
- $M=\left(m_{1}, \ldots, m_{\ell}\right)$ an ℓ-block message.
- Nonce $P \in\{0,1\}^{n-s}$.

1 Compute ciphertext $C=\left(c_{1}, \ldots, c_{\ell}\right)$

$$
c_{i}=m_{i} \oplus e_{K}\left(P \|\langle i\rangle_{s}\right) \oplus e_{K}\left(P \|\langle s-1\rangle_{s}\right) .
$$

2 Compute tag T

$$
T=\left(H^{\ell} c_{1} \oplus \cdots \oplus H c_{\ell}\right) \oplus e_{K}\left(P \|\langle 0\rangle_{s}\right) \oplus e_{K}\left(P \|\langle s-1\rangle_{s}\right)
$$

Theorem (PRF-security of mGCM)

For every nonce-respecting distinguisher \mathscr{A} making at most $\bar{\sigma}$ many queries, where the longest query has block length $\ell_{\max }$, there is an adversary \mathscr{B} making at most $\bar{\sigma}$ many queries such that

$$
\operatorname{Adv}_{\mathrm{mGCM}}^{\mathrm{prf}}(\mathscr{A}) \leq \mathbf{A d v}_{e_{K}}^{\mathrm{prp}}(\mathscr{B})+\frac{(1+\sqrt{2}) \ell_{\max } \bar{\sigma}}{N}
$$

Mirror Theory:

Mirror Theory:

Fix σ.

Mirror Theory:

Fix σ.
Let $\mathscr{C} \subseteq\{(i, j): 1 \leq i<j \leq \sigma\}$. Fix $c_{i, j}$ for $(i, j) \in \mathscr{C}$

Mirror Theory:

- Fix σ.
- Let $\mathscr{C} \subseteq\{(i, j): 1 \leq i<j \leq \sigma\}$. Fix $c_{i, j}$ for $(i, j) \in \mathscr{C}$
- $\mathcal{S}=\left\{\left(P_{1}, \ldots P_{\sigma}\right) \in\{0,1\}^{n} \times \cdots \times\{0,1\}^{n} \mid P_{i} \oplus P_{j}=c_{i, j}\right.$ for $\left.(i, j) \in \mathscr{C}\right\}$

Mirror Theory:

- Fix σ.
- Let $\mathscr{C} \subseteq\{(i, j): 1 \leq i<j \leq \sigma\}$. Fix $c_{i, j}$ for $(i, j) \in \mathscr{C}$
- $\mathcal{S}=\left\{\left(P_{1}, \ldots P_{\sigma}\right) \in\{0,1\}^{n} \times \cdots \times\{0,1\}^{n} \mid P_{i} \oplus P_{j}=c_{i, j}\right.$ for $\left.(i, j) \in \mathscr{C}\right\}$

$$
\text { What is }|\mathcal{S}| ?
$$

Mirror Theory:

- Fix σ.
- Let $\mathscr{C} \subseteq\{(i, j): 1 \leq i<j \leq \sigma\}$. Fix $c_{i, j}$ for $(i, j) \in \mathscr{C}$
- $\mathcal{S}=\left\{\left(P_{1}, \ldots P_{\sigma}\right) \in\{0,1\}^{n} \times \cdots \times\{0,1\}^{n} \mid P_{i} \oplus P_{j}=c_{i, j}\right.$ for $\left.(i, j) \in \mathscr{C}\right\}$

$$
\text { What is }|\mathcal{S}| ?
$$

- Mirror theory provides a lower bound on $|\mathcal{S}|$.

Mirror Theory:

- Fix σ.
- Let $\mathscr{C} \subseteq\{(i, j): 1 \leq i<j \leq \sigma\}$. Fix $c_{i, j}$ for $(i, j) \in \mathscr{C}$
$\square \mathcal{S}=\left\{\left(P_{1}, \ldots P_{\sigma}\right) \in\{0,1\}^{n} \times \cdots \times\{0,1\}^{n} \mid P_{i} \oplus P_{j}=c_{i, j}\right.$ for $\left.(i, j) \in \mathscr{C}\right\}$

What is $|\mathcal{S}|$?

- Mirror theory provides a lower bound on $|\mathcal{S}|$.
- Implies an upper bound on $\left\|S^{\sigma}-R^{\sigma}\right\|$. (Patarin, 2010)

Mirror Theory:

- Fix σ.
- Let $\mathscr{C} \subseteq\{(i, j): 1 \leq i<j \leq \sigma\}$. Fix $c_{i, j}$ for $(i, j) \in \mathscr{C}$
- $\mathcal{S}=\left\{\left(P_{1}, \ldots P_{\sigma}\right) \in\{0,1\}^{n} \times \cdots \times\{0,1\}^{n} \mid P_{i} \oplus P_{j}=c_{i, j}\right.$ for $\left.(i, j) \in \mathscr{C}\right\}$

$$
\text { What is }|\mathcal{S}| ?
$$

- Mirror theory provides a lower bound on $|\mathcal{S}|$.
- Implies an upper bound on $\left\|S^{\sigma}-R^{\sigma}\right\|$. (Patarin, 2010)
- Powerful in terms of implications. Optimum security for many constructions such as EDM, EWCDM etc. (Mennink and Neves, 2017)

Mirror Theory:

- Fix σ.
- Let $\mathscr{C} \subseteq\{(i, j): 1 \leq i<j \leq \sigma\}$. Fix $c_{i, j}$ for $(i, j) \in \mathscr{C}$
- $\mathcal{S}=\left\{\left(P_{1}, \ldots P_{\sigma}\right) \in\{0,1\}^{n} \times \cdots \times\{0,1\}^{n} \mid P_{i} \oplus P_{j}=c_{i, j}\right.$ for $\left.(i, j) \in \mathscr{C}\right\}$

$$
\text { What is }|\mathcal{S}| ?
$$

- Mirror theory provides a lower bound on $|\mathcal{S}|$.
- Implies an upper bound on $\left\|S^{\sigma}-R^{\sigma}\right\|$. (Patarin, 2010)
- Powerful in terms of implications. Optimum security for many constructions such as EDM, EWCDM etc. (Mennink and Neves, 2017)
- Quite complex. Some of the steps lack necessary details.

χ^{2} Method

- Recently (in Crypto 2017) introduced by Dai, Hoang, and Tessaro in cryptographic context.
$\underline{\chi^{2} \text { Method }}$
- Recently (in Crypto 2017) introduced by Dai, Hoang, and Tessaro in cryptographic context.
- Full security of XORP[2].

χ^{2} Method

- Recently (in Crypto 2017) introduced by Dai, Hoang, and Tessaro in cryptographic context.
- Full security of XORP[2].
- Improved security of EDM.

$\underline{\chi^{2} \text { Method }}$

- Recently (in Crypto 2017) introduced by Dai, Hoang, and Tessaro in cryptographic context.
- Full security of XORP[2].
- Improved security of EDM.
- Stam (Stam, 1978) used it to show pseudorandomness of trucation of WOR samples (in statistical context).

$\underline{\chi^{2} \text { Method }}$

- Recently (in Crypto 2017) introduced by Dai, Hoang, and Tessaro in cryptographic context.
- Full security of XORP[2].
- Improved security of EDM.
- Stam (Stam, 1978) used it to show pseudorandomness of trucation of WOR samples (in statistical context).
- Much transparent than the mirror theory.

$\underline{\chi^{2} \text { Method }}$

- Recently (in Crypto 2017) introduced by Dai, Hoang, and Tessaro in cryptographic context.
- Full security of XORP[2].
- Improved security of EDM.
- Stam (Stam, 1978) used it to show pseudorandomness of trucation of WOR samples (in statistical context).
- Much transparent than the mirror theory.
- Seems to have potential.

$\underline{\chi^{2} \text { Method }}$

- Recently (in Crypto 2017) introduced by Dai, Hoang, and Tessaro in cryptographic context.
- Full security of XORP[2].
- Improved security of EDM.
- Stam (Stam, 1978) used it to show pseudorandomness of trucation of WOR samples (in statistical context).
- Much transparent than the mirror theory.
- Seems to have potential.
- Full indifferentiability of the sum of multiple random permutations.(Bhattacharya and Nandi, 2018)

Notation:

Notation:

- Let $\mathrm{X}:=X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ and $\mathrm{Y}:=Y^{q}:=\left(Y_{1}, \ldots, Y_{q}\right)$ be two random vectors distributed over Ω^{q}.

Notation:

- Let $\mathrm{X}:=X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ and $\mathrm{Y}:=Y^{q}:=\left(Y_{1}, \ldots, Y_{q}\right)$ be two random vectors distributed over Ω^{q}.
- $\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right):=\operatorname{Pr}\left[X_{i}=x_{i} \mid X^{i-1}=x^{i-1}\right]$.

Notation:

- Let $\mathrm{X}:=X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ and $\mathrm{Y}:=Y^{q}:=\left(Y_{1}, \ldots, Y_{q}\right)$ be two random vectors distributed over Ω^{q}.
- $\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right):=\operatorname{Pr}\left[X_{i}=x_{i} \mid X^{i-1}=x^{i-1}\right]$.

$$
\operatorname{Pr}_{X}\left(x_{1} \mid x^{0}\right):=\operatorname{Pr}\left[X_{1}=x_{1}\right]
$$

Notation:

- Let $\mathrm{X}:=X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ and $\mathrm{Y}:=Y^{q}:=\left(Y_{1}, \ldots, Y_{q}\right)$ be two random vectors distributed over Ω^{q}.
- $\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right):=\operatorname{Pr}\left[X_{i}=x_{i} \mid X^{i-1}=x^{i-1}\right]$. Similarly for $\operatorname{Pr}_{\mathrm{Y}}\left(x_{i} \mid x^{i-1}\right)$.

Notation:

- Let $\mathrm{X}:=X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ and $\mathrm{Y}:=Y^{q}:=\left(Y_{1}, \ldots, Y_{q}\right)$ be two random vectors distributed over Ω^{q}.
- $\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right):=\operatorname{Pr}\left[X_{i}=x_{i} \mid X^{i-1}=x^{i-1}\right]$. Similarly for $\operatorname{Pr}_{\mathrm{Y}}\left(x_{i} \mid x^{i-1}\right)$.

$$
\chi^{2}\left(x^{i-1}\right):=\sum_{x_{i} \in \Omega_{x^{i-1}}} \frac{\left(\operatorname{Pr}_{X}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)\right)^{2}}{\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)}
$$

Notation:

- Let $\mathrm{X}:=X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ and $\mathrm{Y}:=Y^{q}:=\left(Y_{1}, \ldots, Y_{q}\right)$ be two random vectors distributed over Ω^{q}.
- $\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right):=\operatorname{Pr}\left[X_{i}=x_{i} \mid X^{i-1}=x^{i-1}\right]$. Similarly for $\operatorname{Pr}_{\mathrm{Y}}\left(x_{i} \mid x^{i-1}\right)$.

$$
\begin{gathered}
\chi^{2}\left(x^{i-1}\right):=\sum_{x_{i} \in \Omega_{x^{i-1}}} \frac{\left(\operatorname{Pr}_{X}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)\right)^{2}}{\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)} \\
\Omega_{x^{i-1}}=\left\{x_{i}: x^{i} \in \Omega_{i}\right\}
\end{gathered}
$$

Notation:

- Let $\mathrm{X}:=X^{q}:=\left(X_{1}, \ldots, X_{q}\right)$ and $\mathrm{Y}:=Y^{q}:=\left(Y_{1}, \ldots, Y_{q}\right)$ be two random vectors distributed over Ω^{q}.
- $\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right):=\operatorname{Pr}\left[X_{i}=x_{i} \mid X^{i-1}=x^{i-1}\right]$. Similarly for $\operatorname{Pr}_{\mathrm{Y}}\left(x_{i} \mid x^{i-1}\right)$.

$$
\begin{gathered}
\chi^{2}\left(x^{i-1}\right):=\sum_{x_{i} \in \Omega_{x^{i-1}}} \frac{\left(\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}_{\mathrm{Y}}\left(x_{i} \mid x^{i-1}\right)\right)^{2}}{\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right)} \\
\Omega_{x^{i-1}}=\left\{x_{i}: x^{i} \in \Omega_{i}\right\}
\end{gathered}
$$

$\forall i$, Support of Y^{i} should contain support of $X^{i}\left(=\Omega_{i}\right)$

Theorem (Dai et al., 2017)

Following the notation as above and assuming that the support of X^{i} is contained in the support of Y^{i} for every i, then

$$
\left\|\operatorname{Pr}_{X}-\operatorname{Pr}_{Y}\right\| \leq\left(\frac{1}{2} \sum_{i=1}^{q} \mathbf{E x}\left[\chi^{2}\left(X^{i-1}\right)\right]\right)^{\frac{1}{2}}
$$

Theorem (Dai et al., 2017)

Following the notation as above and assuming that the support of X^{i} is contained in the support of Y^{i} for every i, then

$$
\left\|\operatorname{Pr}_{X}-\operatorname{Pr}_{Y}\right\| \leq\left(\frac{1}{2} \sum_{i=1}^{q} \mathbf{E x}\left[\chi^{2}\left(X^{i-1}\right)\right]\right)^{\frac{1}{2}}
$$

Ingradients:

Theorem (Dai et al., 2017)

Following the notation as above and assuming that the support of X^{i} is contained in the support of Y^{i} for every i, then

$$
\left\|\operatorname{Pr}_{X}-\operatorname{Pr}_{Y}\right\| \leq\left(\frac{1}{2} \sum_{i=1}^{q} \mathbf{E x}\left[\chi^{2}\left(X^{i-1}\right)\right]\right)^{\frac{1}{2}}
$$

Ingradients:
1 Pinsker's inequality.

Theorem (Dai et al., 2017)

Following the notation as above and assuming that the support of X^{i} is contained in the support of Y^{i} for every i, then

$$
\left\|\operatorname{Pr}_{X}-\operatorname{Pr}_{Y}\right\| \leq\left(\frac{1}{2} \sum_{i=1}^{q} \mathbf{E x}\left[\chi^{2}\left(X^{i-1}\right)\right]\right)^{\frac{1}{2}}
$$

Ingradients:
1 Pinsker's inequality.
2 chain rule of Kullback-Leibler divergence (KL divergence).

Theorem (Dai et al., 2017)

Following the notation as above and assuming that the support of X^{i} is contained in the support of Y^{i} for every i, then

$$
\left\|\operatorname{Pr}_{X}-\operatorname{Pr}_{Y}\right\| \leq\left(\frac{1}{2} \sum_{i=1}^{q} \mathbf{E x}\left[\chi^{2}\left(X^{i-1}\right)\right]\right)^{\frac{1}{2}}
$$

Ingradients:
1 Pinsker's inequality.
2 chain rule of Kullback-Leibler divergence (KL divergence).
3 Jensen's inequality.

Random Experiment for R

$\mathrm{R}:=\left(R_{i, j}: i \in[q], j \in[w-1]\right) \leftarrow \mathrm{wr} \mathscr{G}$ return R

Random Experiment for R

$\mathrm{R}:=\left(R_{i, j}: i \in[q], j \in[w-1]\right) \leftarrow \mathrm{wr} \mathscr{G}$ return R

Random Experiment for S

$$
\begin{aligned}
& \mathrm{T}:=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& \quad S_{i, j}=T_{i, j}-T_{i, w} \\
& \text { return } \mathrm{S}:=\left(S_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

Random Experiment for R
$\mathrm{R}:=\left(R_{i, j}: i \in[q], j \in[w-1]\right) \leftarrow \mathrm{wr} \mathscr{G}$ return R

Random Experiment for S

$$
\begin{aligned}
& \mathrm{T}:=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& S_{i, j}=T_{i, j}-T_{i, w} \\
& \text { return } \mathrm{S}:=\left(S_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- Both R and S have same sample space $\mathscr{G}^{q(w-1)}$.

Random Experiment for R
$\mathrm{R}:=\left(R_{i, j}: i \in[q], j \in[w-1]\right) \leftarrow \mathrm{wr} \mathscr{G}$ return R

Random Experiment for S

$$
\begin{aligned}
& \mathrm{T}:=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& S_{i, j}=T_{i, j}-T_{i, w} \\
& \text { return } \mathrm{S}:=\left(S_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- Both R and S have same sample space $\mathscr{G}^{q(w-1)}$.
- They don't have same support.

Random Experiment for R
$\mathrm{R}:=\left(R_{i, j}: i \in[q], j \in[w-1]\right) \leftarrow \mathrm{wr} \mathscr{G}$ return R

Random Experiment for S

$$
\begin{aligned}
& \mathrm{T}:=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& S_{i, j}=T_{i, j}-T_{i, w} \\
& \text { return } \mathrm{S}:=\left(S_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- Both R and S have same sample space $\mathscr{G}^{q(w-1)}$.
- They don't have same support.
- The support of R is $\mathscr{G}^{q(w-1)}$.

Random Experiment for R
$\mathrm{R}:=\left(R_{i, j}: i \in[q], j \in[w-1]\right) \leftarrow \mathrm{wr} \mathscr{G}$ return R

Random Experiment for S

$$
\begin{aligned}
& \mathrm{T}:=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& S_{i, j}=T_{i, j}-T_{i, w} \\
& \text { return } \mathrm{S}:=\left(S_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- Both R and S have same sample space $\mathscr{G}^{q(w-1)}$.
- They don't have same support.
- The support of R is $\mathscr{G}^{q(w-1)}$.
- $T_{i, j}$'s are distinct implies

Random Experiment for R
$\mathrm{R}:=\left(R_{i, j}: i \in[q], j \in[w-1]\right) \leftarrow \mathrm{wr} \mathscr{G}$ return R

Random Experiment for S

$$
\begin{aligned}
& \mathrm{T}:=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& \quad S_{i, j}=T_{i, j}-T_{i, w} \\
& \text { return } \mathrm{S}:=\left(S_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- Both R and S have same sample space $\mathscr{G}^{q(w-1)}$.
- They don't have same support.
- The support of R is $\mathscr{G}^{q(w-1)}$.
- $T_{i, j}$'s are distinct implies
$1 S_{i, j} \neq 0$ for all i, j,

Random Experiment for R
$\mathrm{R}:=\left(R_{i, j}: i \in[q], j \in[w-1]\right) \leftarrow \mathrm{wr} \mathscr{G}$ return R

Random Experiment for S

$$
\begin{aligned}
& \mathrm{T}:=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& \quad S_{i, j}=T_{i, j}-T_{i, w} \\
& \text { return } \mathrm{S}:=\left(S_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- Both R and S have same sample space $\mathscr{G}^{q(w-1)}$.
- They don't have same support.
- The support of R is $\mathscr{G}^{q(w-1)}$.
- $T_{i, j}$'s are distinct implies
$1 S_{i, j} \neq 0$ for all i, j, and
2 for any i and for all $j \neq j^{\prime} \leq w-1, S_{i, j} \neq S_{i, j^{\prime}}$.
- Consider an intermediate distribution U
- Consider an intermediate distribution U

$$
\begin{aligned}
& \text { Random Experiment for } \mathrm{U} \\
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \text { return } \mathrm{U}:=\left(U_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- Consider an intermediate distribution U

Random Experiment for U
for $1 \leq i \leq q$
$U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow$ wor $\mathscr{G} \backslash\{0\}$
return $\cup:=\left(U_{i, j}: i \in[q], j \in[w-1]\right)$

- By triangle inequality

$$
\left\|\operatorname{Pr}_{S}-\operatorname{Pr}_{R}\right\| \leq\left\|\operatorname{Pr}_{S}-\operatorname{Pr}_{U}\right\|+\left\|\operatorname{Pr}_{U}-\operatorname{Pr}_{R}\right\|
$$

- Consider an intermediate distribution U

Random Experiment for U
for $1 \leq i \leq q$
$U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow$ wor $\mathscr{G} \backslash\{0\}$
$\operatorname{return} \cup:=\left(U_{i, j}: i \in[q], j \in[w-1]\right)$

- By triangle inequality

$$
\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{U}}\right\|+\left\|\operatorname{Pr}_{\mathrm{U}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq \frac{w(w-1) q}{2 N}
$$

- Consider an intermediate distribution U

Random Experiment for U

$$
\begin{aligned}
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \text { return } U:=\left(U_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- By triangle inequality

$$
\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{U}}\right\|+\left\|\operatorname{Pr}_{\mathrm{U}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq \frac{w(w-1) q}{2 N}
$$

- U is identical with R until
- Consider an intermediate distribution U

Random Experiment for U

$$
\text { for } 1 \leq i \leq q
$$

$$
U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\}
$$

$$
\operatorname{return} \cup:=\left(U_{i, j}: i \in[q], j \in[w-1]\right)
$$

- By triangle inequality

$$
\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{U}}\right\|+\left\|\operatorname{Pr}_{\mathrm{U}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq \frac{w(w-1) q}{2 N}
$$

- U is identical with R until

1 for some $i, j, R_{i, j}=0$.

- Consider an intermediate distribution U

Random Experiment for U

$$
\begin{aligned}
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \text { return } U:=\left(U_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- By triangle inequality

$$
\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{U}}\right\|+\left\|\operatorname{Pr}_{\mathrm{U}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq \frac{w(w-1) q}{2 N}
$$

- U is identical with R until

1 for some $i, j, R_{i, j}=0$.
2 for some $1 \leq i \leq q, 1 \leq j \neq j^{\prime} \leq w-1, R_{i, j}=R_{i, j^{\prime}}$.

- Consider an intermediate distribution U

Random Experiment for U

$$
\begin{aligned}
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \text { return } U:=\left(U_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- By triangle inequality

$$
\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{U}}\right\|+\left\|\operatorname{Pr}_{\mathrm{U}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq \frac{w(w-1) q}{2 N}
$$

- U is identical with R until

1 for some $i, j, R_{i, j}=0$. Probability $\leq \frac{q(w-1)}{N}$.
2 for some $1 \leq i \leq q, 1 \leq j \neq j^{\prime} \leq w-1, R_{i, j}=R_{i, j^{\prime}}$.

- Consider an intermediate distribution U

Random Experiment for U

$$
\begin{aligned}
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \text { return } U:=\left(U_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- By triangle inequality

$$
\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{U}}\right\|+\left\|\operatorname{Pr}_{\mathrm{U}}-\operatorname{Pr}_{\mathrm{R}}\right\| \quad \leq \frac{w(w-1) q}{2 N}
$$

- U is identical with R until

1 for some $i, j, R_{i, j}=0$. Probability $\leq \frac{q(w-1)}{N}$.
2 for some $1 \leq i \leq q, 1 \leq j \neq j^{\prime} \leq w-1, R_{i, j}=R_{i, j^{\prime}}$. Probability $\leq q \times \frac{(w-1)(w-2)}{2 N}$.

- Consider an intermediate distribution U

Random Experiment for U

$$
\begin{aligned}
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \text { return } U:=\left(U_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- By triangle inequality

$$
\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{U}}\right\|+\left\|\operatorname{Pr}_{\mathrm{U}}-\operatorname{Pr}_{\mathrm{R}}\right\| \quad \leq \frac{w(w-1) q}{2 N}
$$

- U is identical with R until

1 for some $i, j, R_{i, j}=0$. Probability $\leq \frac{q(w-1)}{N}$.
2 for some $1 \leq i \leq q, 1 \leq j \neq j^{\prime} \leq w-1, R_{i, j}^{N}=R_{i, j^{\prime}}$. Probability $\leq q \times \frac{(w-1)(w-2)}{2 N}$.

- $\left\|\operatorname{Pr}_{S}-\operatorname{Pr}_{U}\right\|$?
- Consider an intermediate distribution U

Random Experiment for U

$$
\begin{aligned}
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \text { return } U:=\left(U_{i, j}: i \in[q], j \in[w-1]\right)
\end{aligned}
$$

- By triangle inequality

$$
\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{R}}\right\| \leq\left\|\operatorname{Pr}_{\mathrm{S}}-\operatorname{Pr}_{\mathrm{U}}\right\|+\left\|\operatorname{Pr}_{\mathrm{U}}-\operatorname{Pr}_{\mathrm{R}}\right\| \quad \leq \frac{w(w-1) q}{2 N}
$$

- U is identical with R until

1 for some $i, j, R_{i, j}=0$. Probability $\leq \frac{q(w-1)}{N}$.
2 for some $1 \leq i \leq q, 1 \leq j \neq j^{\prime} \leq w-1, R_{i, j}^{N}=R_{i, j^{\prime}}$. Probability $\leq q \times \frac{(w-1)(w-2)}{2 N}$.

- $\left\|\operatorname{Pr}_{S}-\operatorname{Pr}_{U}\right\|$?
- χ^{2} method.
- Extend S to X (S is marginal random variables of X.)
- Extend S to X (S is marginal random variables of X.)

Random Experiment for X

$$
\begin{aligned}
& \mathrm{T}=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& S_{i, j}=T_{i, j}-T_{i, w} \\
& X_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}, T_{i, w}\right) \\
& S_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}\right) \\
& \text { return X:= }\left(X_{1}, \ldots, X_{q}\right)
\end{aligned}
$$

- Extend S to X (S is marginal random variables of X.)

Random Experiment for X

$$
\begin{aligned}
& \mathrm{T}=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& S_{i, j}=T_{i, j}-T_{i, w} \\
& X_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}, T_{i, w}\right) \\
& S_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}\right) \\
& \text { return X:= }\left(X_{1}, \ldots, X_{q}\right)
\end{aligned}
$$

- $\rho: \mathscr{G}^{w} \mapsto \mathscr{G}^{w}, \rho\left(z_{1}, \ldots, z_{w}\right)=\left(z_{1}+z_{w}, \ldots, z_{w-1}+z_{w}, z_{w}\right)$ is a permutation.
- Extend S to X (S is marginal random variables of X.)

Random Experiment for X

$$
\begin{aligned}
& \mathrm{T}=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& S_{i, j}=T_{i, j}-T_{i, w} \\
& X_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}, T_{i, w}\right) \\
& S_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}\right) \\
& \text { return X:= }\left(X_{1}, \ldots, X_{q}\right)
\end{aligned}
$$

- $\rho: \mathscr{G}^{w} \mapsto \mathscr{G}^{w}, \rho\left(z_{1}, \ldots, z_{w}\right)=\left(z_{1}+z_{w}, \ldots, z_{w-1}+z_{w}, z_{w}\right)$ is a permutation.
- $\rho\left(X_{i}\right)=T_{i}$
- Extend S to X (S is marginal random variables of X.)

Random Experiment for X

$$
\begin{aligned}
& \mathrm{T}=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& S_{i, j}=T_{i, j}-T_{i, w} \\
& X_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}, T_{i, w}\right) \\
& S_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}\right) \\
& \text { return X:= }\left(X_{1}, \ldots, X_{q}\right)
\end{aligned}
$$

- $\rho: \mathscr{G}^{w} \mapsto \mathscr{G}^{w}, \rho\left(z_{1}, \ldots, z_{w}\right)=\left(z_{1}+z_{w}, \ldots, z_{w-1}+z_{w}, z_{w}\right)$ is a permutation.
- $\rho\left(X_{i}\right)=T_{i}, \rho^{*}\left(X^{i}\right):=\left(\rho\left(X_{1}\right), \ldots, \rho\left(X_{i}\right)\right)=\left(T_{1}, \ldots, T_{i}\right)=T^{i}$
- $\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right) \stackrel{\text { def }}{=} \operatorname{Pr}\left[X_{i}=x_{i} \mid X^{i-1}=x^{i-1}\right]$
- Extend S to X (S is marginal random variables of X.)

Random Experiment for X

$$
\begin{aligned}
& \mathrm{T}=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& S_{i, j}=T_{i, j}-T_{i, w} \\
& X_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}, T_{i, w}\right) \\
& S_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}\right) \\
& \text { return X:= }\left(X_{1}, \ldots, X_{q}\right)
\end{aligned}
$$

- $\rho: \mathscr{G}^{w} \mapsto \mathscr{G}^{w}, \rho\left(z_{1}, \ldots, z_{w}\right)=\left(z_{1}+z_{w}, \ldots, z_{w-1}+z_{w}, z_{w}\right)$ is a permutation.
- $\rho\left(X_{i}\right)=T_{i}, \rho^{*}\left(X^{i}\right):=\left(\rho\left(X_{1}\right), \ldots, \rho\left(X_{i}\right)\right)=\left(T_{1}, \ldots, T_{i}\right)=T^{i}$
- $\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right) \stackrel{\text { def }}{=} \operatorname{Pr}\left[X_{i}=x_{i} \mid X^{i-1}=x^{i-1}\right]=\operatorname{Pr}\left[T_{i}=a_{i} \mid T^{i-1}=a^{i-1}\right]=$ $\frac{1}{(N-(i-1) w) \underline{w}}$.
- Extend S to X (S is marginal random variables of X.)

Random Experiment for X

$$
\begin{aligned}
& \mathrm{T}=\left(T_{i, j}: i \in[q], j \in[w]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w-1 \\
& S_{i, j}=T_{i, j}-T_{i, w} \\
& X_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}, T_{i, w}\right) \\
& S_{i}=\left(S_{i, 1}, \ldots, S_{i, w-1}\right) \\
& \text { return X:= }\left(X_{1}, \ldots, X_{q}\right)
\end{aligned}
$$

- $\rho: \mathscr{G}^{w} \mapsto \mathscr{G}^{w}, \rho\left(z_{1}, \ldots, z_{w}\right)=\left(z_{1}+z_{w}, \ldots, z_{w-1}+z_{w}, z_{w}\right)$ is a permutation.
- $\rho\left(X_{i}\right)=T_{i}, \rho^{*}\left(X^{i}\right):=\left(\rho\left(X_{1}\right), \ldots, \rho\left(X_{i}\right)\right)=\left(T_{1}, \ldots, T_{i}\right)=T^{i}$
- $\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right) \stackrel{\text { def }}{=} \operatorname{Pr}\left[X_{i}=x_{i} \mid X^{i-1}=x^{i-1}\right]=\operatorname{Pr}\left[T_{i}=a_{i} \mid T^{i-1}=a^{i-1}\right]=$ $\frac{1}{(N-(i-1) w)^{\underline{w}}}$.

$$
\rho\left(x_{i}\right)=a_{i} \quad \rho^{*}\left(x^{i-1}\right)=a^{i-1}
$$

- Extend U to Y (U is marginal random variable of Y.$)$
- Extend U to Y (U is marginal random variable of Y.)

Random Experiment for Y

$$
\begin{aligned}
& \text { initialize } \mathcal{S}_{0}=\mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \mathscr{N}_{i}=\left\{v \in \mathcal{S}_{i-1}: v+U_{i, j} \in \mathcal{S}_{i-1}, \forall j \in[w-1]\right\} \\
& \text { if } \mathscr{N}_{i} \neq \varnothing \text { then } V_{i, w} \leftarrow \text { wr } \mathscr{N}_{i} \text { else } V_{i, w}=0 \\
& Y_{i}=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}, V_{i, w}\right) \\
& \mathcal{S}_{i}=\mathscr{G} \backslash\left(\left\{V_{i^{\prime}, j}:=U_{i^{\prime}, j}+V_{i^{\prime}, w}: i^{\prime} \in[i], j \in[w-1]\right\} \cup\left\{V_{1, w}, \ldots, V_{i, w}\right\}\right) \\
& \text { return } Y:=\left(Y_{1}, \ldots, Y_{q}\right)
\end{aligned}
$$

- Extend U to $Y(U$ is marginal random variable of Y.)

Random Experiment for Y

$$
\begin{aligned}
& \text { initialize } \mathcal{S}_{0}=\mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \mathcal{N}_{i}=\left\{v \in \mathcal{S}_{i-1}: v+U_{i, j} \in \mathcal{S}_{i-1}, \forall j \in[w-1]\right\} \\
& \text { if } \mathcal{N}_{i} \neq \varnothing \text { then } V_{i, w} \text { wr } \mathscr{N}_{i} \text { else } V_{i, w}=0 \\
& Y_{i}=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}, V_{i, w}\right) \\
& \mathcal{S}_{i}=\mathscr{G} \backslash\left(\left\{V_{i^{\prime}, j}:=U_{i^{\prime}, j}+V_{i^{\prime}, w}: i^{\prime} \in[i], j \in[w-1]\right\} \cup\left\{V_{1, w}, \ldots, V_{i, w}\right\}\right) \\
& \text { return } Y:=\left(Y_{1}, \ldots, Y_{q}\right) \\
& x^{i}:=\left(x_{1}, \ldots, x_{i}\right) \in \Omega_{i} .
\end{aligned}
$$

- Extend U to $Y(U$ is marginal random variable of Y.)

Random Experiment for Y

$$
\begin{aligned}
& \text { initialize } \mathcal{S}_{0}=\mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \mathcal{N}_{i}=\left\{v \in \mathcal{S}_{i-1}: v+U_{i, j} \in \mathcal{S}_{i-1}, \forall j \in[w-1]\right\} \\
& \text { if } \mathscr{N}_{i} \neq \varnothing \text { then } V_{i, w} \leftarrow \mathrm{wr} \mathcal{N}_{i} \text { else } V_{i, w}=0 \\
& Y_{i}=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}, V_{i, w}\right) \\
& \mathcal{S}_{i}=\mathscr{G} \backslash\left(\left\{V_{i^{\prime}, j}:=U_{i^{\prime}, j}+V_{i^{\prime}, w}: i^{\prime} \in[i], j \in[w-1]\right\} \cup\left\{V_{1, w}, \ldots, V_{i, w}\right\}\right) \\
& \text { return } \mathrm{Y}:=\left(Y_{1}, \ldots, Y_{q}\right) \\
& \text { - } x^{i}:=\left(x_{1}, \ldots, x_{i}\right) \in \Omega_{i} \text {. } \\
& \text { Support of } X^{i} \text {. }
\end{aligned}
$$

- Extend U to Y (U is marginal random variable of Y.)

Random Experiment for Y

$$
\begin{aligned}
& \text { initialize } \mathcal{S}_{0}=\mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \mathcal{N}_{i}=\left\{v \in \mathcal{S}_{i-1}: v+U_{i, j} \in \mathcal{S}_{i-1}, \forall j \in[w-1]\right\} \\
& \text { if } \mathcal{N}_{i} \neq \varnothing \text { then } V_{i, w} \text { wwr } \mathscr{N}_{i} \text { else } V_{i, w}=0 \\
& Y_{i}=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}, V_{i, w}\right) \\
& \mathcal{S}_{i}=\mathscr{G} \backslash\left(\left\{V_{i^{\prime}, j}:=U_{i^{\prime}, j}+V_{i^{\prime}, w}: i^{\prime} \in[i], j \in[w-1]\right\} \cup\left\{V_{1, w}, \ldots, V_{i, w}\right\}\right) \\
& \text { return } Y:=\left(Y_{1}, \ldots, Y_{q}\right) \\
& \text { a } \quad \\
& x^{i}:=\left(x_{1}, \ldots, x_{i}\right) \in \Omega_{i} . u_{i}:=\left(x_{i, 1}, \ldots, x_{i, w-1}\right) .
\end{aligned}
$$

- Extend U to Y (U is marginal random variable of Y.)

Random Experiment for Y

$$
\begin{aligned}
& \text { initialize } \mathcal{S}_{0}=\mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \mathscr{N}_{i}=\left\{v \in \mathcal{S}_{i-1}: v+U_{i, j} \in \mathcal{S}_{i-1}, \forall j \in[w-1]\right\} \\
& \text { if } \mathscr{N}_{i} \neq \varnothing \text { then } V_{i, w} \leftarrow \text { wr } \mathscr{N}_{i} \text { else } V_{i, w}=0 \\
& Y_{i}=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}, V_{i, w}\right) \\
& \mathcal{S}_{i}=\mathscr{G} \backslash\left(\left\{V_{i^{\prime}, j}:=U_{i^{\prime}, j}+V_{i^{\prime}, w}: i^{\prime} \in[i], j \in[w-1]\right\} \cup\left\{V_{1, w}, \ldots, V_{i, w}\right\}\right) \\
& \text { return } Y:=\left(Y_{1}, \ldots, Y_{q}\right)
\end{aligned}
$$

$x^{i}:=\left(x_{1}, \ldots, x_{i}\right) \in \Omega_{i} . u_{i}:=\left(x_{i, 1}, \ldots, x_{i, w-1}\right) . x_{i}=\left(u_{i}, x_{i, w}\right)$.

- Extend U to Y (U is marginal random variable of Y .)

Random Experiment for Y

$$
\begin{aligned}
& \text { initialize } \mathcal{S}_{0}=\mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \quad U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \mathcal{N}_{i}=\left\{v \in \mathcal{S}_{i-1}: v+U_{i, j} \in \mathcal{S}_{i-1}, \forall j \in[w-1]\right\} \\
& \text { if } \mathscr{N}_{i} \neq \varnothing \text { then } V_{i, w} \leftarrow \text { wr } \mathcal{N}_{i} \text { else } V_{i, w}=0 \\
& Y_{i}=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}, V_{i, w}\right) \\
& \mathcal{S}_{i}=\mathscr{G} \backslash\left(\left\{V_{i^{\prime}, j}:=U_{i^{\prime}, j}+V_{i^{\prime}, w}: i^{\prime} \in[i], j \in[w-1]\right\} \cup\left\{V_{1, w}, \ldots, V_{i, w}\right\}\right) \\
& \text { return } Y:=\left(Y_{1}, \ldots, Y_{q}\right)
\end{aligned}
$$

- $x^{i}:=\left(x_{1}, \ldots, x_{i}\right) \in \Omega_{i} . u_{i}:=\left(x_{i, 1}, \ldots, x_{i, w-1}\right) . x_{i}=\left(u_{i}, x_{i, w}\right)$.
$\square \forall i \in[q]$, and $\forall x^{i} \in \Omega_{i}$,
- Extend U to Y (U is marginal random variable of Y .)

Random Experiment for Y

$$
\begin{aligned}
& \text { initialize } \mathcal{S}_{0}=\mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \quad U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \mathcal{N}_{i}=\left\{v \in \mathcal{S}_{i-1}: v+U_{i, j} \in \mathcal{S}_{i-1}, \forall j \in[w-1]\right\} \\
& \text { if } \mathcal{N}_{i} \neq \varnothing \text { then } V_{i, w} \leftarrow \text { wr } \mathcal{N}_{i} \text { else } V_{i, w}=0 \\
& Y_{i}=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}, V_{i, w}\right) \\
& \mathcal{S}_{i}=\mathscr{G} \backslash\left(\left\{V_{i^{\prime}, j}:=U_{i^{\prime}, j}+V_{i^{\prime}, w}: i^{\prime} \in[i], j \in[w-1]\right\} \cup\left\{V_{1, w}, \ldots, V_{i, w}\right\}\right) \\
& \text { return } Y:=\left(Y_{1}, \ldots, Y_{q}\right)
\end{aligned}
$$

- $x^{i}:=\left(x_{1}, \ldots, x_{i}\right) \in \Omega_{i} . u_{i}:=\left(x_{i, 1}, \ldots, x_{i, w-1}\right) . x_{i}=\left(u_{i}, x_{i, w}\right)$.
- $\forall i \in[q]$, and $\forall x^{i} \in \Omega_{i}$,

$$
\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right) \stackrel{\text { def }}{=} \operatorname{Pr}\left[Y_{i}=x_{i} \mid Y^{i-1}=x^{i-1}\right]
$$

- Extend U to $Y(U$ is marginal random variable of Y.)

Random Experiment for Y

$$
\begin{aligned}
& \text { initialize } \mathcal{S}_{0}=\mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \quad U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \mathscr{N}_{i}=\left\{v \in \mathcal{S}_{i-1}: v+U_{i, j} \in \mathcal{S}_{i-1}, \forall j \in[w-1]\right\} \\
& \text { if } \mathscr{N}_{i} \neq \varnothing \text { then } V_{i, w} \leftarrow \text { wr } \mathscr{N}_{i} \text { else } V_{i, w}=0 \\
& Y_{i}=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}, V_{i, w}\right) \\
& \mathcal{S}_{i}=\mathscr{G} \backslash\left(\left\{V_{i^{\prime}, j}:=U_{i^{\prime}, j}+V_{i^{\prime}, w}: i^{\prime} \in[i], j \in[w-1]\right\} \cup\left\{V_{1, w}, \ldots, V_{i, w}\right\}\right) \\
& \text { return } Y:=\left(Y_{1}, \ldots, Y_{q}\right)
\end{aligned}
$$

- $x^{i}:=\left(x_{1}, \ldots, x_{i}\right) \in \Omega_{i} . u_{i}:=\left(x_{i, 1}, \ldots, x_{i, w-1}\right) . x_{i}=\left(u_{i}, x_{i, w}\right)$.
- $\forall i \in[q]$, and $\forall x^{i} \in \Omega_{i}$,

$$
\begin{aligned}
\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right) & \stackrel{\text { def }}{=} \operatorname{Pr}\left[Y_{i}=x_{i} \mid Y^{i-1}=x^{i-1}\right] \\
& =\frac{1}{(N-1) \underline{w-1}} \times \frac{1}{\left|\mathcal{N}^{u_{i}}\left(x^{i-1}\right)\right|}
\end{aligned}
$$

- Extend U to $Y(U$ is marginal random variable of Y.)

Random Experiment for Y

$$
\begin{aligned}
& \text { initialize } \mathcal{S}_{0}=\mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \quad U_{i}:=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \mathcal{N}_{i}=\left\{v \in \mathcal{S}_{i-1}: v+U_{i, j} \in \mathcal{S}_{i-1}, \forall j \in[w-1]\right\} \\
& \text { if } \mathscr{N}_{i} \neq \varnothing \text { then } V_{i, w} \leftarrow \text { wr } \mathcal{N}_{i} \text { else } V_{i, w}=0 \\
& Y_{i}=\left(U_{i, 1}, U_{i, 2}, \ldots, U_{i, w-1}, V_{i, w}\right) \\
& \mathcal{S}_{i}=\mathscr{G} \backslash\left(\left\{V_{i^{\prime}, j}:=U_{i^{\prime}, j}+V_{i^{\prime}, w}: i^{\prime} \in[i], j \in[w-1]\right\} \cup\left\{V_{1, w}, \ldots, V_{i, w}\right\}\right) \\
& \text { return } Y:=\left(Y_{1}, \ldots, Y_{q}\right)
\end{aligned}
$$

- $x^{i}:=\left(x_{1}, \ldots, x_{i}\right) \in \Omega_{i} . u_{i}:=\left(x_{i, 1}, \ldots, x_{i, w-1}\right) . x_{i}=\left(u_{i}, x_{i, w}\right)$.
$\forall i \in[q]$, and $\forall x^{i} \in \Omega_{i}$,

$$
\begin{align*}
\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right) & \stackrel{\text { def }}{=} \operatorname{Pr}\left[Y_{i}=x_{i} \mid Y^{i-1}=x^{i-1}\right] \\
& =\frac{1}{(N-1) \underline{w-1}} \times \frac{1}{\left|\mathcal{N}^{u_{i}}\left(x^{i-1}\right)\right|}
\end{align*}
$$

$$
\chi^{2}\left(x^{i-1}\right):=\sum_{x_{i}} \frac{\left(\operatorname{Pr}_{X}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)\right)^{2}}{\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)}
$$

$$
\begin{aligned}
\chi^{2}\left(x^{i-1}\right) & :=\sum_{x_{i}} \frac{\left(\operatorname{Pr}_{X}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right)\right)^{2}}{\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)} \\
& =\mathrm{C} \times \sum_{u_{i}}\left(\left|\mathcal{N}^{u_{i}}\left(x^{i-1}\right)\right|-\mathrm{D}\right)^{2} .
\end{aligned}
$$

$$
\begin{aligned}
\chi^{2}\left(x^{i-1}\right) & :=\sum_{x_{i}} \frac{\left(\operatorname{Pr}_{X}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right)\right)^{2}}{\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)} \\
\mathrm{C}=\frac{(N-1) w-1}{\left((N-(i-1) w)^{w}\right)^{2}} & =\mathrm{C} \times \sum_{u_{i}}\left(\left|\mathcal{N}^{u_{i}}\left(x^{i-1}\right)\right|-\mathrm{D}\right)^{2} . \quad \mathrm{D}=\frac{(N-(i-1) w)^{w}}{(N-1)^{w-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \chi^{2}\left(x^{i-1}\right):=\sum_{x_{i}} \frac{\left(\operatorname{Pr} \mathrm{X}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}\right.}{\left.\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right)\right)^{2}} \\
&=\mathrm{C} \times \sum_{u_{i}}\left(\left|\mathcal{N}^{u_{i}}\left(x^{i-1}\right)\right|-\mathrm{D}\right)^{2} . \\
& \operatorname{Ex}\left[\chi^{2}\left(X^{i-1}\right)\right]=\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathrm{D}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
\chi^{2}\left(x^{i-1}\right) & :=\sum_{x_{i}} \frac{\left(\operatorname{Pr}_{X}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right)\right)^{2}}{\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)} \\
& =\mathrm{C} \times \sum_{u_{i}}\left(\left|\mathcal{N}^{u_{i}}\left(x^{i-1}\right)\right|-\mathrm{D}\right)^{2} .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Ex}\left[\chi^{2}\left(X^{i-1}\right)\right] & =\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathrm{D}\right)^{2}\right] \\
& =\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathbf{E x}\left[\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|\right]\right)^{2}\right]
\end{aligned}
$$

$$
\begin{gathered}
\chi^{2}\left(x^{i-1}\right):=\sum_{x_{i}} \frac{\left(\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right)\right)^{2}}{\operatorname{Pr}_{\mathrm{Y}}\left(x_{i} \mid x^{i-1}\right)} \\
=\mathrm{C} \times \sum_{u_{i}}\left(\left|\mathcal{N}^{u_{i}}\left(x^{i-1}\right)\right|-\mathrm{D}\right)^{2} . \\
\operatorname{Ex}\left[\chi^{2}\left(X^{i-1}\right)\right]=\mathrm{Ex}\left[\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|\right] \\
=\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathrm{D}\right)^{2}\right] \\
\operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathbf{E x}\left[\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|\right]\right)^{2}\right]
\end{gathered}
$$

$$
\begin{aligned}
\chi^{2}\left(x^{i-1}\right) & :=\sum_{x_{i}} \frac{\left(\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right)\right)^{2}}{\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)} \\
& =\mathrm{C} \times \sum_{u_{i}}\left(\left|\mathcal{N}^{u_{i}}\left(x^{i-1}\right)\right|-\mathrm{D}\right)^{2} .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Ex}\left[\chi^{2}\left(X^{i-1}\right)\right] & =\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathrm{D}\right)^{2}\right] \\
& =\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathbf{E x}\left[\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|\right]\right)^{2}\right] \\
& =\mathrm{C} \times \sum_{u_{i}} \operatorname{Var}\left[\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|\right]
\end{aligned}
$$

$$
\begin{aligned}
\chi^{2}\left(x^{i-1}\right) & :=\sum_{x_{i}} \frac{\left(\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right)\right)^{2}}{\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)} \\
& =\mathrm{C} \times \sum_{u_{i}}\left(\left|\mathcal{N}^{u_{i}}\left(x^{i-1}\right)\right|-\mathrm{D}\right)^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Ex}\left[\chi^{2}\left(X^{i-1}\right)\right]=\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathrm{D}\right)^{2}\right] \\
&=\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathbf{E x}\left[\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|\right]\right)^{2}\right] \\
&=\mathrm{C} \times \sum_{u_{i}} \operatorname{Var}\left[\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|\right] \\
& w^{2} \times \frac{(N-r) \underline{w}}{(N-1)^{\underline{w-1}}} \times\left(1-\frac{(N-r) \underline{w}}{N \underline{w}}\right) \\
& \quad r=w(i-1)
\end{aligned}
$$

$$
\begin{aligned}
\chi^{2}\left(x^{i-1}\right) & :=\sum_{x_{i}} \frac{\left(\operatorname{Pr}_{\mathrm{X}}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}\left(x_{i} \mid x^{i-1}\right)\right)^{2}}{\operatorname{Pr}_{Y}\left(x_{i} \mid x^{i-1}\right)} \\
& =\mathrm{C} \times \sum_{u_{i}}\left(\left|\mathcal{N}^{u_{i}}\left(x^{i-1}\right)\right|-\mathrm{D}\right)^{2} .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Ex}\left[\chi^{2}\left(X^{i-1}\right)\right] & =\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathrm{D}\right)^{2}\right] \\
& =\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathbf{E x}\left[\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|\right]\right)^{2}\right] \\
& =\mathrm{C} \times \sum_{u_{i}} \operatorname{Var}\left[\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|\right] \leq \frac{8 r w^{3}}{N^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\chi^{2}\left(x^{i-1}\right) & :=\sum_{x_{i}} \frac{\left(\operatorname{Pr}_{X}\left(x_{i} \mid x^{i-1}\right)-\operatorname{Pr}\right.}{\left.\operatorname{Pr}_{Y}\left(x_{i}\left|x_{i}\right| x^{i-1}\right)\right)^{2}} \\
& =\mathrm{C} \times \sum_{u_{i}}\left(\left|\mathcal{N}^{u_{i}}\left(x^{i-1}\right)\right|-\mathrm{D}\right)^{2} .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Ex}\left[\chi^{2}\left(X^{i-1}\right)\right] & =\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\mathrm{D}\right)^{2}\right] \\
& =\mathrm{C} \times \sum_{u_{i}} \operatorname{Ex}\left[\left(\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|-\operatorname{Ex}\left[\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|\right]\right)^{2}\right] \\
& =\mathrm{C} \times \sum_{u_{i}} \operatorname{Var}\left[\left|\mathcal{N}^{u_{i}}\left(X^{i-1}\right)\right|\right] \leq \frac{8 r w^{3}}{N^{2}}
\end{aligned}
$$

$$
\left\|\operatorname{Pr}_{\mathrm{X}}-\operatorname{Pr}_{\mathrm{Y}}\right\| \leq\left(\frac{1}{2} \sum_{i=1}^{q} \operatorname{Ex}\left[\chi^{2}\left(X^{i-1}\right)\right]\right)^{\frac{1}{2}} \leq \frac{\sqrt{2} w^{2} q}{N}
$$

For $w=2$ and $\mathscr{G}=\left\{\{0,1\}^{n}, \oplus\right\}$,

$$
\begin{gathered}
\operatorname{Ex}\left[\chi^{2}\left(X^{i-1}\right)\right] \leq \frac{2(N-1) r^{2}}{(N-2 q)^{4}} \\
\left\|\operatorname{Pr}_{X}-\operatorname{Pr}_{Y}\right\| \leq\left(\frac{2(N-1) q^{3}}{(N-2 q)^{4}}\right)^{\frac{1}{2}} .
\end{gathered}
$$

Random Experiment for R^{\prime}

$\mathrm{R}^{\prime}:=\left(R_{i, j}^{\prime}: i \in[q], j \in\left[w_{i}-1\right]\right) \leftarrow \mathrm{wr} \mathscr{G}$ return R^{\prime}

Random Experiment for U^{\prime}

$$
\begin{aligned}
& \text { for } 1 \leq i \leq q \\
& U_{i}^{\prime}:=\left(U_{i, 1}^{\prime}, \ldots, U_{i, w_{i}-1}^{\prime}\right) \leftarrow \text { wor } \mathscr{G} \backslash\{0\} \\
& \text { return } U^{\prime}:=\left(U_{i, j}^{\prime}: i \in[q], j \in\left[w_{i}-1\right]\right)
\end{aligned}
$$

Random Experiment for S^{\prime}

$$
\begin{aligned}
& \mathrm{T}^{\prime}:=\left(T_{i, j}^{\prime}: i \in[q], j \in\left[w_{i}\right]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w_{i}-1 \\
& S_{i, j}^{\prime}=T_{i, j}^{\prime}-T_{i, w_{i}}^{\prime} \\
& \text { return } \mathrm{S}^{\prime}:=\left(S_{i, j}^{\prime}: i \in[q], j \in\left[w_{i}-1\right]\right)
\end{aligned}
$$

Random Experiment for R^{\prime}

$\mathrm{R}^{\prime}:=\left(R_{i, j}^{\prime}: i \in[q], j \in\left[w_{i}-1\right]\right) \leftarrow \mathrm{wr} \mathscr{G}$ return R^{\prime}

Random Experiment for U^{\prime}
for $1 \leq i \leq q$
$U_{i}^{\prime}:=\left(U_{i, 1}^{\prime}, \ldots, U_{i, w_{i}-1}^{\prime}\right) \leftarrow$ wor $\mathscr{G} \backslash\{0\}$
return $\mathrm{U}^{\prime}:=\left(U_{i, j}^{\prime}: i \in[q], j \in\left[w_{i}-1\right]\right)$

Random Experiment for S^{\prime}

$$
\begin{aligned}
& \mathrm{T}^{\prime}:=\left(T_{i, j}^{\prime}: i \in[q], j \in\left[w_{i}\right]\right) \leftarrow \text { wor } \mathscr{G} \\
& \text { for } 1 \leq i \leq q \\
& \text { for } 1 \leq j \leq w_{i}-1 \\
& S_{i, j}^{\prime}=T_{i, j}^{\prime}-T_{i, w_{i}}^{\prime} \\
& \text { return } \mathrm{S}^{\prime}:=\left(S_{i, j}^{\prime}: i \in[q], j \in\left[w_{i}-1\right]\right)
\end{aligned}
$$

Theorem

Let $w_{1}, w_{2}, \ldots, w_{c} \geq 2, \bar{\sigma}=\sum_{i} w_{i}$, and $w_{\max }=\max _{i} w_{i}$. Then,

$$
\left\|\operatorname{Pr}_{S^{\prime}}-\operatorname{Pr}_{R^{\prime}}\right\| \leq \frac{(1+\sqrt{2}) \bar{\sigma} w_{\max }}{N}
$$

Questions?

Thank You!

References I

E- Bellare, M., Kilian, J., and Rogaway, P. (2000).
The security of the cipher block chaining message authentication code.
J. Comput. Syst. Sci., 61(3):362-399.

Bhattacharya, S. and Nandi, M.
A note on the chi-square method : A tool for proving cryptographic security.

R Bhattacharya, S. and Nandi, M. (2018).
Full indifferentiable security of the xor of two or more random permutations using the χ^{2} method.

References II

B Black, J. and Rogaway, P. (2002).
A block-cipher mode of operation for parallelizable message authentication.
 Springer.
EDai, W., Hoang, V. T., and Tessaro, S. (2017).
Information-theoretic indistinguishability via the chi-squared method.
In Katz and Shacham, 2017
Datta, N., Dutta, A., Nandi, M., Paul, G., and Zhang, L. (2017). Single key variant of pmac_plus.

References III

嗇 Gilboa, S. and Gueron, S. (2016).
The advantage of truncated permutations.

围 Gilboa, S., Gueron, S., and Morris, B. (2017).
How many queries are needed to distinguish a truncated random permutation from a random function?
: Gueron, S., Langley, A., and Lindell, Y. (2017). AES-GCM-SIV: specification and analysis.

References IV

固 Gueron, S. and Lindell, Y. (2017).

Better bounds for block cipher modes of operation via nonce-based key derivation.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS '17, pages 1019-1036, New York, NY, USA. ACM.
E) Iwata, T. and Kurosawa, K. (2003).

OMAC: one-key CBC MAC.
In Fast Software Encryption, 2003, volume 2887 of LNCS, pages
129-153. Springer.

References V

E. Iwata, T., Mennink, B., and Vizár, D. (2016).

CENC is optimally secure.

嗇 Iwata, T. and Seurin, Y. (2017).
Reconsidering the security bound of aes-gem-siv.

目 Katz, J. and Shacham, H., editors (2017).
Advances in Cryptology - CRYPTO 2017-37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, volume 10403 of Lecture Notes in Computer Science. Springer.

References VI

E Luykx, A., Preneel, B., Tischhauser, E., and Yasuda, K. (2016).
A MAC mode for lightweight block ciphers.
In Peyrin, T., editor, Fast Software Encryption - 23rd International
Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised
Selected Papers, volume 9783 of Lecture Notes in Computer Science, pages 43-59. Springer.

- Mennink, B. and Neves, S. (2017).

Encrypted davies-meyer and its dual: Towards optimal security using mirror theory.

Katz and Shacham, 2017 \qquad

References VII

E Naito, Y. (2017).

Blockcipher-based macs: Beyond the birthday bound without message length.

ASIACRYPT 2017, pages 446-470, Cham. Springer International
Publishing.
目 Nandi, M. (2009).
Fast and secure cbc-type mac algorithms.
Berlin, Heidelberg. Springer Berlin Heidelberg.

References VIII

R
Patarin, J. (2010).
Introduction to mirror theory: Analysis of systems of linear equalities and linear non equalities for cryptography.

```
http://eprint.iacr.org/2010/287
```

E Stam, A. J. (1978).
Distance between sampling with and without replacement.

圊 Yasuda, K. (2011).
A new variant of PMAC: beyond the birthday bound.

References IX

围 Zhang, L., Wu, W., Sui, H., and Wang, P. (2012). 3kf9: Enhancing 3gpp-mac beyond the birthday bound.

[^0]: Birthday bound security
 "Luby-Rackoff backwards" (PRFs from PRPs) Bellare et al., 2000.

 - Block cipher based PRFs.

 Bellare et al., 2000, Nandi, 2009, Iwata and Kurosawa, 2003, Black and Rogaway, 2002, Luykx et al., 2016.

 - PMAC_Plus Yasuda, 2011, Datta et al., 2017,

 LightMAC+ Naito, 2017 and 3kf9 Zhang et al., 2012.

