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Outsourced database storage
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Outsourced database storage with deterministic encryption
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Inference attacks: an example
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Inference attacks: an example
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Inference attacks
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Overview of our results

e frequency-smoothing (FS) encryption framework

e construction from homophonic encoding (HE) and
deterministic encryption (DE)

e analytical and experimental evaluation of smoothness

e 8-bit FS encoding: recover > 20% of MDC values for only 2%
of hospitals

e when exact distribution is known
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Inspiration: homophonic encoding (HE)
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Inspiration: homophonic encoding (HE)
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FS encryption from HE and DE

homophonic
encoding

deterministic

encryption



Frequency-smoothing (FS) encryption
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Outsourced database storage with FS encryption
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Frequency-smoothing (FS) encryption security

e adversary has its own estimate D of the data’s distribution
e FS smoothness: A gets {c1,...,cn}, D, D
e are the N ciphertexts (i) real — generated by a FS encryption
scheme with D, or (ii) fake — sampled from a set of size |H|
uniformly at random?
e FS message privacy: A gets {(my,c1),...,(my, )}, D, D
e are the N ciphertexts (i) real — generated by a FS encryption
scheme with D, or (ii) fake — sampled from a set of size
|#(m;)| uniformly at random?
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FS encryption from HE and DE: security

HE smoothness FS smoothness
+ = +
DE message privacy FS message privacy

e HE smoothness: A gets {e1,...,en}, D, D
e are the N encodings (i) real — generated by an HE scheme with
D, or (ii) fake — sampled from the set H uniformly at random?

e DE message privacy: similar to IND$ [Rog04]

e could instantiate with small-domain PRP, format-preserving
encryption, or synthetic IV mode [RS06]
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HE smoothness when D is known

e distribution known by all: D =D = D

e so distribution D, of encoded data depends only on D
e A must distinguish D, from uniform given N samples

e apply optimal distinguisher analysis from [BJV04]

Theorem
For any HE—SMOOQOTH adversary A and sufficiently large N,

1 N- (log|#H| — Ho(De))
2 ? (M o )|

where ®(-) is cdf of the standard normal distribution and

Adv(A,D, N) <

Ho(-) is Shannon entropy.
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Interval-based homophonic encoding (IBHE)

e encodings are r-bit strings
e assign message m an interval of length fp(m) - 2"
e choose homophones uniformly at random from this set

e maintain table of assigned intervals for decoding
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IBHE example: MDC

circulatory
pregnancy and childbirth
perinatal
respiratory
digestive
musculoskeletal
nervous system
kidney and urinary
mental

endocrine

liver and pancreas
infections

skin and breast
female reproductive
alcohol /drug toxic
administrative
blood

ear, nose, mouth
alcohol /drug mental
other
myeloproliferative
male reproductive
HIV

trauma

eye

burns 0.0657%

data source: [Age09] 14




IBHE example: MDC

Distribution of messages
0 1

| 0.000657 - 2% ~ 1 homophone | | 0.153 - 2% ~ 38 homophones |

.

0 8 16 24 34 424956 65 75 90 112 133 155 185 217 255

Homophones with r = 8
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IBHE example: MDC

hospital has N = 130000 records
probability of least frequent item is 271! ~ 0.00657

to limit smoothness advantage to 27¢, need encoding
bitlength r ~ 17 + €

main problem: query expansion
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Practical security



Experimental evaluation

e cryptographic security levels could require unacceptably large
encoding lengths

e and hence blow-up in query expansion
e empirically evaluate smoothness:
how many data items can adversary correctly decrypt?
e assume distribution D known by all
e adversary knows how many homophones each message has

e what is optimal attack assuming only frequency information is
meaningful?

e message privacy easily achieved with a PRP
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Maximum likelihood estimation (MLE)

e apply MLE to find most likely decryption function

e MLE applied to deterministic encryption: decrypt most
frequent ciphertext to most frequent plaintext, and so
on [LP15]

e MLE applied to FS encryption: decrypt |H(mj)| most
frequent ciphertexts to most frequent plaintext m;, and so on

e considers only “proper” decryption functions
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Frequency-smoothing (FS) vs. deterministic (DE) encryption

Major diagnostic category
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Summary of contributions

e FS encryption thwarts snapshot inference attacks

e price to pay: query expansion, client storage

e see paper for
e framework for dynamic FS schemes
e FS construction from HE, PRF, and IV-based encryption
e banded homophonic encoding scheme

e limited adversarial model, but part of all others

20


marie-sarah.lacharite.2015@rhul.ac.uk

Summary of contributions

FS encryption thwarts snapshot inference attacks

price to pay: query expansion, client storage

see paper for
e framework for dynamic FS schemes
e FS construction from HE, PRF, and IV-based encryption
e banded homophonic encoding scheme

limited adversarial model, but part of all others

marie-sarah.lacharite.20150@rhul.ac.uk

20


marie-sarah.lacharite.2015@rhul.ac.uk

References |

E Agency for Healthcare Research and Quality, Rockville, MD.
HCUP Nationwide Inpatient Sample (NIS), Healthcare
Cost and Utilization Project (HCUP), 2009.

http://www.hcup-us.ahrq.gov/nisoverview. jsp.

[4 Thomas Baigneres, Pascal Junod, and Serge Vaudenay.
How far can we go beyond linear cryptanalysis?
In Advances in Cryptology - ASIACRYPT 2004, pages
432-450, 2004.
https://www.iacr.org/archive/asiacrypt2004/33290427/
33290427 . pdf.

21


http://www.hcup-us.ahrq.gov/nisoverview.jsp
https://www.iacr.org/archive/asiacrypt2004/33290427/33290427.pdf
https://www.iacr.org/archive/asiacrypt2004/33290427/33290427.pdf

References I

[4 P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and
T. Ristenpart.
Leakage-abuse attacks against order-revealing
encryption.
In I[EEE Symposium on Security and Privacy (SP), pages
655—672, 2017.
https://eprint.iacr.org/2016/895.

[1 Marie-Sarah Lacharité and Kenneth G. Paterson.
A note on the optimality of frequency analysis vs.
{,-optimization.
Cryptology ePrint Archive, Report 2015/1158, 2015.
https://eprint.iacr.org/2015/1158.

22


https://eprint.iacr.org/2016/895
https://eprint.iacr.org/2015/1158

References IlI

[4 Muhammad Naveed, Seny Kamara, and Charles V. Wright.
Inference attacks on property-preserving encrypted
databases.

In ACM CCS '15, pages 644—655, 2015.
https://cs.brown.edu/~seny/pubs/edb.pdf

[4 David Pouliot and Charles V. Wright.

The shadow nemesis: Inference attacks on efficiently

deployable, efficiently searchable encryption.
In ACM CCS '16, pages 1341-1352, 2016.
http://web.cecs.pdx.edu/~dpouliot/pl341-pouliot.pdf

23


https://cs.brown.edu/~seny/pubs/edb.pdf
http://web.cecs.pdx.edu/~dpouliot/p1341-pouliot.pdf

References IV

[4 Phillip Rogaway.
Nonce-based symmetric encryption.
In Fast Software Encryption 2004, pages 348—-358, 2004.
https://link.springer.com/content/pdf/10.1007/
978-3-540-25937-4_22.pdf.

[ Phillip Rogaway and Thomas Shrimpton.
A provable-security treatment of the key-wrap problem.
In Advances in Cryptology - EUROCRYPT 2006, pages
373-390, 2006.
https://www.iacr.org/archive/eurocrypt2006/40040377/
40040377 . pdf.

24


https://link.springer.com/content/pdf/10.1007/978-3-540-25937-4_22.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-25937-4_22.pdf
https://www.iacr.org/archive/eurocrypt2006/40040377/40040377.pdf
https://www.iacr.org/archive/eurocrypt2006/40040377/40040377.pdf

	Frequency-smoothing encryption
	Practical security

