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3XOR Problem

Problem
Given three lists A, B, and C of uniformly random elements of {0, 1}n, find
(a, b, c) ∈ A× B × C , such that a⊕ b ⊕ c = 0.

a

b

a⊕ b

A B C

n

Difficult case of Generalised Birthday Problem
Application in cryptanalysis of some
authenticated encryption scheme
Lists formed by querying oracles ⇒ can be as big
as we want
|A| · |B| · |C | ≥ 2n ⇒ solution w.h.p.
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1 Background

2 Our New Algorithm

3 Adaptation of BDP Algorithm for the 3SUM problem
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A Naive Quadratic Algorithm

Idea
Create all v = a⊕ b

Check if v is in C

Time complexity: O (|A| · |B|+ |C |)
Space: O (|A|+ |B|+ |C |)
|A| = |B| = |C | = 2n/3 ⇒ Time: O

(
22n/3

)
, Space: O

(
2n/3

)
|A| = |B| = 2n/4, |C | = 2n/2 ⇒ Time: O

(
2n/2

)
, Space: O

(
2n/2

)
Time/Space tradeoff: Well studied in the past (e.g. [Wagner02], [Bernstein07]).
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Wagner and its descendants

2n/2√
n/2

n/2

Basis Change

Basis Change

2n/2−ε

' `/ ln(`)

A B' 2n/2

`

p

Description
Number of queries: increased
up to ' 2n/2

Elements of C start by p

For all a, b s.t.
a⊕ b = (p|∗)

I search a⊕ b in C
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|C | = 1.
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Description
Number of queries: increased
up to ' 2n/2

Elements of C start by p

For all a, b s.t.
a⊕ b = (p|∗)

I search a⊕ b in C

[Joux09]: 2n/2/
√
n/2 queries allowed

|C | = n/2, Basis change to force p = 0
Time/Space O

(
2n/2/

√
n
)
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Discussion

Joux’s Algorithm best time complexity but...

96-bit 3XOR

Joux Algorithm: about 248 operations
But about 1 PB of data =⇒ Impractical
Quad algorithm: with |A| = |B| = |C | = 2n/3: about 264 operations
But only 206 GB of data =⇒ Practical

⇒ Keep the lists small!
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The Clamping Trick [Berstein07]

Idea: Increase the number of queries to reduce the storage

2k queries, k ≥ n/3
` s.t. (n − `)/3 = k − `

Discard vectors that do not start with ` zeroes
Let n′ = n − `

⇒ 3 lists A,B,C of 2k−` = 2n
′/3 of n′-bits vectors

Solve the 3XOR problem over A,B,C with |A| · |B| · |C | = 2n
′

2n/2 Queries
` = n/4, n′ = 3n/4
Stored data: O

(
2n/4

)
words

Time Complexity: O
(
2n/2

)
with Quadratic Algorithm
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Our Work: A Generalization of Joux Algorithm

n − k

Basis Change

k

A B C

Generalization to any size of input lists

Pick n − k arbitrary entries in C (the first ones)
Apply Joux’s Algorithm

(O (|A| + |B|))

Re-iterate with n − k other rows...
... until all C has been watched

(
' |C|

n−k
iterations

)

O
(

2234

n

)
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)
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(
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(
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A Concrete Example

A 96-bit 3XOR
96

224

72

A B C248

96

Require 3 · 248 queries

Perform the clamping on 24 bits
Process the lists on the first 64 bits of each entries (Find all solutions)
Test them on the remaining 8 bits (about 256 tests)
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Experimentations

3XOR of 96 bits of SHA-256
Tests performed on a Haswell Core i5 CPU

Timing
Quadratic Our Algorithm

CPU hours 340 105
Data 576 MB 576 MB

Creation of the lists: ×100 slower than processing them!
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In a Nutshell

This Algorithm...
can be applied to any size of input list
has a ×n speed-up compared to the Quadratic Algorithm
is about 3 times faster, in practice (n = 96)
is faster than [NS14] with the same amount of data, in theory
is the same than [Joux09] with the same amount of data

Possible improvements
Find basis changes that increase the size of the sublists

We propose two ways of doing this
Only a constant time improvement in theory
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A 3XOR Adaptation of [BDP05]

Originally designed for the 3SUM Problem over (Z,+)

We transposed it for the 3XOR Problem

Dispatch entries into buckets (according to the first k bits)
Au: Bucket of elements of A starting by u

For each triplet (Au,Bv ,C u⊕v ) perform constant time preliminary test

I Test s-bit partial collision with a hash table

If the test fail: no solution for sure
If the test succeed: there may be a solution

I Solve the small instance
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Preliminary Test

Instance (Au,Bv ,C u⊕v )

Au : u

k

a1

am

s

iA ← a1 am

i ← iA iB iC

T [i ] = 1 ⇐⇒ ∃j , k , ` s.t. aj ⊕ bk ⊕ c` = 0

T [i ] = 0⇒ No solution in (Au,Bv ,C u⊕v )
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Discussion

BDP In Theory
When n grows up to infinity, only one triplet passes the test
=⇒ complexity of the algorithm:

Time: O

(
22n/3 log2(n)

n2

)
,Space: O

(
2n/3

)

BDP In Practice
n = 96, machine words: 64 bits
Expected size of a bucket: m = 0.14

=⇒ Completely impractical
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Conclusion

This work
Discusses issues arising from the 3XOR problem
Propose a new practical algorithm for the 3XOR problem, that is

I n× faster than the quadratic algorithm in theory
I 3× faster than the quadratic algorithm in practice

Propose an adaptation of [BDP05] algorithm that is
I asymptotically faster than other algorithms
I Totally impractical

What’s Next?
Compute a 128-bit 3XOR on SHA-256
Expect to have the lists in about 2 years (using one Antminer S7)
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Code available here:
https://github.com/cbouilla/3XOR

Thank you for your time!
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