Revisiting and Improving Algorithms for the 3XOR Problem

Charles Bouillaguet¹ Claire Delaplace^{1,2} Pierre-Alain Fouque²

² University of Rennes 1, IRISA, France

¹ University of Lille, CRIStAL, France

FSE 2018, Bruges 7th of March

3XOR Problem

Problem

Given three lists A, B, and C of uniformly random elements of $\{0, 1\}^n$, find $(a, b, c) \in A \times B \times C$, such that $a \oplus b \oplus c = 0$.

- Difficult case of Generalised Birthday Problem
- Application in cryptanalysis of some authenticated encryption scheme
- Lists formed by querying oracles \Rightarrow can be as big as we want
- $|A| \cdot |B| \cdot |C| \ge 2^n \Rightarrow$ solution w.h.p.

3 Adaptation of BDP Algorithm for the 3SUM problem

A Naive Quadratic Algorithm

Idea

- Create all $v = a \oplus b$
- Check if v is in C

A Naive Quadratic Algorithm

Idea

- Create all $v = a \oplus b$
- Check if v is in C
- Time complexity: $\mathcal{O}(|A| \cdot |B| + |C|)$
- Space: O(|A| + |B| + |C|)
- $|A| = |B| = |C| = 2^{n/3} \Rightarrow$ Time: $\mathcal{O}(2^{2n/3})$, Space: $\mathcal{O}(2^{n/3})$
- $|A| = |B| = 2^{n/4}$, $|C| = 2^{n/2} \Rightarrow$ Time: $O(2^{n/2})$, Space: $O(2^{n/2})$

A Naive Quadratic Algorithm

Idea

- Create all $v = a \oplus b$
- Check if v is in C
- Time complexity: *O*(|*A*| · |*B*| + |*C*|)
 Space: *O*(|*A*| + |*B*| + |*C*|)
- $|A| = |B| = |C| = 2^{n/3} \Rightarrow$ Time: $O(2^{2n/3})$, Space: $O(2^{n/3})$
- $|A| = |B| = 2^{n/4}$, $|C| = 2^{n/2} \Rightarrow$ Time: $O(2^{n/2})$, Space: $O(2^{n/2})$

Time/Space tradeoff: Well studied in the past (e.g. [Wagner02], [Bernstein07]).

Description

- Number of queries: increased up to $\simeq 2^{n/2}$
- Elements of C start by p

Description

- Number of queries: increased up to $\simeq 2^{n/2}$
- Elements of C start by p

• For all
$$a, b$$
 s.t.
 $a \oplus b = (p|*)$
• search $a \oplus b$ in C

[Wagner02]: $2^{n/2}$ queries allowed |C| = 1. Time/Space $O(2^{n/2})$

Description

- Number of queries: increased up to $\simeq 2^{n/2}$
- Elements of C start by p

[NS14]: $2^{\ell} \simeq \frac{2^{n/2}}{\sqrt{(n/2)/\ln(n/2)}}$ queries allowed *p*: Most frequent prefix in *C* Time/Space $\mathcal{O}\left(2^{n/2}/\sqrt{n/\ln(n)}\right)$

Description

- Number of queries: increased up to $\simeq 2^{n/2}$
- Elements of C start by p

• For all
$$a, b$$
 s.t.
 $a \oplus b = (p|*)$
• search $a \oplus b$ in C

[Joux09]: $2^{n/2}/\sqrt{n/2}$ queries allowed |C| = n/2, Basis change to force p = 0Time/Space $O\left(2^{n/2}/\sqrt{n}\right)$

Joux's Algorithm best time complexity but...

Joux's Algorithm best time complexity but...

96-bit 3XOR

- Joux Algorithm: about 248 operations
- But about 1 PB of data \implies Impractical

Joux's Algorithm best time complexity but...

96-bit 3XOR

- Joux Algorithm: about 248 operations
- But about 1 PB of data \implies Impractical
- Quad algorithm: with $|A| = |B| = |C| = 2^{n/3}$: about 2^{64} operations
- But only 206 GB of data \implies Practical

Joux's Algorithm best time complexity but...

96-bit 3XOR

- Joux Algorithm: about 248 operations
- But about 1 PB of data \implies Impractical
- Quad algorithm: with $|A| = |B| = |C| = 2^{n/3}$: about 2^{64} operations
- But only 206 GB of data \implies Practical

 \Rightarrow Keep the lists small!

• Idea: Increase the number of queries to reduce the storage

- Idea: Increase the number of queries to reduce the storage
- 2^k queries, $k \ge n/3$
- ℓ s.t. $(n \ell)/3 = k \ell$
- \bullet Discard vectors that do not start with ℓ zeroes

- Idea: Increase the number of queries to reduce the storage
- 2^k queries, $k \ge n/3$
- ℓ s.t. $(n \ell)/3 = k \ell$
- \bullet Discard vectors that do not start with ℓ zeroes
- Let $n' = n \ell$
- \Rightarrow 3 lists A, B, C of $2^{k-\ell} = 2^{n'/3}$ of n'-bits vectors
- Solve the 3XOR problem over A, B, C with $|A| \cdot |B| \cdot |C| = 2^{n'}$

- Idea: Increase the number of queries to reduce the storage
- 2^k queries, $k \ge n/3$
- ℓ s.t. $(n \ell)/3 = k \ell$
- \bullet Discard vectors that do not start with ℓ zeroes
- Let $n' = n \ell$
- \Rightarrow 3 lists A, B, C of $2^{k-\ell} = 2^{n'/3}$ of n'-bits vectors
- Solve the 3XOR problem over A, B, C with $|A| \cdot |B| \cdot |C| = 2^{n'}$

$2^{n/2}$ Queries

- $\ell = n/4, n' = 3n/4$
- Stored data: $\mathcal{O}\left(2^{n/4}\right)$ words
- Time Complexity: $\mathcal{O}\left(2^{n/2}\right)$ with Quadratic Algorithm

Generalization to any size of input lists

• Pick n - k arbitrary entries in C (the first ones)

- Pick n k arbitrary entries in C (the first ones)
- Apply Joux's Algorithm

- Pick n k arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O(|A| + |B|))

- Pick n k arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O(|A| + |B|))
- Re-iterate with n k other rows...

- Pick n k arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O(|A| + |B|))
- Re-iterate with n k other rows...

- Pick n k arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O(|A| + |B|))
- Re-iterate with n k other rows...
- ... until all C has been watched $\left(\simeq \frac{|C|}{n-k}\right)$ iterations

- Pick n k arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O(|A| + |B|))
- Re-iterate with n k other rows...
- ... until all C has been watched $\left(\simeq \frac{|C|}{n-k}\right)$ iterations

$$k = \log_2(\min(|A|, |B|))$$
, Time: $\mathcal{O}\left((|A| + |B|) \cdot \frac{|C|}{n}\right)$

- Pick n k arbitrary entries in C (the first ones)
- Apply Joux's Algorithm (O(|A| + |B|))
- Re-iterate with n k other rows...
- ... until all C has been watched $\left(\simeq \frac{|C|}{n-k}\right)$ iterations

$$|A| = |B| = |C| = 2^{n/3}; k = n/3$$
, Time: $\mathcal{O}\left(\frac{2^{2n/3}}{n}\right)$

A 96-bit 3XOR

• Require $3 \cdot 2^{48}$ queries

- Require $3 \cdot 2^{48}$ queries
- Perform the clamping on 24 bits

- Require 3 · 248 queries
- Perform the clamping on 24 bits
- Process the lists on the first 64 bits of each entries (Find all solutions)

- Require 3 · 248 queries
- Perform the clamping on 24 bits
- Process the lists on the first 64 bits of each entries (Find all solutions)
- Test them on the remaining 8 bits (about 256 tests)

- Require 3 · 248 queries
- Perform the clamping on 24 bits
- Process the lists on the first 64 bits of each entries (Find all solutions)
- Test them on the remaining 8 bits (about 256 tests)

Experimentations

- 3XOR of 96 bits of SHA-256
- Tests performed on a Haswell Core i5 CPU

Timing				
		Quadratic	Our Algorithm	
	CPU hours	340	105	
	Data	576 MB	576 MB	

Experimentations

- 3XOR of 96 bits of SHA-256
- Tests performed on a Haswell Core i5 CPU

Timing				
		Quadratic	Our Algorithm	
	CPU hours	340	105	
	Data	576 MB	576 MB	

Creation of the lists: $\times 100$ slower than processing them!

In a Nutshell

This Algorithm...

- can be applied to any size of input list
- has a $\times n$ speed-up compared to the Quadratic Algorithm
- is about 3 times faster, in practice (n = 96)
- is faster than [NS14] with the same amount of data, in theory
- is the same than [Joux09] with the same amount of data

In a Nutshell

This Algorithm...

- can be applied to any size of input list
- has a $\times n$ speed-up compared to the Quadratic Algorithm
- is about 3 times faster, in practice (n = 96)
- is faster than [NS14] with the same amount of data, in theory
- is the same than [Joux09] with the same amount of data

Possible improvements

Find basis changes that increase the size of the sublists

- We propose two ways of doing this
- Only a constant time improvement in theory

A 3XOR Adaptation of [BDP05]

- \bullet Originally designed for the 3SUM Problem over $(\mathbb{Z},+)$
- We transposed it for the 3XOR Problem

A 3XOR Adaptation of [BDP05]

- \bullet Originally designed for the 3SUM Problem over $(\mathbb{Z},+)$
- We transposed it for the 3XOR Problem
- Dispatch entries into buckets (according to the first k bits)
- A^u : Bucket of elements of A starting by u
- For each triplet $(A^u, B^v, C^{u \oplus v})$ perform constant time preliminary test
 - Test s-bit partial collision with a hash table

A 3XOR Adaptation of [BDP05]

- ullet Originally designed for the 3SUM Problem over $(\mathbb{Z},+)$
- We transposed it for the 3XOR Problem
- Dispatch entries into buckets (according to the first k bits)
- A^u : Bucket of elements of A starting by u
- For each triplet $(A^u, B^v, C^{u \oplus v})$ perform constant time preliminary test
 - Test s-bit partial collision with a hash table
- If the test fail: no solution for sure
- If the test succeed: there may be a solution
 - Solve the small instance

Preliminary Test

Instance $(A^u, B^v, C^{u \oplus v})$

BDP In Theory

When *n* grows up to infinity, only one triplet passes the test \implies complexity of the algorithm:

Time:
$$\mathcal{O}\left(\frac{2^{2n/3}\log^2(n)}{n^2}\right)$$
, Space: $\mathcal{O}\left(2^{n/3}\right)$

BDP In Theory

When n grows up to infinity, only one triplet passes the test

 \implies complexity of the algorithm:

Time:
$$\mathcal{O}\left(\frac{2^{2n/3}\log^2(n)}{n^2}\right)$$
, Space: $\mathcal{O}\left(2^{n/3}\right)$

BDP In Practice

n = 96, machine words: 64 bits Expected size of a bucket: m = 0.14

 \implies Completely impractical

Conclusion

This work

- Discusses issues arising from the 3XOR problem
- Propose a new practical algorithm for the 3XOR problem, that is
 - $n \times$ faster than the quadratic algorithm in theory
 - $3 \times$ faster than the quadratic algorithm in practice
- Propose an adaptation of [BDP05] algorithm that is
 - asymptotically faster than other algorithms
 - Totally impractical

Conclusion

This work

- Discusses issues arising from the 3XOR problem
- Propose a new practical algorithm for the 3XOR problem, that is
 - $n \times$ faster than the quadratic algorithm in theory
 - $3 \times$ faster than the quadratic algorithm in practice
- Propose an adaptation of [BDP05] algorithm that is
 - asymptotically faster than other algorithms
 - Totally impractical

What's Next?

- Compute a 128-bit 3XOR on SHA-256
- Expect to have the lists in about 2 years (using one Antminer S7)

Code available here: https://github.com/cbouilla/3XOR

Thank you for your time!