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Abstract. The paper investigates the maximum distance separable (MDS) matrix over
the matrix polynomial residue ring. Firstly, by analyzing the minimal polynomials of
binary matrices with 1 XOR count and element-matrices with few XOR counts, we
present an efficient method for constructing MDS matrices with as few XOR counts
as possible. Comparing with previous constructions, our corresponding constructions
only cost 1 minute 27 seconds to 7 minutes, while previous constructions cost 3 days
to 4 weeks. Secondly, we discuss the existence of several types of involutory MDS
matrices and propose an efficient necessary-and-sufficient condition for identifying
a Hadamard matrix being involutory. According to the condition, each involutory
Hadamard matrix over a polynomial residue ring can be accurately and efficiently
searched. Furthermore, we devise an efficient algorithm for constructing involutory
Hadamard MDS matrices with as few XOR counts as possible. We obtain many
new involutory Hadamard MDS matrices with much fewer XOR counts than optimal
results reported before.
Keywords: MDS matrix · XOR count · matrix polynomial residue ring · involutory
matrix

1 Introduction
In a block cipher, the linear diffusion layer is a significant component required for the
security of the cipher. The diffusion power of a matrix is usually measured by the branch
number. A linear layer with a larger branch number is considered more effectively resilient
to differential and linear cryptanalysis. The maximum possible branch number of an n× n
matrix is n + 1. Matrices reaching the limitation are called as the maximum distance
separable (MDS) matrices, and they are broadly used in many cryptosystems like PHOTON
[15], SQUARE [13], LED [16] and AES [14]. Recently, improving the implementation has
becoming a hot topic in cryptography. Some lightweight block ciphers [16, 8, 9, 30] and
lightweight hash functions [15, 4, 6] are proposed to reduce the implementation cost. While,
in the lightweight cryptosystems, the linear diffusion layer influences the performance of
cryptosystems largely. Therefore, it is imperative to design lightweight MDS matrices for
lightweight cryptography.

Recursive construction[15] is an important method to construct lightweight MDS
matrices. Specifically, the main idea is that selecting a matrix A that is sparse and
compact in implementation, and then calculate Ak to get an MDS matrix. This method
was successfully used for the constructions of hash function PHOTON [15], block cipher
LED [16] and authenticated encryption scheme PRIMATEs [1]. Further investigation of
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underlying this method can be found in [2, 3, 7, 26, 29]. However, the ciphers which adopt
these matrices are not suited for round-based or low-latency implementations.

To reduce search space, Hadamard matrix, Circulant matrix and Special Optimal
matrix [22, 25, 11, 19] are usually used as templates for constructing MDS matrices. In
[19], Junod et al. proved that there are at most 3(n − 1) identity elements in an n × n
MDS matrix and an MDS matrix which has exactly 3(n− 1) identity elements is called an
Optimal matrix. Since the elements of these templates are repeated, hence their search
space can be reduced obviously. Additionally, Liu et al. [21] and Sim et al. [25] adopted
the equivalence classes regarding MDS matrices for the further reduction of the search
space.

The XOR count proposed by Khoo et al. in CHES2014 [20] is an important metric
for measuring the cost of implementation of a diffusion matrix. Specifically, Khoo et
al. [20] used the XOR count to measure the number of XORs required to compute the
multiplication of a fixed element. Additionally, they showed that there are MDS matrices
with higher Hamming weight than the AES diffusion matrix, but fewer XORs. After that,
many works [23, 11, 25, 21, 22, 27, 28, 31] measured the lightweight of MDS matrices with
XOR counts.

1.1 Related Works
1.1.1 Matrix Polynomial

Recently, many papers constructed lightweight MDS matrices with entries being matrix
polynomials generated by a fixed binary matrix. However, to the best of our knowledge,
their entries are chosen from a matrix representation of GF (2m), where GF (2m) denotes the
finite field F28 . For instance, f(x) ∈ F2[x] and f(x) is an irreducible polynomial of degree
m. If T is a binary matrix satisfying f(T ) = 0, then F2[T ] ∼= F2[x]/(f(x)) ∼= GF (2m).
Therefore, F2[T ] is a matrix representation of the finite field GF (2m) and any element of
F2[T ] can be represented as a matrix polynomial like tm−1T m−1 + tm−2T m−2 + ... + t0I,
where ti = 1 or 0 (i = 0, 1, ..., m− 1).

At FSE 2015, Sim et al. [25] constructed lightweight non-involutory or involutory n×n
(n=4, 8, 16 or 32) MDS matrices over GF (2m) (m=4 or 8) such as Hadamard matrix,
Hadamard-Chauchy matrix, Subfield-Hadamard matrix and Compact Chauchy matrix.
At CRYPTO 2016, Beierle et al. [11] took the advantage of the multiplication of special
element to devise lightweight Circulant MDS matrices over GF (2m). Nakahara et al. [24]
and Gupta et al. [12] investigated lightweight Circulant MDS matrices and proved that
Circulant involutory MDS matrices do not exist over GF (2m). At IACR Transactions on
Symmetric Cryptology 2016, Sarkar et al. [27] showed that Toeplitz matrix cannot be
both involutory and MDS and investigated the lower bounds of XOR counts of 4× 4 MDS
matrices over GF (24) and GF (28). At S&P 2017, Sarkar et al. [28] further presented
characterizations of Toeplitz matrices in light of MDS property and improved the lower
bounds of XOR counts of 8× 8 MDS matrices by obtaining Toeplitz MDS matrices with
lower XOR counts over GF (24) and GF (28).

1.1.2 GL(m, F2)

Recently, many new MDS matrices with few XORs were researched over GL(m,F2), where
GL(m,F2) denotes the set of all m × m non-singular matrices with entries in F2. At
FSE 2016, Li et al. [22] constructed many new 4× 4 MDS matrices over GL(m,F2) and
successfully presented involutory Circulant MDS matrices over GL(m,F2) though it has
been proved that the involutory Circulant MDS matrix does not exist over the finite field.
Specifically, they constructed Circulant matrices, involutory Circulant matrices, Hadamard
matrices and involutory Hadamard matrices over GL(4,F2) and GL(8,F2). Moreover, Bai
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et al. [23] constructed 4 × 4 MDS matrices over GL(4,F2) with 10 XORs by utilizing
some special matrix structures, where non-identity entries are repeated or achieved by
other non-identity entries. At S&P 2017, Zhang et al. [31] constructed the lightest 4× 4
Circulant MDS matrices over GL(4,F2) with 12 XORs by investigating the characteristics
of permutation group.

A fact must be pointed that the optimal results can be definitely constructed over
GL(m,F2). However, when m is greater than or equal to 8 and non-identity entries of MDS
matrices are not repeated, the search space is extremely large. Therefore, the construction
of lightweight MDS matrices cannot be completed in an acceptable time.

1.1.3 Motivations

To achieve MDS matrices with the least XOR counts, the matrix representation of GF (2m)
and GL(m,F2) face some limitations as follows:

• For the matrix representation of GF (2m), the search space is too small to find
MDS matrices with the least XOR counts when m is greater than or equal to 8.
For instance, when constructing 4× 4 circulant MDS matrices Circ(I, I, A, B) over
GF (28), the search space is about 6.553×104. Moreover, when m = 8, there is no
matrix with 1 XOR in the matrix representation of GF (28).

• For GL(m,F2), the search space is too large to complete the constructions of MDS
matrices in an acceptable time when m is greater than or equal to 8. For instance,
when constructing 4× 4 circulant MDS matrices Circ(I, I, A, B) over GL(8,F2), the
search space is about 1.099×1012.

• While, for matrix polynomial residue rings, the search space is suited. For instance,
when constructing 4 × 4 circulant MDS matrices Circ(I, I, A, B) over the matrix
polynomial residue rings generated by 8 × 8 binary non-singular matrices with 1
XOR, the search space is about 4.516×106. Additionally, in the search space, there
are lots of entries with 1 XOR.

In this paper, we find a trade-off between search space and XOR counts. Specifically,
MDS matrices with as few XORs as possible are efficiently constructed over the matrix
polynomial residue ring.

1.2 Contributions
In this paper, we focus on constructing MDS matrices with as few XOR counts as possible.
The platform for running algorithms is specified as follows: Intel i5-5300 CPU with
2.30GHz, 4GB memory, Windows 10 OS. Moreover, the programming language is the
C language. We investigate the feasibilities of building MDS matrices over the matrix
polynomial residue ring. Our contributions are summarized as follows:

• We analyze the distribution of the minimal polynomials of m × m(m = 4 or 8)
non-singular binary matrices with 1 XOR as well as the distribution of elements with
few XORs in m×m matrix polynomial residue rings. By using such distributions,
we can significantly optimize the search space of constructions.

• To construct MDS matrices with as few XORs as possible, an efficient algorithm is
presented. Results are summarized as follows:
(1) In case of entries being 4× 4 binary matrices, 288 MDS matrices of order 4 with
10 XORs are built within 2 minutes.
(2) In case of entries being 8× 8 binary matrices, 40320 MDS matrices of order 4
with 10 XORs are built within 2 minutes.
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(3) In case of entries being 16× 16 binary matrices, an MDS matrix of order 4 with
10 XORs is constructed within 1 minute.

• We extend some results about the involutory MDS matrix as follows:
(1) We propose three theorems regarding the existences of involutory MDS matrices.
(2) We propose an efficient necessary-and-sufficient condition for identifying a
Hadamard matrix being involutory. By incorporating the proposed condition, another
efficient algorithm for constructing involutory Hadamard MDS matrices with few
XORs is proposed. Comparing with 1 day consumed by [22] to construct 80640
involutory Hadamard matrices with 40 XORs, the presented algorithm only costs
about 1 minute to construct 80640 involutory Hadamard matrices with 20 XORs.

• We analyze the search space of our constructions comparing with constructions over
GL(m,F2).

Roadmap. In Sec.1, necessary preliminaries are presented. Sec.2 proposes five kinds of
structure-matrix and then investigates the distribution of the minimal polynomial and
distribution of elements with fewer XORs on matrix polynomial residue rings. Sec.3
presents the design of an algorithm for constructing lightweight non-involutory MDS
matrices and analyzes the search space. Sec.4 discusses the involutory MDS matrix and
constructs involutory Hadamard MDS matrices. Finally, a short conclusion is given in
Sect. 5.

2 Preliminaries
In this section, we present some basic definitions and theorems.

2.1 MDS Matrices
Let R be a ring with identity, m be a positive integer and x ∈ Rm. The Hammnig weight
of x is defined as the number of nonzero entries of x and is expressed by ω(x). Let M be
an n × n matrix over R. The branch number of M is the minimum number of nonzero
components in the input vector v and output vector u = Mv as we search for all nonzero
v ∈ Rn, i.e. the branch number of M is BM = minv 6=0{ω(v) + ω(Mv)}, and BM ≤ n + 1.
A maximum distance separable (MDS) n × n matrix has the maximum branch number
n+1. GL(m,F2) denotes the set of all non-singular m×m binary matrices.

A linear diffusion layer is a linear map and can be represented by a matrix as follows:

L =


L1,1 L1,2 · · · L1,n

L2,1 L2,2 · · · L2,n

...
...

. . .
...

Ln,1 Ln,2 · · · Ln,n

 ,

where Li,j (1 ≤ i, j ≤ n) is an m ×m binary matrix. In the present paper, the whole
matrix like above L is called the structure-matrix and the entry like above Li,j is called the
element-matrix. M(n, m) denotes all n× n matrices over GL(m,F2). We investigate MDS
matrices from M(n, m) where n=4 and m=4, 8 or 16. For X = (x1, x2, ..., xn)T ∈ (Fm

2 )n,

L(X) =


L1,1 L1,2 · · · L1,n

L2,1 L2,2 · · · L2,n

...
...

. . .
...

Ln,1 Ln,2 · · · Ln,n




x1
x2
...

xn

 =


∑n

i=1 L1,i(xi)∑n
i=1 L2,i(xi)

...∑n
i=1 Ln,i(xi)

 ,

where Li,j(xk) = Li,j · xk, for 1≤ i, j ≤ n, 1 ≤ k ≤ n.
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Theorem 1. [22] Let L be a matrix, then L is MDS if and only if all square sub-matrices
of L are of full rank.

2.2 XOR Count
Let a, b ∈ F2. a+b is called a bit XOR operation. Let A ∈ GL(m,F2), x = (x1, x2, ..., xm)T ∈
Fm

2 . #A is called the XOR count[20] of A that denotes the number of XOR operations
required to evaluate Ax directly. Let ω(A) be the number of 1’s in A, then #A = ω(A)−m.
For L ∈M(n, m), #(L) denotes the sum of XOR counts of L and #(L) =

∑n
i,j=1 #(Lij).

For instance, let x = (a, b, c, d)T ∈ F4
2, and the XOR counts of the following matrix is 4.

A =


0 0 0 1
0 0 1 1
0 1 1 1
1 0 1 0



Ax =


0 0 0 1
0 0 1 1
0 1 1 1
1 0 1 0




a
b
c
d

 =


d

c + d
b + c + d

a + c

 .

For A ∈ GL(m,F2), a simplified representation of A is given by extracting the non-zero
positions in each row of A. For example, [3,2,4,[1,3]] is the representation of the following
matrix. 

0 0 1 0
0 1 0 0
0 0 0 1
1 0 1 0


2.3 Matrix Polynomial Residue Ring
(f(x)) denotes the ideal generated by the polynomial f(x). Let T be an n × n binary
matrix, and f(x) be the minimal polynomial of T . The degree of f(x) be k, k ≤ n.
Therefore, F2[T ] ∼= F2[x]/(f(x)) since T satisfies f(T ) = 0, where F2[T ] denotes the matrix
polynomial residue ring generated by T . Therefore, the matrix computations in F2[T ] are
equivalent to polynomial computations in F2[x]/(f(x)).

For instance, let B, C ∈ F2[T ],

B = bk−1T k−1 + · · ·+ b1T + b0I,
C = ck−1T k−1 + · · ·+ c1T + c0I,
b(x) = bk−1xk−1 + · · ·+ b1x + b0,
c(x) = ck−1xk−1 + · · ·+ c1x + c0.

Then, B + C = b(x) + c(x)|x=T , BC = b(x)c(x)|x=T .

3 Structure-matrices and element-matrices
The underlying section firstly introduces five kinds of structure-matrix that are suitable
to construct MDS matrices with the least sum of XOR counts. Secondly, we discuss how
to choose element-matrices by analyzing the distribution of the minimal polynomials of
m ×m (m = 4 or 8) non-singular binary matrices with 1 XOR and the distribution of
element-matrices with few XORs in m×m matrix polynomial residue rings.
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3.1 Five Kinds of Structure-matrix
Let L1, L2 ∈ M(n, m). If L1 can be transformed to L2 by exchanging rows or columns,
then we define that L1 is equivalent to L2 since L1 has the same sum of XOR counts as
L2. If a matrix has more identity binary matrices being entries, then the matrix may has
less sum of XOR counts since an identity binary matrix has 0 XOR count. Additionally,

in an MDS matrix, any 2× 2 sub-matrix could not be
(

I I
I I

)
, otherwise the matrix is

not MDS.
In our algorithms, we only use five kinds of structure-matrix as follows:

S1 =


I I I

I I
I I
I I

 , S2 =


I I I

I I
I I

I

 , S3 =


I I I

I I
I I

I

 ,

S4 =


I I I

I I
I I
I

 , S5 =


I I

I I
I I

I I

 ,

where I is the identity binary matrix and the remaining entries can be any other non-
singular binary matrices.

According to [19], there exist at most 3(n − 1) identity matrices being entries in an
n×n MDS matrix. The type of matrix is called the Optimal matrix and it is the same as
the aforementioned structure-matrix S1. For example, the following matrix is an Optimal
matrix. 

A1,1 I I · · · I
I I A2,3 · · · A2,n

I A3,2 I · · · A3,n

...
...

...
. . .

...
I An,2 An,3 · · · I


In previous papers, Circulant matrix, Hadamard matrix and Optimal matrix are usually

used to construct lightweight MDS matrices. Such matrices are presented as follows:

Circ(I, I, A, B) =


I I A B
B I I A
A B I I
I A B I

 , Had(I, A, B, C) =


I A B C
A I C B
B C I A
C B A I

 ,

Special Optimal Matrix =


A I I I
I I A B
I B I A
I A B I

 .

It may be noted that the Circ(I, I, A, B) and the Special Optimal Matrix are special
cases of S5 and S1, respectively.

3.2 Element-matrices
In the present paper, element-matrices (entries) of MDS matrices are chosen from matrix
polynomial residue rings. The underlying subsection introduces how we choose generator
matrices of matrix polynomial residue rings. Furthermore, we analyze elements with few
XORs of matrix polynomial residue rings.
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3.2.1 Generator Matrix of Matrix Polynomial Residue Ring

Let T be a non-singular m×m binary matrix with 1 XOR. f(x) is the minimal polynomial
of T . Then, F2[T ] is a matrix polynomial residue ring generated by T and F2[T ] is
isomorphic to F2[x]/(f(x)). Let S′ be one of five structure-matrices mentioned at Sec.2.1.
When we want to construct MDS matrices with as few XORs as possible by utilizing
S′ over F2[T ], there may be as many T as possible to be non-identify element-matrices.
In the structure-matrix S′, if S′ has at least 2 T s, then there must exist a sub-matrix

like
(

I I
I T

)
. According to the requirement of MDS, the sub-matrix should be of full

rank. The full rank denotes that the sub-matrix’s rank is 2m. Therefore, I + T should
be non-singular. Consequently, T should satisfy: (i) #(T ) = 1; (ii) T and I + T are
non-singular. The detail of searching for all T will be described in Algorithm 1.

3.2.2 Analyzing Matrix Polynomial Residue Ring

First, we analyze minimal polynomials of 4× 4 non-singular binary matrices with 1 XOR
and element-matrices with few XORs in 4× 4 matrix polynomial residue rings. Specifically,
we search for every T satisfying T ∈ GL(4,F2), #T=1 and I + T is non-singular. The
number of T is 72. Let f(x) be the minimal polynomial of T , b(x) ∈ F2[x]/(f(x)). We
search for all b(x) satisfying 1≤ #b(T ) ≤ 3. Results are presented as follows:

1. Search results of f(x): x4 + x + 1, x4 + x2 + 1, x4 + x3 + 1.

2. Search results of b(x) satisfying #b(T )=1: x, x3 + 1, x3 + x, x3 + x2.

3. Search results of b(x) satisfying #b(T )=2: x2, x2 + 1, x2 + x, x3.

4. Search results of b(x) satisfying #b(T )=3: x + 1, x2, x3, x3 + x2 + 1.

Let g(x) be one of x4 + x + 1, x4 + x2 + 1 and x4 + x3 + 1. We discover that there are
exactly 24 non-singular 4×4 binary matrices with 1 XOR count whose minimal polynomial
is g(x). The distributions of matrix polynomials with 1,2 or 3 XOR counts are described
in Table 1. Table 1 is a statistical result by searching all elements on GL(4,F2).

Table 1: Matrix polynomials on the 4× 4 binary matrix polynomial residue rings
Condition f(x) Number of T f(x) Number of T

#f(T )=1
x 72 x3 + 1 24

x3 + x 24 x3 + x2 24

#f(T )=2
x2 48 x2 + 1 24

x2 + x 24 x3 24

#f(T )=3
x + 1 24 x2 24

x3 24 x3 + x2 + 1 24

T is the 4× 4 binary matrix. T and I + T are non-singular and #(T ) = 1.

Second, we analyze minimal polynomials of 8× 8 non-singular binary matrices with
1 XOR and element-matrices with few XORs in 8 × 8 matrix polynomial residue rings.
Specifically, we search for all matrix T satisfying T ∈ GL(8,F2), #T=1 and I + T is
non-singular. The number of T is 282240. Let f(x) be the minimal polynomial of T ,
b(x) ∈ F2[x]/(f(x)). We search for every T to find every f(x) and all b(x) satisfying
1≤ #b(T ) ≤ 3. Search results are as follows:

1. Search results of f(x) satisfying f(T ) = 0:

x8 + x + 1, x8 + x2 + 1, x8 + x3 + 1, x8 + x4 + 1, x8 + x5 + 1, x8 + x6 + 1, x8 + x7 + 1.
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2. Search results of b(x) satisfying #b(T )=1:

x, x7 + 1, x7 + x, x7 + x2, x7 + x3, x7 + x4, x7 + x5.

3. Search results of b(x) satisfying #b(T )=2:

x2, x6 + 1, x6 + x, x6 + x2, x6 + x3, x6 + x4, x6 + x5.

4. Search results of b(x) satisfying #b(T )=3:

x2, x3, x5 + 1, x5 + x, x5 + x2, x5 + x3, x5 + x4, x7 + x6 + 1.

Let g(x) be one of x8 + x + 1, x8 + x2 + 1, x8 + x3 + 1, x8 + x4 + 1, x8 + x5 + 1, x8 + x6 + 1
and x8 + x7 + 1. We discover that there are exactly 40320 non-singular 8 × 8 binary
matrices with 1 XOR count whose minimal polynomial is g(x). The distributions of matrix
polynomials with 1,2 or 3 XOR counts are described in Table 2. Table 2 is a statistical
result by searching all elements on GL(8,F2).

Table 2: Matrix polynomials on the 8× 8 binary matrix polynomial residue rings
Condition f(x) Number of T f(x) Number of T

#f(T )=1

x 282240 x7 + 1 40320
x7 + x 40320 x7 + x2 40320
x7 + x3 40320 x7 + x4 40320
x7 + x5 40320 x7 + x6 40320

#f(T )=2

x2 241920 x6 + 1 40320
x6 + x 40320 x6 + x2 40320
x6 + x3 40320 x6 + x4 40320
x6 + x5 40320

#f(T )=3

x2 40320 x3 201600
x5 + 1 40320 x5 + x 40320

x5 + x2 40320 x5 + x3 40320
x5 + x4 40320 x7 + x6 + 1 40320

T is the 8× 8 binary matrix. T and I + T are non-singular and #(T ) = 1.

4 Lightweight MDS Matrices
In this section, we present an efficient algorithm for constructing lightweight MDS matrices.

4.1 Entries Expression
Entries of MDS matrices are chosen from the m×m matrix polynomial residue ring, m=4,
8 or 16. For instance, the Special Optimal matrix

Special Optimal Matrix =


A I I I
I I A B
I B I A
I A B I

 .

Let T be a non-singular binary matrix with 1 XOR. f(x) is the minimal polynomial of
T . A, B ∈ F2[T ], a(T ) = A, b(T ) = B, where a(x), b(x) ∈ F2[x]/(f(x)). Therefore, in our
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construction, the Special Optimal matrix can be replaced as the following matrix:
a(x) 1 1 1

1 1 a(x) b(x)
1 b(x) 1 a(x)
1 a(x) b(x) 1

 .

4.2 Identifying MDS matrices
In this subsection, we investigate the method for identifying an MDS matrix from our
construction algorithms.

4.2.1 Necessary and sufficient condition of MDS

According to Theorem 1, L ∈M(n, m), L is MDS if and only if all square sub-matrices
of L are full rank. That a sub-matrix is full rank is equivalent to that the corresponding
sub-determinant is non-singular since entries of the sub-matrix are m×m binary matrices.
Therefore, a necessary-and-sufficient condition for a matrix being MDS can be described
as follows:

Theorem 2. [22] Let L=(Li,j), 1 ≤ i, j ≤ n, and the entries of L are m ×m matrices
over F2. Then L is an MDS matrix if and only if all square sub-matrices of L of order t
are of full rank for 1 ≤ t ≤ n.

4.2.2 Identifying MDS matrices

According to Theorem 2, identifying MDS matrices needs to calculate all sub-determinants
of the candidate matrix. On the one hand, determinants can be calculated efficiently
over the polynomial residue ring. On the other hand, matrix polynomial residue ring
is isomorphic to polynomial residue ring. Therefore, identifying MDS matrices over
matrix polynomial residue ring is efficient. For instance, because entries are expressed
as polynomials in the presented algorithms, so a candidate matrix can be expressed as
follows: 

x 1 1 1
1 1 x x2 + 1
1 x2 + 1 1 x
1 x x2 + 1 1

 .

Sub-determinants are calculated with the complete expansion of determinant. Therefore,
a sub-determinant of order 3 can be calculated as follows:∣∣∣∣∣∣

x 1 1
1 1 x
1 x2 + 1 1

∣∣∣∣∣∣ = x + x + (x2 + 1) + 1 + (x4 + x2) + 1 = x4 + 1.

Then, let T be substituted into x4 + 1 to get T 4 + I.
Finally, this sub-matrix is full rank if and only if T 4 + I is non-singular. T 4 + I is

non-singular if and only if x4 + 1 is relatively prime to f(x), where f(x) is the minimal
polynomial of T . Therefore, identifying MDS matrices over matrix polynomial residue ring
is more efficient than identifying over GL(m,F2).

4.3 Algorithm for Constructing Lightweight MDS matrices
To construct lightweight 4 × 4 MDS matrices over the m × m(m= 4, 8 or 16) matrix
polynomial residue ring, Algorithm 1 is presented below. Si is the structure-matrix of MDS
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Algorithm 1 Construction of lightweight MDS matrices
1: for Search for every permutation {a1, a2, ..., am} of {1, 2, ..., m}. do
2: for i from 1 to m do
3: for j from 1 to m and j 6= ai do
4: Construct the binary matrix T =[a1, ... , [ai, j] ..., am]. Therefore, T is a non-singular

binary matrix with 1 XOR.
5: Find the minimal polynomial of T .
6: Find polynomials b1(x), · · · , bk(x) satisfying #b(T ) ≤ 3.
7: for t from 1 to 5 do
8: for In St, each entry, which is not 1, comes from {b1(x), · · · , bk(x)} do
9: if This matrix is MDS then

10: Record the MDS matrix and its sum of XORs.
11: end if
12: end for
13: end for
14: end for
15: end for
16: end for

matrices discussed in Sec.3.1. In each following experiments, we construct corresponding
results by exhaustive search on corresponding matrix polynomial residue rings.

The platform for running Algorithm 1 is specified as follows: Intel i5-5300 CPU with
2.30GHz, 4GB memory, Windows 10 OS. The programming language is the C language.
By running Algorithm 1, we get the following results:

1. Over 4×4 matrix polynomial residue ring, it takes less than 2 minutes to identify 288
MDS matrices within the form of S1 which have only 10 XORs. Moreover, it takes
about 13 minutes to verify that there does not exist MDS matrices with 10 XORs in
S2, S3, S4 or S5. An example is presented as follows: Among all the matrices with
the form S2, S3, S4 and S5, it takes about 13 minutes to verify that there does not
exist an MDS matrix which has only 10 XORs.

Example 1. Let T = [[1, 2], 3, 4, 1] be a 4× 4 binary matrix. The following matrix
is an MDS matrix with 10 XORs.

T 2 + T I I I
I I T T 2 + T
I T 2 + T I T 3 + T 2

I T T 3 + T 2 I



2. Over 8 × 8 matrix polynomial residue ring, it costs only 1 minute 16 seconds to
construct 40320 MDS matrices with 10 XORs. An example is presented as follows:

Example 2. Let T = [[2, 4], 3, 4, 5, 6, 7, 8, 1] be a 8× 8 binary matrix. The following
matrix is an MDS matrix with 10 XORs.

T 2 I I I
I I T T 2

I T I T 7 + T
I T 7 + T T 2 I


3. Over 16× 16 matrix polynomial residue ring, it costs about 1 minute to construct

Circulant MDS matrix with 12 XORs and Optimal MDS matrix with 10 XORs.
Let T ∈ GL(16,F2) and T = [[1, 2], 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1]. The
minimal polynomial of T is x16 + x15 + 1. Two examples are presented below:
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Example 3. Let L1 be a Circulant MDS matrix with 12 XORs.

L1 =


I I T T 14 + T 13

T 14 + T 13 I I T
T T 14 + T 13 I I
I T T 14 + T 13 I


Example 4. Let L2 be an Optimal MDS matrix with 10 XORs.

L2 =


T I I I
I I T T 14 + T 13

I T 14 + T 13 I T
I T T 14 + T 13 I


Details of constructions of Algorithm 1 are shown in Table 3. Moreover, comparisons

with major previous constructions of lightweight MDS matrices are described in Table 4.

Table 3: Number of lightweight MDS matrices and running time
Matrix type Element Sum of XORs Number Running time
Circ(I, I, A, B) F2[T4×4] 12 96 00:00:01
Had(I, A, B, C) F2[T4×4] 20 288 00:00:04
Special Optimal F2[T4×4] 13 48 00:00:01
S1 F2[T4×4] 10 288 00:01:42
S3 F2[T4×4] 10 48 00:05:05
Circ(I, I, A, B) F2[T8×8] 12 96 00:01:27
Had(I, A, B, C) F2[T8×8] 20 241920 00:07:00
Special Optimal F2[T8×8] 10 40320 00:01:16
S1 F2[T8×8] 10 1128960 14:00:00
Circ(I, I, A, B) F2[T16×16] 12 1 00:00:30
Special Optimal F2[T16×16] 10 1 00:00:30

In previous constructions, lightweight MDS matrices are usually constructed with
structure-matrices such as Circulant matrix, Hadamard matrix, Special Optimal matrix
etc. [11, 23, 21, 22]. In these structure-matrices, non-identity entries are repeated like the
following structure-matrix:

Cir(I, I, A, B) =


I I A B
B I I A
A B I I
I A B I

 .

By exhaustive search on GL(8,F2), we discover that there are 1048320 matrices with
no more than 3 XORs. Therefore, if A, B ∈ GL(8,F2), 1 ≤ #A ≤ 3 and 1 ≤ #B ≤ 3,
then the search space of Cir(I, I, A, B) is 1048320×1048320≈ 1.099× 1012. However, by
searching on GL(8,F2), we discover that if #T = 1 and T + I is non-singular, then the
number of T is 282240. Moreover, there are at most 4 elements with 1 or 2 XORs in each
F2[T ]. Consequently, the search space of Cir(I, I, A, B) is only 282240×4×4 ≈ 4.516×106.

If non-identity entries are chosen from GL(8,F2) and are not repeated, then the
search space of construction is too large that the construction cannot be completed in an
acceptable time. For instance, the following matrix is the structure-matrix S5.

S5 =


I I A1 A2

A3 I I A4
A5 A6 I I
I A7 A8 I

 .

• Over GL(8,F2), the search space of S5 is 10483208 ≈ 1.458× 1048.

• Over 8×8 binary matrix polynomial residue rings, the search space of S5 is 282240×
48 ≈ 1.849× 1010.
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Table 4: Comparisons with previous constructions of MDS matrices
Matrix type Elements Sum of XORs Ref.

Had(I, A, B, C) GL(4, F2) 16 [22]
Special Optimal GL(4, F2) 13 [22]
Circ(I, I, A, B) GL(4, F2) 12 [22]
Had(0x1, 0x2, 0x8, 0x9) F24 /0x13 20 [25]
Circ(0x1, 0x1, 0x9, 0x4) F24 /0x13 12 [21]
Circulant F24 12 [11]
Special Structure−matrix GL(4, F2) 10 [23]
T oeplizt F24 /0x19 10 [27]
Had(I, A, B, C) F2[T4×4] 20 Ours
Special Optimal F2[T4×4] 13 Ours
Circ(I, I, A, B) F2[T4×4] 12 Ours
S1 F2[T4×4] 10 Ours
Circ(I, I, A, B) GL(8, F2) 12 [22]
Had(I, A, AT , B) GL(8, F2) 20 [22]
Special Optimal GL(8, F2) 10 [22]
Had(0x01, 0x02, 0x04, 0x91) F28 /0x1c3 52 [25]
Subfield−Had(0x1, 0x2, 0x8, 0x9) F24 /0x13 40 [25]
Circ(0x02, 0x03, 0x01, 0x01) F28 /0x11b 56 [14]
Circ(0x1, 0x1, 0x2, 0x91) F28 /0x1c3 24 [21]
Circulant F28 24 [11]
T oeplizt F28 /0x1c3 27 [27]
Circ(I, I, A, B) F2[T8×8] 12 Ours
Had(I, A, B, C) F2[T8×8] 20 Ours
Special Optimal F2[T8×8] 10 Ours
S1 F2[T8×8] 10 Ours
Circ(I, I, A, B) F2[T16×16] 12 Ours
Special Optimal F2[T16×16] 10 Ours

5 Lightweight Involutory MDS Matrices
If a matrix A is ivolutory, then it means that A2 = I. In other word, the inverse of A is A
itself. The involutory matrix is suited to be used in design of symmetric cryptography.
The underlying section first investigates the existence of some types of involutory MDS
matrix. Then, we present an efficient necessary-and-sufficient condition for identifying
an involutory Hadamard matrix. Finally, with this condition, we propose an extremely
efficient algorithm for constructing lightweight involutory Hadamard MDS matrices.

5.1 Existence of Involutory MDS Matrices
Theorem 3. Let L be an n × n(n ≥ 2) MDS matrix over GL(m,F2) as the following
matrix where entries of i-th row and entries of i-th column are identity matrices except
Ai,i. If L is involutory, then the number of identity matrices of L is less than 2n− 1.

L =



A1,1 · · · A1,i−1 I A1,i+1 · · · A1,n

...
...

...
...

...
Ai−1,1 · · · Ai−1,i−1 I Ai−1,i+1 · · · Ai−1,n

I · · · I Ai,i I · · · I
Ai+1,1 · · · Ai+1,i−1 I Ai+1,i+1 · · · Ai+1,n

...
...

...
...

...
An,1 · · · An,i−1 I An,i+1 · · · An,n


. (1)
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Proof. In this proof, we use the proof by contradiction and assume that L has greater
than or equal to 2n− 1 identity matrices.

When n = 2k, k=1,2,3· · · . As L is involutory and it is the form of Eq.1, therefore,

L2 =



∗ · · · ∗ · · · ∗
...

...
...

∗ · · · A2
i,i + I · · · ∗

...
...

...
∗ · · · ∗ · · · ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I



⇒ A2
i,i = 0⇒ Ai,i is singular.

Because L is MDS, thus Ai,i is non-singular. This is a contradiction. Therefore, the
assumption is wrong. Consequently, in this case, the number of identity matrices is less
than 2n− 1.

When n = 2k + 1, k=1,2,3· · · . As L is ivolutory, therefore,

L2 =



∗ · · · ∗ · · · ∗
...

...
...

∗ · · · A2
i,i · · · ∗

...
...

...
∗ · · · ∗ · · · ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⇒ A2
i,i = I

⇒ A2
i,i + I = 0⇒ (Ai,i + I)2 = 0⇒ Ai,i + I is singular.

As L is assumed to have greater than or equal to 2n− 1 identity matrices, therefore,

there must exist a sub-matrix such as
(

I I
I Ai,i

)
in L, and it is easy to know that the

sub-matrix is of full rank if and only if Ai,i + I is non-singular. Because L is MDS, so
the sub-matrix is of full rank. Therefore, Ai,i + I is non-singular. This is a contradiction.
Thus, in this case, L could not have greater than or equal to 2n− 1 identity matrces.

Consequently, the assumption is wrong. Therefore, if L is involutory, then L has
less than 2n− 1 identity matrices. Moreover, the theorem is equal to prove that if L is
involutory, then any Ap,q (1 ≤ p, q ≤ n, p 6= i, q 6= i) or Ai,i is an identity matrix.

Theorem 4. Let L be an n × n (n ≥ 2) MDS matrix over GL(m,F2) as the following
matrix where entries of i-th row and entries of j-th column are identity matrices except
Ai,j, i 6= j. If L is involutory, then the order of L is an even number.

L =



A1,1 · · · A1,j−1 I A1,j+1 · · · A1,n

...
...

...
...

...
Ai−1,1 · · · Ai−1,j−1 I Ai−1,j+1 · · · Ai−1,n

I · · · I Ai,j I · · · I
Ai+1,1 · · · Ai+1,j−1 I Ai+1,j+1 · · · Ai+1,n

...
...

...
...

...
An,1 · · · An,j−1 I An,j+1 · · · An,n


, (2)

Proof. In this proof, we use the proof by contradiction and assume that the order of L is
an odd number. That is, n = 2k + 1, k ≥ 1.
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According to Eq. 2, i 6= j and that L is involutory, we have

L2 =



∗ ∗ ∗ ∗ ∗

∗
. . . ∗ ∗ ∗

∗ ∗
. . . ∗ ∗

∗ I ∗
. . . ∗

∗ ∗ ∗ ∗ ∗


, (3)

where I is at the ith row and the jth column.
Due to that L is involutory, therefore,

L2 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

 (4)

According to Eq. 3, at ith row and jth column, the element is I. However, according
to Eq. 4, at ith row and jth column, the element is 0. It is a contradiction. Consequently,
the assumption is wrong. Therefore, the order of L is an even number.

Theorem 5. Let T ∈ GL(m,F2), A1, A2, · · · , An ∈ F2[T ]. If Circ(A1, A2, ..., An) is
MDS, then Circ(A1, A2, ..., An) is not involutory, where n ≥ 3.

Proof. L = Circ(A1, A2, ..., An) is an MDS matrix as the following matrix, where A1, A2,
· · · , An ∈ F2[T ].

Circ(A1, A2, ..., An) =


A1 A2 · · · An

An A1 · · · An−1
...

...
. . .

...
A2 A3 · · · A1


We use the proof by contradiction and assume that Circ(A1, A2, ..., An) is involutory.
According to such theorem and the assumption, when n = 2k + 1, k = 1, 2, 3 · · · , then

L2 =



A1 · · · Ak+1 · · · A2k+1
...

...
...

∗ · · · ∗ · · · Ak+1
...

...
...

∗ · · · ∗ · · · A1





A1 · · · Ak+1 · · · A2k+1
...

...
...

∗ · · · ∗ · · · Ak+1
...

...
...

∗ · · · ∗ · · · A1



=


∗ ∗ · · · A2

k+1
∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⇒ A2
k+1 = 0⇒ Ak+1 is singular.

Because L is MDS, so Ak+1 is non-singular. This is a contradiction. Therefore, in this
case, L can not be involutory.
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When n = 2k, k = 2, 3, 4 · · · , then

L2 =



A1 · · · Ak · · · A2k−1 A2k

...
...

...
...

∗ · · · ∗ · · · Ak Ak+1
...

...
...

...
∗ · · · ∗ · · · A1 A2
∗ · · · ∗ · · · A2k A1





A1 · · · Ak · · · A2k−1 A2k

...
...

...
...

∗ · · · ∗ · · · Ak Ak+1
...

...
...

...
∗ · · · ∗ · · · A1 A2
∗ · · · ∗ · · · A2k A1



=


∗ · · · A2

k + A2
2k 0

∗ · · · ∗ ∗
... · · ·

...
...

∗ · · · ∗ ∗

 =


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⇒ A2
k + A2

2k = 0.

There is a 2× 2 sub-matrix
(

Ak A2k

A2k Ak

)
in L.

L =



A1 · · · Ak · · · A2k

...
...

...
Ak+1 · · · A2k · · · Ak

...
...

...
∗ · · · ∗ · · · ∗


According above discussions, A2

k + A2
2k = 0. Because L is MDS, so

∣∣∣∣ Ak A2k

A2k Ak

∣∣∣∣ =

A2
k + A2

2k is non-singular. This is a contradiction. Therefore, in this case, L can not be
involutory.

5.2 Involutory Hadamard Matrices
In this subsection, we investigate the involutory Hadamard matrix.

Theorem 6. Let T ∈ GL(m,F2), f(x) is the minimal polynomial of T and a1(x), a2(x),
· · · , a2k (x) ∈ F2[x]/(f(x)). Then, L = Had(a1(T ), a1(T ), · · · , a2k (T )) is involutory if
and only if

2k∑
i=1

ai(x)2 ≡ 1 (mod f(x))

Proof. Because T ∈ GL(m,F2) and L = Had(a1(T ), a2(T ), · · · , a2k (T )) is involutory, so

L2 =


∑2k

i=1(ai(T ))2 ∑2k

i=1(ai(T ))2

. . . ∑2k

i=1(ai(T ))2

 =


I

I
. . .

I



⇔
2k∑

i=1
(ai(x))2 ≡ (

2k∑
i=1

ai(x))2 ≡ 1 (mod f(x))
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Corollary 1. Let T ∈ GL(m,F2), f(x) is the minimal polynomial of T and a(x), b(x)
and c(x) ∈ F2[x]/(f(x)). L = Had(I, a(T ), b(T ), c(T )) is involutory if and only if

(a(x) + b(x) + c(x))2 ≡ 0 (mod f(x))

Proof. According to Theorem 6, Had(I, a(T ), b(T ), c(T )) is involutory if and only if

(1 + a(x) + b(x) + c(x))2 ≡ 1 (mod f(x)).

(1 + a(x) + b(x) + c(x))2 ≡ 1 (mod f(x))⇔ (a(x) + b(x) + c(x))2 ≡ 0 (mod f(x)).

We construct lightweight involutory Hadamard MDS matrices as Had(I, A, B, C). In
our experiments, A ∈ GL(8,F2), #A=1, A + I is non-singular. f(x) is the minimal
polynomial of A. b(x), c(x) ∈ F2[x]/(f(x)) and B = b(A), C = c(A). According to
Corollary 1, Had(I, A, B, C) is involutory if and only if (x + b(x) + c(x))2 ≡ 0 (mod f(x)).
So, x2 ≡ (b(x) + c(x))2 (mod f(x)). As mentioned in Sec.3.2.3, the minimal polynomial
of A must be one of the following polynomials:

x8 + x + 1, x8 + x2 + 1, x8 + x3 + 1, x8 + x4 + 1, x8 + x5 + 1, x8 + x6 + 1, x8 + x7 + 1.

We find all g(x) satisfying g2(x) ≡ x2 (mod f(x)), where f(x) is one of above minimal
polynomials. For x8 + x + 1, x8 + x3 + 1, x8 + x5 + 1, x8 + x7 + 1, there is only one
solution x. For x8 + x2 + 1, x8 + x4 + 1, x8 + x6 + 1, there are 16 solutions.

Specifically, solutions of g(x) satisfying g2(x) ≡ x2 (mod x8 + x2 + 1) are as follows:

x x4 + 1 x5 + x2 x5 + x4 + x2 + x + 1
x6 + x3 + x2 + x x6 + x4 + x3 + x2 + 1 x6 + x5 + x3 x6 + x5 + x4 + x3 + x + 1
x7 + x3 + 1 x7 + x4 + x3 + x x7 + x5 + x3 + x2 + x + 1 x7 + x5 + x4 + x3 + x2

x7 + x6 + x2 + 1 x7 + x6 + x4 + x2 + x x7 + x6 + x5 + x + 1 x7 + x6 + x5 + x4

Solutions of g(x) satisfying g2(x) ≡ x2 (mod x8 + x4 + 1) are as follows:

x x4 + x2 + x + 1 x5 + x3 x5 + x4 + x3 + x2 + 1
x6 + x + 1 x6 + x4 + x2 + x x6 + x5 + x3 + 1 x6 + x5 + x4 + x3 + x2

x7 x7 + x4 + x2 + 1 x7 + x5 + x3 + x x7 + x5 + x4 + x3 + x2 + x + 1
x7 + x6 + 1 x7 + x6 + x4 + x2 x7 + x6 + x5 + x3 + x + 1 x7 + x6 + x5 + x4 + x3 + x2 + x

Solutions of g(x) satisfying g2(x) ≡ x2 (mod x8 + x6 + 1) are as follows:

x x4 + x3 + x + 1 x5 + x3 + 1 x5 + x4

x6 + x3 + x2 + 1 x6 + x4 + x2 x6 + x5 + x2 + x x6 + x5 + x4 + x3 + x2 + x + 1
x7 + x2 + 1 x7 + x4 + x3 + x2 x7 + x5 + x3 + x2 + x x7 + x5 + x4 + x2 + x + 1
x7 + x6 + x3 + x x7 + x6 + x4 + x + 1 x7 + x6 + x5 + 1 x7 + x6 + x5 + x4 + x3

Interestingly, by doing experiments, we discover that the involutory Hadamard MDS
matrix cannot be constructed via x8+x+1, x8+x3+1, x8+x5+1, x8+x7+1. However, the
involutory Hadamard MDS matrix can be constructed via x8 +x2 +1, x8 +x4 +1 x8 +x6 +1.
Therefore, we say that x8 + x2 + 1, x8 + x4 + 1, x8 + x6 + 1 are adaptive.

Algorithm 2 is specially designed to construct lightweight 4× 4 involutory Hadamard
MDS matrices over the matrix polynomial residue ring. The platform of Algorithm 2 is
the same as Algorithm 1. In the following experiments, we construct corresponding results
by exhaustive search on corresponding matrix polynomial residue rings. By running the
Algorithm 2, we get the following results:

1. Over 4×4 matrix polynomial residue rings, construction of 288 involutory Hadamard
MDS matrices with 24 XORs only takes about 2 seconds.
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Algorithm 2 Construction of lightweight involutory Hadamard MDS matrices
1: for Search for every permutation {a1, a2, ..., a8} of {1, 2, ..., 8}. do
2: for i from 1 to 8 do
3: for j from 1 to 8 and j 6= ai do
4: Construct the binary matrix T =[a1, ... , [ai, j] ..., a8]. Therefore, T is a non-singular binary

matrix with 1 XOR.
5: Find the minimal polynomial f(x) of T .
6: Find polynomials b1(x), · · · , bk(x) satisfying #b(T ) ≤ 3.
7: Find all q(x) satisfying q(x)2 ≡ x2 (mod f(x)). Let the results be q1(x), ..., qd(x)
8: for t from 1 to k do
9: Let b(x) = bt(x)

10: for h from 1 to d do
11: Let c(x) = bt(x) + qh(x).
12: if Had(1, x, b(x), c(x)) is MDS then
13: Record this involutory Hadamard MDS matrix and its sum of XORs.
14: end if
15: end for
16: end for
17: end for
18: end for
19: end for

2. Over 8 × 8 matrix polynomial residue rings, construction of 80640 involutory
Hadamard MDS matrices with 20 XORs only takes about 1 minutes and 4 sec-
onds.

Two examples are presented as follows:

Example 5. T = [[1, 2], 3, 4, 1] is a 4 × 4 binary matrix. The following matrix is an
involutory Hadamard MDS matrix with 24 XORs.

I T T 2 T 2 + T
T I T 2 + T T 2

T 2 T 2 + T I T
T 2 + T T 2 T I


Example 6. T = [4, 1, 2, 8, 6, 3, [5, 8], 7] is a 8× 8 binary matrix. The following matrix is
an involutory Hadamard MDS matrix with 20 XORs.

I T T 6 + T 4 T 2

T I T 2 T 6 + T 4

T 6 + T 4 T 2 I T
T 2 T 6 + T 4 T I


Comparisons with previous constructions of lightweight involutory Hadamard MDS

matrices are depicted in Table 5. Comparisons with [22] are depicted in Table 6. In Table
5 and Table 6, the sum of XORs denotes the sum of XOR counts of the entirety-matrix.

Next, we analyze search spaces of our constructions and constructions over GL(8,F2).

• Over GL(8,F2), there are 1048320 matrices with 1, 2 or 3 XORs. Therefore, to
construct involutory Hadamard MDS matrices Had(I, A, B, C) over GL(8,F2), the
search space of Had(I, A, B, C) is 10483203 ≈ 1.152× 1018.

• Over the 8× 8 matrix polynomial residue ring, we discover that if A and A + I are
non-singular, #A = 1 and the minimal polynomial of A is adaptive to construct
involutory Hadamard MDS matrices, then the number of A is 120960. According to
Corollary 1, Had(1, x, b(x), c(x)) is involutory if and only if (b(x) + c(x))2 = x2. For
the minimal polynomial f(x) of each A, there are only 16 kinds of g(x) satisfying
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Table 5: Comparisons with previous constructions of lightweight involutory Hadamard
MDS matrices

Matrix type Element Sum of XORs Ref.

Had(I, A, A−1, A + A−1) GL(4, F2) 24 [22]
Had(0x1, 0x4, 0x9, 0xd) F24 /0x13 24 [18][25]
Had(0x1, 0x2, 0x6, 0x4) F24 /0x19 24 [1]
Had(I, A, B, C) F2[T4×4] 24 Ours
Hadamard− Cauchy(0x01, 0x02, 0xfc, 0xfe) F28 /0x11b 296 [12]
Had(0x01, 0x02, 0x04, 0x06) F28 /0x11d 88 [5]
Had(0x01, 0x02, 0xb0, 0xb2) F28 /0x165 64 [25]
Subfield−Had(0x1, 0x4, 0x9, 0xd) F24 /0x13 48 [25]
Had(I, A, A−1, A + A−1) GL(8, F2) 40 [22]
Had(I, A, B, C) F2[T8×8] 20 Ours

Table 6: Comparisons of construction efficiency with [22]
Matrix type Element Sum of XORs Number Running time Ref.

Optimal(sepcial) GL(8, F2) 10 40320 no mentioned [22]
Optimal(special) F2[T8×8] 10 40320 1min 16sec Ours
Circ(I, I, A, B) GL(8, F2) 12 80640 3days [22]
Circ(I, I, A, B) F2[T8×8] 12 80640 1min 27sec Ours
Had(I, A, AT , B) GL(8, F2) 20 622 4weeks [22]
Had(I, A, B, C) F2[T8×8] 20 241920 7min Ours
InvolutoryHad(I, A, A−1, A + A−1) GL(8, F2) 40 80640 1day [22]
InvolutoryHad(I, A, B, C) F2[T8×8] 20 80640 1min 04sec Ours

g(x)2 = x2. Therefore, b(x) = c(x) + g(x). Consequently, the search space of
Had(1, A, B, C), in our construction, is 120960×28×16 ≈ 4.954×108, which is much
fewer than 1.152× 1018.

Table 7: Comparisons of search space of constructing lightweight MDS matrices
Matrix type Element Search space

Circ(I, I, A, B) GL(8, F2) 1.099× 1012

Circ(I, I, A, B) F2[T8×8] 4.516× 106

S5 GL(8, F2) 1.458× 1048

S5 F2[T8×8] 1.849× 1010

Involutory Had(I, A, B, C) GL(8, F2) 1.152× 1018

Involutory Had(I, A, B, C) F2[T8×8] 4.954× 108

6 Conclusions
This paper investigates the construction of 4 × 4 lightweight MDS matrices over the
m×m matrix polynomial residue ring, where m=4, 8 or 16. With the high efficiency of
identifying MDS matrices, the distribution of minimal polynomials of non-singular binary
matrices and the distribution of elements with few XORs, we propose an efficient algorithm
to construct lightweight MDS matrices. Besides, we propose three theorems about the
existence of involutory MDS matrices over GL(m,F2) and over the matrix polynomial
residue ring. Moreover, we propose an efficient necessary and sufficient condition for
identifying an involutory Hadamard matrix. By incorporating this condition, we propose
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another efficient algorithm to construct lightweight involutory Hadamard MDS matrices
and we get optimized results as compared to previous works.
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