Revisiting and Improving Algorithms for the 3XOR
Problem

Charles Bouillaguet! Claire Delaplace’?> Pierre-Alain Fouque?

2 University of Rennes 1, IRISA, France

* University of Lille, CRIStAL, France

FSE 2018, Bruges
7th of March

1/16

3XOR Problem

Problem

Given three lists A, B, and C of uniformly random elements of {0,1}", find
(a,b,c) € Ax B x C,suchthat a® b® c =0.

] o Difficult case of Generalised Birthday Problem
S @ Application in cryptanalysis of some
] authenticated encryption scheme
. o Lists formed by querying oracles = can be as big
as we want
; _ L o |A]-|B]-|C| > 2" = solution w.h.p.

2/16

© Background

@ Our New Algorithm

© Adaptation of BDP Algorithm for the 3SUM problem

3/16

A Naive Quadratic Algorithm

Idea

o Createallv=a®b
o Check if visin C

4/16

A Naive Quadratic Algorithm

Idea

o Createallv=a®b
o Check if visin C

o Time complexity: O (|A|-|B|+|C|)

e Space: O (|A| +|B|+|C])

o |Al=|B|=|C|=2"3= Time: O (2%"/3), Space: O (2"/3)

o |Al=|B|=2"%|C| =2"2= Time: O (2"/2), Space: O (2"/?)

4/16

A Naive Quadratic Algorithm

Idea

o Createallv=a®b
o Check if visin C

o Time complexity: O (|A|-|B|+|C|)

e Space: O (|A| +|B|+|C])

o |Al=|B|=|C|=2"3= Time: O (2%"/3), Space: O (2"/3)

o |Al=|B|=2"%|C| =2"2= Time: O (2”/2), Space: O (2"/?)

Time/Space tradeoff: Well studied in the past (e.g. [Wagner02], [Bernstein07]).

4/16

Wagner and its descendants

‘
—

Description
@ Number of queries: increased
up to ~ 2"/2
o Elements of C start by p

~onz|| A B

5/16

Wagner and its descendants

][] E

Description

o Number of queries: increased
fe | up to ~ 21/2
o Elements of C start by p

o For all a, bs.t.
a® b= (p|*)
search a® b in C

a9 @ by = p

5/16

Wagner and its descendants

n/2

][] EEn

w®bh=p

[Wagner02]: 2"/2 queries allowed

Il =1.
Time/Space O (2/2)

Description
o Number of queries: increased
up to ~ 2"/2
o Elements of C start by p

o For all a, bs.t.
a® b= (p|*)
search a® bin C

5/16

Wagner and its descendants

4
[[] B=uno
Description
@ Number of queries: increased
] up to ~ 2/2
? o Elements of C start by p
= . o For all a, bs.t.
a0 @ bp =
’ a® b= (plx)
search a® b in C)
[NS14]: 2¢ ~ 22 queries allowed

(n/2)/In(n/2)
p: Most frequent prefix in C

Time/Space O (2”/2/\/W)

5/16

Wagner and its descendants

n/2

[0l {2

a &by =0

[Joux09]: 2"/2/\/n/2 queries allowed

|C| = n/2, Basis change to force p =0
Time/Space O (27/2//n)

Description
o Number of queries: increased
up to ~ 2"/2
o Elements of C start by p

o For all a, bs.t.
a® b= (p|x)
search a® bin C

5/16

Discussion

Joux's Algorithm best time complexity but...

6/16

Discussion

Joux's Algorithm best time complexity but...

96-bit 3XOR

@ Joux Algorithm: about 24 operations
o But about 1 PB of data = Impractical

6/16

Discussion

Joux's Algorithm best time complexity but...

96-bit 3XOR
@ Joux Algorithm: about 24 operations
o But about 1 PB of data = Impractical
o Quad algorithm: with |A| = |B| = |C| = 2"/3: about 2%* operations
@ But only 206 GB of data = Practical

6/16

Discussion

Joux's Algorithm best time complexity but...

96-bit 3XOR

@ Joux Algorithm: about 24 operations

o But about 1 PB of data = Impractical

o Quad algorithm: with |A| = |B| = |C| = 2"/3: about 2%* operations
@ But only 206 GB of data = Practical

= Keep the lists small!

6/16

The Clamping Trick [Berstein07]

o ldea: Increase the number of queries to reduce the storage

7/16

The Clamping Trick [Berstein07]

o ldea: Increase the number of queries to reduce the storage
o 2k queries, k > n/3

o /lst. (n—0)/3=k—{

o Discard vectors that do not start with ¢ zeroes

7/16

The Clamping Trick [Berstein07]

Idea: Increase the number of queries to reduce the storage

2k queries, k > n/3

{st. (n—=0)/3=k—4

Discard vectors that do not start with ¢ zeroes

letn'=n—/(

= 3 lists A, B, C of 2k=¢ = 2'/3 of p/-bits vectors

Solve the 3XOR problem over A, B, C with |A| - |B| - |C| = 2"

e 6 6 6 o o o

7/16

The Clamping Trick [Berstein07]

Idea: Increase the number of queries to reduce the storage

2k queries, k > n/3

{st. (n—=0)/3=k—{(

Discard vectors that do not start with ¢ zeroes

letn'=n—/(

= 3 lists A, B, C of 2k=¢ = 2'/3 of p/-bits vectors

Solve the 3XOR problem over A, B, C with |A| - |B| - |C| = 2"

e 6 6 6 o o o

21/2 Queries
o {=n/4 n" =3n/4
o Stored data: O (2"/*) words
o Time Complexity: O (2”/2) with Quadratic Algorithm

7/16

Our Work: A Generalization of Joux Algorithm

| | | Generalization to any size of input lists

8/16

Our Work: A Generalization of Joux Algorithm

ok

Generalization to any size of input lists

@ Pick n — k arbitrary entries in C (the first ones)

8/16

Our Work: A Generalization of Joux Algorithm

Basis Change

Generalization to any size of input lists

@ Pick n — k arbitrary entries in C (the first ones)
o Apply Joux's Algorithm

8/16

Our Work: A Generalization of Joux Algorithm

Basis Change

Generalization to any size of input lists

@ Pick n — k arbitrary entries in C (the first ones)
o Apply Joux’s Algorithm (o (jai + 181y

8/16

Our Work: A Generalization of Joux Algorithm

ok

Generalization to any size of input lists

@ Pick n — k arbitrary entries in C (the first ones)
o Apply Joux’s Algorithm (o (jai + 181y
o Re-iterate with n — k other rows...

8/16

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists
@ Pick n — k arbitrary entries in C (the first ones)
o Apply Joux’s Algorithm (o (jai + 181y
o Re-iterate with n — k other rows...

8/16

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists
@ Pick n — k arbitrary entries in C (the first ones)
o Apply Joux’s Algorithm (o (jai + 181y
o Re-iterate with n — k other rows...

o ... until all C has been watched (= | iterations)

8/16

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists
@ Pick n — k arbitrary entries in C (the first ones)
o Apply Joux’s Algorithm (o (jai + 181y
o Re-iterate with n — k other rows...

o ... until all C has been watched (= | iterations)

n

k = logy(min(|Al, |B]), Time: O ((|A] + |BI) - 1<)

8/16

Our Work: A Generalization of Joux Algorithm

Generalization to any size of input lists
@ Pick n — k arbitrary entries in C (the first ones)
o Apply Joux’s Algorithm (o (jai + 181y
o Re-iterate with n — k other rows...

o ... until all C has been watched (= | iterations)

Al = |B| = |C| = 2"/% k = n/3, Time: 0 (£2)

n

8/16

A Concrete Example

A 96-bit 3XOR

o Require 3 - 2% queries

9/16

A Concrete Example

A 96-bit 3XOR

o Require 3 - 2% queries
o Perform the clamping on 24 bits

9/16

A Concrete Example

A 96-bit 3XOR

o Require 3 - 2% queries
o Perform the clamping on 24 bits

@ Process the lists on the first 64 bits of each entries (Find all solutions)

9/16

A Concrete Example

A 96-bit 3XOR

Require 3 - 2*8 queries

Perform the clamping on 24 bits

Process the lists on the first 64 bits of each entries (Find all solutions)
Test them on the remaining 8 bits (about 256 tests)

e © 6 o

9/16

A Concrete Example

A 96-bit 3XOR

Require 3 - 2*8 queries

Perform the clamping on 24 bits

Process the lists on the first 64 bits of each entries (Find all solutions)
Test them on the remaining 8 bits (about 256 tests)

e © 6 o

9/16

Experimentations

@ 3XOR of 96 bits of SHA-256
o Tests performed on a Haswell Core i5 CPU

Timing
Quadratic | Our Algorithm
CPU hours 340 105
Data 576 MB 576 MB

10/16

Experimentations

@ 3XOR of 96 bits of SHA-256
o Tests performed on a Haswell Core i5 CPU

Timing
Quadratic ‘ Our Algorithm
CPU hours 340 105
Data 576 MB 576 MB

Creation of the lists: x100 slower than processing them!

10/16

In a Nutshell

This Algorithm...

can be applied to any size of input list

has a xn speed-up compared to the Quadratic Algorithm

is about 3 times faster, in practice (n = 96)

is faster than [NS14] with the same amount of data, in theory

is the same than [Joux09] with the same amount of data

11/16

In a Nutshell

This Algorithm...

can be applied to any size of input list

has a xn speed-up compared to the Quadratic Algorithm

is about 3 times faster, in practice (n = 96)

is faster than [NS14] with the same amount of data, in theory

is the same than [Joux09] with the same amount of data

Possible improvements

Find basis changes that increase the size of the sublists
@ We propose two ways of doing this
@ Only a constant time improvement in theory

11/16

A 3XOR Adaptation of [BDP05]

o Originally designed for the 3SUM Problem over (Z, +)
o We transposed it for the 3XOR Problem

12/16

A 3XOR Adaptation of [BDPO5]

Originally designed for the 3SUM Problem over (Z,+)
We transposed it for the 3XOR Problem

(]

Dispatch entries into buckets (according to the first k bits)

AY: Bucket of elements of A starting by u

For each triplet (AY, BY, CY®V) perform constant time preliminary test
» Test s-bit partial collision with a hash table

12/16

A 3XOR Adaptation of [BDPO5]

Originally designed for the 3SUM Problem over (Z,+)
We transposed it for the 3XOR Problem

(]

Dispatch entries into buckets (according to the first k bits)

AY: Bucket of elements of A starting by u

For each triplet (AY, BY, CY®V) perform constant time preliminary test
» Test s-bit partial collision with a hash table

If the test fail: no solution for sure

(4]

If the test succeed: there may be a solution

» Solve the small instance

12/16

Preliminary Test

Instance (AY, BV, C4®V)

i+ B [3m]

AY

14| ia [B [Ic |

Tli]=1 < Jj,klst. aj@bdc, =0
T[i] = 0 = No solution in (AY, B¥, C4®")

13/16

Discussion

BDP In Theory

When n grows up to infinity, only one triplet passes the test
— complexity of the algorithm:

2n/3| 2
Time: O (2—c;g(n)> , Space: O (2"/3>
n

14 /16

Discussion

BDP In Theory
When n grows up to infinity, only one triplet passes the test
— complexity of the algorithm:

22n/3 [2
Time: O (*(n)) , Space: O (2"/3>
n

BDP In Practice

n = 96, machine words: 64 bits
Expected size of a bucket: m = 0.14

= Completely impractical

14 /16

Conclusion

This work
o Discusses issues arising from the 3XOR problem

@ Propose a new practical algorithm for the 3XOR problem, that is

» nx faster than the quadratic algorithm in theory
» 3x faster than the quadratic algorithm in practice

o Propose an adaptation of [BDPO05] algorithm that is

» asymptotically faster than other algorithms
> Totally impractical

15 /16

Conclusion

This work
o Discusses issues arising from the 3XOR problem

@ Propose a new practical algorithm for the 3XOR problem, that is

» nx faster than the quadratic algorithm in theory
» 3x faster than the quadratic algorithm in practice

o Propose an adaptation of [BDPO05] algorithm that is

» asymptotically faster than other algorithms
> Totally impractical

What's Next?
o Compute a 128-bit 3XOR on SHA-256

@ Expect to have the lists in about 2 years (using one Antminer S7)

15 /16

Code available here:
https://github.com/cbouilla/3X0R

Thank you for your timel

16 /16

https://github.com/cbouilla/3XOR

	Background
	Our New Algorithm
	Adaptation of BDP Algorithm for the 3SUM problem

