On Efficient Constructions of Lightweight MDS Matrices

Lijing Zhou, Licheng Wang and Yiru Sun

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications

> FSE 2018, Bruges, Belgium March, 2018

Outline

- 1. Background and Motivations
- 2. Efficiently Construct Lightweight MDS Matrices
- 3. Efficiently Construct Involutory Hadamad MDS Matrices

Outline

1. Background and Motivations

- 2. Efficiently Construct Lightweight MDS Matrices
- 3. Efficiently Construct Involutory Hadamad MDS Matrices

Linear diffusion layer

A linear diffusion layer can be represented by a matrix and provides external dependency.

Let *L* be a linear diffusion layer which is a matrix of order *n*. *L*'s performance is measured by the branch number:

•
$$B(L) = \min\{w(X) + w(LX) \mid X \in (F_2^m)^n, X \neq 0\}$$

•
$$B(L) \le n+1$$

MDS Matrix

L is an MDS matrix of order n if and only if B(L)=n+1.

Lightweight MDS Matrix

Blaum, Roth, IEEE TIT 1999

L is MDS if and only if all square sub-matrices of *L* are of full rank.

Lightweight MDS Matrix

An MDS matrix of order *n* can be represented by the following matrix:

$$L = \begin{pmatrix} L_{1,1} & L_{1,2} & \cdots & L_{1,n} \\ L_{2,1} & L_{2,2} & \cdots & L_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ L_{n,1} & L_{n,2} & \cdots & L_{n,n} \end{pmatrix}$$

where $L_{i,i}$ are non-singular binary matrices of order *m*.

For convenience, *L* is called the structure-matrix (or structure), and $L_{i,i}$ is called the entry-matrix (or entry).

XOR Count and Full Rank

XOR count

Lightweight means the implementation requires fewer XORs.

- XOR count of $L_{i,j}$ is described by $\#(L_{i,j})=w(L_{i,j})-m$.
- XOR count of *L* is described by #(L), which is the sum of all XOR counts of $L_{i,j}$.

Full rank

Let A, B and C be binary matrices of order 4.

That
$$\begin{pmatrix} A & B & C \\ C & A & B \\ B & C & A \end{pmatrix}$$
 is of full rank means that its rank is 12.

Motivations

1. Efficiency

(I B A	I I B A	A I I P	B A I		$ \left(\begin{array}{c} I\\ A\\ B\\ C \end{array}\right) $	A I C	B C I	$\begin{pmatrix} C \\ B \\ A \\ L \end{pmatrix}$			(A I I I	I I A	I B I	I A B		$ \left(\begin{array}{c} I\\ I\\ I\\ V\end{array}\right) $	I A B I	I B A	X I A
Circ	ular	nt m	atrix		(C Hada	в amai	A rd m	<i>I</i>) natriz	x (Opt	(1 imal	B mat	A trix	(spe	cial)	0	ther	r ma	trix
$\begin{pmatrix} A \\ I \\ I \\ I \\ I \end{pmatrix}$	I I D F S	I B I G	$ \begin{bmatrix} I \\ C \\ E \\ I \end{bmatrix} $	$\begin{pmatrix} A \\ I \\ I \\ F \end{pmatrix}$	I I D G S ₂	I B I H	$\left(\begin{matrix} I \\ C \\ E \\ I \end{matrix} \right)$	$\begin{pmatrix} A \\ I \\ I \\ F \end{pmatrix}$	I I D G S	I B I I 3	$\left. \begin{matrix} I \\ C \\ E \\ H \end{matrix} \right)$	(A I I I I	A 1 1 7 1 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$ \begin{array}{c} I \\ B \\ D \\ I \\ T \\ G \\ S_4 \end{array} $	$\left. \begin{matrix} I \\ C \\ E \\ H \end{matrix} \right)$	$ \left(\begin{array}{c} I\\ C\\ E\\ I \end{array}\right) $	I I F G S	A I I H 5	$ \begin{array}{c} B \\ D \\ I \\ I \end{array} \right) $

Motivations

- 2. Entry
 - Matrix representation of finite field F_{2^m}
 - The set of all non-singular binary matrices $GL(m, F_2)$

Outline

1. Background and Motivations

2. Efficiently Construct Lightweight MDS Matrices

3. Efficiently Construct Involutory Hadamad MDS Matrices

Structure-matrices

$$\begin{pmatrix} A & I & I & I \\ I & I & B & C \\ I & D & I & E \\ I & F & G & I \end{pmatrix} \begin{pmatrix} A & I & I & I \\ I & I & B & C \\ I & D & I & E \\ F & G & H & I \end{pmatrix} \begin{pmatrix} A & I & I & I \\ I & I & B & C \\ I & D & I & E \\ F & G & I & H \end{pmatrix} \begin{pmatrix} A & I & I & I \\ I & I & B & C \\ I & D & I & E \\ F & G & I & H \end{pmatrix} \begin{pmatrix} A & I & I & I \\ I & I & B & C \\ I & D & I & E \\ I & F & G & H \end{pmatrix} \begin{pmatrix} I & I & A & B \\ C & I & I & D \\ E & F & I & I \\ I & G & H & I \end{pmatrix}$$

Method to select the structures: no sub-matrix $\begin{pmatrix} I & I \\ I & I \end{pmatrix}$

Entry From Matrix Polynomial Residue Ring

Let *T* be a non-singular binary matrix.

f(x) is the minimal polynomial of *T*. It satisfies f(T)=0.

 $F_2(T)$ is isomorphic to $F_2[x]/(f(x))$.

 $F_2(T)$ is the matrix polynomial residue ring generated by T.

$$\begin{pmatrix} T & I & I & I \\ I & I & a(T) & T & 1 \\ I & T & I & b(T) \\ I & c(T) & d(T) & I \end{pmatrix}$$

Identify Full Rank

Conditions of *T*

Let *T* be a binary matrix of order *m*. *T* satisfies the following conditions:

- 1. #(*T*)=1
- 2. *T* is non-singular
- *3. T*+*I* is non-singular

Conditions of *T*

Why is *T*+*I* non-singular?

Conditions of T

If there are at least two *T* in one of the above structures, then there must exist a sub-matrix as the following matrix:

$$\begin{pmatrix} I & I \\ I & T \end{pmatrix}$$

 $\begin{pmatrix} I & I \\ I & T \end{pmatrix}$ is of full rank if and only if T + I is non-singular.

Analyzing $F_2(T)$

For instance, *T*'s order is 8. By searching *T*, we get:

- 1. The number of T is 28224.
- 2. The minimal polynomial of *T* only has 7 choices.
- 3. In any $F_2[T]$, there are at most 4 elements with no more than 3 XORs.

Algorithm 1

Step 1: Select *T* satisfying #(T)=1, *T* and T+I are non-singular, and find its minimal polynomial f(x). Then, find $b_1(x)$, $b_2(x)$, $b_3(x)$, $b_4(x)$ satisfying $\# b(T) \le 3$ XORs.

Comparisons with LB16

Entries are matrices of order 4.

Matrix type	Sum of XORs	Number of results	Running time	Ref.
Special structure-matrix	10	845	1 week	LB16
S_1	10	288	00:01:42	Ours

LB16: Intel Core i7-4790 16 G 3.6 GHz

Our platform: C-free Intel Core i5-5300U 4G 2.3GHz

Comparisons with LW16 (FSE2016)

Entries are matrices of order 8.

Matrix type	Sum of XORs	Number of results	Running time	Ref.
Circulant(I, I, A, B)	12	80640	3 days	LW16
Circulant(I, I, A, B)	12	80640	00:01:27	Ours
$Had(I, A, A^T, B)$	20	622	4 weeks	LW16
Had(I, A, B, C)	20	241920	00:07:00	Ours

LW16 (FSE2016): Magma v2.20-3 Intel Core i5 Our platform: C-free Intel Core i5-5300U 4G 2.30GHz

Results

Matrix type	Entries	Sum of XORs	Number of results	Running time
Circ(I, I, A, B)	$F_2[T_{4\times 4}]$	12	96	00:00:01
Hada(I, A, B, C)	$F_2[T_{4\times 4}]$	20	288	00:00:04
Optimal (special)	$F_2[T_{4\times 4}]$	13	48	00:00:01
S_1	$F_2[T_{4\times 4}]$	10	288	00:01:42
S_3	$F_2[T_{4\times 4}]$	10	48	00:05:05
Circ(I, I, A, B)	$F_2[T_{8\times 8}]$	12	80640	00:01:27
Hada(I, A, B, C)	$F_2[T_{8 imes 8}]$	20	241920	00:07:00
Optimal (special)	$F_2[T_{8\times 8}]$	10	40320	00:01:16
S_1	$F_2[T_{8 \times 8}]$	10	1128960	14:00:00
Circ(I, I, A, B)	$F_2[T_{16 \times 16}]$	12	1	00:00:30
Optimal (special)	$F_2[T_{16 \times 16}]$	10	1	00:00:30

Our platform: C-free Intel Core i5-5300U 4G 2.30GHz

Outline

- **1. Background and Motivations**
- 2. Efficiently Construct Lightweight MDS Matrices
- 3. Efficiently Construct Involutory Hadamad MDS Matrices

Involutory matrix

L is an involutory matrix if and only if $L^2 = I$

$$\begin{pmatrix} I & A & B & C \\ A & I & C & B \\ B & C & I & A \\ C & B & A & I \end{pmatrix}^2 = \begin{pmatrix} I & & & \\ & I & & \\ & & I & \\ & & & I \end{pmatrix}$$

Involutory Hadamard MDS matrix

Hada(I, A, B, C) denotes the following Hadamard matrix.

$$\begin{pmatrix} I & A & B & C \\ A & I & C & B \\ B & C & I & A \\ C & B & A & I \end{pmatrix}$$

Theorem 1: $T \in GL(m, F_2)$, f(x) is the minimal polynomial of T. $a(x), b(x), c(x) \in F_2[x]/(f(x))$. Then Hada(1, a(x), b(x), c(x)) is involutory if and only if

 $a(x)^2 \equiv (b(x) + c(x))^2 \mod f(x)$

Special case: Hada(1, x, b(x), c(x)) is involutory if and only if $x^2 \equiv (b(x) + c(x))^2 \mod f(x)$

Involutory Hadamard MDS matrix

Special case: Hada(1, x, b(x), c(x)) is involutory if and only if $x^2 \equiv (b(x) + c(x))^2 \mod f(x)$

For instance, $g_0(x)$ satisfies $x^2 \equiv (g_0(x))^2 \mod f_1(x)$. Let

 $c(x)=b(x)+g_0(x).$

It is equivalent to $b(x) + c(x) = g_0(x)$ over F_2 . Therefore,

 $x^2 \equiv (b(x) + c(x))^2 \mod f_l(x)$

Then $Hada(1, x, b(x), b(x) + g_0(x))$ is involutory.

Analyzing Polynomials of *T*

For any *T* of order 8 satisfying those three conditions, its minimal polynomial only has 7 choices. They are: $f_1(x)=x^8+x+1$, $f_2(x)=x^8+x^2+1$, $f_3(x)=x^8+x^3+1$, $f_4(x)=x^8+x^4+1$, $f_5(x)=x^8+x^5+1$, $f_6(x)=x^8+x^6+1$, $f_7(x)=x^8+x^7+1$

For each $f_k(x)$, we compute all g(x) satisfying the following equation

$$x^2 \equiv (g(x))^2 \mod f_k(x) \tag{1}$$

Algorithm 2

With $f_1(x) = x^8 + x + 1$, the equation (1) has 16 solutions. They are $g_1(x), g_2(x), \dots, g_{16}(x)$.

Algorithm 2:

Step 1: Search b(x) over $F_2[x]/(f_1(x))$ Step 2: *k* from 1 to 16, construct involutory Hadamard matrix *Hada*(1, *x*, b(x), $b(x)+g_k(x)$) Step 3: If the matrix is MDS, then output the result *Hada*(1, *T*, b(T), $b(T)+g_k(T)$) and its XORs.

Comparisons with LW16 (FSE2016)

Entries are matrices of order 8.

Matrix type	Sum of XORs	Number of results	Running time	Ref.
Involutory $Hada(I, A, A^{-1}, A + A^{-1})$	40	80640	1 day	LW16
Involutory Hada(I, A, B, C)	20	40320	1'04"	Ours

LW16 (FSE2016) platform: Magma v2.20-3 Intel Core i5 Our platform: C-free Intel Core i5-5300U 4G 2.30GHz

Comparisons---Lightweight Involutory Hadamard MDS Matrix

Matrix type	Entries	Sum of XORs	Ref.
$Hada(I, A, A^{-1}, A + A^{-1})$	$GL(4, F_2)$	24	LW16
Hada(0x1, 0x4, 0x9, 0xd)	$F_{2^4} / 0x13$	24	JNP14, SKOP15
Hada(0x1, 0x2, 0x6, 0x4)	$F_{2^4} / 0x19$	24	ABBLM14
Hada(I, A, B, C)	$F_2[T_{4\times 4}]$	24	Ours
Hada - cauchy(0x01, 0x02, 0xfc, 0xfe)	$F_{2^8} / 0x11b$	296	CG14
<i>Hada</i> (0x01,0x02,0x04,0x06)	$F_{2^8} / 0x11d$	88	BR00
<i>Hada</i> (0x01,0x02,0xb0,0xb2)	$F_{2^8} / 0x165$	64	SKOP15
Subfield - Hada(0x1, 0x4, 0x9, 0xd)	$F_{2^4} / 0x13$	48	SKOP15
$Hada(I, A, A^{-1}, A + A^{-1})$	$GL(8, F_2)$	40	LW16
Hada(I, A, B, C)	$F_2[T_{8 \times 8}]$	20	Ours

Thank you for your attention!