Revisiting and Improving Algorithms for the 3XOR Problem

Charles Bouillaguet ${ }^{1} \quad$ Claire Delaplace ${ }^{1,2} \quad$ Pierre-Alain Fouque ${ }^{2}$
${ }^{2}$ University of Rennes 1, IRISA, France
${ }^{1}$ University of Lille, CRIStAL, France

FSE 2018, Bruges
7th of March

3XOR Problem

Problem

Given three lists A, B, and C of uniformly random elements of $\{0,1\}^{n}$, find $(a, b, c) \in A \times B \times C$, such that $a \oplus b \oplus c=0$.

- Difficult case of Generalised Birthday Problem
- Application in cryptanalysis of some authenticated encryption scheme
- Lists formed by querying oracles \Rightarrow can be as big as we want
- $|A| \cdot|B| \cdot|C| \geq 2^{n} \Rightarrow$ solution w.h.p.
(1) Background
(2) Our New Algorithm
(3) Adaptation of BDP Algorithm for the 3SUM problem

A Naive Quadratic Algorithm

Idea

- Create all $v=a \oplus b$
- Check if v is in C

A Naive Quadratic Algorithm

Idea

- Create all $v=a \oplus b$
- Check if v is in C
- Time complexity: $\mathcal{O}(|A| \cdot|B|+|C|)$
- Space: $\mathcal{O}(|A|+|B|+|C|)$
- $|A|=|B|=|C|=2^{n / 3} \Rightarrow$ Time: $\mathcal{O}\left(2^{2 n / 3}\right)$, Space: $\mathcal{O}\left(2^{n / 3}\right)$
- $|A|=|B|=2^{n / 4},|C|=2^{n / 2} \Rightarrow$ Time: $\mathcal{O}\left(2^{n / 2}\right)$, Space: $\mathcal{O}\left(2^{n / 2}\right)$

A Naive Quadratic Algorithm

Idea

- Create all $v=a \oplus b$
- Check if v is in C
- Time complexity: $\mathcal{O}(|A| \cdot|B|+|C|)$
- Space: $\mathcal{O}(|A|+|B|+|C|)$
- $|A|=|B|=|C|=2^{n / 3} \Rightarrow$ Time: $\mathcal{O}\left(2^{2 n / 3}\right)$, Space: $\mathcal{O}\left(2^{n / 3}\right)$
- $|A|=|B|=2^{n / 4},|C|=2^{n / 2} \Rightarrow$ Time: $\mathcal{O}\left(2^{n / 2}\right)$, Space: $\mathcal{O}\left(2^{n / 2}\right)$

Time/Space tradeoff: Well studied in the past (e.g. [Wagner02], [Bernstein07]).

Wagner and its descendants

Description

- Number of queries: increased up to $\simeq 2^{n / 2}$
- Elements of C start by p

Wagner and its descendants

Description

- Number of queries: increased up to $\simeq 2^{n / 2}$
- Elements of C start by p
- For all a, b s.t.
$a \oplus b=(p \mid *)$ search $a \oplus b$ in C

Wagner and its descendants

Description

- Number of queries: increased up to $\simeq 2^{n / 2}$
- Elements of C start by p
- For all a, b s.t.
$a \oplus b=(p \mid *)$ search $a \oplus b$ in C
[Wagner02]: $2^{n / 2}$ queries allowed
$|C|=1$.
Time/Space $\mathcal{O}\left(2^{n / 2}\right)$

Wagner and its descendants

Description

- Number of queries: increased up to $\simeq 2^{n / 2}$
- Elements of C start by p
- For all a, b s.t.
$a \oplus b=(p \mid *)$
search $a \oplus b$ in C
$[\mathrm{NS} 14]: 2^{\ell} \simeq \frac{2^{n / 2}}{\sqrt{(n / 2) / \ln (n / 2)}}$ queries allowed
p : Most frequent prefix in C
Time/Space $\mathcal{O}\left(2^{n / 2} / \sqrt{n / \ln (n)}\right)$

Wagner and its descendants

Description

- Number of queries: increased up to $\simeq 2^{n / 2}$
- Elements of C start by p
- For all a, b s.t.
$a \oplus b=(p \mid *)$ search $a \oplus b$ in C
[Joux09]: $2^{n / 2} / \sqrt{n / 2}$ queries allowed
$|C|=n / 2$, Basis change to force $p=0$
Time/Space $\mathcal{O}\left(2^{n / 2} / \sqrt{n}\right)$

Discussion

Joux's Algorithm best time complexity but...

Discussion

Joux's Algorithm best time complexity but...

96-bit 3XOR

- Joux Algorithm: about 2^{48} operations
- But about 1 PB of data \Longrightarrow Impractical

Discussion

Joux's Algorithm best time complexity but...

96-bit 3XOR

- Joux Algorithm: about 2^{48} operations
- But about 1 PB of data \Longrightarrow Impractical
- Quad algorithm: with $|A|=|B|=|C|=2^{n / 3}$: about 2^{64} operations
- But only 206 GB of data \Longrightarrow Practical

Discussion

Joux's Algorithm best time complexity but...

96-bit 3XOR

- Joux Algorithm: about 2^{48} operations
- But about 1 PB of data \Longrightarrow Impractical
- Quad algorithm: with $|A|=|B|=|C|=2^{n / 3}$: about 2^{64} operations
- But only 206 GB of data \Longrightarrow Practical
\Rightarrow Keep the lists small!

The Clamping Trick [Berstein07]

- Idea: Increase the number of queries to reduce the storage

The Clamping Trick [Berstein07]

- Idea: Increase the number of queries to reduce the storage
- 2^{k} queries, $k \geq n / 3$
- ℓ s.t. $(n-\ell) / 3=k-\ell$
- Discard vectors that do not start with ℓ zeroes

The Clamping Trick [Berstein07]

- Idea: Increase the number of queries to reduce the storage
- 2^{k} queries, $k \geq n / 3$
- ℓ s.t. $(n-\ell) / 3=k-\ell$
- Discard vectors that do not start with ℓ zeroes
- Let $n^{\prime}=n-\ell$
- $\Rightarrow 3$ lists A, B, C of $2^{k-\ell}=2^{n^{\prime} / 3}$ of n^{\prime}-bits vectors
- Solve the $3 X O R$ problem over A, B, C with $|A| \cdot|B| \cdot|C|=2^{n^{\prime}}$

The Clamping Trick [Berstein07]

- Idea: Increase the number of queries to reduce the storage
- 2^{k} queries, $k \geq n / 3$
- ℓ s.t. $(n-\ell) / 3=k-\ell$
- Discard vectors that do not start with ℓ zeroes
- Let $n^{\prime}=n-\ell$
- $\Rightarrow 3$ lists A, B, C of $2^{k-\ell}=2^{n^{\prime} / 3}$ of n^{\prime}-bits vectors
- Solve the $3 X O R$ problem over A, B, C with $|A| \cdot|B| \cdot|C|=2^{n^{\prime}}$

$2^{n / 2}$ Queries

- $\ell=n / 4, n^{\prime}=3 n / 4$
- Stored data: $\mathcal{O}\left(2^{n / 4}\right)$ words
- Time Complexity: $\mathcal{O}\left(2^{n / 2}\right)$ with Quadratic Algorithm

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n-k$ arbitrary entries in C (the first ones)

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n-k$ arbitrary entries in C (the first ones)
- Apply Joux's Algorithm

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n-k$ arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O)(|A|+|B|))

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n-k$ arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O)(|A|+|B|))
- Re-iterate with $n-k$ other rows...

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n-k$ arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O)(|A|+|B|))
- Re-iterate with $n-k$ other rows...

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n-k$ arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O)(|A|+|B|))
- Re-iterate with $n-k$ other rows...
- ... until all C has been watched ($\simeq \frac{|c|}{n-k}$ iterations $)$

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n-k$ arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O)(|A|+|B|))
- Re-iterate with $n-k$ other rows...
- ... until all C has been watched ($\simeq \frac{|c|}{n-k}$ iterations $)$
$k=\log _{2}(\min (|A|,|B|))$, Time: $\mathcal{O}\left((|A|+|B|) \cdot \frac{|C|}{n}\right)$

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists

- Pick $n-k$ arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O)(|A|+|B|))
- Re-iterate with $n-k$ other rows...
- ... until all C has been watched ($\simeq \frac{|c|}{n-k}$ iterations $)$

$$
|A|=|B|=|C|=2^{n / 3} ; k=n / 3, \text { Time: } \mathcal{O}\left(\frac{2^{2 n / 3}}{n}\right)
$$

A Concrete Example

A 96-bit 3XOR

- Require $3 \cdot 2^{48}$ queries

A Concrete Example

A 96-bit 3XOR

- Require $3 \cdot 2^{48}$ queries
- Perform the clamping on 24 bits

A Concrete Example

A 96-bit 3XOR

- Require $3 \cdot 2^{48}$ queries
- Perform the clamping on 24 bits
- Process the lists on the first 64 bits of each entries (Find all solutions)

A Concrete Example

A 96-bit 3XOR

- Require $3 \cdot 2^{48}$ queries
- Perform the clamping on 24 bits
- Process the lists on the first 64 bits of each entries (Find all solutions)
- Test them on the remaining 8 bits (about 256 tests)

A Concrete Example

A 96-bit 3XOR

- Require $3 \cdot 2^{48}$ queries
- Perform the clamping on 24 bits
- Process the lists on the first 64 bits of each entries (Find all solutions)
- Test them on the remaining 8 bits (about 256 tests)

Experimentations

- 3XOR of 96 bits of SHA-256
- Tests performed on a Haswell Core i5 CPU

Timing

	Quadratic	Our Algorithm
CPU hours	340	105
Data	576 MB	576 MB

Experimentations

- 3XOR of 96 bits of SHA-256
- Tests performed on a Haswell Core i5 CPU

Timing

	Quadratic	Our Algorithm
CPU hours	340	105
Data	576 MB	576 MB

Creation of the lists: $\times 100$ slower than processing them!

In a Nutshell

This Algorithm...

- can be applied to any size of input list
- has a $\times n$ speed-up compared to the Quadratic Algorithm
- is about 3 times faster, in practice ($n=96$)
- is faster than [NS14] with the same amount of data, in theory
- is the same than [Joux09] with the same amount of data

In a Nutshell

This Algorithm...

- can be applied to any size of input list
- has a $\times n$ speed-up compared to the Quadratic Algorithm
- is about 3 times faster, in practice ($n=96$)
- is faster than [NS14] with the same amount of data, in theory
- is the same than [Joux09] with the same amount of data

Possible improvements

Find basis changes that increase the size of the sublists

- We propose two ways of doing this
- Only a constant time improvement in theory

A 3XOR Adaptation of [BDP05]

- Originally designed for the 3SUM Problem over $(\mathbb{Z},+$)
- We transposed it for the 3XOR Problem

A 3XOR Adaptation of [BDP05]

- Originally designed for the 3SUM Problem over $(\mathbb{Z},+$)
- We transposed it for the 3XOR Problem
- Dispatch entries into buckets (according to the first k bits)
- A^{u} : Bucket of elements of A starting by u
- For each triplet ($A^{u}, B^{v}, C^{u \oplus v}$) perform constant time preliminary test
- Test s-bit partial collision with a hash table

A 3XOR Adaptation of [BDP05]

- Originally designed for the 3SUM Problem over $(\mathbb{Z},+$)
- We transposed it for the 3XOR Problem
- Dispatch entries into buckets (according to the first k bits)
- A^{u} : Bucket of elements of A starting by u
- For each triplet ($A^{u}, B^{v}, C^{u \oplus v}$) perform constant time preliminary test
- Test s-bit partial collision with a hash table
- If the test fail: no solution for sure
- If the test succeed: there may be a solution
- Solve the small instance

Preliminary Test

Instance $\left(A^{u}, B^{\vee}, C^{u \oplus v}\right)$

Discussion

BDP In Theory

When n grows up to infinity, only one triplet passes the test \Longrightarrow complexity of the algorithm:

$$
\text { Time: } \mathcal{O}\left(\frac{2^{2 n / 3} \log ^{2}(n)}{n^{2}}\right) \text {, Space: } \mathcal{O}\left(2^{n / 3}\right)
$$

Discussion

BDP In Theory

When n grows up to infinity, only one triplet passes the test \Longrightarrow complexity of the algorithm:

$$
\text { Time: } \mathcal{O}\left(\frac{2^{2 n / 3} \log ^{2}(n)}{n^{2}}\right), \text { Space: } \mathcal{O}\left(2^{n / 3}\right)
$$

BDP In Practice

$n=96$, machine words: 64 bits
Expected size of a bucket: $m=0.14$
\Longrightarrow Completely impractical

Conclusion

This work

- Discusses issues arising from the $3 X O R$ problem
- Propose a new practical algorithm for the 3XOR problem, that is
- $n \times$ faster than the quadratic algorithm in theory
- $3 \times$ faster than the quadratic algorithm in practice
- Propose an adaptation of [BDP05] algorithm that is
- asymptotically faster than other algorithms
- Totally impractical

Conclusion

This work

- Discusses issues arising from the $3 X O R$ problem
- Propose a new practical algorithm for the 3XOR problem, that is
- $n \times$ faster than the quadratic algorithm in theory
- $3 \times$ faster than the quadratic algorithm in practice
- Propose an adaptation of [BDP05] algorithm that is
- asymptotically faster than other algorithms
- Totally impractical

What's Next?

- Compute a 128 -bit 3XOR on SHA-256
- Expect to have the lists in about 2 years (using one Antminer S7)

Code available here:
https://github.com/cbouilla/3XOR

Thank you for your time!

