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Abstract. In recent years, Mixed Integer Linear Programming (MILP) has been
widely used in cryptanalysis of symmetric-key primitives. For differential and linear
cryptanalysis, MILP can be used to solve two kinds of problems: calculation of the
minimum number of differentially/linearly active S-boxes, and search for the best
differential/linear characteristics. There are already numerous papers published in
this area. However, the efficiency is not satisfactory enough for many symmetric-key
primitives. In this paper, we greatly improve the efficiency of the MILP-based search
algorithm for both problems. Each of the two problems for an r-round cipher can
be converted to an MILP model whose feasible region is the set of all possible r-
round differential/linear characteristics. Generally, high-probability differential/linear
characteristics are likely to have a low number of active S-boxes at a certain round.
Inspired by the idea of a divide-and-conquer approach, we divide the set of all
possible differential/linear characteristics into several smaller subsets, then separately
search them. That is to say, the search of the whole set is split into easier searches
of smaller subsets, and optimal solutions within the smaller subsets are combined
to give the optimal solution within the whole set. In addition, we use several
techniques to further improve the efficiency of the search algorithm. As applications,
we apply our search algorithm to five lightweight block ciphers: PRESENT, GIFT-64,
RECTANGLE, LBLOCK and TWINE. For each cipher, we obtain better results than
the best-known ones obtained from the MILP method. For the minimum number of
differentially/linearly active S-boxes, we reach 31/31, 16/15, 16/16, 20/20 and 20/20
rounds for the five ciphers respectively. For the best differential/linear characteristics,
we reach 18/18, 15/13, 15/14, 16/15 and 15/16 rounds for the five ciphers respectively.

Keywords: Block cipher · Differential cryptanalysis · Linear cryptanalysis · MILP ·
Divide-and-conquer

1 Introduction
As a fundamental primitive of cryptography, block ciphers have received extensive atten-
tion from academia and industry. The most important criterion for designing a block
cipher is to ensure that it can resist all known attacks, especially differential and linear
cryptanalysis [BS91, Mat93].
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To evaluate the security of a block cipher against differential/linear cryptanalysis,
there are usually two approaches. One is to calculate the minimum number of differ-
entially/linearly active S-boxes to obtain an upper bound of the maximum probabil-
ity/absolute linear bias. The other approach is to search for the best differential/linear
characteristics to calculate the maximum probability/absolute linear bias. For some block
ciphers, e.g., for block ciphers with large block sizes, this needs a huge workload and is
likely to be impossible to be accomplished in a reasonable time.

In [Mat94], Matsui proposed a branch and bound search algorithm to search for the
best differential characteristic. Matsui’s search algorithm is one of the most powerful and
classic search tools, but difficult to implement in some cases. In recent years, a method
based on Mixed Integer Linear Programming (MILP) is proposed to evaluate the security
of recent symmetric-key primitive designs. Due to its easy-to-master and general-to-use
features, the MILP-based method has been widely used.

In [WW11, MWGP11], for the first time, the authors applied MILP to evaluate
the security of a block cipher against differential and linear cryptanalysis. Mouha et
al. [MWGP11] introduced a model framework to calculate lower bounds of the minimum
number of active S-boxes for word-oriented ciphers, then Sun et al. [SHS+13] extended
their framework to SPN ciphers with bit-wise permutation diffusion layers. In [SHS+13],
bit-wise operations are described as linear inequalities. However, the description of an
S-box is rough, which results in a solution of the model is not guaranteed to be a valid
differential characteristic. At ASIACRYPT 2014, Sun et al. [SHW+14b] improved the
MILP-based method for automatically evaluating the security of a block cipher against
(related-key) differential cryptanalysis, and proposed a heuristic algorithm for finding
actual (related-key) differential characteristics. They introduced two systematic methods
for generating inequalities to describe the bit-wise S-box operation more accurately:
logical condition modeling and convex hull computation. By using the two methods, some
impossible differential characteristics are removed from the feasible region of the model, and
tighter security bounds are obtained. Later in [SHW+14a], Sun et al. encoded differential
probabilities/linear approximations of S-boxes into the MILP model, and argued that the
feasible region of the model built by using the convex hull computation method for S-boxes
is exactly the set of all possible (related-key) differential/linear characteristics. Therefore,
their model can be used to obtain the minimum number of active S-boxes and find the
best differential/linear characteristic. In [FWG+16], Fu et al. extended the MILP-based
automatic search algorithm to ARX ciphers and applied it to search for the best differential
and linear characteristics for SPECK [BSS+13]. Abdelkhalek et al. [AST+17] introduced a
new method for modelling large S-boxes, e.g., 8-bit S-boxes, and evaluated the maximum
probability of differential characteristics for SKINNY-128 [BJK+16].

The problem of the calculation of the minimum number of differentially/linearly active
S-boxes or the search for the best differential/linear characteristic for an r-round block
cipher can be converted to an MILP model. As the size of the model increases significantly
with the increasing of the number of rounds, the model can’t be solved within a reasonable
time when r is too large. Thus a lot of papers are published to address this issue. A
simple split approach was introduced in [MWGP11, SHW+14b], which splits r rounds into
the first r1 and the last (r − r1) rounds then combines them, 1 ≤ r1 < r. In [SHQ+15],
the authors restricted difference patterns of S-boxes to search for improved differential
characteristics. An interesting method that incorporates Matsui’s branch and bound search
algorithm and the MILP-based technique was introduced by Zhang et al. [ZSCH18]. They
added the constraints derived from the bounding condition of Matsui’s algorithm into the
MILP model, which results in the model having a reduced feasible region and being solved
with a shorter time. However, the efficiency of solving existing MILP models is still not
satisfactory enough. New techniques are of necessity to push the limitation of our ability
to evaluate the security of block ciphers based on MILP methods. Thus, the motivation of
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this paper is to make the MILP-based method an efficient enough tool upon which we can
entirely rely to evaluate the security of block ciphers against differential/linear attack.

Our Contributions. Due to the duality between differential and linear cryptanalysis [Mat94],
we mainly focus on the security evaluation algorithm against differential cryptanalysis.
Calculating the minimum number of active S-boxes or searching for the best differential
characteristic is equivalent to an MILP-based search for the optimal differential character-
istic with the minimum number of active S-boxes or with the minimum weight (defined as
the negative of the binary logarithm of the probability). Our main contributions are:

1. We propose an improved MILP-based search algorithm to evaluate the security of
block ciphers against differential cryptanalysis. Inspired by the idea of a divide-
and-conquer approach, we divide the set of all possible differential characteristics
into smaller subsets, then separately search them. We observe that high-probability
differential characteristics are likely to have a low number of active S-boxes at a certain
round, thus smaller subsets are partitioned based on the information of S-boxes.
Take an SPN cipher as an example, we assume that the differential characteristics in
a subset have exactly one or two active S-boxes at a certain round. By using the
MILP technique, searching a subset can be transformed into an MILP model whose
feasible region is exactly the subset. Then the optimal differential characteristics
within the subsets are combined to give the optimal differential characteristic within
the whole set. To further improve efficiency, we use three techniques:

(a) At the beginning of the search, we generate a valid differential characteristic
and use it as the currently optimal differential characteristic. Its number of
active S-boxes (or weight) is served as an upper bound of the minimum number
of active S-boxes (or weight). The currently optimal differential characteristic
and the upper bound are dynamically updated during the search.

(b) When searching a subset, we calculate a lower bound of the minimum number
of active S-boxes (or weight) within it. If the lower bound is greater than or
equal to the upper bound introduced in the first technique, there is no better
differential characteristic and we terminate the search of this subset;

(c) We choose a proper search order of subsets, such that better differential charac-
teristics can be searched as early as possible.

Finally, an MILP-based search algorithm is proposed. The algorithm can be used
to both calculate the minimum number of active S-boxes and search for the best
differential characteristic. Also, the algorithm can be extended to the security
evaluation of block ciphers against linear cryptanalysis with a slight modification.

2. We apply our search algorithm to five lightweight block ciphers: PRESENT [BKL+07],
GIFT-64 [BPP+17], RECTANGLE [ZBL+15], LBLOCK [WZ11] and TWINE [SMMK12].
For each cipher, we obtain better results than previous best-known results obtained
from the MILP method. For the minimum number of differentially/linearly active
S-boxes, we reach 31/31, 16/15, 16/16, 20/20 and 20/20 rounds for the five ciphers
respectively. For the best differential/linear characteristics, we reach 18/18, 15/13,
15/14, 16/15 and 15/16 rounds for the five ciphers respectively. To compare with
previous MILP-based work, we implement Sun et al.’s model [SHW+14b, SHW+14a]
and Zhang et al.’s model [ZSCH18] to search for the best differential character-
istic for the five ciphers. We implement the three methods (ours, Sun et al.’s
and Zhang et al.’s) on a PC, and summarize the experimental results in Table
1. From the table, we see that our search algorithm has an advantage over the
other two methods when the number of rounds is large, and for each cipher, our
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Table 1: Comparison of the results on the best differential and linear characteristics

Ciphers Differential characteristic Linear characteristic

Rounds t1 t2 t3(Sect. 5) Rounds t1 t2 t3(Sect. 5)

PRESENT
8 764s 444s 284s 8 5188s 258s 557s
9 3426s 1143s 298s 9 14207s 663s 572s
10 31000s 6286s 1596s 10 58048s 2361s 872s
18 - - 6.90h 18 - - 10.8h

GIFT-64
6 494s 343s 1477s 8 7414s 1442s 829s
7 9846s 1910s 1862s 9 48546s 6899s 9542s
8 138603s 27352s 21796s 10 >4d 77353s 21157s
15 - - 28.29h 13 - - 53.2h

RECTANGLE
8 3345s 824s 216s 8 1881s 1066s 101s
9 14931s 3551s 257s 9 6218s 8204s 179s
10 38461s 20041s 353s 10 64526s 38074s 439s
15 - - 15.98h 14 - - 60.31h

LBLOCK
8 1330s 646s 7s 8 1064s 573s 6s
9 8293s 1833s 9s 9 3451s 6848s 8s
16 - - 2.36h 15 - - 2.17h

TWINE
9 7332s 4282s 8s 8 2631s 1078s 10s
10 30026s 15404s 60s 9 2408s 4684s 14s
15 - - 15.02h 16 - - 758s

t1 and t2 respectively denote the time of solving Sun et al.’s model [SHW+14b, SHW+14a]) and Zhang et
al. ’s model [ZSCH18], and t3 denotes the runtime of our search algorithm. For the three methods, we use
Sun’s Greedy algorithm [SHW+14a]) to reduce the number of inequalities from the convex-hull modeling,
and use Gurobi software [Gur] with MipFocus equal to 2 to solve models.

search algorithm covers more rounds with less time. The source code is available at
https://github.com/Chunning-Zhou/MILPBasedSearchAlgorithmDiff.

Organization. In Section 2, we recall the existing automatic MILP-based tool for evaluat-
ing the security of block ciphers against differential cryptanalysis. An improved MILP-based
search algorithm by incorporating the idea of a divide-and-conquer approach is proposed
in Section 3. We use our search algorithm to evaluate the security of block ciphers against
differential/linear cryptanalysis, and apply it to five lightweight block ciphers in Sections 4
and 5. In Section 6, we conclude the paper and provide some ideas for future work. More
details and experimental results are given in Appendices.

2 Related Work
Calculating the minimum number of active S-boxes and searching for the best differential
characteristic are two ways to evaluate the security of block ciphers against differential
attacks. In this section, we introduce the MILP-based method for solving the two problems.

2.1 Model Framework for Calculating the Minimum Number of Active
S-boxes

Mouha et al. [MWGP11] introduced a model framework to calculate lower bounds of
the minimum number of active S-boxes for word-oriented block ciphers. Then, Sun et
al. extended their model framework to bit-oriented block ciphers [SHS+13, SHW+14b,
SHW+14a].

2.1.1 Mouha et al.’s Model Framework for Word-Oriented Block Ciphers

Mouha et al. [MWGP11] considered truncated differences, and used a 0-1 variable to
describe a word-level difference, such that the variable equals 1 if and only if the input

https://github.com/Chunning-Zhou/MILPBasedSearchAlgorithmDiff
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word is non-zero. Assume that a cipher is composed of three operations: XOR, linear
transformation and S-box, the following constraints are introduced to describe word-level
difference propagations through a cipher.

Equations Describing the XOR Operation. Let a, b and c denote word-level input and
corresponding output differences of the XOR operation, the following equations are used
to describe the XOR operation:{

a + b + c ≥ 2d⊕,
d⊕ ≥ a, d⊕ ≥ b, d⊕ ≥ c,

(1)

where d⊕ is a dummy variable taking values in {0, 1}.

Equations Describing the Linear Transformation. Let (x0, ..., xm−1) and (y0, ..., ym−1)
denote word-level input and output differences of the linear transformation L respectively.
Given the differential branch number BD of L, the linear transformation is described by:

m−1∑
k=0

xk +
m−1∑
k=0

yk ≥ BDdL,

dL ≥ xk, dL ≥ yk, k ∈ {0, ..., m− 1},

where dL is a dummy variable taking values in {0, 1}. In [SHS+13], the authors pointed
out that if L is not MDS, additional constraints are needed to ensure that non-zero input
difference must result in non-zero output difference and vice versa. The constraints are
similar to Equation (4) describing an S-box.

Additional Constraints. To avoid a trivial solution, it needs an additional constraint to
ensure that at least one S-box is active. Besides, all dummy d-variables, and the variables
representing the plaintext differences are restricted to be 0-1 variables.

Objective Function. The objective function is to minimize the number of active S-boxes,
i.e, the sum of all variables representing word-level input differences of S-boxes of each
round.

By using the model framework above, an MILP model is built to calculate a lower
bound of the minimum number of active S-boxes for a word-oriented block cipher. However,
this framework did not consider bit-wise operations, thus it is not applicable to bit-oriented
block ciphers.

2.1.2 Sun et al.’s Bit-wise Model Framework

In [SHS+13, SHW+14b, SHW+14a], Sun et al. described operations of bit-oriented block
ciphers. They used a 0-1 variable to denote the bit-level difference, such that the variable
equals 1 if and only if the bit-level difference is non-zero. For each S-box, they used a 0-1
variable A to denote the word-level input difference, such that A = 1 if and only if the
input word of the S-box is non-zero. Therefore, the objective function is to minimize the
sum of all A variables.

For bit-wise XOR, an additional inequality a + b + c ≤ 2 is added into Equation (1).
For an w × v S-box marked by A, suppose (x0, ..., xw−1) and (y0, ..., yv−1) are input and
output differences respectively, the following constrains are introduced to describe the
S-box. Firstly, A = 1 holds if and only if x0, ..., xw−1 are not all zero:{

A− xk ≥ 0, k ∈ {0, ..., w − 1},
x0 + x1 + ... + xw−1 −A ≥ 0.

(2)
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Besides, the Hamming weight of (x0, ..., xw−1, y0, ..., yv−1) is greater than or equal to the
branch number BS of the S-box for a non-zero input difference:

w−1∑
k=0

xk +
v−1∑
k=0

yk ≥ BSdS ,

dS ≥ xk, k ∈ {0, ..., w − 1},
dS ≥ yk, k ∈ {0, ..., v − 1},

(3)

where dS is a dummy variable taking values in {0, 1}, and the branch number BS of an
S-box is defined as

BS = min
a 6=b
{wt((a⊕ b)||S(a)⊕ S(b)) : a, b ∈ Fw

2 },

where wt(·) is the standard Hamming weight. In addition, for bijective S-boxes, non-zero
input difference must result in non-zero output difference and vice versa:{

wy0 + wy1 + ... + wyv−1 − (x0 + x1 + ...xw−1) ≥ 0,
vx0 + vx1 + ... + vxw−1 − (y0 + y1 + ...yv−1) ≥ 0.

(4)

By using the objective function and the constraints introduced above, an MILP model is
built to calculate a lower bound of the minimum number of active S-boxes for a bit-oriented
cipher. The constraints used to describe S-boxes are rough, thus a feasible solution of the
model is not guaranteed to be a valid differential characteristic.

To describe an S-box more accurately, Sun et al. [SHW+14b] proposed two systematic
methods for generating inequalities: the logical condition modeling and the convex hull
computation. The inequalities are used to remove invalid differential characteristics from
the feasible region of the model. Later in [SHW+14a], Sun et al. proved that the feasible
region of the model built by using the convex hull computation method for S-boxes is
exactly the set of all possible differential characteristics. In the convex hull computation
method, a possible difference propagation (x0, ..., xw−1)→ (y0, ..., yv−1) of an w× v S-box
is treated as a point in Fw+v

2 : (x0, ..., xw−1, y0, ..., yv−1) ∈ Fw+v
2 . All possible difference

propagations of the S-box constitute a set of finitely many discrete points. By computing
the H-Representation of the convex hull of the set with the help of SageMath software [sag],
inequalities are generated and their feasible solutions are exactly the points in the set.
The number of inequalities computed from SageMath is generally very large, thus a greedy
algorithm [SHW+14a] and an MILP-based reduction algorithm [ST17] were proposed to
select a small number of inequalities. By using these reduced inequalities to describe the
S-box, all impossible difference propagations of S-boxes are removed from the feasible
region of the model. By modeling S-boxes with the convex hull computation method and
restricting all variables involved to be 0-1 variables, the MILP model can be used to obtain
the minimum number of active S-boxes.

2.2 Model Framework for Searching for the Best Differential Charac-
teristic

In [SHW+14a], Sun et al. encoded differential probabilities of an S-box into an MILP
model and searched for the best differential characteristic for a block cipher.

Take PRESENT cipher as an example. PRESENT uses a 4× 4 S-box, and there are
3 nontrivial probabilities in the difference distribution table of the S-box. A possible
difference propagation of an S-box (x0, x1, x2, x3)→ (y0, y1, y2, y3) with the probability Pr
is treated as a 10-dimensional point:

(x0, x1, x2, x3, y0, y1, y2, y3, p0, p1) ∈ F10
2 ,
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where

(p0, p1) =

 (0, 0), if Pr = 1;
(0, 1), if Pr = 2−2;
(1, 1), if Pr = 2−3,

(5)

that is to say, Pr = 2−(p0+2p1). By using the convex hull computation method, inequalities
are generated to describe all the possible points. To find the best differential characteristic,
i.e., the differential characteristic with the maximal probability, the objective function is
to minimize the sum of all (p0 + 2p1). Note that in Equation (5), p1 equals 1 if and only if
the input difference is non-zero, thus p1 also indicates the input word of the S-box.

3 Improving the MILP-based Search Algorithm by Incor-
porating with A Divide-and-Conquer Approach

The difficulty of the problem of the calculation of the minimum number of active S-boxes
or the search for the best differential characteristic usually increases exponentially with
the increasing of the number of rounds. Existing MILP models can hardly be used to
solve the problem when the number of rounds is large. The main reason is that in
existing MILP models built for an r-round cipher, the feasible region is the set of all
possible r-round differential characteristics. Inspired by the idea of a divide-and-conquer
approach, we improve the efficiency of the MILP-based search algorithm basing on our
empirical knowledge about the valid differential characteristics. We first divide the set of
all possible r-round differential characteristics into several subsets, we then search each
subset separately. By using the MILP technique, searching a subset can be equivalent
to solving an MILP model whose feasible region is exactly the subset. Then the optimal
differential characteristic within the whole set is given by combining all the results returned
from subsets. To further improve efficiency, we introduce several techniques. Finally, an
improved MILP-based search algorithm is proposed. For the convenience of illustration,
we mainly focus on searching for the best differential characteristic for SPN ciphers. The
search for Feistel ciphers is similar and it is illustrated in Appendix A.

3.1 Dividing the Set of All Possible Differential Characteristics
Unlike Feistel ciphers, for SPN ciphers, valid differential characteristics have at least one
active S-box in each round, and those with the highest probability are likely to have at
most two active S-boxes at a certain round. Based on this observation, we propose a
proper way to divide the set of all possible differential characteristics into smaller subsets
then conquer them separately.

For an r-round SPN cipher, we first divide the set of all possible r-round differential
characteristics into three kinds of subsets:

Subset-1 In this kind of subsets, differential characteristics have at least one active S-box
in each round, and there is at least one round that contains exactly one active S-box;

Subset-2 In this kind of subsets, differential characteristics have at least two active S-
boxes in each round, and there is at least one round that contains exactly two active
S-boxes;

Subset-3 In this subset, differential characteristics have at least three active S-boxes in
each round.

For Subset-1 and Subset-2, we further divide them by fixing the index i (i = 1, 2, ..., r),
such that round i has exactly 1 or 2 active S-boxes. By doing this, the number of all



Chunning Zhou, Wentao Zhang, Tianyou Ding and Zejun Xiang 445

possible input differences of round i decreases significantly. Then, we traverse the input
difference of round i to further divide the subsets.

For the sake of brevity, we use Dr,NA,i,∆ to denote the subset of r-round differential
characteristics that satisfy the following two constraints:

Constraint 1 there are at least NA active S-boxes in each round except for round i;

Constraint 2 the input difference of round i equals ∆.

Specially, when i = 0, there is no constraint on the input difference, and we ignore the
second constraint by (not rigorously) writing ∆ = 0. Differential characteristics in the
subset are only required to satisfy the Constraint 1, i.e., there are at least NA active
S-boxes in each round. Moreover, if i = r + 1, we regard the constraint of “input difference
of round (r + 1) equals ∆” as the constraint of “output difference of round r equals ∆”.

In summary, the set of all possible r-round differential characteristics for an r-round
SPN cipher is divided into the following subsets: ⋃

NA,i,∆

Dr,NA,i,∆

⋃Dr,3,0,0, (6)

where NA ∈ {1, 2}, i ∈ {1, 2, ..., r}, ∆ belongs to the set of all possible input differences of
round i that has exactly NA active S-boxes. Take PRESENT as an example, its block size
is 64 bits and it uses a 4× 4 S-box. Thus it applied 16 S-boxes in parallel in each round.
When one round has exactly one active S-box, there are 16× (24 − 1) = 240 possibilities
of input differences of this round; when one round has exactly two active S-boxes, there
are 120× (24 − 1)2 = 27000 possibilities of the input difference of this round. Based on
Equation (6), the set of all possible differential characteristics for r-round PRESENT is
divided into (r × 240 + r × 27000 + 1) subsets.

3.2 Building MILP Models for Searching Subsets
By using the MILP technique described in Section 2, searching for the best differential
characteristic for an r-round cipher is transformed into an MILP model. The feasible
region of this model is the set of all possible r-round differential characteristics. To search
for the best differential characteristic within a subset divided in Equation (6), we introduce
additional constraints and build an MILP model whose feasible region is exactly the subset.

For the subset named Dr,NA,i,∆, differential characteristics in it are constrained by
Constraints 1 and 2. Let Aj,k denote the word-level input difference of the kth S-box at
round j, the Constraint 1 is described by Equation (7):

NS−1∑
k=0

Aj,k ≥ NA, j ∈ {1, 2, .., r}, j 6= i, (7)

where NS is the total number of S-boxes in each round. Moreover, let xi,j denote the jth
bit input difference of round i, the Constraint 2 is described by Equation (8):

xi,j = ∆j , j ∈ {0, 1, ..., n− 1}, (8)

where ∆j is the jth bit of ∆, and n is the block size of the cipher. By adding Equations
(7, 8) into the original MILP model that is used to search for the best r-round differential
characteristic, we obtain a model whose feasible region is the subset Dr,NA,i,∆. By solving
this model, we obtain the best differential characteristic within the subset.

By separately searching all the subsets divided, namely, solving all the corresponding
MILP models, the best differential characteristics within the subsets are returned. They
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are combined to give the best differential characteristic for an r-round cipher. Although
the model with a smaller feasible region is easier to be solved, it will cost a huge amount
of time if we solve all the models. This is mainly because the number of the subsets
divided is generally large and some of the models are time-consuming (e.g., the model
whose feasible region is Dr,3,0,0 takes a long time to be solved). Therefore, we introduce
several techniques to further improve the efficiency of the algorithm in the next section.

3.3 Techniques to further Improve Efficiency
In this section, we introduce some techniques to improve the efficiency of our search
algorithm. With the help of the techniques, the search of a subset can be early terminated,
thus the runtime of the algorithm is greatly reduced.

The weight of a differential characteristic is defined as the negative of the binary
logarithm of the probability. Searching for the best differential characteristic for an r-
round cipher is equivalent to searching for the r-round differential characteristic with the
minimum weight. For the search for r rounds, three techniques are used:

Technique 1. Setting an Upper Bound. Similar to the strategy used in [Mat94,
AST+17], at the beginning of the search, we generate a valid r-round differential charac-
teristic. This differential characteristic is used as the currently best r-round differential
characteristic, and its weight is served as an upper bound of the minimum weight. We
generate such an r-round differential characteristic by exploiting one of the best (r − 1)-
round differential characteristics we have found. The difference pattern of an S-box is
defined as its truncated difference, i.e., a 0-1 variable. In the model built for searching for
the best r-round differential characteristic, we fix the S-boxes of the first (r − 1) rounds
(or the last (r − 1) rounds) to have the same difference patterns as those of the best
(r − 1)-round differential characteristic. By solving this model, we obtain an r-round
differential characteristic and its weight. To reduce unnecessary searches, we only focus
on the subsets in which the differential characteristics have weights smaller than the
obtained upper bound. During the search of subsets, if we find an r-round differential
characteristic having a weight smaller than the current upper bound, the currently best
r-round differential characteristic is updated by it and the current upper bound is updated
by its weight.

Technique 2. Calculating Lower Bounds within Subsets. The upper bound introduced
in Technique 1 uses the weight of the currently best differential characteristic as a threshold.
When searching a subset, we calculate a lower bound of the minimum weight of the
differential characteristics within it. If the lower bound is greater than or equal to the
upper bound, there is no differential characteristic with a weight smaller than the weight
of the currently best differential characteristic. At this point, we terminate the search of
this subset and search the next one. With the help of this technique, the number of MILP
models to be solved is reduced.

Technique 3. Choosing a Proper Search Order of Subsets. In order to make Technique
2 more efficient, we aim to find better differential characteristics as early as possible. Thus,
we choose a proper search order of the subsets divided in Equation (6). There are two cases
we can take into account: (1) we preferentially search the subsets which are more likely to
provide better differential characteristics; (2) we preferentially search the subsets whose
corresponding MILP models can be solved with less time. According to the two cases,
we traverse the subsets Dr,NA,i,∆ in a proper order, where NA ∈ {1, 2}, i ∈ {1, 2, ..., r}, ∆
belongs to the set of all possible input differences of round i that has exactly NA active
S-boxes. By default, NA is traversed from 1 to 2 (i.e., NA ∈ [1, 2]), namely, we first search
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the subsets Dr,1,i,∆ then Dr,2,i,∆. If we can predict that the best differential characteristics
have at least two active S-boxes in each round from some prior knowledge, we preferentially
search the subsets Dr,2,i,∆ (i.e., NA ∈ [2, 1]). The search complexity usually increases
exponentially with the increasing of the number of rounds. By our empirical observation,
the closer the i is to the middle of r, the smaller the complexity of searching the subset
Dr,NA,i,∆. This might due to the input difference of round i is fixed to equal ∆, which
results in the complexity of searching the subset is determined by the sum of complexities
of searching the first (i− 1) rounds and the last (r − i + 1) rounds. Therefore, we traverse
the index i by:

i ∈ SearchR =
{ [

r+2
2 , r+2

2 − 1, r+2
2 + 1, ..., 1

]
, if r is even;[

b r+2
2 c, b

r+2
2 c+ 1, b r+2

2 c − 1, ..., 1
]

, if r is odd.

For example, when r = 10, SearchR = [6, 5, 7, 4, 8, 3, 9, 2, 10, 1]; and when r = 11, i ∈
SearchR = [6, 7, 5, 8, 4, 9, 3, 10, 2, 11, 1].

3.4 Methods for Calculating Lower Bounds within Subsets
Based on Technique 2 introduced in Section 3.3, the search of a subset is terminated if a
lower bound of the minimum weight of the differential characteristics within the subset is
bigger than or equal to the weight of the currently best differential characteristic. In this
section, we provide several methods to calculate the lower bound.

For an r-round SPN cipher, the set of all possible r-round differential characteristics is
divided into several subsets according to Equation (6). For the subset named Dr,NA,i,∆,
we use

LB[r, NA, i, ∆]
to store a lower bound of the minimum weight of the differential characteristics within
it, where NA ∈ {1, 2, 3}, i ∈ {0, 1, ..., r + 1}, ∆ ∈ Fn

2 (n is the block size of the cipher).
The array LB is called the lower bound array in which the values are dynamically and
repeatedly updated. In the following, we provide three methods for estimating lower
bounds of the minimum weight of the differential characteristics within Dr,NA,i,∆. Methods
1-2 use other values that have been determined and stored in the lower bound array LB, and
Method 3 uses the results returned from MILP models. The three methods can be used to
assign a value to LB[r, NA, i, ∆], and they are written as Functions AssignByMethod1(),
AssignByMethod2() and AssignByMethod3() respectively.

Method 1. By using the simple split method introduced in [MWGP11, SHW+14b], we
split r rounds into the first r1 rounds and the last (r − r1) rounds then combine the two
smaller parts, 1 ≤ r1 < r.

1. For the subset Dr,NA,0,0, the differential characteristics of the first r1 rounds and
the last (r− r1) rounds respectively belong to Dr1,NA,0,0 and Dr−r1,NA,0,0. Thus the
lower bound within Dr,NA,0,0 can be estimated by:

max
1≤r1≤r−1

(LB[r1, NA, 0, 0] + LB[r − r1, NA, 0, 0]). (9)

2. For the subset Dr,NA,i,∆ with i ∈ {1, ..., r}, ∆ 6= 0, the input difference of round i,
namely, the output difference of round (i−1) equals ∆. Thus the lower bound within
Dr,NA,i,∆ can be estimated by:

max


LB[i− 1, NA, i, ∆] + LB[r − i + 1, NA, 1, ∆], (i ≥ 2),

max
1≤r1≤i−1

(LB[r1, NA, 0, 0] + LB[r − r1, NA, i− r1, ∆]), (i ≥ 2),
max

i≤r1≤r−1
(LB[r1, NA, i, ∆] + LB[r − r1, NA, 0, 0])

 . (10)
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3. For the subset Dr,NA,r+1,∆, the lower bound within it can be estimated by:

max
1≤r1≤r−1

(LB[r1, NA, r1 + 1, ∆] + LB[r − r1, NA, 0, 0]) (11)

Method 2. When searching the subset Dr,NA,i,∆, NA ∈ {1, 2}, i ∈ SearchR, ∆ belongs to
the set of all possible input differences of round i that has exactly NA active S-boxes, we
avoid searching the differential characteristics that have been searched. Take the search for
r = 10 as an example, SearchR = [6, 5, 7, 4, 8, 3, 9, 2, 10, 1]. Firstly, we search the subsets
Dr,NA,6,∆. After searching Dr,NA,6,∆,∀∆, we begin to deal with the subsets Dr,NA,5,∆.
At this point, the differential characteristics satisfying round 6 with exactly NA active
S-boxes have already been searched. To avoid duplicate searches, we assume that the
differential characteristics to be searched later have at least (NA + 1) active S-boxes at
round 6. We add the additional constraint into the differential characteristics in Dr,NA,5,∆,
and we calculate a lower bound of the minimum weight of these differential characteristics.
If the lower bound is greater than or equal to the weight of the currently best r-round
differential characteristic, there is no better differential characteristic than the currently
best one within Dr,NA,5,∆. Suppose i = SearchR[j], 1 ≤ j ≤ r − 1, let Rfront denote
the number in front of i, i.e., Rfront = SearchR[j − 1]. In the following, we provide a
method to estimate a lower bound of the minimum weight of the differential characteristics
satisfying the additional constraint.

• For the case i < SearchR[0], the differential characteristics in Dr,NA,i,∆ satisfy the
additional constraint: “there are at least (NA + 1) active S-boxes in each of rounds
from (i + 1) to Rfront”. Similar to Method 1, we split r rounds into smaller parts
then combine them. Thus a lower bound of the minimum weight of the differential
characteristics with the additional constraint is estimated by:

max
{

LB[i, NA, 0, 0] + LB[Rfront − i, NA + 1, 0, 0] + LB[r −Rfront, NA, 0, 0]),
LB[i− 1, NA, i, ∆] + LB[Rfront − i + 1, NA + 1, 1, ∆] + LB[r −Rfront, NA, 0, 0])

}
,

(12)
where in the first expression, the r rounds are split into three parts: (1) round 1 to i;
(2) round (i + 1) to Rfront; (3) round (Rfront + 1) to r; and in the second expression,
the r rounds are split into: (1) round 1 to (i− 1); (2) round i to Rfront; (3) round
(Rfront + 1) to r.

• For the case i > SearchR[0], the differential characteristics in Dr,NA,i,∆ satisfy the
additional constraint: “there are at least (NA + 1) active S-boxes in each of rounds
from Rfront to (i− 1) ”. Similar to the first case, we estimate a lower bound of the
minimum weight of the differential characteristics with the additional constraint by:

max
{

LB[Rfront − 1, NA, 0, 0] + LB[i−Rfront, NA + 1, 0, 0] + LB[r − i + 1, NA, 0, 0]),
LB[Rfront − 1, NA, 0, 0] + LB[i−Rfront, NA + 1, i−Rfront + 1, ∆] + LB[r − i + 1, NA, 1, ∆])

}
.

(13)

Moreover, tighter lower bounds can be estimated by splitting the r rounds more carefully,
and the details and implementation can be seen in the public source code.

Method 3. We estimate lower bounds of the minimum weight of the differential charac-
teristics within a subset by solving MILP models. The constraints for describing a subset
have been introduced in Section 3.2, and there are two kinds of MILP models for us to
choose from:

1. The first kind of model is called a “Rough” model that provides a rough lower bound.
We notice that the models built by using Mouha et al.’s [MWGP11] and Sun et
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al.’s [SHS+13] model frameworks are solved quickly, and they are used to calculate
a lower bound of the minimum number of active S-boxes for word-oriented and
bit-oriented ciphers respectively. By solving this model, a rough lower bound of the
minimum weight is obtained by multiplying the number of active S-boxes with the
minimum weight of a single S-box. Note that if the cipher is bit-oriented and its
branch number of an S-box equal to 2, the constraints for modelling an S-box is
insufficient, and this model can’t provide a useful lower bound.

2. The second kind of model is called a “Tightest” model that provides the tightest
lower bound (i.e., the lower bound is exactly the minimum weight). The model built
by using Sun et al.’s model framework [SHW+14b, SHW+14a] is used to search for
the best differential characteristic, and it returns the minimum weight.

3.5 Improved Search Algorithm
Based on the approaches and techniques presented in Section 3.1 to Section 3.4, we are
ready to present an MILP-based search algorithm for searching for the best differential
characteristics for a block cipher, as illustrated in Algorithm 1. In the following, we give a
detailed description of the algorithm.

Given a block cipher and a number of rounds R, Algorithm 1 is used to search for the
best r-round differential characteristic, r ∈ {1, 2, ..., R}. At the beginning of the search for
r rounds, we generate the currently best r-round differential characteristic and obtain an
upper bound of the minimum weight (denoted as UpperBound) according to Technique
1. Nextly, we initialize the lower bound array LB and search the subsets divided for the
r-round cipher. During the search, we dynamically update the currently best r-round
differential characteristic and UpperBound. After searching all the subsets, the currently
best r-round differential characteristic is exactly the best r-round differential characteristic,
and UpperBound equals the minimum weight for the r-round cipher.

Function InitLBArray(). This function is used to initialize the lower bound array LB,
specifically, assign values to LB[r, NA, 0, 0], NA = 1, 2, 3. These values will be used later
when searching the subsets divided in Equation (6). To assign values to LB[r, NA, 0, 0], we
estimate lower bounds of the minimum weight of the differential characteristics within
Dr,NA,0,0 by using Methods 1 and 3 (introduced in Section 3.4). In Method 3, a “Rough”
model or a “Tightest” model is solved. The “Rough” model is usually easier to be solved
than the “Tightest” model for the same subset, thus we preferentially solve the “Rough”
model to obtain a lower bound. If the lower bound returned from the “Rough” model
is a good one, we don’t need to solve the “Tightest” model. Usually, either of the two
models will be time-consuming when the number of rounds r exceeds a certain value. Thus
Method 3 is adopted only when r is small which makes it possible to solve the model in a
short time.

Function SearchSubset12(). This function is used to search the subsets Dr,NA,i,∆, where
NA ∈ {1, 2}, i ∈ SearchR, ∆ belongs to the set of all possible input differences of round i
that has exactly NA active S-boxes. We traverse the parameters NA and i according to
Technique 3, and search a specific subset Dr,NA,i,∆ in Line 30-36. According to Technique
2, we calculate a lower bound of the minimum weight of the differential characteristics
within the subset and use it to determine whether there is a differential characteristic better
than the currently best one. We first estimate the lower bound within Dr,NA,i,∆ by using
the value stored in LB[r, NA, 0, 0] based on the fact that all differential characteristics in
Dr,NA,i,∆ belong to Dr,NA,0,0, and we store it in LB[r, NA, i, ∆]. Then, the value stored in
LB[r, NA, i, ∆] is updated by using Method 1 and Method 2. There is no model solved until
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Function Three functions used to assign values to the lower bound array
1 AssignByMethod1(r, NA, i, ∆)
2 begin
3 if i = 0, ∆ = 0 then
4 LB[r, NA, i, ∆]← max(LB[r, NA, i, ∆], the result of Equation (9));
5 end
6 if i ∈ {1, 2, ..., r}, ∆ 6= 0 then
7 LB[r, NA, i, ∆]← max(LB[r, NA, i, ∆], the result of Equation (10));
8 end
9 if i = r + 1, ∆ 6= 0 then

10 LB[r, NA, i, ∆]← max(LB[r, NA, i, ∆], the result of Equation (11));
11 end
12 end
13
14 AssignByMethod2(r, NA, i, ∆)
15 begin
16 if i < SearchR[0] and the result of Equation (12) is greater than or equal to

the weight of the currently best differential characteristic (UpperBound) then
17 LB[r, NA, i, ∆]← max(LB[r, NA, i, ∆], UpperBound);
18 end
19 if i > SearchR[0] and the result of Equation (13) is greater than or equal to

the weight of the currently best differential characteristic (UpperBound) then
20 LB[r, NA, i, ∆]← max(LB[r, NA, i, ∆], UpperBound);
21 end
22 end
23
24 AssignByMethod3(r, NA, i, ∆, ModelType)
25 begin
26 if ModelType = “Rough” then
27 if cipher is bit-oriented and its branch number of an S-box equal to 2 then
28 Return;
29 end
30 Build an MILP model for calculating a lower bound of the minimum

number of active S-boxes for an r-round cipher by using Mouha et al.’s
framework [MWGP11] for word-oriented ciphers or Sun et al.’s
framework [SHS+13] for bit-oriented ciphers;

31 Add Equations (7-8) into the model;
32 Solve the model;
33 LB[r, NA, i, ∆]← max(LB[r, NA, i, ∆], the number of active S-boxes returned

from the model multiplies the minimum weight of a single S-box);
34 end
35 if ModelType = “Tightest” then
36 Build an MILP model for searching for the best differential characteristic for

an r-round cipher by using Sun et al.’s framework [SHW+14b, SHW+14a];
37 Add Equations (7-8) into the model;
38 Solve the model;
39 LB[r, NA, i, ∆]← the minimum weight returned from the model;
40 end
41 end
42
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now. If the current value stored in LB[r, NA, i, ∆] is greater than or equal to the weight
of the currently best r-round differential characteristic (UpperBound), we terminate the
search of this subset and search the next one. Otherwise, we estimate a tighter lower bound
by calling Function UpdateLBSubset12(), and update the value stored in LB[r, NA, i, ∆].

Function UpdateLBSubset12(). In this function, we estimate lower bounds of the min-
imum weight of the differential characteristics within the subset Dr,NA,i,∆ by solving
MILP models, where NA ∈ {1, 2}, i ∈ SearchR, ∆ belongs to the set of all possible input
differences of round i that has exactly NA active S-boxes. We observe that the running
time of solving an MILP model usually increases dramatically as the number of rounds
increases. Therefore, we first solve a model built for the subset of r1-round differential
characteristics, then use Method 1 to estimate lower bounds within the subsets of r2-round
differential characteristics, r1 increases from 1, r2 = r1 + 1, ..., R. For each r1, we obtain
a new lower bound within the subset Dr,NA,i,∆. The lower bound is constantly updated
by increasing the number r1, until it is greater than or equal to UpperBound or it equals
the minimum weight of the differential characteristics within the subset. After calling this
function, if the value stored in LB[r, NA, i, ∆] is still smaller than UpperBound, we find a
differential characteristic that has a weight smaller than the weight of the currently best
r-round differential characteristic.

Function SearchSubset3(). This function is used to search the subset Dr,3,0,0. A lower
bound of the minimum weight of the differential characteristics within Dr,3,0,0 had been
calculated and it was stored in LB[r, 3, 0, 0]. For most lightweight SPN ciphers, the best
differential characteristics are likely to have exactly 1 or 2 active S-boxes at a certain
round. The value stored in LB[r, 3, 0, 0] is generally greater than or equal to UpperBound.
In this case, the search of the subset is terminated and no other model needs to be solved.

4 Automatic Security Evaluation against Differential/Linear
Cryptanalysis

In this section, we use our improved search algorithm to evaluate the security of block
ciphers against differential and linear Cryptanalysis.

4.1 Security Evaluation Against Differential Cryptanalysis
Algorithm 1 is used to search for the best differential characteristics for a block cipher. It
can be used to calculate the minimum number of active S-boxes by modifying the aim
of searching for the differential characteristic with the minimum weight to that with the
minimum number of active S-boxes. At this point, the lower bound array LB is used to store
a lower bound of the minimum number of active S-boxes. Besides, the “Tightest” model
in Method 3 is built to calculate the minimum number of active S-boxes by using Sun
et al.’s framework [SHW+14b, SHW+14a]. Applying our algorithm to an r-round block
cipher, we obtain the minimum weight or its lower bound calculated from the minimum
number of active S-boxes. If the minimum weight or its lower bound is greater than or
equal to cipher’s block size, it can be concluded that the r-round cipher is secure against
differential cryptanalysis.

4.2 Security Evaluation Against Linear Cryptanalysis
According to the duality between differential and linear cryptanalysis [Mat94], Algorithm
1 is easily extended to the security evaluation against linear cryptanalysis. The linear
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Algorithm 1: Process of searching for the best differential characteristics for
SPN ciphers by using a divide-and-conquer approach.

Data: An R-round block cipher;
Result: Best differential characteristics covered from 1 to R rounds.

1 Global R, UpperBound, LB;
2 begin
3 for r ← 1 to R do
4 Generate the currently best r-round differential characteristic and an upper

bound of the minimum weight UpperBound by using Technique 1;
5 Call InitLBArray(r); // initialize the lower bound array LB
6 Call SearchSubset12(r); // search Subset-1 and Subset-2
7 Call SearchSubset3(r); // search Subset-3
8 Weight[r]← UpperBound;
9 end

10 return Weight
11 end
12
13 Function InitLBArray(r)
14 begin
15 foreach NA in [1, 2, 3] do
16 Call AssignByMethod1(r, NA, 0, 0) to initialize LB[r, NA, 0, 0];
17 foreach ModelType in [“Rough”,“Tightest”] do
18 if r is a number smaller than a certain value then
19 Call AssignByMethod3(r, NA, 0, 0, ModelType) to update

LB[r, NA, 0, 0];
20 end
21 end
22 end
23 end
24
25 Function SearchSubset12(r)
26 begin

// Traverse NA and i by a proper order based on Technique 3
27 foreach NA in [1, 2] or [2, 1] do
28 foreach i in SearchR do
29 foreach ∆←input difference of round i that has NA active S-boxes do
30 LB[r, NA, i, ∆]← max(LB[r, NA, i, ∆], LB[r, NA, 0, 0]);
31 Call AssignByMethod1(r, NA, i, ∆) to update LB[r, NA, i, ∆];
32 Call AssignByMethod2(r, NA, i, ∆) to update LB[r, NA, i, ∆];
33 if LB[r, NA, i, ∆] < UpperBound then
34 Call UpdateLBSubset12(r, NA, i, ∆) to update LB[r, NA, i, ∆];
35 UpperBound ← min(UpperBound, LB[r, NA, i, ∆]);
36 end
37 end
38 end
39 end
40 end
41
42 Function SearchSubset3(r)
43 begin
44 if LB[r, 3, 0, 0] < UpperBound then
45 Call AssignByMethod3(r1, 3, 0, 0,“Tightest”) to update LB[r1, 3, 0, 0];
46 UpperBound ← min(UpperBound, LB[r, 3, 0, 0]);
47 end
48 end
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1 UpdateLBSubset12(r, NA, i, ∆)
// Estimate tighter lower bounds within Dr,NA,i,∆ in two ways:
// (1) Due to the input difference of round i is determinate to

equal ∆, the minimum weight within Dr,NA,i,∆ equals the sum of
minimum weights within Di−1,NA,i,∆ and Dr−i+1,NA,1,∆. Based on this
fact, we first update LB[i− 1, NA, i, ∆] and LB[r − i + 1, NA, 1, ∆] by
combining Methods 3 and 1, then update LB[r, NA, i, ∆] by using
Equation (10) in Method 1;

// (2) We first update the values in Equations (12,13) by combining
Methods 3 and 1, then update LB[r, NA, i, ∆] by using Method 2.

// When both values stored in LB[i− 1, NA, i, ∆] and LB[r − i + 1, NA, 1, ∆]
are updated by using Method 3 with ModelType = “Tightest”, the
value stored in LB[r, NA, i, ∆] after updating by the function is
exactly the minimum weight within Dr,NA,i,∆.

2 begin
3 foreach ModelType in [“Rough”,“Tightest”] do
4 r1 = 1;
5 while r1 ≤ max(i− 1, r − i + 1) and LB[r, NA, i, ∆] < UpperBound do

// Estimate lower bounds according to the first way
6 if r1 ≤ i− 1 and LB[r, NA, i, ∆] < UpperBound then
7 Call AssignByMethod3(r1, NA, r1 + 1, ∆,ModelType);
8 Call AssignByMethod1(r2, NA, r2 + 1, ∆), r2 = r1 + 1, ..., R;
9 Call AssignByMethod1(r, NA, i, ∆) to update LB[r, NA, i, ∆];

10 end
11 if r1 ≤ r − i + 1 and LB[r, NA, i, ∆] < UpperBound then
12 Call AssignByMethod3(r1, NA, 1, ∆,ModelType);
13 Call AssignByMethod1(r2, NA, 1, ∆), r2 = r1 + 1, ..., R;
14 Call AssignByMethod1(r, NA, i, ∆) to update LB[r, NA, i, ∆];
15 end

// Estimate lower bounds according to the second way
16 if i < SearchR[0] and LB[r, NA, i, ∆] < UpperBound then
17 Rfront ← SearchR[j − 1], j is the index of i in SearchR;
18 if r1 ≤ Rfront − i + 1 then
19 Call AssignByMethod3(r1, NA + 1, 1, ∆,ModelType);
20 Call AssignByMethod1(r2, NA + 1, 1, ∆), r2 = r1 + 1, ..., R;
21 Call AssignByMethod2(r, NA, i, ∆) to update LB[r, NA, i, ∆];
22 end
23 end
24 if i > SearchR[0] and LB[r, NA, i, ∆] < UpperBound then
25 Rfront ← SearchR[j − 1], j is the index of i in SearchR;
26 if r1 ≤ i−Rfront then
27 Call AssignByMethod3(r1, NA + 1, r1 + 1, ∆,ModelType);
28 Call AssignByMethod1(r2, NA + 1, r2 + 1, ∆), r2 = r1 + 1, ..., R;
29 Call AssignByMethod2(r, NA, i, ∆) to update LB[r, NA, i, ∆];
30 end
31 end
32 r1 = r1 + 1;
33 end
34 end
35 end
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characteristics with the maximum absolute linear bias are likely to have a low number
of active S-boxes at a certain round, thus we divide the set of all possible linear char-
acteristics into smaller subsets by using the partition method introduced for differential
characteristics. In [MWGP11, SHS+13, SHW+14b, SHW+14a], the authors described
linear mask propagations through a block cipher, and built MILP models to search for the
best linear characteristic and calculate the minimum number of linearly active S-boxes.
By using their work, we build an MILP model to search each of the subsets divided. For
linear characteristics, the weight is defined as the negative of the binary logarithm of the
correlation contribution. Searching for the best linear characteristic or calculating the
minimum number of active S-boxes for an r-round cipher is transformed into the search for
the r-round linear characteristic with the minimum weight or with the minimum number
of active S-boxes. If the minimum weight or its lower bound calculated from the minimum
number of active S-boxes is greater than or equal to the half of cipher’s block size, it can
be concluded that the r-round cipher is secure against linear cryptanalysis.

5 Applications to PRESENT, GIFT-64, RECTANGLE, LBLOCK
and TWINE

In this section, we apply our search algorithm to five lightweight block ciphers: three SPN
ciphers PRESENT, GIFT-64, RECTANGLE and two Feistel ciphers LBLOCK, TWINE.
For each of the five ciphers, we obtain the minimum number of differentially and linearly
active S-boxes and find the best differential and linear characteristics. The experimental
results are summarized in Tables 2-6, where #{ASD} and #{ASL} respectively denote the
minimum number of differentially and linearly active S-boxes, PrD denotes the probability
of the best differential characteristic, and CorL denotes the correlation contribution of the
best linear characteristic. We study the number of MILP models to be solved in Appendix
C, and give examples of best differential and linear characteristics in Appendix D.

Our experiment is performed on a PC (Intel(R) Core(TM) i7-4790 CPU, 3.60 GHz,
10.00GB RAM, 4 cores, Linux), and we use the openly available software Gurobi [Gur]
to solve MILP models. We observe that in the experiment, the running time is usually
improved when setting MipFocus (a parameter in Gurobi) to 2. Therefore, we implement
our algorithm with setting MipFocus equal to 2, and we obtain the results in Table 1 by
using the same parameter for a fair comparison. We recommend readers to refer [Gur] for
more information and select appropriate parameters for other problems.

5.1 PRESENT

PRESENT is an SPN cipher designed by Bogdanov et al. [BKL+07]. The differential
and linear branch numbers of PRESENT S-box are equal to 3 and 2 respectively. For
PRESENT, we obtain the minimum number of differentially/linearly active S-boxes for up
to 31/31 rounds (full rounds) and find the best differential/linear characteristics for up to
18/18 rounds.

Although our results on the minimum number of differentially active S-boxes are the
same as those in [SHS+13], they didn’t prove the results are exact values because their
description for modelling an S-box is rough, while ours is exact. In [Wan08], the authors
provided the best differential characteristics for PRESENT for 5 to 10 rounds, and good
ones for 11 to 15 rounds, while we cover more rounds. Although the weight of the best
differential characteristic for 15-round PRESENT is larger than the block size 64, it can
be used to analyze the differential clustering [DR02] of PRESENT, whose clustering effect
is very strong as shown in [WSTP12].
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Table 2: Experimental results of PRESENT

Rounds Differential cryptanalysis Linear cryptanalysis

#{ASD} Time P rD Time #{ASL} Time CorL Time

1 1 0s 2−2 1s 1 0s 2−1 0s
2 2 1s 2−4 2s 2 2s 2−2 2s
3 4 2s 2−8 3s 3 3s 2−4 71s
4 6 4s 2−12 4s 4 6s 2−6 88s
5 10 5s 2−20 5s 5 9s 2−8 152s
6 12 8s 2−24 249s 6 8s 2−10 128s
7 14 10s 2−28 9s 7 7s 2−12 18s
8 16 11s 2−32 11s 8 8s 2−14 98s
9 18 15s 2−36 14s 9 10s 2−16 15s
10 20 16s 2−41 1298s 10 11s 2−18 300s
11 22 18s 2−46 438s 11 12s 2−20 11s
12 24 22s 2−52 311s 12 14s 2−22 978s
13 26 24s 2−56 22s 13 15s 2−24 14s
14 28 31s 2−62 18859s 14 17s 2−26 3507s
15 30 32s 2−66 2594s 15 19s 2−28 16s
16 32 19s 2−70 370s 16 21s 2−30 3080s
17 34 20s 2−74 20s 17 23s 2−32 16302s
18 36 22s 2−78 629s 18 24s 2−34 14105s
19 38 34s 19 26s
20 40 29s 20 28s
21 42 28s 21 30s
22 44 29s 22 34s
23 46 37s 23 35s
24 48 34s 24 37s
25 50 36s 25 40s
26 52 38s 26 42s
27 54 40s 27 44s
28 56 42s 28 46s
29 58 42s 29 49s
30 60 44s 30 49s
31 62 47s 31 51s

Total time 740s 6.90h 720s 10.8h

Table 3: Experimental results of GIFT-64

Rounds Differential cryptanalysis Linear cryptanalysis

#{ASD} Time P rD Time #{ASL} Time CorL Time

1 1 1s 2−1.415 1s 1 0s 2−1 0s
2 2 2s 2−3.415 47s 2 1s 2−2 2s
3 3 3s 2−7 108s 3 3s 2−3 3s
4 5 69s 2−11.415 291s 5 61s 2−5 77s
5 7 61s 2−17 849s 7 60s 2−7 99s
6 10 144s 2−22.415 181s 9 65s 2−10 160s
7 13 115s 2−28.415 385s 12 177s 2−13 225s
8 16 271s 2−38 19934s 15 243s 2−16 263s
9 18 28s 2−42 32s 18 493s 2−20 8713s
10 20 124s 2−48 7569s 20 681s 2−25 11615s
11 22 77s 2−52 121s 22 392s 2−29 34019s
12 24 19s 2−58 61001s 24 3206s 2−31 14644s
13 26 75s 2−62 604s 26 11229s 2−34 121716s
14 28 15s 2−68 9121s 28 7982s
15 30 17s 2−72 1595s 30 18410s
16 32 18s

Total time 1039s 28.29h 11.95h 53.2h
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Table 4: Experimental results of RECTANGLE

Rounds Differential cryptanalysis Linear cryptanalysis

#{ASD} Time P rD Time #{ASL} Time CorL Time

1 1 1s 2−2 1s 1 1s 2−1 0s
2 2 1s 2−4 1s 2 1s 2−2 1s
3 3 1s 2−7 8s 3 1s 2−4 5s
4 4 2s 2−10 27s 4 2s 2−6 9s
5 6 11s 2−14 128s 6 6s 2−8 41s
6 8 13s 2−18 6s 8 8s 2−10 6s
7 11 11s 2−25 17s 10 5s 2−13 15s
8 13 11s 2−31 28s 12 9s 2−16 24s
9 15 11s 2−36 41s 14 11s 2−19 78s
10 17 25s 2−41 96s 16 25s 2−22 260s
11 19 47s 2−46 297s 18 38s 2−25 1772s
12 21 120s 2−51 669s 20 131s 2−28 5927s
13 23 597s 2−56 2798s 22 428s 2−31 31491s
14 25 2218s 2−61 12410s 24 1615s 2−34 177473s
15 27 12753s 2−66 40989s 26 5588s
16 29 36891s 28 21352s

Total time 14.64h 15.98h 8.12h 60.31h

5.2 GIFT-64
GIFT [BPP+17] is an SPN cipher which is similar to PRESENT. It has two versions: GIFT-
64 and GIFT-128, whose block sizes are 64 bits and 128 bits respectively. In this paper, we
focus on version GIFT-64. Both differential and linear branch numbers of GIFT-64 S-box
are equal to 2. For GIFT-64, we obtain the minimum number of differentially/linearly
active S-boxes for up to 16/15 rounds and find the best differential/linear characteristics
for up to 15/13 rounds.

The designers of GIFT gave a 9-round differential characteristic with the probability
2−44.415. Then in [ZDY19], Zhu et al. provided 9/12/13-round differential characteristics
with probabilities 2−42/2−60/2−64 based on MILP technique. Recently, Li et al. [LWZZ19]
found better 12/13-round differential characteristics with probabilities 2−58/2−62 by using
MILP technique. However, the differential characteristics they found are not proven the
best ones, while we find the best differential characteristics covered from 1 to 15 rounds.

5.3 RECTANGLE
RECTANGLE is an SPN cipher proposed in 2015 [ZBL+15]. Both differential and linear
branch numbers of RECTANGLE S-box are equal to 2. For RECTANGLE, we obtain the
minimum number of differentially/linearly active S-boxes for up to 16/16 rounds and find
the best differential/linear characteristics for up to 15/14 rounds.

The 64-bits plaintext of RECTANGLE is pictured as a rectangular array with 4 rows
and 16 columns. The permutation of RECTANGLE is a left rotation to each row. If
there is exactly 1 or 2 active S-boxes at a certain round, the index of the 1st active S-box
has no influence on the minimum number of active S-boxes (or minimum weight) for
r-round RECTANGLE. Therefore, different from the partition of the set of all possible
r-round differential/linear characteristics for PRESENT and GIFT, we divide the set for
RECTANGLE into (1× (24− 1)× r + 15× (24− 1)2× r + 1) smaller subsets. The number
of resulting subsets for RECTANGLE is much less than those for PRESENT and GIFT.

5.4 LBLOCK and TWINE
LBLOCK [WZ11] and TWINE [SMMK12] are two similar Feistel ciphers, and both them
are word-oriented ciphers. For LBLOCK, we obtain the minimum number of differen-
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Table 5: Experimental results of LBLOCK

Rounds Differential cryptanalysis Linear cryptanalysis

#{ASD} Time P rD Time #{ASL} Time CorL Time

1 0 0s 20 0s 0 0s 2−0 0s
2 1 0s 2−2 1s 1 0s 2−1 0s
3 2 0s 2−4 0s 2 0s 2−2 0s
4 3 1s 2−6 1s 3 0s 2−3 0s
5 4 1s 2−8 1s 4 1s 2−4 1s
6 6 1s 2−12 1s 6 1s 2−6 1s
7 8 1s 2−16 1s 8 1s 2−8 2s
8 11 2s 2−22 2s 11 2s 2−11 2s
9 14 2s 2−28 2s 14 2s 2−14 2s
10 18 6s 2−36 6s 18 6s 2−18 8s
11 22 4s 2−44 4s 22 4s 2−22 4s
12 24 5s 2−48 5s 24 6s 2−24 5s
13 27 25s 2−56 812s 27 38s 2−27 2103s
14 30 8s 2−62 848s 30 10s 2−30 15s
15 32 19s 2−66 820s 32 28s 2−33 5669s
16 35 30s 2−72 6002s 35 55s
17 36 29s 36 31s
18 39 10s 39 11s
19 41 190s 41 6s
20 44 18 28s 44 40s

Total time 352s 2.36h 242s 2.17h

Table 6: Experimental results of TWINE

Rounds Differential cryptanalysis Linear cryptanalysis

#{ASD} Time P rD Time #{ASL} Time CorL Time

1 0 0s 20 0s 0 0s 20 0s
2 1 0s 2−2 0s 1 0s 2−1 0s
3 2 0s 2−4 0s 2 0s 2−2 1s
4 3 0s 2−6 1s 3 1s 2−3 1s
5 4 1s 2−8 1s 4 1s 2−4 1s
6 6 1s 2−12 1s 6 1s 2−6 2s
7 8 1s 2−16 1s 8 2s 2−8 2s
8 11 1s 2−22 2s 11 3s 2−11 3s
9 14 2s 2−28 2s 14 3s 2−14 4s
10 18 6s 2−38 52s 18 10s 2−18 17s
11 22 4s 2−46 49s 22 4s 2−22 12s
12 24 4s 2−51 63s 24 6s 2−24 8s
13 27 24s 2−58 7905s 27 53s 2−27 364s
14 30 14s 2−64 17153s 30 12s 2−30 16s
15 32 14s 2−68 28840s 32 37s 2−32 261s
16 35 19s 35 49s 2−35 66s
17 36 17s 36 57s
18 39 9s 39 11s
19 41 5s 41 7s
20 44 17s 44 42s

Total time 139s 15.02h 299s 758s
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tially/linearly active S-boxes for up to 20/20 rounds and find the best differential/linear
characteristics for up to 16/15 rounds. For TWINE, we obtain the minimum number of dif-
ferentially/linearly active S-boxes for up to 20/20 rounds and find the best differential/linear
characteristics for up to 15/16 rounds.

6 Conclusion
In this paper, we propose a new MILP-based search algorithm for the security evaluation
against differential/linear cryptanalysis by incorporating the idea of a divide-and-conquer
approach. For the search for an r-round block cipher, we first divide the set of all possible
r-round differential/linear characteristics into several subsets, then separately search each
subset; we also use several techniques to early terminate the search of a subset, which
improves efficiency remarkably; finally the optimal solutions within smaller subsets are
combined to give the optimal solution within the whole set. As a result, we obtain a more
efficient search algorithm.

We only apply our new algorithm to five lightweight block ciphers in this paper. We
point out that the permutation layers of these five ciphers are all bit permutations. For
each of five ciphers, the best differential and linear characteristics we found have a low
number (0, 1 or 2) of active S-boxes at a certain round. In future work, we will consider
applying our algorithm to the ciphers with stronger permutation layer, such as AES [DR02],
NOEKEON [DPAR00], SERPENT [BAK98], etc. In Tables 2-6, although the weights of
the best differential/linear characteristics for some reduced rounds are larger than cipher’s
block size n/half of n, we argue that it is possibly useful when the differential/linear
clustering is taken into consideration [DR02, Nyb94]. We explain how to search for related-
key differential characteristics [Bih93] in Appendix B, but it seems to be more difficult
and requires more work. We leave these researches as our future work.
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A Search Algorithm for Feistel Ciphers
In this section, we evaluate the security of Feistel ciphers against differential/linear
cryptanalysis by using the idea of a divide-and-conquer approach.

Dividing the Set of All Possible Differential/Linear Characteristics. For Feistel ciphers,
the differential/linear characteristics with the highest probability/absolute linear bias are
likely to have no active S-box at a certain round. Therefore, we first divide the set of all
possible r-round differential/linear characteristics for an r-round Feistel cipher into:

Subset-0 In this kind of subset, differential/linear characteristics have no active S-box at
a certain round;

Subset-1 In this subset, differential/linear characteristics have at least one active S-box
in each round.

For Subset-0, we further divide it by fixing the index i (i = 1, 2, ..., r), such that round i
contains no active S-box. The subsets divided now are not small enough, thus we further
divide the set by traversing the difference/linear mask patterns of the S-boxes at the
(i + 1)th round. The reason why we don’t divide the set by traversing the input difference
of round i is that in this partition, the number of resulting subsets will be too large.

Similar to the case for SPN ciphers, we use Dr,NA,i,P to denote the subset of r-round
differential/linear characteristics that satisfy the following two constraints:

Constraint 1 there are at least NA active S-boxes in each round except for round i;

Constraint 2 the difference/linear mask patterns of the S-boxes at round i and (i + 1) are
equal to zeros and P respectively.

When i = 0, there is no constraint on the difference/linear mask patterns, and we ignore
the second constraint by (not rigorously) writing P = 0. Differential/linear characteristics
in the subset are only required to satisfy the Constraint 1, i.e., there are at least NA

active S-boxes in each round. And if i = r, based on the Feistel structure, we regard the
constraint of “difference/linear mask patterns of the S-boxes at round (i + 1) equal P”
as the constraint of “difference/linear mask patterns of the S-boxes at round (i− 1) are
determined by P”.

In summary, the set of all possible r-round differential/linear characteristics for an
r-round Feistel cipher is divided into the following subsets:⋃

i,P

Dr,0,i,P

⋃Dr,1,0,0, (14)

where i ∈ {1, 2, ..., r}, P belongs to the set of all possible difference/linear mask patterns
of the S-boxes at round (i + 1). Take LBLOCK as an example, its block size is 64 bits and
it uses a 4× 4 S-box. Thus it applied 8 S-boxes in each round. If round i has no active
S-box, there is at least one active S-box at round (i + 1). Based on Equation (14), the
set of all possible differential/linear characteristic for r-round LBLOCK is divided into
(r × (28 − 1) + 1) subsets.

Building MILP Models for Searching Subsets. For a subset divided in Equation (14),
we build an MILP model to search it. Let Aj,k denote the word-level input difference of
the kth S-box at round j, Constraint 1 is described by Equation (7), and Constraint 2 is
described by: {

Ai,k = 0, k ∈ {0, 1, ..., NS − 1};
Ai+1,k = pk, k ∈ {0, 1, ..., NS − 1}, (15)
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where NS is the total number of S-boxes in each round, and P is expressed as P =
(p0, p1, ..., pNS−1). By using Sun et al.’s model framework [SHW+14b, SHW+14a] and
Equations (7,15), we build an MILP model whose feasible region is the subset.

Search Algorithm for Feistel Ciphers. For a subset namedDr,NA,i,P , we use LB[r, NA, i, P ]
to store a lower bound of the minimum weight (or number of active S-boxes) of the dif-
ferential/linear characteristics within it. Techniques for the improvement and methods
for calculating lower bounds introduced for SPN ciphers are also used for Feistel ciphers.
It should be noted that for the subset Dr,0,i,P with i 6= 0, P 6= 0, difference patterns of
the S-boxes at round i equal zeros, but the input difference of round i is indeterminate.
Therefore, the sum of the minimum weights (or numbers of active S-boxes) of the differen-
tial/linear characteristics within Di,0,i,P and Dr−i+1,0,1,P is smaller than or equal to the
minimum weight (or number of active S-boxes) of the differential/linear characteristics
within Dr,0,i,P . To obtain the minimum weight (or number of active S-boxes) of the
differential/linear characteristics within Dr,0,i,P , we need to solve an MILP model whose
feasible region is Dr,0,i,P . The process of searching for the best differential characteristics
for Feistel ciphers is illustrated in Algorithm 2.

B Security Evaluation against Related-Key Differential Crypt-
analysis

In this section, we extend our search algorithm to search for the optimal related-key
differential characteristic. We observe that the related-key differential characteristics with
the minimum number of active S-boxes or with the maximum differential probability are
likely to have no active S-box at a certain round. Therefore, we use the partition method
introduced for Feistel ciphers (see Appendix A) to divide the set of all possible related-key
differential characteristics for an r-round cipher. In [SHS+13, SHW+14b, SHW+14a],
the authors described the differential behaviour of the key schedule and introduced the
related-key model. The model can be used to both calculate the minimum number of
related-key differentially active S-boxes and search for the best related-key differential
characteristic. By using previous work, we build a related-key model to search each of the
subsets divided. We point out that the search of a related-key subset is more difficult than
the search of a single-key subset. This is mainly because in a related-key subset, there
are plenty of possibilities of round keys. Besides, a related-key model is more difficult
to be solved than a single-key model because the size of the related-key model is larger.
Applying our algorithm to related-key differential cryptanalysis seems to require a large
calculation, thus more techniques are needed to improve efficiency. A method to shorten
the running time is to interrupt the solving process of a model at some point when the
model is proven to have no better solution than the obtained currently best one (it can be
done with Gurobi software). Moreover, if good solutions are found by searching a reduced
number of subsets, the remaining subsets can be discarded. By doing this, good solutions
rather than the best ones are obtained in a shorter time.

C Number of MILP Models Solved in Our Algorithm
In previous MILP-based work, a problem is transformed into an MILP model. While in
our search algorithm, a problem is solved by solving several MILP models that are easier
to be solved. In this section, we study the number of models to be solved in our search
algorithm.

Take searching for the best differential characteristics for the first 9-round PRESENT
as an example, we list the number of models that have been solved in Table 7. PRESENT
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Algorithm 2: Process of searching for the best differential characteristic for
Feistel ciphers by using a divide-and-conquer approach.

Data: An R-round cipher;
Result: Best differential characteristics covered from 1 to R rounds.

1 Global R, UpperBound, LB;
2 begin
3 for r ← 1 to R do
4 Generate the currently best r-round differential characteristic and an upper

bound of the minimum weight UpperBound by using Technique 1;
5 Call InitLBArray(r);
6 Call SearchSubset0(r);
7 Call SearchSubset1(r);
8 Weight[r]← UpperBound;
9 end

10 return Weight
11 end
12
13 Function InitLBArray(r)
14 begin
15 foreach NA in [0, 1] do
16 Initialize LB[r, NA, 0, 0] by using Method 1;
17 if r is a number smaller than a certain value then
18 Update LB[r, NA, 0, 0] by using Method 3;
19 end
20 end
21 end
22
23 Function SearchSubset0(r)
24 begin
25 foreach i in SearchR do
26 foreach P ← difference patterns of the S-boxes at round (i + 1) do

// search the subset Dr,0,i,P .
27 LB[r, 0, i, P ]← max(LB[r, 0, i, P ], LB[r, 0, 0, 0]);
28 Update LB[r, 0, i, P ] by using Method 1 and Method 2;
29 if LB[r, 0, i, P ] < UpperBound then
30 Update LB[r, 0, i, P ] similar to the case for SPN ciphers;
31 UpperBound ← min(UpperBound, LB[r, 0, i, P ]);
32 end
33 end
34 end
35 end
36
37 Function SearchSubset1(r)
38 begin

// search the subset Dr,1,0,0
39 if LB[r, 1, 0, 0] < UpperBound then
40 Update LB[r, 1, 0, 0] by using Method 3;
41 UpperBound ← min(UpperBound, LB[r, 1, 0, 0]);
42 end
43 end
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Table 7: Number of MILP models we solved for searching for the best differential charac-
teristics for r-round PRESENT by using our algorithm

r
r1 (number of rounds of the model built for)

1 2 3 4 5 6 7 8 9

1 3+1
2 0+0 3+0
3 0+0 0+0 3+0
4 0+0 0+0 0+0 3+0
5 0+0 0+0 0+0 0+0 3+0
6 11958+108 888+63 108+8 0+0 0+0 3+0
7 0+0 0+0 0+0 0+0 0+0 0+0 3+0
8 0+0 0+0 0+0 0+0 0+0 0+0 0+0 3+0
9 0+0 0+0 0+0 0+0 0+0 0+0 0+0 0+0 3+0

The item “∗ + ∗” denotes the number of “Rough” models adding the number of “Tightest” models
(introduced in Method 3 in Section3.4).

is a bit-oriented block cipher, and its differential branch number of an S-box is equal to
3. In our algorithm, “Rough” models and “Tightest” models (introduced in Method 3 in
Section3.4) are used to estimate lower bounds of the minimum weights of the differential
characteristics within the subsets divided. From Table 7 we see that, to search for the best
differential characteristics for r-round PRESENT, several MILP models are solved. These
models are built for r1 rounds, 1 ≤ r1 ≤ r, and most of them are easy to be solved.

For the search for r = 1 rounds, we obtain the best 1-round differential characteristic
by solving one “Tightest” model built for 1 round. Moreover, we solve three “Rough”
models whose feasible regions are D1,NA,0,0 to assign values to LB[r, NA, 0, 0], NA = 1, 2, 3.

For the search for r = 2, 3, 4, 5, 7, 8, 9 rounds, the currently best r-round differential
characteristic generated by using Technique 1 is exactly the best one. Three “Rough”
models built for r rounds are solved to assign values to LB[r, NA, 0, 0], NA = 1, 2, 3. When
searching an arbitrary subset, the lower bound of the minimum weight of the differential
characteristics within the subset, namely, the value stored in the corresponding lower
bound array is greater than or equal to the weight of the currently best r-round differential
characteristic. Therefore, no other model is solved.

For the search for r = 6 rounds, the currently best r-round differential characteristic
generated by using Technique 1 is not the best one. Except for the three “Rough” models
built for r rounds are solved to assign values to LB[r, NA, 0, 0], NA = 1, 2, 3, several
“Rough” and “Tightest” models built for r1 rounds are solved to search the subsets divided,
1 ≤ r1 ≤ r.

D Examples of Best Differential and Linear Characteristics
We provide the best differential and linear characteristics searched by implementing our
search algorithm.
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Table 8: The best differential characteristic with probability 2−78 for 18-round PRESENT.

Rounds input difference of S-boxes output difference of S-boxes probability

1th 0x0000000000001001 0x0000000000009009 2−4

2th 0x0009000000000009 0x0004000000000004 2−4

3th 0x0000100100000000 0x0000300300000000 2−4

4th 0x0000000009000900 0x0000000004000400 2−4

5th 0x0000004400000000 0x0000005500000000 2−4

6th 0x0000030000000300 0x0000010000000100 2−6

7th 0x0000000000000404 0x0000000000000505 2−4

8th 0x0000000500000005 0x0000000100000001 2−6

9th 0x0000000000000101 0x0000000000000909 2−4

10th 0x0005000000000005 0x0001000000000001 2−6

11th 0x0000000000001001 0x0000000000009009 2−4

12th 0x0009000000000009 0x0004000000000004 2−4

13th 0x0000100100000000 0x0000900900000000 2−4

14th 0x0900000000000900 0x0400000000000400 2−4

15th 0x0000400400000000 0x0000500500000000 2−4

16th 0x0000090000000900 0x0000040000000400 2−4

17th 0x0000040400000000 0x0000050500000000 2−4

18th 0x0000050000000500 0x00000c0000000c00 2−4

Table 9: The best linear characteristic with correlation 2−34 for 18-round PRESENT.

Rounds input mask of S-boxes output mask of S-boxes correlation

1th 0x0d00000000000000 0x0200000000000000 2−1

2th 0x0000000040000000 0x0000000040000000 2−2

3th 0x0000008000000000 0x0000002000000000 2−2

4th 0x0000000002000000 0x0000000004000000 2−2

5th 0x0000004000000000 0x0000008000000000 2−2

6th 0x0200000000000000 0x0400000000000000 2−2

7th 0x0000400000000000 0x0000200000000000 2−2

8th 0x0000000008000000 0x0000000002000000 2−2

9th 0x0000000000400000 0x0000000000400000 2−2

10th 0x0000002000000000 0x0000004000000000 2−2

11th 0x0000020000000000 0x0000020000000000 2−2

12th 0x0000000004000000 0x0000000002000000 2−2

13th 0x0000000000400000 0x0000000000200000 2−2

14th 0x0000000000200000 0x0000000000200000 2−2

15th 0x0000000000200000 0x0000000000800000 2−2

16th 0x0020000000000000 0x0020000000000000 2−2

17th 0x0000000020000000 0x0000000080000000 2−2

18th 0x0080000000000000 0x00f0000000000000 2−1
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Table 10: The best differential characteristic with probability 2−72 for 15-round GIFT-64

Rounds input difference of S-boxes output difference of S-boxes probability

1th 0x000f0000000c0000 0x000400000004000 2−4

2th 0x0000404000000000 0x000050500000000 2−4

3th 0x0500000005000000 0x020000000200000 2−6

4th 0x2020000000000000 0x505000000000000 2−4

5th 0x5000000050000000 0x200000002000000 2−6

6th 0x0000202000000000 0x000050500000000 2−4

7th 0x0500000005000000 0x020000000200000 2−6

8th 0x2020000000000000 0x505000000000000 2−4

9th 0x5000000050000000 0x200000002000000 2−6

10th 0x0000202000000000 0x000050500000000 2−4

11th 0x0500000005000000 0x020000000200000 2−6

12th 0x2020000000000000 0x505000000000000 2−4

13th 0x5000000050000000 0x200000002000000 2−6

14th 0x0000202000000000 0x000050500000000 2−4

15th 0x0500000005000000 0x0f0000000f000000 2−4

Table 11: The best linear characteristic with correlation 2−34 for 13-round GIFT-64

Rounds input mask of S-boxes output mask of S-boxes correlation

1th 0x0c0c000000000000 0x0101000000000000 2−2

2th 0x0000100000001000 0x0000800000008000 2−2

3th 0x0000000000000808 0x0000000000000505 2−2

4th 0x0000000500000005 0x0000000a0000000a 2−2

5th 0x0808000002020000 0x0505000005050000 2−4

6th 0x0000505000005050 0x0000a0a00000a0a0 2−4

7th 0x00000a0a00000a0a 0x0000020800000208 2−6

8th 0x0a0a000000000000 0x0208000000000000 2−3

9th 0xa000000000000000 0x2000000000000000 2−1

10th 0x0000200000000000 0x0000800000000000 2−2

11th 0x0000000000000800 0x0000000000000500 2−1

12th 0x0000000100000004 0x0000000800000006 2−2

13th 0x0800000400020000 0x0500000600050000 2−3

Table 12: The best differential characteristic with probability 2−66 for 15-round RECT-
ANGLE.

Rounds input difference of S-boxes output difference of S-boxes probability
1th 0x0000f00009000000 0x0000200006000000 2−4

2th 0x0000000060000200 0x0000000020000600 2−5

3th 0x0200000000006000 0x0600000000002000 2−5

4th 0x6000020000000000 0x2000060000000000 2−5

5th 0x0000600002000000 0x0000200006000000 2−5

6th 0x0000000060000200 0x0000000020000600 2−5

7th 0x0200000000006000 0x0600000000002000 2−5

8th 0x6000020000000000 0x2000060000000000 2−5

9th 0xa000060000200000 0x0000200006000000 2−5

10th 0x0000000060000200 0x0000000020000600 2−5

11th 0x0000000000006800 0x0000000000002100 2−5

12th 0x3000000000000000 0x8000000000000000 2−3

13th 0x8000000000000000 0x1000000000000000 2−3

14th 0x0001000000000000 0x0006000000000000 2−2

15th 0x0040000200000000 0x00f0000d00000000 2−4
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Table 13: The best linear characteristic with correlation 2−34 for 14-round RECTANGLE.

Rounds input mask of S-boxes out mask of S-boxes correlation
1th 0x000f0000dc000000 0x0002000021000000 2−3

2th 0x0000000200003000 0x0000000a00004000 2−2

3th 0x0000000800060000 0x00000003000c0000 2−2

4th 0x00000000005a0000 0x0000000000850000 2−4

5th 0x0000000000c00010 0x0000000000100050 2−2

6th 0x0100000000000500 0x0800000000000a00 2−4

7th 0x0a00000000000800 0x0800000000000300 2−2

8th 0x1a00000000000000 0x8400000000000000 2−4

9th 0xc000000000000000 0x1000000000000000 2−1

10th 0x0001000000000000 0x0008000000000000 2−2

11th 0x0008000000000000 0x0004000000000000 2−2

12th 0x0040000000000000 0x0060000000000000 2−1

13th 0x0400002000000000 0x0600006000000000 2−2

14th 0x4000060000200000 0x6000080000600000 2−3

Table 14: The best differential characteristic with probability 2−72 for 16-round LBLOCK.

Rounds input difference of S-boxes output difference of S-boxes probability

1th 0x00424000 0x00218000 2−6

2th 0x00040000 0x00020000 2−2

3th 0x40400000 0x40200000 2−4

4th 0x04420000 0x04650000 2−6

5th 0x05060040 0x04020040 2−6

6th 0x00000000 0x00000000 20

7th 0x06004005 0x0100c00a 2−6

8th 0x10000ac0 0xf0000260 2−8

9th 0x00b02500 0x00a01c00 2−6

10th 0x00000000 0x00000000 20

11th 0xb0250000 0x20120000 2−6

12th 0x02210000 0x02150000 2−6

13th 0x000100b0 0x00010020 2−4

14th 0x20000000 0xa0000000 2−2

15th 0x01a0b000 0x0a102000 2−6

16th 0xa0010000 0xe0050000 2−4

Table 15: The best linear characteristic with correlation 2−33 for 15-round LBLOCK.

Rounds input mask of S-boxes output mask of S-boxes correlation

1th 0x00000000 0x00000000 20

2th 0xd09d0000 0x10590000 2−3

3th 0x08053000 0x090dd000 2−3

4th 0x9d0000d0 0x31000010 2−3

5th 0x00000000 0x00000000 20

6th 0x02007007 0x03001001 2−3

7th 0x30000033 0x70000027 2−3

8th 0x00700702 0x00100203 2−3

9th 0x00000000 0x00000000 20

10th 0xf07b0000 0x20310000 2−3

11th 0x03032000 0x070bf000 2−3

12th 0x7b0000f0 0x22000020 2−3

13th 0x00000000 0x00000000 20

14th 0x0f001009 0x02002002 2−3

15th 0xe00000c1 0x100000f9 2−3
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Table 16: The best differential characteristic with probability 2−68 for 15-round TWINE.

Rounds input difference of S-boxes output difference of S-boxes probability

1th 0x00000000 0x00000000 20

2th 0xca0c0000 0xe7020000 2−7

3th 0xe0702000 0xa090a000 2−7

4th 0x00ca0050 0x00e70020 2−6

5th 0x00000000 0x00000000 20

6th 0x00a0c005 0x00702002 2−7

7th 0x00020072 0x000a009a 2−6

8th 0x0500050a 0x02000207 2−6

9th 0x00000000 0x00000000 20

10th 0x5a050000 0x27020000 2−6

11th 0x20702000 0xa050a000 2−7

13th 0x005a0000 0x00270000 2−4

14th 0x00000200 0x00000a00 2−2

15th 0x0aa05000 0x07702000 2−6

16th 0x00700070 0x00900090 2−4

Table 17: The best linear characteristic with correlation 2−35 for 16-round TWINE.

Rounds input mask of S-boxes output mask of S-boxes correlation

1th 0x00000000 0x00000000 20

2th 0xc60c0000 0x12010000 2−3

3th 0xb2200000 0x6cc00000 2−3

4th 0x60c000c0 0x20a00010 2−3

5th 0x00000000 0x00000000 20

6th 0x0060c00c 0x0020100a 2−3

7th 0x000b0220 0x00060cc0 2−3

8th 0x0c006c00 0x0a002a00 2−3

9th 0x00000000 0x00000000 20

10th 0xce010000 0xa20a0000 2−3

11th 0xad200000 0xe1c00000 2−3

12th 0xe00000c0 0xd00000a0 2−2

13th 0x000c0000 0x00010000 2−1

14th 0x02e01000 0x0cd0a000 2−3

15th 0xe00a0000 0x200e0000 2−2

16th 0x00a2000e 0x00ec000d 2−3


	Introduction
	Related Work
	Model Framework for Calculating the Minimum Number of Active S-boxes
	Model Framework for Searching for the Best Differential Characteristic

	Improving the MILP-based Search Algorithm by Incorporating with A Divide-and-Conquer Approach
	Dividing the Set of All Possible Differential Characteristics
	Building MILP Models for Searching Subsets
	Techniques to further Improve Efficiency
	Methods for Calculating Lower Bounds within Subsets
	Improved Search Algorithm

	Automatic Security Evaluation against Differential/Linear Cryptanalysis
	Security Evaluation Against Differential Cryptanalysis
	Security Evaluation Against Linear Cryptanalysis

	Applications to PRESENT, GIFT-64, RECTANGLE, LBLOCK and TWINE
	PRESENT
	GIFT-64
	RECTANGLE
	LBLOCK and TWINE

	Conclusion
	Search Algorithm for Feistel Ciphers
	Security Evaluation against Related-Key Differential Cryptanalysis
	Number of MILP Models Solved in Our Algorithm
	Examples of Best Differential and Linear Characteristics

