
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2018, No. 1, pp. 254–276. DOI:10.13154/tosc.v2018.i1.254-276

Revisiting and Improving Algorithms
for the 3XOR Problem

Charles Bouillaguet1, Claire Delaplace1,2 and Pierre-Alain Fouque2

1 University of Lille-1, Lille, France
charles.bouillaguet@univ-lille1.fr

2 Univ Rennes 1, Centre National de la Recherche Scientifique (CNRS) , Institut de Recherche en
Informatique et Systèmes Aléatoires (IRISA), Rennes, France

{claire.delaplace,pierre-alain.fouque}@irisa.fr

Abstract. The 3SUM problem is a well-known problem in computer science and many
geometric problems have been reduced to it. We study the 3XOR variant which is
more cryptologically relevant. In this problem, the attacker is given black-box access
to three random functions F, G and H and she has to find three inputs x, y and z
such that F (x) ⊕ G(y) ⊕ H(z) = 0. The 3XOR problem is a difficult case of the
more-general k-list birthday problem.
Wagner’s celebrated k-list birthday algorithm, and the ones inspired by it, work by
querying the functions more than strictly necessary from an information-theoretic
point of view. This gives some leeway to target a solution of a specific form, at the
expense of processing a huge amount of data.
However, to handle such a huge amount of data can be very difficult in practice.
This is why we first restricted our attention to solving the 3XOR problem for which
the total number of queries to F , G and H is minimal. If they are n-bit random
functions, it is possible to solve the problem with roughly O

(
2n/3) queries. In this

setting, the folklore quadratic algorithm finds a solution after O
(
22n/3) operations.

We present a 3XOR algorithm that generalizes an idea of Joux, with complexity
O
(
22n/3/n

)
in times and O

(
2n/3) in space. This algorithm is practical: it is up to

3× faster than the quadratic algorithm. Furthermore, using Bernstein’s “clamping
trick”, we show that it is possible to adapt this algorithm to any number of queries,
so that it will always be at least as good as, if not better than, Wagner’s descendants
in the same settings.
We also revisit a 3SUM algorithm by Baran-Demaine-Pǎtraşcu which is asymptotically
n2/ log2 n times faster than the quadratic algorithm when adapted to the 3XOR
problem, but is otherwise completely impractical.
To gain a deeper understanding of these problems, we embarked on a project to solve
actual 3XOR instances for the SHA256 hash function. We believe that this was very
beneficial and we present practical remarks, along with a 96-bit 3XOR for SHA256.
Keywords: 3XOR problem · Wagner’s algorithm · generalized birthday

1 Introduction
The birthday problem is a widely used cryptanalytical tool : given two lists L1,L2 of
bitstrings drawn uniformly at random from {0, 1}n, find x1 ∈ L1 and x2 ∈ L2 such that
x1 ⊕ x2 = 0 (the ⊕ notation denotes the bitwise exclusive-or operation). This problem is
well understood: a solution exists with constant probability as soon as |L1| × |L2| � 2n
holds, and it can be found in O

(
2n/2

)
time by simple algorithms (sorting then scanning

L1 and L2 is a possibility).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2017-11-23, Accepted: 2018-01-23, Published: 2018-03-01

https://doi.org/10.13154/tosc.v2018.i1.254-276
mailto:charles.bouillaguet@univ-lille1.fr
mailto:{claire.delaplace, pierre-alain.fouque}@irisa.fr
http://creativecommons.org/licenses/by/4.0/

Charles Bouillaguet, Claire Delaplace and Pierre-Alain Fouque 255

Wagner studied in [Wag02], the k-XOR problem and showed that for the 4-XOR
problem if we increase the size of the lists from 2n/4, which is the minimal size for having
a solution with good probability, to 2n/3, then the number of solutions increases to 2n/3
and the problem becomes easier since we do not have to find a needle in a haystack but
find one out of many needles. He showed that it is possible to find one solution in time
O
(
2n/3

)
, by searching for a solution that satisfy some property.

In this paper, we are concerned with the 3XOR problem in which there are three lists
containing arbitrarily many random bit strings, and where the goal is to find (x1, x2, x3) ∈
L1×L2×L3 such that x1⊕ x2⊕ x3 = 0. In this case, the idea behind Wagner’s algorithm
does not pay off, and does not yield anything better than the following folklore quadratic
algorithm : for all pairs (a, b) in L1 × L2, check if a⊕ b ∈ L3.

The (decisional) 3SUM problem over (Z,+) with three lists of size N can be solved
by the same simple quadratic algorithm. 3SUM has been widely studied because many
geometric problems can be reduced to it in subquadratic time, and thus are said to be
3SUM-hard [GO95]. Testing whether a set of points in the plane contains three collinear
points is a notable example thereof. A Ω

(
N2) lower-bounds is known when the input

numbers are arbitrary reals [Eri95]. It has also been shown that a O
(
N2−ε) algorithm for

the 3XOR problem would imply a faster-than-expected algorithm for listing triangles in a
graph [JV13, Vio12].

Not only is the 3XOR problem interesting for searching parity check relations in fast
correlation attacks with k = 3 – Chose, Joux and Mitton [CJM02] could only take k ≥ 4 –
but it also has important applications in cryptanalysis of some authenticated encryption
scheme. Nandi [Nan15] exhibited a forgery attack against the COPA mode of operation
for authenticated encryption requiring only 2n/3 encryption queries and about 22n/3 time.
This attack works by reducing the problem of forging a valid ciphertext to that of solving an
instance of the 3XOR problem. This attack was later refined by Nikolić and Sasaki [NS14],
using an improved 3XOR algorithm, to 2n/2−ε queries and O

(
2n/2−ε

)
operations, for a

small value of ε.
Nikolić and Sasaki’s algorithm is a variant of Wagner’s algorithm: they reduced L3

to the elements that have the most frequently-occurring pattern in the ` first bits, with
` ' n/2. Using a probabilistic analysis, notably the well-known maximal bin load when N
balls are randomly thrown into N bins [Mit96], they obtained a speedup of

√
(n/2)/ ln(n/2)

compared to Wagner’s algorithm.
However, Joux had already proposed a better algorithm five years before Nikolić and

Sasaki in [Jou09, §8.3.3.1], which is the best algorithm for the 3XOR problem to this day.
The idea is to set L′i := {xM, x ∈ Li} where M is a well-chosen invertible matrix over
F2, and then solve the 3XOR problem over L′1,L′2 and L′3. This results in a solution of
the original instance, but the change of coordinates M allows a few tricks. Joux’s idea
was to choose M such that n/2 vectors of L′3 have their last n/2 bits equal to 0, compute
L′12 = L′1 ./n/2 L′2, the list of the XOR of pairs L′1 and L′2 that match on the n/2 last
bits, and check for collisions between L′12 and L′3. With correctly chosen list sizes, this
yields a

√
n/2 speedup over Wagner’s algorithm. It seems very hard to combine these two

improvements in a new algorithm.
Independently, Bernstein [Ber07] proposed a simple data-memory tradeoff that he

called “clamping”. Adapted to our context, the idea is that when more queries than
actually needed are performed, we may choose to keep only the entries that are zeroes on
the first ` bits, with ` chosen so that the product of the sizes of the three lists would be
exactly 2n−`. This reduces the dimension of the problem, along with the amount of data
that has to be stored.

Moving back in time again, four years before Joux, an algorithm for the 3SUM problem
(over the integers) had been described by Baran, Demaine and Patrascu in [BDP05]. This
algorithm, which was the first generic subquadratic algorithm for the 3SUM problem, has

256 Revisiting and Improving Algorithms for the 3XOR Problem

a better complexity than all the previously mentioned ones, and it can be applied mutatis
mutandis to the 3XOR problem with lists of size 2n/3, yielding an expected speedup of
n2/ log2 n compared to Wagner’s algorithm. On the other hand, the FFT algorithm for
3SUM over the integers given as an exercice in [CLRS01, §30.1-4] cannot easily be adapted
to the 3XOR problem.

Our contributions. We first give a formal definition of the computational model that we
consider, which is slightly non-standard... but was apparently adopted by nearly all the
previous literature on generalized birthday algorithms [Wag02, NS14]. We recall several
known results about sorting, hashing, etc. which are sometimes implicitly used by previous
work.

Armed with these tools, we present a new algorithm that generalizes Joux’s algorithm to
input lists with arbitrary size. Joux first described the technique consisting in multiplying
the lists by a matrix to force the existence of specific solutions. He only applied it once,
which forces the lists L1 and L2 to be of size 2n/2−ε. Our generalization of the technique
consists in re-iterating this method several times. It can then work with input lists of any
sizes.

Basically, we select a subset of entries z in the third list, and find an invertible matrix
M such that zM starts by a fixed number k of zeroes, for all z in this set. Then we search
for pairs of elements (x, y) in the two other lists such that (x⊕ y)M starts by k zeroes.
For each such pairs, we search if x⊕ y matches an element z of the selected subset. We
iterate the procedure all over again until all entries of the third list have been considered.
This procedure is always O(n) times faster than the quadratic algorithm. We also propose
a constant-factor improvement of this procedure that reduces the number of iterations
that have to be performed. Moreover, we show that, when combined with “clamping”, the
resulting algorithm is faster than Nikolić and Sasaki’s, while requiring less storage and less
queries.

We implemented this new algorithm and ran it with input vectors of size n = 96 on
a 64-bit machine. We used the following strategy: First find all solutions to the 3XOR
problem on the first 64 bits of each entries, using our algorithm, then for all triplets of
partial solutions thus found, check the last 32 bits of their XOR. In the same conditions,
our algorithm runs about 2 and 3 times faster than the quadratic algorithm.

We also present an adaptation of the BDP algorithm that we tuned for the 3XOR
problem. We show that this algorithm is O

(
n2/ log2 n

)
faster than the quadratic algorithm,

when n is asymptotically large. However, it cannot be used in practice on reasonably small
values of n and is mostly of theoretical interest.

We raise several practical considerations that are not really discussed in previous work.
For instance, the algorithms designed in [Jou09, NS14] need at least two of the input lists
to have size 2n/2−ε. We claim that, in practice, working with input lists whose size is
reduced is better. For instance, to solve the 3XOR problem with 96-bit input vectors,
Joux’s algorithm handles about 0.86 Petabytes of data while Nikolić-Sasaki’s algorithm
handles about 2.55 Petabytes. In this case, even sorting the lists is not easy. This makes
these algorithms quite impractical.

We illustrate our result with the computation of a 96-bit 3XOR on the SHA256 hash
function. This only required 384 Megabytes of memory. The code used to perform this
computation is available at

https://github.com/cbouilla/3XOR

2 Preliminary
Notations. Given a list L, we denote by Li the i-th element of the list, by L[i..j] the
sublist Li, . . . ,Lj−1 and by L[i..] the sublist Li,Li+1, . . . — this is similar to the “slice”

https://github.com/cbouilla/3XOR

Charles Bouillaguet, Claire Delaplace and Pierre-Alain Fouque 257

notation in Python. We denote by L[p] the sublist composed by all vectors whose first bits
are p (the size of this prefix is usually clear given the context). For a given vector x, x[i..j]
denotes the subvector formed by taking the coordinates from i to j − 1. Given two lists
A,B and an integer k, we use the following notation to denote the “join” of A and B on
the first k bits :

A ./k B = {(a, b) ∈ A× B, s.t. (a⊕ b)[0..k] = 00 . . . 0}

We denote by L (resp. A, B, C) the size of the list L (resp. A, B, C). The log function
representes logarithm in base 2.

2.1 Computational Model and Assumptions
We consider that all computations take place inside a RAM (Random Access Machine)
in which each “memory cell” contains a w-bit word, with w = Θ(n) — in other words,
the machine is “large enough” to accommodate the problem. We assume that the usual
arithmetic and bitwise operations on w bits, as well as memory accesses with w-bit addresses,
are elementary operations. This computational model, which is implicit in previous work on
the generalized birthday paradox, is sometimes called the transdichotomous model [FW93].

We assume that our machine has black-box access to three oracles A, B and C. When
queried with an n-bit integer i, the oracle A returns the n-bit value Ai (the i-th element
of the list A). The same goes for B and C. It is understood that, in most cryptographic
applications of the 3XOR problem, querying the oracles actually corresponds to evaluating a
cryptographic primitive. As such, we assume that the oracles implement random functions.

The machine on which the actual algorithms run is allowed to query the oracles, to
store anything in its own memory and to perform elementary operations on w-bit words.
An algorithm running on this machine solves the 3XOR problem if it produces a triplet
(i, j, k) such that Ai ⊕ Bj ⊕ Ck = 0.

The relevant performance metrics of these algorithms are the amount of memory they
need (M bits), the number of elementary operations they perform (T) and the number of
queries they make to each oracle.

Most algorithms for the 3XOR problem begin by querying the oracle A on consecutive
integers 0, 1, . . . , A− 1 (the same goes for B and C with respective upper-bounds of B and
C) and storing the results in memory. We therefore assume that algorithms start their
execution with a “local copy” of the lists, obtained by querying the oracles (except when
explicitly stated otherwise).

It is usually simpler in practice to implement algorithms that produce the colliding
values (Ai,Bj , Ck) instead of the colliding inputs (i, j, k). The reason for that is that
most algorithms sort at least one of the lists, so that Li is not longer at index i in the
array holding L. It would be possible to store pairs (Ai, i) in memory, sorting on Ai and
retaining the association with i at the expense of an increased memory consumption. In
practice it is much simpler to find the colliding values, then re-query the oracles again to
find the corresponding inputs, at the expense of doubling the total number of queries.

To avoid degenerate cases, we assume that the number of queries to the oracles are
exponentially smaller than 2n. More precisely, we assume that there is a constant ε > 0
such that max{A,B,C} < 2(1−ε)n.

2.2 Algorithmic Tools
Algorithms for the 3XOR problem process exponentially-long lists of random n-bit vectors.
In this section, we review the algorithmic techniques needed to perform three reoccurring
operations on such lists: sorting, testing membership and right-multiplication by an n× n
matrix. We recall that these operations can be performed in linear time.

258 Revisiting and Improving Algorithms for the 3XOR Problem

Membership testing. The simplest algorithm for the 3XOR problem works by considering
all pairs (a, b) ∈ A× B and checking if a⊕ b ∈ C. This is guaranteed to find all solutions.

It has long been known that hashing allows for dictionaries with O(1) access-time and
constant multiplicative space overhead [FKS84]. This is enough to make the quadratic
algorithm run in time O(AB + C). In this case, it is thus beneficial to let C be the largest
of the three lists.

A simple hash table of size 2C with linear probing allows to test membership with 2.5
probes on average [Knu98, §6.4]. We recall that linear probing is a scheme used to resolve
collisions in hash tables. Let us consider a hash table T , with hash function h. To insert
an element x in T , check if T [h(x)] is empty. If so, x is inserted at index h(x). If not,
probe index h(x) + 1, then h(x) + 2, and so on, until an empty cell is found. To search for
a given x in T , first probe h(x). If T [h(x)] contains something else than x, then probe
T [h(x) + 1], and so on, until finding either an empty cell (x does not belong to the table),
or a cell whose stored key is x. Because the hashed elements are uniformly random, taking
some lowest-significant bits yields a very good hash.

Linear probing is already good, but Cuckoo Hashing improves the situation to 2 probes
in the worst case [PR01]. In this case two arrays of size C, T1 and T2, with two hash
functions h1 and h2 are considered. If x belongs to the hash table, it is either in T1[h1(x)]
or in T2[h2(x)]. To insert an element x in the table, set T1[h1(x)] to x. If T1[h(x)] was not
empty, then there was a key y stored in this cell before. The insertion removed y from table
T1, so try to insert it in T2[h2(y)]. If there was already a key z stored in T2[h2(y)], then z
is removed, so try to insert it in T1[h1(z)], and so on. This process may fail because of
cycles, in which case the two arrays have to be rebuilt with new hash functions. Insertion
requires an expected constant number of operations. In principle, Cuckoo hashing needs a
family of universal hash functions, which is a drawback in our case. We may use the usual
universal hash functions ha,b : x 7→ (ax+ b) mod p, where p is a prime.

We found that Cuckoo hashing was about 2× faster than linear probing. It allows to
make the quadratic algorithm quite efficient, with only a small constant hidden in the O
notation: around 10 CPU cycles are enough to process a pair.

Sorting and joining. The evaluation of the “join” A ./k B of two lists A and B of size
2αn is ubiquitous in generalized birthday algorithms following Wagner’s ideas. All these
algorithms rely on a common idea: they target a solution a⊕ b⊕ c = 0 such that c[0..k] = 0
(for some value of k), which implies that a[0..k] = b[0..k]. These special solutions can
be found efficiently by performing a linear-time join operation between A and B. The
following algorithm is thus the workhorse of these techniques.

Algorithm M (3XOR with a sort join). Given three lists A,B and C, where all c ∈ C
are such that c[0..k] = 0, returns all triplets (a, b, c) ∈ A× B × C such that a⊕ b⊕ c = 0.
M1. [Prepare input] Sort A and B according to their first k bits.

Initialize a hash table with the entries of C.
M2. [Main loop.] Set i← 0, j ← 0.

While i < A and j < B do:
M3. [Compare prefix.] If Ai[0..k] < Bj [0..k] then increment i

Else if Ai[0..k] > Bj [0..k] then increment j
Else:

M4. [Save prefix.] Set p← Ai[0..k] and j0 ← j.
M5. [Check pairs.] While i < A and Ai[0..k] = p do:

While j < B and Bi[0..k] = p do:
If Ai ⊕ Bj ∈ C then

emit (Ai,Bj).
Increment j.

Increment i.

Charles Bouillaguet, Claire Delaplace and Pierre-Alain Fouque 259

It is well-known that an array of N random k-bit vectors can be sorted in linear
time [Knu98, §5.2.5]: the randomness of the input allows to beat the Ω(N logN) lower-
bound of comparison-based sorting. Here is a way to do it using O(

√
N) extra storage:

perform two passes of radix sort on 0.5 logN bits, then finish sorting with insertion sort.
Morally, for each pass of radix sort, we initialize

√
N counters corresponding to the possible

prefixes, then we scan through the list, pick up the 0.5 logN -bit prefix of each vector,
increment the corresponding counter. Then the entries can directly be dispatched in the
right output bucket.

Each pass of radix sort requires
√
N words to store the counters. Besides that, the

input array can in principle be permuted in-place [Knu98, §5.2.1]. The two passes of radix
sort guarantee that the array is sorted according to its first logN bits. This reduces the
expected number of inversions from ≈ N2/4 to ≈ N/4. Thus, the expected running time
of the insertion sort will be linear.

This tells us that step M1 runs in time linear in A+ B. Steps M2–M4 are repeated
at most A+B times and require a constant number of operations on w-bit words. The
test of step M5 is executed once for each pair (a, b) ∈ A × B with a[0..k] = b[0..k]. The
expected number of such pairs is AB/2k. Considering that we also have to initialize a
hash table with the elements of C, the total expected running time of the algorithm is
thus O

(
A+B + C +AB/2k

)
.

The algorithms designed by Wagner [Wag02], Nikolić–Sasaki [NS14] and Joux [Jou09]
use this procedure but differ in how they filter or modify their inputs to ensure that a
solution of the correct form exists with high probability.

Matrix multiplication. Given a n×n matrix M over F2, we need to compute the matrix-
matrix product LM, where L is seen as a 2αn × n matrix. Performing the product naively
would require O(n2αn) operations. This can improved to O(2αn) operations, using a trick
similar to the “method of Four Russians” [KADF70].

The idea is to divide M into slices of n α
1+ε rows (for any ε > 0); for each slice, we

precompute all the 2
α

1+εn linear combinations of the rows and store these in a table. This
would take 2

α
1+εn word operations.

Then, the vector-matrix product xM can then be evaluated by dividing x in slices of
size n α

1+ε , looking up the precomputed linear combination of the rows of the corresponding
slices of M, and XORing together the 1+ε

α resulting vectors. This step takes only a
constant number of operations and we will need to perform it 2α·n times. Hence, the whole
complexity of the procedure is O(2αn) word operations.

2.3 Clamping
This idea, which is due to Bernstein [Ber07], is that the amount of data can be reduced if
we are allowed to perform more queries than strictly required.

We assume that 2αn (resp. 2βn, 2γn) queries are made to oracle A (resp. B, C), and
that α+ β + γ > 1. Let us denote κ = (α+ β + γ − 1)/2. The idea is that when querying
the oracles, we may reject values that are not zero on the first κn bits — naturally, this
only works when κ ≥ min(α, β, γ).

Doing this “clamping”, we come up with three lists A,B, C of (1− κ)n-bit entries. We
have A = 2(α−κ)n B = 2(β−κ)n and C = 2(γ−κ)n so that ABC = 2(1−κ)n

For instance, if O
(
2n/2

)
queries to the oracles are allowed, then, setting κ to 1/4,

solving the 3XOR problem can be done in O
(
2n/2

)
operations, but using only O

(
2n/4

)
words of memory. The three lists A, B and C obtaing by clamping contain roughly 2n/4
entries of n′ = 3 · n/4 bits. A solution to the 3XOR problem can then be found by any
algorithm that is able to recover a solution to the problem over n′ bits when the size of
the lists is 2n′/3. Using the quadratic algorithm, it requires about O

(
2n/2

)
operations.

260 Revisiting and Improving Algorithms for the 3XOR Problem

However, as discussed in section 5, querying the oracles can sometimes require a lot of
time. So, in practice, there is a tradeoff between the number of queries and the time/data
complexity.

3 Finding 3XOR by Linear Changes of Variables
In this section, we propose a new algorithm which is asymptotically n times faster than
the quadratic algorithm. It is a generalization of an earlier idea of Joux [Jou09]. While
it is asymptotically inferior to the BDP algorithm discussed later, it is faster in practice
than the quadratic algorithm for relevant parameter sizes. On the other hand, the BDP
algorithm is not practical.

3.1 Algorithm Description
This algorithm exploits the fact that when M is an n× n invertible matrix over F2, then
a⊕ b⊕ c = 0 if and only if aM⊕ bM⊕ cM = 0. The sets of solutions in A× B × C and
AM× BM× CM are the same.

The idea of our algorithm is to select a slice of n− k vectors from C and to choose a
matrix M such that the first k entries of the slice become zero. Algorithm M then finds
all the triplets a⊕ b⊕ c = 0 where c belongs to the slice. Repeating this procedure for all
slices yields all the possible solutions.

Algorithm G (3XOR by linear changes of variables). Given A,B and C, return all
(a, b, c) ∈ A× B × C such that a⊕ b⊕ c = 0. Let k ← dlog2 min(A,B)e.
G1. [Main loop.] For all 0 ≤ i < C/(n− k) do:
G2. [Change of basis.] Let u← i(n− k) and v ← min{(i+ 1)(n− k), C}.

Compute an n× n matrix M such that:

C[u..v]M =

0 . . . 0 ? . . . ?
...

...
...

...
0 . . . 0 ? . . . ?

k n− k

n− k

G3. [Matrix product.] Set A′ ← AM, B′ ← BM and C′ ← C[u..v]M.
G4. [Join] Run algorithm M to find all pairs (a′, b′) in A′ × B′

such that a′ ⊕ b′ ∈ C′ and a′[0..k] = b′[0..k].
For each such pair, emit

(
a′M−1, b′M−1).

Theorem 1. Algorithm G finds all 3XORs in A× B × C in expected time

T = O((A+B)C/n)

and space linear in A+B + C.

Proof. We first observe that the algorithm only needs to store two of copies of the input
lists (this could be brought down to a single copy, updated in-place). This establishes
the linear space claim. Step G2 can be done in time O

(
n3), for instance using the PLUQ

factorization C[u..v]T = PLUQ, where P and Q are permutation matrices, L is lower-
triangular with unit diagonal and U is upper-trapezoidal (i.e. all coefficients bellow the
diagonal are zeroes). Only the first r rows of U are non-zero, where r denotes the rank of
C[u..v]. It follows that M = P

(
LT)−1 is a suitable choice.

Let us assume, without loss of generality, that A ≤ B. Using the techniques described
in section 2.2, we know that step G3 costs O(A+B + (n− k)). The expected cost of step

Charles Bouillaguet, Claire Delaplace and Pierre-Alain Fouque 261

G4 is O
(
A+B +AB/2k

)
. The choice of k at the beginning of the algorithm ensures that

this is in fact O(A+B).
Steps G2–G4 are repeated C/(n− log2A) times, therefore the total complexity of the

algorithm is then

O
(

(A+B)C
n− log2A

)
.

The hypothesis that log2A < (1− ε)n guarantees that the denominator is Ω(n), and yields
the claimed complexity.

Using algorithm G, it is beneficial to choose C as the smallest of the three lists.

Improvement using the clamping trick. As discussed in section 2.3, it is possible to
reduce both the amount of data and the time complexity if more queries are allowed.

If we assume that we can make 2α·n queries to each oracle, then using clamping, we can
reduce the problem to the one of finding a 3XOR over (1− κ)n bits, with κ = (3α− 1)/2.
The size of the three input lists is then about 21/2·(1−α)·n, and processing them with
algorithm G requires O

(
2(1−α)·n/n

)
operations.

This shows that algorithm G, combined with clamping, is always at least as efficient as
Joux’s algorithm, and always more efficient that Nikolić-Sasaki’s algorithm.

In fact, if 2n/2−ε queries to the oracles are allowed, performing the clamping over
k = (n/2 − 3ε)/2, we will obtain lists of size around 21/2·(n/2+ε), and processing them
with algorithm G will require O

(
2n/2+ε/n

)
operations. If ε ' 1/2 · log((n/2)/ ln(n/2)) as

in Nikolić and Sasaki’s algorithm, then the time complexity of algorithm G is more or
less O

(
2n/2/

√
n · lnn

)
instead of the O

(
2n/2/

√
n/ lnn

)
obtained by Nikolić and Sasaki’s

algorithm.

3.2 Constant-Factor Improvements
In step G2, an invertible matrix M is found that sends the first k bits of n− k random
vectors to zero. In this section, we discuss means to find matrices that have the same
effect on more than n− k vectors. The result would be that each iteration of steps G2–G4
would process larger slices of C. As such, less iterations would be needed.

3.2.1 Finding the Coordinate Change

Given a large collection C of independent and uniformly random n-bit vectors x, we are
facing the problem of finding a matrix M that maximizes (or at least increases) the number
of x ∈ C such that xM[0..k] = 0. In more algebraic terms, let V0 be the (n−k)-dimensional
subspace of {0, 1}n containing all vectors whose first k coordinates are zeroes. The matrix
M should be chosen such that it sends the largest number of input vectors from C to V0.
Alternatively, let V be the pre-image of V0 through M: xM belongs to V0 if and only if x
belongs to V.

Finding a subspace V having a large intersection with the input list is the actual difficult
task. Indeed, once a basis (b1, . . . , bn−k) of V has been found, building an invertible matrix
M that sends V to V0 is easy. We therefore face the following computational problem:

Problem 1. Given a list C of uniformly random vectors in {0, 1}n, find a (n− k) dimen-
sional subspace V of {0, 1}n such that V ∩ C is as large as possible.

In other terms, we are looking for multiple simultaneous linear approximations of the
random vectors in C. Note that we have to find not only one, but a large number such
subspaces (one per iteration of algorithm G).

262 Revisiting and Improving Algorithms for the 3XOR Problem

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(a) Maximal matching, that is not maximum

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(b) Maximum matching

Figure 1: A maximal matching is shown in sub-figure 1a. This matching is not maximum.
A larger can be found as shown in sub-figure 1b

In the rest of this section, we discuss two ways to tackle this problem. The first
approach consists in finding all these subspaces at once, during a pre-computation step,
then permuting C so that for known parameters N0, N1, . . . the first N0 entries of C span
the first subspace, the following N1 span the second subspace, and so on.

The second approach is iterative: at each iteration of the procedure, we consider the list
Cleft of the elements of C that we have not treated yet, we search a solution to problem 1
with Cleft as input list.

In both cases, we want this extra-computation to be much faster than the actual 3XOR
algorithm that it is supposed to speed-up. As such, we give up on finding optimal solutions
and instead look for heuristics that produce quick results. We propose two approaches to
obtain better results.

3.2.2 All-at-Once Approach Using Wagner’s Algorithm

The first method we propose precomputes sets of linearly dependent vectors in C, and
then permutes the list, so these linearly dependent vectors are stacked together. In the
interesting case where C = 2n/2, this enables us to reduce the number of iterations in
algorithm G by 25% in exchange for a one-time pre-computation of negligible complexity.
We discuss a situation where this happens naturally in section 5.3.

Wagner’s celebrated 4-tree algorithm can be used to find quadruplets of distinct indices
(x, y, z, t) such that Cx ⊕ Cy ⊕ Cz ⊕ Ct = 0. These four entries of C are then linearly
dependent.

The main idea of this procedure is to find all pairs x < y (resp. z < t) such that Cx 6= Cy
and Cz ⊕ Ct starts with k zeroes. The expected number of such pairs is O

(
2k
)
. Then,

the expected number of distinct couples (x, y) < (z, t), such that Cx ⊕ Cy ⊕ Cz ⊕ Ct = 0
is O

(
23k−n). For instance, if C = 2n/2, we are in the interesting case where we will find

about O
(
2n/2

)
such quadruplets.

We then need to isolate a (large) subset of pairwise disjoint quadruplets. Finding
the biggest possible subset is the 4D MATCHING problem. Given four finite disjoint
sets X,Y, Z, T . Let S be a subset of X × Y × Z × T , and let M ⊆ S such that if
(x1, y1, z1, t1) ∈M and (x2, y2, z2, t2) ∈M then x1 6= x2, y1 6= y2, z1 6= z2, t1 6= t2.

M is said to be maximal if there is no matching M ′ such that M (M ′ ⊆ S.
M is said to be maximum if there is no matching M ′ ⊆ S such that |M ′| > |M |. These

definition are illustrated by figure 1.
Finding a maximum 4D matching is NP-complete. However, any maximal 4D matching

is a 4-approximation to a maximum 4D matching, and it can be found efficiently by a
greedy algorithm. LetM denote a 4D matching, and r denote its cardinality.

We build a permuted list D as follows: start from an empty list; for each {x, y, z, t} ∈ M,
append Cx, Cy, Cz and Ct to D. Finally, append C − D to D, in any order. Algorithm G

Charles Bouillaguet, Claire Delaplace and Pierre-Alain Fouque 263

can be updated to exploit D, with a running time reduced by 25%.

Algorithm G’ (3XOR by linear change of variables with 4SUM precomputation). Given
A,B and D (as computed above), return all (a, b, d) ∈ A× B ×D such that a⊕ b⊕ d = 0.
Let k ← dlog2 min(A,B)e.
G’1. [Main loop.] For all 0 ≤ i < 3r/(n− k) do:
G’2. [Change of basis] Set u ← 4i(n − k)/3 and v ← 4(i + 1)(n − k)/3

(note that D[u..v] has rank n− k even though it has
4(n− k)/3 rows). Compute an n×n matrix M such
that

D[u..v]M =

0 . . . 0 ? . . . ?
...

...
...

...
0 . . . 0 ? . . . ?

k n− k

4
3 (n− k)

G’3. [Matrix product.] Set A′ ← AM, B′ ← BM and D′ ← D[u..v]M.
G’4. [Join] Run algorithm M to find all pairs (a′, b′) in A′ × B′

such that a′[0..k] = b′[0..k] and a′ ⊕ b′ ∈ D′.
For each such triplet, emit

(
a′M−1, b′M−1).

G’5. [Finish] Run algorithm G with input lists A,B and D[4r..].

3.2.3 One-at-a-Time Approach Using Decoding Algorithms

The second method we present is an iterative way of finding these vectorial subspaces. We
discuss how to find one hopefully large sublist of the initial list C, that spans a (n − k)
dimensional subspace, knowing that this procedure will have to be repeated many times
with decreasing list sizes.

Recall that an (n − k)-dimensional subspace of {0, 1}n is defined by a system of k
linear equations in n variables. Finding a vector space V having a large intersection with
C amounts to finding k linear equations that are simultaneously biased over C (i.e. more
often simultaneously true than the contrary).

We propose a greedy approach to find these equations: first initialize a list C to C, find
a biased equation E1 over C, then remove from C all vectors that do not satisfy E1, and
re-iterate the method k − 1 times. This reduces the problem to that of finding a single
biased equation over C.

Finding the most biased equation over C is tempting but too expensive: an exhaus-
tive search would require O

(
2n+k) operations and FFT-like methods such as the Walsh

transform still have a workload of order O(k · 2n). We have to settle for a “good”, if not
optimal bias.

Finding a biased linear equation over C is a decoding problem. Consider the binary
linear code spanned by the columns of C, and let y be a low-weight codeword: there is
a vector x such that y = Cx and y has a low Hamming weight (amongst all possible
vectors y). This means that x describes the coefficient of one of the most biased linear
equation over C.

Information Set Decoding. A linear binary (error-correcting) code of length n and
dimension d is a subspace of Fn2 of dimension d. It contains 2d codewords of n bits. A
linear code can be seen as the linear span of the rows of an d × n matrix G called the
generator matrix of the code. The weight of a codeword is its Hamming weight. The
minimum-distance of the code is the minimum weight of non-zero codewords. Determining
the minimum-distance of a linear code is NP-complete in general. The first algorithm for
the minimum-weight codeword problem has been first introduced by McEliece [McE78] in

264 Revisiting and Improving Algorithms for the 3XOR Problem

the security analysis of his cryptosystem, and has been widely studied since. One of the
simplest way to recover a minimum-weight codeword is to use the Las Vegas randomized
Information Set Decoding (ISD) procedure. Although this algorithm has been improved
several times [BJMM12, MMT11, MO15], we found out that in our particular case, the
Lee-Brickell algorithm [LB88] is nearly as efficient as its later optimizations, while being
easier to implement.

Let C be a random binary linear code of dimension k and length N . We denote by
d the minimum distance of C and by δ := d/N its relative distance. Let R := k/N be
the rate of C, and let H denote the binary entropy function. The time complexity of the
Lee-Brickell algorithm has been analyzed in [CG90] and is about O

(
2N ·F (R)) with:

F (R) := (1−R) · (1−H(δ/(1−R))). (1)

As C is a random code, its minimum distance d is close to the Gilbert-Varshamov
bound [Gil52, Var57], and thus we assume that H(δ) = 1−R.

The function F reaches a maximum of 0.1207 when R ' 0.454. The further im-
provements of the original Lee-Brickell algorithm mostly aim at reducing its worst case
complexity. However, in our case, we will have to find minimum-weight words in codes of
very low rate. As such the values of F (R) we encounter are much smaller.

Using ISD, one can find codewords c of Hamming weight wt(c) = d, where d is the
minimum distance of the code. However, the complexity of such algorithms is exponential
in the length of the code (the number of vectors in the input list), and therefore, considering
our time budget of O(C), we have to set an upper bound Nmax on the size of the list that
we consider during the procedure. The value of Nmax is determined below.

Hence, before using decoding algorithms, we have to reduce the size of the input list
below Nmax. To this end, we focus the search on the vectors of C whose dlogC/Nmaxe
first bits are zero: their expected number is approximately Nmax, and they already satisfy
dlogC/Nmaxe linear equations...

Procedure description. Let Nmax and ε be fixed parameters such that Nmax represents
an upper bound on the length of the initial code C0, and threshold parameter ε. The
following procedure finds a set of k biased equations:

Algorithm F (Greedily find simultaneous linear approximations). Given a list C (sorted
in ascending order), two parameters Nmax and ε, return a (hopefully large) sublist C such
that all entries of C satisfy k linear equations.
F1. [Initialization.] Set `← dlogC/Nmaxe.

Let j be the biggest integer such that Cj [0..`] = 0.
Set C ← C[0..j] and t← `.

(t is the number of equations currently found).
F2. [Main loop.] While t < k do:
F3. [Find equation.] Estimate d, the minimum distance of the code C

spanned by CT (i.e. the matrix whose columns are
the entries of C).
Run the Lee-Brickell ISD algorithm to find a non-zero
codeword c in C such that wt(c) ≤ d+ ε.
Increment t.

F4. [Filter.] For all i such that ci = 1 do:
remove Ci from C.

Theorem 2. Algorithm F returns a subset of C that spans a (n− k)-dimensional subspace
of {0, 1}n.

Charles Bouillaguet, Claire Delaplace and Pierre-Alain Fouque 265

Proof. We prove the following invariant: each time step F3 begins, C is contained inside a
subspace Et of dimension n− t.

At the end of step F1, C belongs to the subspace E` composed by all the vectors whose
first ` coordinates are zeroes, so the invariant holds the first time step F3 is performed.

Because c is a codeword that belongs to the code spanned by the columns of C, there
exists x such that c = Cx. Step F4 removes from C the vectors that are not orthogonal
to x. It follows that after step F4, C is contained into the subspace Et+1 = Et ∩ {0, x}⊥.
Because c is non-zero, at least one vector is removed from the list. This vector belonged
to Et, and does not belong to Et+1. As such, the dimension of Et+1 is (at least) one less
than that of Et.

Estimation of Nmax. Knowing C the size of the initial list C it is possible to estimate
the upper bound Nmax over the length of the code that the ISD algorithm can process
within our time budget.

Let us denote by f the function f(x, y) := x · F (y/x) (for 0 < y < x), where F is the
function given by equation 1. A minimum-weight codeword in a code C of length Nmax
and dimension n− ` can be found in time O

(
2f(Nmax,n−`)

)
.

If we denote by TISD, the total time spent in the k − ` iterations of step F3, we claim
that

TISD ≤ (k − `) · 2f(Nmax,n−`). (2)

The function f(x, y) grows with x, and also grows with y when y < 0.1207x. This is
enough to prove inequality (2), assuming that Nmax is much larger than n− `.

To be sure that the complexity of algorithm F does not exceed O(C), we want to
find the maximum value of Nmax so that TISD < C. This can be done numerically (for
instance using the bisection algorithm). Table 1 gives an estimation of the parameters for
some values of n and k. With k a little lower than n/2, we can hope to find at least n
vectors of C in the first subspace (this is to be compared with n/2 without this technique).

4 Adaptation of BDP Algorithm
In this section, we revisit an algorithm that was introduced by Baran, Demaine and
Pǎtraşcu (BPD) in [BDP05]. Initially this algorithm was designed for the 3SUM problem
over (Z,+), where the size of the three lists is bounded by some parameter N . Their goal
was to determine whether a 3SUM exists in the input lists or not and to return it, when
appropriate. Their algorithm is subquadratic in N .

The adaptation described here is asymptotically n/ log2 n times faster than the algo-
rithm we present in section 3, but is hardly practical. We consider three lists A, B and C
of size 2n/3 (this can be generalized to different size of input lists). We recall that A[i]

represents the sublist of A that starts with the prefix i, where i is a bit-string. The high
level idea is the following:

1. Dispatch A, B and C in buckets according to their first k bits, and let m be the
expected number of elements in each bucket (m = 2n/3−k).

Table 1: Parameter estimation of the ISD-based algorithm for some value of n and k
n k expected N0 expected C
64 28 382 81
128 60 1996 154
256 123 9894 285
512 252 60271 545

266 Revisiting and Improving Algorithms for the 3XOR Problem

v =

P · s P · s P · s

s s

a1 aP b1 bP c1 cP

Figure 2: Representation of an index v of the table T

2. For each triplets of buckets (A[i],B[j], C[i⊕j]), perform a preliminary constant time
test. The test returns false when it is certain that no solution will be found in this
triplet.

3. For each triplet that has not been rejected, use the quadratic algorithm on this
reduced instance.

A full description of the procedure is given in appendix A.
Basically for each triplet of bucket, this test consists in checking if there is a partial

collision on s bit, with s a well chosen parameter. To do that, we have previously pre-
computed a table T . Each triplet corresponds to an index v of T . If T [v] = 1 there is a
partial collision. If T [v] = 0, then, the test fails, and we know for sure there is no collision.
We describe this test in more details bellow.

4.1 Preliminary Test
Let w = Θ(n) denote the size of a word. Let s be such that s = κ1 · log(w), with κ1 a
constant to be determined. Let k < n/3 be the parameter defined above, and P ≥ 1 a
parameter to be determined, such that 3 · P · s ≤ w.

Let T be a table of 23·P ·s elements. For each index v, that can be represented by
figure 2,

T [v] =
{

1 if ∃ i, j, l s.t. ai ⊕ bj ⊕ cl = 0
0 otherwise. (3)

Then, for all three sets of s-bit vectors, that contain each at most P elements, one can
check if a solution to the 3XOR problem exists by a constant look-up in T .

By construction, |T | = 23·P ·s. We do not want the additional space to exceed the space
required to store the lists. We set:

3 · P · s = min(1/3 · n,w). (4)

For all x ∈ Fn2 , let h be the function that returns s consecutive bits of x starting from
bit k, or formally h : x→ x[k..k + s]. For all 0 ≤ ` < 2k and we denote by h(A[`]) the list

h(A[`]) = {a = h(x), s.t.x ∈ A[`]}.

We define h(B[`]) and h(C[`]) accordingly for all values of `.
Note that a triplet of buckets (A[`],B[t], C[r]) may contain a solution of the 3XOR

problem, only if r = ` ⊕ t. For all triplets of buckets (A[`],B[t], C[`⊕t]), the idea of the
algorithm is to check if a solution may exist or not by first checking if there is a solution
to the instance (h(A[`]), h(B[t]), h(C[`⊕t])).

If this test fails, we know for sure that there is no solution in (A[`],B[t], C[`⊕t]), and we
can go to the next instance, without having to perform any other operation. On the other
hand, if the test passes, we only know that there is a solution to the 3XOR problem with
probability (1/2)n−k−s.

Solving each of the 22k small instances (h(A[`]), h(B[t]), h(C[`⊕t])) can be done in
constant time, using table T .

Charles Bouillaguet, Claire Delaplace and Pierre-Alain Fouque 267

Remark 1. One can notice that if a bucket contains more than P vectors then these
additional vectors are not considered during the preliminary test. Thus, we have to treat
them separately afterward. However, if we choose P to be equal to κ2 ·m, with a well
chosen κ2, we can ensure that the number of buckets that will contain more than P
elements is very small.

Using Chernoff bounds, we figured out that, if we choose κ2 to be around 4.162, the
probability that a bucket will contain more than P elements will be 2−4·m.

Remark 2. Taking this into account, we have:

m = 2n/3−k = Θ(n/ logn). (5)

This is a direct consequence of the definition of P and s and of equation 4.

4.2 Complexity Analysis
Theorem 3. With input lists of size 2n/3, the time complexity of the BDP algorithm in
our model is

O
(

22n/3 · log2(n)
n2 +Ntest ·

n2

log2 n

)
,

where Ntest is the number of triplets that pass the test. The expected value of Ntest is:

E[Ntest] =
(

22·n/3

m
− 1
)
·

(
1−

(
1− 1

wκ1
·
(

1− 1
wκ1

))Θ(n3/ log3(w))
)

+ 1.

When n grows to infinity, Ntest is equivalent to 1. Thus, the asymptotic complexity of
this algorithm is

O
(

22n/3 · log2 n

n2

)
.

Before we prove this theorem, we need first to introduce some intermediate results.

Lemma 1. Let us denote by Ntest the number of triplets (A[t],B[t⊕`], C[`]) The time
complexity of the algorithm 1 is:

TBDP = O
(

22n/3 · log2 n

n2 +Ntest ·
n2

log2 n

)
.

Proof. The time complexity of the full procedure is:

TBDP = Tdispatch + 22·k · Ttest +Ntest · Tsolve + Tadditional,

where: Tdispatch is the time it takes to dispatch the elements of the three lists according to
their k first bits. As discussed in section 2.2,

Tdispatch = O(A+B + C) = O
(

2n/3
)
.

Ttest is the time complexity of testing one sub-instance (A[t],B[`⊕t], C[`]). This is
constant time, by a lookup in a precomputed table. We will have to perform this test for
all triplets (A[t], B[`⊕t], C [`]), that means 22·k times.

Tsolve is the time required to solve one small instance (A[t],B[`⊕t], C[`]).

Tsolve = O
(

(C [`] +A[t] ·B[`⊕b])
)
.

268 Revisiting and Improving Algorithms for the 3XOR Problem

Furthermore, as C [`], A[t] and B[`⊕b] are all O(m),

Tsolve = O
(
m2) .

Tadditional is the time required for additional search, when a bucket contains more than
P elements. As we have chosen P so that this event is very unlikely, this can be neglected.

All in all we obtain:

TBDP = O
(

2n/3 + 22·k +Ntest ·m2
)
.

In addition, we have 2k = 2n/3/m and m = Θ(n/ log(n)). This is enough to conclude
the proof of this lemma.

Lemma 2. The expected number of triplets that pass the test is:

E[Ntest] =
(
22·k − 1

)
·

(
1−

(
1− 1

wκ1
·
(

1− 1
wn−κ1

))Θ(n3/ log3(w))
)

+ 1.

Proof. Let us consider a sub-instance (A[t],B[`⊕t], C[`]). Let (a, b, c) ∈ A[t] × B[`⊕t] × C[`].
Recalling that h(a) (resp. h(b), h(c)) represents s arbitrary chosen bits of a (resp. b,
c), that are uniformly random, the probability p that h(a) ⊕ h(b) = h(c), knowing that
a⊕ b 6= c is:

p = 1
2s ·

(
1− 1

2n−s

)
.

Using Chernoff bounds, we know that the size of the small lists h(A[t]), h(B[`⊕t]) and
h(C[`]) are Θ(m) with high probability. Then, we can estimate the probability that a given
instance is a false positive to the preliminary test is:

P[pass while should not] =
(

1− (1− p)Θ(m3)
)
,

with m = Θ(n/ log(w)).
Furthermore, given the size of the list, we expect only to find one solution. Thus, we

expect only one true positive in the preliminary test. Then, there should be only one
triplet among 22·k that contains a solution. The 22·k − 1 other are expected to contain
none.

From here, we can estimate that Ntest is:

Ntest = (22·k − 1) ·
(

1− (1− p)Θ(n3/ log3(w))
)

+ 1.

Lemma 3. If w(n) ∈ Θ(n), and β is a constant, then Choosing κ1 = 3, Ntest ∼
0+

1.

Charles Bouillaguet, Claire Delaplace and Pierre-Alain Fouque 269

Proof. We set:

F (n) =
(

1− 1
w(n)κ1

(
1− 1

w(n)n−κ1

))β·n3/ log3(w(n))
.

Then
ln(F (n)) = β · n3

log3(w(n))
· ln
(

1− 1
w(n)κ1

(
1− 1

w(n)n−κ1

))
.

As w(n) ∈ Θ(n), with κ1 > 0:

lim
n→+∞

1
w(n)κ1

− 1
w(n)n = 0.

Thus,

ln(1−(1
w(n)κ1

− 1
w(n)n)) =

+∞
−
(

1
w(n)κ1

− 1
w(n)n

)
+O
(

1
n2κ1

+ 1
nn

)
=

+∞
− 1
w(n)κ1

+O
(

1
n2κ1

)
.

Then,

ln(F (n)) =
+∞
−β · n3

log3(w(n))
· 1
w(n)κ1

+O
(

1
n3 log3(n)

)
.

As w(n) ∈ Θ(n), there are two constants β1, β2 strictly greater than 0, and a certain n0
such that for all n ≥ n0,

−β1 ·
n3−κ1

log3(w(n))
+O

(
n3−2κ1

log3(n)

)
≤ ln(F (n)) ≤ −β2 ·

1
log3(w(n))

+O
(
n3−2κ1

log3(n)

)
.

Choosing κ1 ≥ 3 will ensure ln(F (n))→ 0 when n grows up to infinity. We choose then
κ1 = 3.

From here we can deduce the following equation:

lim
n→+∞

(
1− 1

w(n)3

(
1− 1

w(n)n−3

))β·n3/ log3(w(n))
= 1, (6)

or in a simpler way:
(1− 1/p)Θ(n3/ log3(w)) = 1

The proof lemma 3, is trivial from here.

Theorem 3 is a direct consequence of all these results.

5 Practical Considerations and Experimental Results
5.1 An Academic Exercise
During the preparation of this work, we implemented and compared the relative perfor-
mances of several algorithms to solve the 3XOR problem. We tried to answer the question:
“if someone actually wanted to solve a concrete instance of the 3XOR problem, what would
she do?”. This is in fact ill-formulated ; in all known applications of generalized birthday
algorithms, we not only have to solve the instance, but also to create it in the first place.
Often, some tradeoffs can be made. This is the case in the aforementioned application to
the COPA mode of operation for authenticated encryption: we may either assemble three
lists of size 2n/3 (and solve the 3XOR instance in time ≈ 22n/3) or assemble three lists of
size 2n/2 (and solve the 3XOR instance in time ≈ 2n/2).

270 Revisiting and Improving Algorithms for the 3XOR Problem

To better understand these tradeoffs, we chose to tackle an academic “practical”
problem: computing a 3XOR on the SHA256 hash function reduced to n bits, for the
largest possible value of n.

Most of the literature devoted to the generalized birthday problem is mostly theoretical,
in particular because the exponential space requirement of these algorithms makes them
quite impractical. One notable exception is [BLN+09], which provides the source code
of a high-quality implementation of Wagner’s k-list algorithm. Studying this code was
enlightening for us.

We performed our tests on a “Haswell” Core i5 CPU. Our implementation of the
quadratic algorithm takes 340 CPU hours, while our implementation of algorithm G,
described in section 3 takes 105 CPU hours.

Space/Data constraints are the hardest. The algorithms of Joux and Nikolić-Sasaki
compute the join of two lists of size 2n/2−ε. Storing and/or moving around such a massive
amount of data is the main limiting factor. For instance, with n = 96, each list of 248

12-byte entries requires 3 Petabytes of storage. Even by exploiting the fact that Li can be
re-computed on-the-fly and does not strictly need to be stored, we came short of a way to
compute the join in reasonable time.

However, this obstacle can be sidestepped with clamping. With n = 96 and clamping
on 24 bits, about 249.6 evaluations of SHA256 are required to create three lists of 224 entries
with 24 leading zeroes each. Then, the 3XOR can be computed in about 248 operations
using 576 Megabytes of storage. This computation was carried out in practice.

The BDP Algorithm is completely impractical. While it is asymptotically more efficient,
the BDP algorithm fails in practice for reasonable values of n (e.g. n = 96). In fact, for
n = 96, and w = 64, from equation 4, we have:

3 · P · s = 3 · κ1 log(w) · κ2m = 32.

Choosing κ1 = 3 as in lemma 3, and κ2 = 4.162, as in remark 1, we obtain:

m = 32
3 · 3 · 4.162 · log 64 = 32

224.748 ' 0.142.

The best we could hope, in that case, is to process “batches” composed of... a tenth
of an entry!

Creating the lists cannot be neglected. A single core of a modern CPU is capable of
evaluating SHA256 on single-block inputs about 20 million times per second, so that
creating the lists takes 11,851 CPU hours sequentially. Put another way, generating the
input lists is 100× slower than processing them!

It would have been smarter to do clamping on 22 bits instead of 24. This would have
reduced the total running time by 2.5×, at the expense of making the lists 4 times bigger.
This is ultimately dependent on the speed at which the “oracles” can be evaluated.

5.2 Clusters, Cache, Registers and Other Gory Details
All our implementations are written in plain C, and are relatively concise, totaling 1000
lines of code (not including one-shot tools to generate the hashes, check for potential
collisions, etc. which add 1600 additional lines). This section details some of our choices.

Charles Bouillaguet, Claire Delaplace and Pierre-Alain Fouque 271

n = 96 on 64-bit machines. The transdichotomous RAM [FW93] model is practical to
think about the complexities of algorithms, but it hits limitations when one tries to actually
implement things. We used the following two-step strategy to cope with values of n larger
than 64: first, find and store all triplets (i, j, k) such that Ai[0..64]⊕Bj [0..64]⊕Ck[0..64] = 0.
This means running the quadratic algorithm or algorithm G, and only dealing with 64-bit
quantities. This allows for simple and efficient implementations.

In a second step, check if these partial solutions extend to full solutions. This necessitates
to deal with the full n bits, but is comparatively much simpler than the first step. In
addition, the expected number of partial solutions is small.

The quadratic algorithm. The summary description given in section 2.2 suggests to
allocate a hash table that holds the whole C list. Most accesses to this hash table are likely
to incur the penalty of a cache miss, and this can be avoided at no cost. We dispatch the
entries of A,B and C into buckets of small expected size using their most-significant bits.
An eventual 3XOR must lie in A[i] × B[j] × C [i⊕j] for some i, j. The idea is to process
buckets of C one-by-one, storing them in a small hash table. Then, we consider all the
pairs from the corresponding bins of A and B. This yields the following algorithm

Algorithm Q (More practical quadratic algorithm). Find all triplets (a, b, c) from A×B×C
such that a⊕ b⊕ c = 0. The algorithm takes two input parameters k and `.
Q1. [Dispatch.] Dispatch A, B and C in buckets according to their first

k bits (this essentially requires sorting the lists on their
first k bits).

Q2. [Outer loop.] For all 0 ≤ u, v < 2` do:
Q3. [L3-loop.] For all u2k−` ≤ i < (u+ 1)2k−` do:
Q4. [Hash C [i].] Initialize a hash table with the entries of C[i].
Q5. [L1-loop.] For all v2k−` ≤ j < (v + 1)2k−` do:
Q6. [Check A[j] × B[i⊕j].] For all x ∈ A[j] and all y ∈ B[i⊕j] do:

If x⊕ y ∈ C[i] then emit (x, y).

k should be chosen such that the hash table created in step Q4 fits inside L1 cache. Then
all iterations of the L1-loop of steps Q5–Q6 works with data available in the fastest cache.
Parallelization is easy: all iterations of the outer loops on u, v can be done concurrently
on several machines. The three-level loop structure guarantees that one iteration of
steps Q3–Q6 only needs to read 2n−` entries of each list. ` is ideally chosen so that the
corresponding portions of both A and B fit in L3 cache. 218 entries of A and B fit in 2
megabyte of L3 cache, and a few minutes will be necessary to process the corresponding
236 pairs. Memory bandwidth is not a problem, and the quadratic algorithm scales well
on multi-core machines. The algorithm can also be run on machines with limited memory.
Algorithm Q runs at 10–11 cycles per pair processed on a “Haswell” Core i5 CPU.

Algorithm G. The efficient implementation of joins is a non-trivial problem, which has
been studied for a while by the database community. We used a reasonably efficient
sort-join, but it turns out that hash-joins have the favors of the experts (for now).

The longest operation of each iteration is the sorting step of Algorithm M, which
accounts for 50% of the total running-time. We use three passes of radix-256 sort for the
case of n = 96 (where the value of the k parameter is 24). The out-of-place version is
2–3× faster than the in-place version (but requires twice more memory); the technique of
“multi-histogramming” helped a little. We use the M4RI library [AB12] to compute the
PLUQ factorization. To solve our n = 96 problem, a single iteration of algorithm G runs
at 75 CPU cycles per list item processed on the same “Haswell” Core i5 CPU.

272 Revisiting and Improving Algorithms for the 3XOR Problem

It is easy to parallelize the loop on i (each iteration takes slightly less than 1s for
n = 96). The problem is that both the full A and B must fit in RAM, as they are entirely
read in each iteration. When the lists only have 224 entries (as it is the case for n = 96),
they only require 256 Megabytes. On a multi-core machine, one iterations can be run
concurrently per core. One potential problem is that this may saturate the memory
bandwidth: each iteration reads 1.25 Gigabytes from memory in about 1s, so on a large
chip with 18 cores/36 threads, up to 22.5 Gigabytes/s of memory bandwidth would be
required.

A further problem is that, for larger values of n, it becomes impossible to holds many
independent copies of the lists in memory. In that case, the sorting and merging operations
themselves have to be parallelized, and this is a bit less obvious. If a single copy of the
lists does not fit in memory, a distributed sort/merge will be required, and it is likely that
the communication overhead will make this less efficient than the quadratic algorithm.

Distributed computation. It is easy to run these algorithms on clusters of loosely-
connected machines. We used a simple master-slave approach, in which the iterations to
be parallelized are numbered. When a slave node becomes ready, it requests an iteration
number to the master node. When it has finished processing it, it sends the partial solutions
found in the iteration back to the master. The master stores a log of all accomplished
iterations. Communications were handled by the ∅MQ library [Hin13]. We actually ran
the algorithms on several hundred cores concurrently.

5.3 Results and Further Work
Consider the three ASCII strings:

x = FOO-0x0000B70947f064A1

y = BAR-0x000013f9e450df0b

z = FOOBAR-0x0000e9b2cf21d70a

The reader can readily check that

SHA256(x) = 000000a9 4fc67b35 beed47fc addb8253 911bb4fa ecaee2d9 f46f7f10 5c7ba78c
^ SHA256(y) = 00000017 d29b29eb a0ef2522 db22d0cc 5d48d2f9 36149197 6430685b 1266ee76
^ SHA256(z) = 000000be 9d5d52de 1e0262de e51c1119 edff081d 868fe419 879932ab bbcfe66e
===

= 00000000 00000000 00000000 93e54386 21ac6e1e 5c359757 17c625e0 f5d2af94

After completing this 96-bit 3XOR, we embarked on a project to compute a 128-bit
3XOR on SHA256. To this end, we found a way to use off-the-shelf bitcoin miners, which
evaluate SHA256 about one million times faster than a CPU core. Bitcoin miners naturally
produce bitstrings whose SHA256 is zero on (at least) the 32 most significant bits. We
plan to accumulate three lists of 232 entries, and then to use algorithm G to find 232

partial solutions on 64 bits, amongst which one should lead to a 128-bit 3XOR (thanks
to the extra 32 bits of clamping). Note that this setting naturally enables the use of the
technique described in section 3.2.2.

We presently accumulated 10% of the input lists, and we keep on mining.

Acknowledgement
Claire Delaplace was supported by the french ANR under the Brutus project. We thank
the anonymous reviewers for their comments.

Charles Bouillaguet, Claire Delaplace and Pierre-Alain Fouque 273

References
[AB12] Martin Albrecht and Gregory Bard. The M4RI Library – Version 20121224.

The M4RI Team, 2012.

[BDP05] Ilya Baran, Erik D Demaine, and Mihai Pǎtraşcu. Subquadratic algorithms
for 3SUM. In Workshop on Algorithms and Data Structures, pages 409–421.
Springer, 2005.

[Ber07] Daniel J. Bernstein. Better price-performance ratios for generalized birthday
attacks, 2007.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set
decoding. In EUROCRYPT, pages 520–536. Springer, 2012.

[BLN+09] Daniel J Bernstein, Tanja Lange, Ruben Niederhagen, Christiane Peters, and
Peter Schwabe. FSBday: Implementing Wagner’s Generalized Birthday Attack.
In INDOCRYPT, pages 18–38, 2009.

[CG90] John T Coffey and Rodney M Goodman. The complexity of information set
decoding. IEEE Transactions on Information Theory, 36(5):1031–1037, 1990.

[CJM02] Philippe Chose, Antoine Joux, and Michel Mitton. Fast correlation attacks:
An algorithmic point of view. In EUROCRYPT, pages 209–221. Springer,
2002.

[CLRS01] Thomas Cormen, Charles Eric Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms, volume 6. MIT press Cambridge, 2001.

[Eri95] Jeff Erickson. Lower Bounds for Linear Satisfiability Problems. In SODA,
pages 388–395, 1995.

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse
table with 0(1) worst case access time. J. ACM, 31(3):538–544, June 1984.

[FW93] Michael L Fredman and Dan E Willard. Surpassing the information theoretic
bound with fusion trees. Journal of computer and system sciences, 47(3):424–
436, 1993.

[Gil52] Edgar N Gilbert. A comparison of signalling alphabets. Bell System Technical
Journal, 31(3):504–522, 1952.

[GO95] Anka Gajentaan and Mark H Overmars. On a class of O(n2) problems in
computational geometry. Computational geometry, 5(3):165–185, 1995.

[Hin13] Pieter Hintjens. ZeroMQ: messaging for many applications. O’Reilly, Se-
bastopol, CA, 2013.

[Jou09] Antoine Joux. Algorithmic cryptanalysis. CRC Press, 2009.

[JV13] Zahra Jafargholi and Emanuele Viola. 3sum, 3xor, triangles. CoRR,
abs/1305.3827, 2013.

[KADF70] M Kronrod, V Arlazarov, E Dinic, and I Faradzev. On economic construction
of the transitive closure of a direct graph. In Sov. Math (Doklady), volume 11,
pages 1209–1210, 1970.

274 Revisiting and Improving Algorithms for the 3XOR Problem

[Knu98] Donald E. Knuth. Searching and sorting, volume 3 of The Art of Computer
Programming. Addison-Wesley, Reading, Massachusetts, second edition, 10 Jan-
uary 1998. This is a full BOOK entry.

[LB88] Pil Joong Lee and Ernest F Brickell. An observation on the security of
McEliece’s public-key cryptosystem. In Workshop on the Theory and Applica-
tion of of Cryptographic Techniques, pages 275–280. Springer, 1988.

[McE78] Robert J McEliece. A public-key cryptosystem based on algebraic. Coding
Theory, 4244:114–116, 1978.

[Mit96] Michael David Mitzenmacher. The power of two random choices in randomized
load balancing. PhD thesis, PhD thesis, Graduate Division of the University of
California at Berkley, 1996.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding Random
Linear Codes in Õ(20.054n). In EUROCRYPT, pages 107–124. Springer, 2011.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with appli-
cations to decoding of binary linear codes. In EUROCRYPT, pages 203–228,
2015.

[Nan15] Mridul Nandi. Revisiting Security Claims of XLS and COPA. IACR Cryptology
ePrint Archive, 2015:444, 2015.

[NS14] Ivica Nikolić and Yu Sasaki. Refinements of the k-tree Algorithm for the
Generalized Birthday Problem. In ASIACRYPT, pages 683–703. Springer,
2014.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In European
Symposium on Algorithms, pages 121–133. Springer, 2001.

[Var57] RR Varshamov. Estimate of the number of signals in error correcting codes,
1957.

[Vio12] Emanuele Viola. Reducing 3xor to listing triangles, an exposition. Technical
report, Northeastern University, College of Computer and Information Science,
May 2012. Available at http://www.ccs.neu.edu/home/viola/papers/xxx.
pdf.

[Wag02] David Wagner. A generalized birthday problem. In CRYPTO, pages 288–304,
2002.

http://www.ccs.neu.edu/home/viola/papers/xxx.pdf
http://www.ccs.neu.edu/home/viola/papers/xxx.pdf

Charles Bouillaguet, Claire Delaplace and Pierre-Alain Fouque 275

A Baran Demaine and Pǎtraşcu Algorithm
Let k be a parameter such that A, B and C are dispatched into 2k buckets according
to their first k bits. For each small set A[`] (resp. B[t] and C[`⊕t]), we keep a Ps-bit
vector vA[`] (resp. vB [t] and vC [`⊕ t]), in which the elements of h(A[`]) (resp. h(B[t]) and
h(C[`⊕t])) are stored. With this construction, assuming that the number of elements of
each buckets does not exceed P , a solution to the instance (h(A[`]), h(B[t]), h(C`⊕t)) exists
if and only if T [vA[`] ‖ vB [t] ‖ vC [`⊕ t]] = 1. The following procedure is used to initialize
the tables vA, vB and vC :

Algorithm V (Initialise vectors for preliminary test). Given a list A dispatched into 2k
buckets, create the table vA.
V1. [Iterate on buckets.] For all 0 ≤ ` < 2k do:
V2. [Initialize.] Set vA[`]← ε.
V3. [Iterate on A[`].] For all 0 ≤ i < max(P, |A[`]|) do:
V4. [Update.] vA[`]← vA[`] ‖ h

(
A[`][i]

)
.

If there are exceeding elements in the buckets they are to be treated independently.
All in all, this leads to Algorithm 1.

276 Revisiting and Improving Algorithms for the 3XOR Problem

Data: Three lists A, B and C and the precomputed table T
Result: All couples (Ai,Bj) such that Ai ⊕ Bj is an element of C
Dispatch A,B and C, according to their first k bits.
Use Algorithm V to create the tables vA, vB and vC ;
for 0 ≤ `, t < 2k do

v ← vA[t]|vB [`⊕ t]|vC [`];
if T [v] = 1 ; // There may be a solution in this sub-instance
then

for all couples (Ai,Bj) in A[t] × B[`⊕t] do
if Ai ⊕ Bj is in C[idC [`]..idC [`+ 1]] then

emit (Ai,Bj);
end

end
end
else if A[t] > P ; // There is more than P elements of A that start
with the prefix t
then

for all couples (Ai,Bj) in A[t][P..]× B[`⊕t] do
if Ai ⊕ Bj is in C[idC [`]..idC [`+ 1]] then

emit (Ai,Bj);
end

end
end
else if B[`⊕t] > P ; // There is more than P elements of B that
start with the prefix t⊕ `
then

for all couples (Ai,Bj) in A[t] × B[`⊕t][P..] do
if Ai ⊕ Bj is in C[idC [`]]..idC [`+ 1]] then

emit (Ai,Bj);
end

end
end
else if C [`] > P ; // There is more than P elements of C that start
with the prefix `
then

for all couples (Ai,Bj) in A[t] × B[`⊕t] do
if Ai ⊕ Bj is in C[idC [`] + P..idC [`+ 1]] then

emit (Ai,Bj);
end

end
end

end
Algorithm 1: Adaptation of BDP algorithm to our problem

	1 Introduction
	2 Preliminary
	2.1 Computational Model and Assumptions
	2.2 Algorithmic Tools
	2.3 Clamping

	3 Finding 3XOR by Linear Changes of Variables
	3.1 Algorithm Description
	3.2 Constant-Factor Improvements

	4 Adaptation of BDP Algorithm
	4.1 Preliminary Test
	4.2 Complexity Analysis

	5 Practical Considerations and Experimental Results
	5.1 An Academic Exercise
	5.2 Clusters, Cache, Registers and Other Gory Details
	5.3 Results and Further Work

	A Baran Demaine and Patrascu Algorithm

