TACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2019, No. 4, pp. 407-437. DOI:10.13154 /tosc.v2019.14.407-437

New Techniques for Searching Differential Trails
in Keccak

Guozhen Liu*!, Weidong Qiu? and Yi Tu!

! Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore, tuyi0002@e.ntu.edu.sg
2 School of Cyber Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China, liuguozhen@sjtu.edu.cn,qiuwd@sjtu.edu.cn

Abstract. Keccak-f is the permutation used in the NIST SHA-3 hash function
standard. Inspired by the previous exhaustive differential trail search methods by
Mella et al. at ToSC 2017, we introduce in this paper new algorithms to cover 3-round
trail cores with propagation weight at least 53, up from the previous best weight 45.
To achieve the goal, the concept of ideal improvement assumption is proposed to
construct theoretical representative of subspaces so as to efficiently cover the search
space of 3-round trail cores with at least one out-Kernel « state. Of particular note
is that the exhaustiveness in 3-round trail core search of at least one out-Kernel « is
only experimentally verified. With the knowledge of all 3-round trail cores of weight
up to 53, lower bounds on 4/5/6-round trails are tightened to 56/58/108, from the
previous 48/50/92, respectively.

Keywords: SHA3 - Keccak-f - Differential Trail Search - Exhaustive Search - Lower
Bound of Differential Trail

1 Introduction

1.1 The birth of Keccak

Following the breakthrough of cryptanalysis against a series of standards such as MD5 [WY05],
SHA-0 [WYYO05b], and SHA-1 [WYY05a], the U.S. National Institute of Standards and
Technology (NIST) organized the SHA-3 competition (2008-2012), which received 64
submissions. KEccAk [BDPV11] designed by Bertoni et al. won the competition in 2012,
and was later formally adopted as the Secure Hash Algorithm 3 (SHA-3) standard in
2015 [Thel5]. The idea is to have a new standard with different design principle from
SHA-1 and SHA-2, hence in the very unlikely event of similar issues to SHA-1 found on
SHA-2, there will be a backup solution SHA-3.

The SHA-3 family has four main instances with fixed digest lengths, namely, SHA3-224,
SHA3-256, SHA3-384, and SHA3-512, which correspond to KECCAK[c] £ KECCAK[r =
1600 — ¢, ¢] where ¢ € {448,512, 768, 1024} are the capacity sizes in bits. There are also two
extendable-output functions named SHAKE128 and SHAKE256, which support digest of
variable sizes and collision resistance of level up to 128 and 256 bits, respectively. All hash
functions of the SHA-3 family share the same underlying permutation function KECCAK-f
of 1600-bit internal state. To promote cryptanalysis, the designers of KECCAK also proposed
variants with capacity of 160 bits, as well as the underlying KECCAK-f permutation of
sizes in {200,400, 800, 1600}, under the Keccak Crunchy Crypto Collision and Pre-image
Contest [BDH™]. The same KECCAK-f permutation (or its variant) could be used to
construct authenticated encryption such as KEyak [BDP*16b] and KETJE [BDP ' 16a],

Licensed under Creative Commons License CC-BY 4.0. D) |
Received: 2019-06-01, Revised: 2019-09-01, Accepted: 2019-11-01, Published: 2020-01-31

https://doi.org/10.13154/tosc.v2019.i4.407-437
mailto:tuyi0002@e.ntu.edu.sg
mailto:liuguozhen@sjtu.edu.cn
mailto:qiuwd@sjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/

message authentication code such as KMAC [Thel6], as well as key derivation function
such as Kravatte [DHVV18].

1.2 The security status of Keccak

Since the birth, KECCAK has received a significant amount of cryptanalysis from the public
research community, and generally the results can be divided by the following security
notions. So far, there is no attack threatening the security of KECCAK, and actually all
attacks work on KECCAK variants reduced to at most 9 out of the total 24 rounds, leaving
a large security margin of more than 62% of the rounds.

Collision Resistance is regarding the sponge hash functions based on KECCAK-f and
its variants. In 2012, Dinur et al. [DDS12] found then the best practical collision attacks
against KECCAK[448]/KECCAK[512] reduced to 4 rounds. The results was later furnished
in the journal version [DDS14b]. These 4-round collisions were generated by combining
a l-round connector and a 3-round differential trail. The same authors presented prac-
tical collision attacks on 3-round KECCAK[768]/KECCAK[1024], and theoretical collision
attacks (with complexities beyond the reach of practical resources) on 5/4-round KEC-
CAK[512]/KECCAK][768] in [DDS14a] using internal differentials. Qiao et al. [QSLG17]
extended the idea of connector from 1 round to 2 rounds, extending the collision attacks
to 5 rounds. Song, Liao, and Guo [SLG17] further extended the connectors to 3 rounds
and found the first practical collision against one 6-round variant in the KECCAK collision
contest. These results were then summarized in [GLL'19], where practical collisions of
5-round SHAKE128, SHA3-224, and SHA3-256 were presented. Up to date, there exists
no attack against any SHA-3 variants reduced to 6 rounds or more.

Preimage Resistance is also regarding the sponge hash functions. In 2016, Guo, Liu,
and Song [GLS16] proposed the linear structure and found preimage attacks up to 4
rounds, including practical solutions to the 4-round KECccAK[1440,160] and the 3-round
KEccAK[1440, 160] and KECCAK[640,160] of the KECCAK preimage contest. This was
later extended by Li et al. [LSLW17] to the so-called cross-linear structure, and found its
application in improving the complexities of some attacks, including the first practical
preimage on 3-round KEccAK[240, 160]. Further complexity improvements were found by
Li and Sun [LS19]. In summary, the best preimage attacks, in terms of number of attacked
rounds, are for no more than 4 rounds.

Key Recovery is regarding the keyed constructions such as authenticated encryption
schemes, message authentication codes, and key derivation functions. The most effective
attacks so far against the KECCAK-f-based keyed constructions are cube attacks [DLWQ17,
DMP*15HWX 17, LBDW17,SGSL18,BDL"19], taking advantage of the low algebraic
degree 2 (or its inverse 3) of the KECCAK round function. Among them, the best attack
works for up to 9 rounds.

Distinguishers. There are also distinguishers against the permutation KECCAK-f itself,
under models like limited-birthday [DGPW12] and zero-sum [AMO09, GLS16]. While the
limited-birthday distinguisher is based on differentials, which worked for up to 8 rounds
with complexities bounded by 2°12, zero-sum distinguisher takes advantage of the low
algebraic degrees of the KECCAK round function and its inverse and worked for 11 rounds
practically and 14 rounds with complexity 2'29.

1.3 Differential trail search

Differential trails are a key part of the security analysis against symmetric-key primitives,
e.g., they are the key factors deciding the effectiveness, in terms of rounds and attack
complexities, of the attacks for collisions and differential-based distinguishers. However,

408

unlike AES, there is no known tight bound for differential trials of KECCAK-f due to its
weak aligned round function. The weight W of the best differential trails refers to the
smallest value log,(1/p), where p is the differential probability. W, for a given number of
rounds, can be lower bounded by some theoretical reasoning such as counting the minimum
number of active Sboxes in all differential trails, and upper bounded by differentials
actually found. There have been continuous efforts in closing the gap between the lower
and upper bounds for KECCAK-f, mostly by finding effective ways to enumerate all possible
differentials falling in the gap.

It is trivial to see W[r = 1] = 2 and W[r = 2] = 8 (the minimum weight for 1-round
and 2-round differential trails). The KEccAK designers [BDPV11] made the first effort
in providing a tighter bounds, and Wr = 3] is proven to be 32 — a tight bound by
Daemen and Van Assche in [DV12] with a matching differential trail found by Duc et
al. in [DGPW12]. A more sophisticated technique was proposed by Mella-Daemen-Van
Assche in [MDV17] to exhaustively search 3-round differential trails up to weight 45, which
was used to give tighter bounds for differential trails of 4, 5, and 6 rounds.

1.4 OQur contributions

Following the direction of [MDV17], this paper focuses on exhaustively enumerating 3-
round differential trails of KECCAK-f to higher weight. The search space dramatically
increases with the weight, hence the main difficulty to overcome here is to find an efficient
way to quickly eliminate differential trails out of the target range, and hence to reduce
the search space into one small enough for exhaustive search in practice. Two main new
techniques are proposed in this paper: idealized differentials to enable early abortion and
a careful division of the subcases.

Depending on whether the state falls in the Column-Parity Kernel (Kernel for short),
the two consecutive rounds of the differential are divided into 4 cases, i.e., |K|K|, |K|N]|,
IN|K|, and |[N|N|'. In searching 3-round trail cores with |K|K| feature, rather than
enumerating in-Kernel o; by recursively adding orbitals as done in [DV12], we construct
candidate oy based on f; structures that ensure the resulting as’s are in-Kernel. For
in-Kernel a; of m orbitals, through 7 o p, by examining how the 2m bits are distributed to
(1 slices, the compatible in-Kernel ay are enumerated. With such candidate 81 structures,
a; are constructed with data complexity 242, leading to exhaustive coverage of 3-round
trail cores of weight no greater than 53.

In searching 3-round trail cores with at least one out-Kernel «, i.e., 3-round trail cores
with |N|K]|, [N|N| or |K|N| feature, the search space of out-Kernel states « is divided
into subspaces V,, derived from «. Each subspace has a theoretical representatives in terms
of the number of active rows of all 3-round trail cores. The theoretical representatives
are generated under the ideal improvement assumption which are deduced to construct
the theoretically optimal state of the subspace. Therefore the subspace can be efficiently
pruned with constraints on its theoretical representative. With this new search strategy,
3-round trail cores of weight up to 53 can be covered. Note that the exhaustive search
with threshold weight 53 is only experimentally proved of which the technical details will
be illustrated in Section 5.

With the help of the exhaustively searched 3-round trail cores of weight up to 53, lower
bound of propagation weight of 4/5/6-round trails is tightened to 56/58/108 from the
previous best result 48/50/92 in [MDV17], respectively.

Paper Organization. The paper is organized as follows. In Section 2, brief introduction
of KECCAK-f[1600] as well as propagation properties of linear operations used in deducing
search algorithms are given. In Section 3, the basic concepts of differential trail cores and
how they are classified in exhaustive search are illustrated. The search strategies of |K|K]|,

LK (resp. N) denotes the state is in (resp. out) Kernel.

409

|N|K| and |N|N|, and |K|N| 3-round trail cores are explained in Section 4, 5 and 6
respectively. In Section 7, the valid 3-round trail cores searched with our new techniques
are provided and discussed. We conclude this work in Section 8. Some additional details
of the analysis are postponed to Appendix.

2 KEeccAK and Propagation Properties

In this section, a brief introduction to KECCAK-f[1600] is given at first. Some frequently-
used concepts, notations, and properties used for deducing the search strategies are
presented as well.

2.1 KEccAK

KEeccak [BDPV11] is a family of sponge functions with permutations KECCAK-f[b] where
b € {25, 50,100,200, 400, 800,1600}. We study the differential propagation of KECCAK-
f[1600] which is the SHA-3 permutation.

The 1600 bits of its state are organized in a 3-dimensional array of 5 x 5 x 64 size.
Each bit is denoted by a (z,y, z) coordinate where 0 <2 <4,0<y <4 and 0 < z <63.
To better study the round function, structures that contain partial bits of the state are
introduced as shown in Fig 1. A group of 5 bits that share the same y (resp.) coordinate
is called a row (resp. column), denoted by (z,z) (resp. (y, z)), while a lane consists of 64
bits of the same (z,y) coordinates. The 5 x 5 bits of the same z coordinate form a slice.
Other structures include plane and sheet.

For structures composed of columns, i.e., column, slice, sheet and state, parity is
defined. Parity, denoted by p, is the XOR of all 5 bits of a column. Thus parity of a
column, i.e., p(x, z) is a bit. If p(z, z) =0 (or p(z, z) = 1), there are even (or odd) number
of active bits in column (z,z). The column that has an odd (or even) number of active
bits is called an odd (or even) column. For a slice, its parity p(z) is a 1 x 5 row and for a
state a, the parity p(a) is a 5 x 64 plane.

The round function of KECCAK-f[1600] consists of 5 operations, i.e., the linear compo-
nents 0, p, m and ¢, and the non-linear component x.

e 0 adds a pattern to each bit position (x,y, z). The pattern which is defined as 0-effect
in [BDPV11,DV12,MDV17] is the XOR of the parity of column (z —1, z) and column
(x+1,z-1).

p rotates bits on lane (x,y) with an offset defined by (x,y).

e 7 rearranges the 5 X 5 = 25 bits on one slice.

¢ adds a constant to each round. It is always omitted in the analysis as it has no
influence on differential propagation.

X is a 5-bit S-box. It is the only non-linear operation in KECCAK-f[1600].

2.2 Propagation properties of linear layer operations

The linear layer of one round is composed of three components, i.e., 8, p, and 7, denoted
by A = 7o po 6. Propagation properties of those operations are described in the following
paragraphs.

410

y* " z state
&« —>T
|
.'.'.'.'."l
.'.'.'.'."l
.'.'.'.'."l
(T1 117
,:Z plane yi_ . slice
x x
row y* column b lane
> >) [
x
bit
[]

Figure 1: Different structures of round state.

411

2.2.1 Propagation property of 6

Out of the four linear components, only 6 operation may alter the number of active bits.
Given a state « if its parity p(a) = 0 where p(0) is a 5 x 64 zero vector, § acts as an
identity function, i.e., there is no 8-effect on the state. State with zero parity is called
in-Kernel, denoted by K. Otherwise, it is out-Kernel, denoted by N. The number of active
bits of in-Kernel states is preserved through 6.

However, if p(«) is a nonzero vector, the 6-effect really complicates the propagation
of active bits. To better understand 6-effect of out-Kernel states, works [BDPV11,DV12,
MDV17] introduced run to reorganize the nonzero parity. If the coordinates of a group
of odd columns satisfy that z;11 = (z; + 1) mod 64 and z;1 = (x; +3) mod 5, where
(zi,2) and (2441, z;+1) are any continuous odd columns, this collection of odd columns
form a run. According to the definition of 8 operation, no matter how many odd columns
are in a run, it only affects two columns. The affected columns whose active bits will be
flipped through 6 are called affected columns. Parity thus can be partitioned by a series of
runs. Fig. 22 shows two parities of 1-run and 2-run as well as the affected columns.

3 [O 3 O[xle
2| |G} 2| %%
1 Q) 1|X =@
7l o|OfX| [x z| 0 |OTO| %[X
01 2 3 4 012 3 4
x x

O odd column that affects other columns
© odd column but does not affect other columns
X the affected column

Figure 2: Examples of a 1-run and a 2-run parity.

On the other hand, we can construct parities by listing all the possible combinations
of runs. In later differential trail search sections, parities of 1-run, 2-run and 3-run are
enumerated. For any out-Kernel difference, adding two active bits to a column (if it is
possible), its parity remains unchanged. Practically, a group of 2 active bits that are in
the same column is called an orbital. For in-Kernel differences, its active columns contain
several orbitals.

Given a k-run parity of states «, parity-bare states are introduced to represent all
states that share the same parity out-Kernel in regarding to differential probability of
X () and x(B). Here a are out-Kernel input differences of # and 3 = A(«) is the input
difference of x. As introduced in [MDV17], of all the out-Kernel differences under the
parity, parity-bare states have the least number of active bits in differences « and S, i.e.,
their hamming weight ||«|| + ||3]] is minimal. || - || denotes the number of active bits of
a structure which is also called the hamming weight. Given a k-run parity, by adding
orbitals to its parity-bare states all out-Kernel differences under the parity are obtained.

2.2.2 o p-effect

While the 6-effect flips bits on affected rows of the out-Kernel states, p and 7w are only
permutations of bit positions. The 7 o p-effect is the joint effect of p and w operations
imposed on the active bits of state after -effect. For example, under the Eq. 1 model, a
is transformed to ¢ through 6-effect, and 3% is permuted to 3 through 7 o p-effect.

alipg? g T (1)

2In this example z = 4 rather than 64.

412

7 o p-effect considers the bit positions before and after the associated linear functions.
For example, given a bit of 3%, the corresponding bit coordinates, row index, column index,
and slice index at 3 of the specific bit are carefully examined. Similarly, given a bit of 3,
the origin bit coordinates, row index, column index, and slice index at 3? are checked as
well.

When « is in-Kernel 6 becomes an identity function. In other words, there is only
7 o p-effect at such cases which simplifies the propagation of the complex .

The 7 o p-effect is used to bypass 7 o p. Given (Y, one does not have to operate 7 o p
on the whole state. Rather, with only the active bits, the active columns, rows, and slices
are easily obtained which is more advantageous when « is in-Kernel. Generally, 7 o p-effect
has the following use scenarios in the subsequent trail search strategy.

e When « is in-Kernel, the number of active rows, i.e., Rowg is obtained through
combining the row index of each bit.

e When « is out-Kernel with orbitals added to the non-affected columns, the number
of added rows AddedRowg, is also obtained by combining the added row index with
the previous row index set.

e Given 3, if the corresponding « is supposed to be in-Kernel, check the origin column
index of S bits to verify whether it has in-Kernel a.

7 o p-effect is widely used to efficiently count the number of active rows in the trail
search strategy.

2.2.3 p property

In Section 4, a property of p explained in Lemma 1 is used in searching 3-round | K |K|
trail cores.

Lemma 1. For any in-Kernel o with m orbitals, through mo p, there are at most m bits
in any active B slices.

Proof. From the definition of p operation, it is direct that the 25 bits of any « slices must
be distributed to 25 different S5 slices and vice versa. As the m orbitals are at most placed
in m slices the number of active bits of any [slices must not exceed m. O O

3 3-Round Differential Trail Cores

Differential trail cores and the classification of 3-round trail cores are introduced in this
section. Most of the concepts are brought from previous works [BDPV11,DV12,MDV17].

3.1 3-round trail cores

A 3-round differential trail, denoted by (ag, a1, a2) (or (Bo, 1, 52)) is shown in Eq. 2,
where «; and §; are input difference and output difference of A respectively. It contains
three x layers with differential propagation probability P3 = P(3y) + P(51) + P(83). In
our analytic context, propagation weight, i.e., w3 = w(By) + w(B1) + w(Bs), is extensively
used to represent differential probability of trails.

A X A X A X
ag = fo = a1 = B1 = ag = B = ag (2)

Comparing to 3-round trails, 3-round trail cores (aq, as) (or (51, 52)) shown in Eq. 3
contain only two differences rather than three. Given any a;j, the minimal y-compatible
propagation weight w(3p) which is formally denoted by w"®"(«aq), is obtained simply by

413

checking the differential distribution table. Therefore a 3-round trail core represents a set
of 3-round trails among which the minimal propagation weight is ws = w""(a1) +w(f1) +

o i>,311>042i>52 (3)

Similarly, 2-round trail cores are denoted by (ay) or («) for general. We also simply call
a 2-round trail core a « state in introducing ideas and methods. In previous works [DV12,
MDV17], 2-round trail cores (a1)/(az2) (or (81)/(B2)) are exhaustively searched and
extended forward or backward by one round to obtain 3-round trail cores. The search
space is so huge that only 3-round trail cores with propagation weight no greater than a
threshold weight T5 are covered.

To exhaustively generate 3-round trail cores with a greater threshold weight T3, namely
the valid 3-round trail cores, we follow the previous rule of first collecting possible 2-round
trail cores and then extending them forward or backward by one round. A 2-round trail
core o (resp. ag) is called valid when there exists at least one y-compatible as (resp.
a1) that satisfies Ts.

Additionally, the number of active rows is used to evaluate the propagation weight of
3-round trail cores as the best differential probability (or propagation weight) of an active
row is 272 (or 2). For example, the number of active rows of valid 3-round trails must
satisfy that Rows < [%W where Rows = Row,, + Row,, + Rowg,. The number of active
rows of a difference state « is denoted by Row,,.

3.2 Classification of 3-round trail cores

According to whether a; and s are in-Kernel or not (refer to Eq. 3), the 3-round trail
cores (a1, as) can be categorized into four groups, i.e., |K|K|, |N|K|, IN|N| and |K|N]|
where K (resp. V) represents the state pattern « is in-Kernel or out-Kernel. Dedicated
search strategies are proposed to cover the groups of 3-round trail cores with different
characteristics, i.e.,

e the trail cores in the |K|K| group are separately searched (in Section 4) due to the
special characteristic that both a; and as are in-Kernel,

e all the other trail cores with at least one out-Kernel « are searched under the same
strategy of different methods. More specifically,

— the trail cores in |[N|K| and |N|N| groups are searched (in Section 5) with the
same method;

— while the trail cores in the |K|N| group are covered (in Section 6) with a slightly
different algorithm of similar ideas.

In summary, there are three kinds of 3-round trail cores of which each will follow a
specific search algorithm.

4 Generating |K|K| Trail Cores

In this chapter, we introduce the methods used to generate valid 3-round trail cores (o,)
of |K|K| feature. With the constraint that as is in-Kernel, a strategy of constructing and
filtering target a; that ensures both a; and as in-Kernel is illustrated. Combining with
another constraint on Rows, satisfactory oy states are collected and extended forward by
one round.

414

/

- !
!
43]| 94 1aq27q 22 1) q27q4 Z2
/
Z1 22 23 24 Z3 y Py 23

Figure 3: A candidate 1 structure example {3, 3,2} of a; with 4 orbitals.

= [
=
iE :
=

4.1 Generating target o

As ay is in-Kernel, it has m orbitals distributed at different slices where m € {1,2,---}. At
51, the 2m bits will be distributed to k slices through 7o p. As 7o p are linear operations,
aq and f3; are linearly equivalent. Thus a4 can be represented by a k-tuple {ny,nz2, -+ ,ng}
where n; is the number of active bits of the i-th 3 slice $1],,. In this way, in-Kernel o
are divided into disjoint subsets with k-tuple {n1,nga, -+ ,nx} that depicts bit distribution
pattern of the corresponding (1. For example, for «; of 4 orbitals, there are four k-tuples,
ie., {2,2,2,2}, {2,2,4}, {2,3,3} and {4,4}.

Definition 1. Valid §; slice. An active slice 3;|, that contains at least one y-compatible
in-Kernel slice 41|, through x operation is called a valid slice. There are at least 2
active bits in a valid 3 slice.

Definition 2. Candidate 3; structure. Any target o; must consist of a group of valid
B1 slices that contain 2m bits in total, i.e., Zi’f [|51]2; 1] = 2m. The combination of the

number of bits of valid 3, slices U:jf 151
aq.

is called a candidate (31 structure of target

Zi

To ensure ay in-Kernel, all §; slices must be valid (refer to Def. 1). The target a; must
belong to some candidate 8 structure (defined to Def. 2). For example, the candidate 3y
structures of oy with 3 orbitals is {{3, 3}, {2,2,2}}. To be specific, for any target oy of 3
orbitals, through 7 o p, its (51 either consists of two valid slices each of 3 bits, or of 3 valid
slices each of 2 bits.

Generating target a; includes constructing all a3 under candidate f; structures and
filtering them with constraints imposed by in-Kernel characteristic of both a7 and «s.
With an example shown in Fig. 3, the whole process is explained at length. The two bits
of an orbital at o are denoted by p;, ¢; where i € {1,2,3,4}. Note that the notations
of bits and orbitals are used just for clear description. The bits of one orbital have no
distinction in themselves, so are the four orbitals.

Generating target «; under candidate (7 structure. To efficiently construct oy, all
slice patterns of valid f; slices with s bits where s € {2,3,4,5,6}, are stored in a lookup
table in advance.

1. Through 7 o p, the candidate 81 structure {3,3,2} determines how the 8 bits of the
4 orbitals are organized at 3;. More specifically, three bits p;, p2, and p3 from three
distinct orbitals are mapped to the same slice Bl|zi' One bit g4 of the fourth orbital
is mapped to slice 51|z; with ¢; and ¢o. The left two bits g3 and p4 are mapped to
another valid 51|zg slice.

2. Under the candidate 81 structure, for any valid pattern of slice Bl'Zi chosen from
the lookup table, p{, pj and p4 are determined. Accordingly, ¢1, g2 and g5 can be
decided from the «y orbital relations. With a determined g3, pjj can be decided
through the relations imposed by the validity of the slice ﬂl\zé. Similarly, g4 can be
decided with «; orbital relation. When all the 8 bits of the 4 orbitals are determined,
an «q is constructed.

415

3. For any constructed ag, filter it with the constraint imposed by the candidate (1
structure. To fulfill this ;1 structure, the p-offsets of the 8 bits must satisfy

21 = z1 + offset[p1]
= 29 + offset[ps],
= z3 + offset[ps]

2 = z1 + offset|q]
= z5 + offset[ga],
= 24 + offset[q4]

24 = z3 + offset[qs]
= z4 + offset[p4],

which can be further abstracted with

V1 = V2

V3 = V1 + Vg,

where v; = (offset[q;] — offset[p;]) mod 64 with ¢ € {1,2,3,4}. Here offset[¢;] and
offset[p;] stand for the p-offset value of the bit position ¢; and p;. With this filter
the a; states that strictly follow the §; structure can be obtained.

4. For any remaining «; states, filter it with constraints imposed by «s in-Kernel. In
this case, we should further check whether slice (5, |z; is valid or not.

5. The constructed a; states which pass the above two filters are the target a;.

Totally, candidate 31 structures of oy with up to 6 orbitals are constructed and filtered.
The associated analytical models are listed at Appendix A.

Remark 1. Although the methods for constructing target «; of different candidate
structures are similar, the above steps are exclusive for {3, 3,2} structure. In practice,
different candidate (1 structures exhibit slightly different features that inspire dedicated
treatments. Especially, even for the same structure, there might be several distinct sub-
structures that show diverse bit organizations at ;. For example, as shown in Table 1 and
Fig. 10, candidate structure {3, 3,2, 2} consists of three different sub-structures. The five
a1 orbitals are distributed to two 3-bit 37 slices and two 2-bit f; slices through m o p-effect.
In sub-structure {3, 3,2,2}(a), the three bits of the second 3-bit 1 slice come from the
first, second, and third «; orbital while in sub-structure {3, 3,2, 2}(b), the three bits come
from the first, second and forth «; orbital.

When all target «; are collected, the satisfactory a; states are generated by further
checking whether the requirement on Rows, i.e., Rows = Rowa, + Rowg, + Rows, < [12]
is met or not. Extending the satisfactory a; forward by one round, all |K|K| trails (a1, az)

are successfully obtained.

4.2 Exhaustive search algorithm of |K|K| trail cores

Rather than enumerate state oy, the techniques used in this work construct in-Kernel
aq from candidate 8y structures. The |K|K| Trail Cores Search Method consists of three
phases: a1 Construction, Filtering, and Trail Extension as shown in Algorithm 1.

416

Phase 1. «; Construction. First prepare all the theoretical candidate 5y structures for
in-Kernel a; of m orbitals. For each candidate (5, structure, start from the (37 slice
with the maximum number of active bits. To be precise, the (z,y, z) coordinates of
active bits from the starting 5y slice are determined, whose pairing bits of the same
orbital in a; are known as well. In the end, coordinates of the 2m bits at «; are
determined either from the valid f3; slices or from the orbital relations at «a;.

Phase 2. Filtering. When «a; are constructed according to the bit relations determined by
the theoretically deduced (7 structures, further check whether the m orbitals actually
follow the structures or not. Filter a; with constraints that guarantee the m orbitals
are mapped to valid By slices. The constraints can be expressed by 1) relationship
equations of the offsets relations v; = (offset[q;] — offset[p;]) %64 with i € {1,2,...,m}
of the m orbitals and 2) direct valid 5, slice patterns stored in lookup tables. Store
the a1 that pass the filtering phase.

Phase 3. Trail Extension. Through the filtering phase, all target «; are collected. To
generate valid 3-round trail cores of |K|K]| feature, target oy states are extended
forward by one round with the constraint on Rows which is set as (%1 The trail
extension methods are the same as in [MDV17] whose time complexity is neglected.

Algorithm 1: |K|K| Trail Cores Search Method

Input: The candidate 51 structure
Output: The valid |K|K| 3-round trail cores
1: while (not last slice pattern of valid f; slices) do

2: (Phase 1 «; Construction:)

3. Construct Bl

4: Apply p~! o~ to get corresponding bits in ay

5: Construct the related untried orbitals in ay

6: Using the existing orbitals to construct the other bits in 61|21{Z_>1
7: Get the constructed aq structure

8: (Phase 2 Filter:)

9: if «; passes the offsets filter

10: if (; valid and the weight requirement met
11: satisfactory «y are obtained

12: end if

13: else

14: go to line 4

15: end if
16: end while

The time complexity of each candidate 3; structure is decided by how «; are constructed.
Take trail cores with oy of 3 orbitals whose candidate 5, structures are {{2,2,2},{3,3}}as
an example. For B structure {3, 3}, firstly, there are 1000 = 2°-°7 valid slices. For one bit
of a valid slice, there are 4 candidate orbitals at a1. Thus for each valid slice of 3 bits,
there are 4% candidate «; patterns. Therefore, the time complexity of {3,3} is 21597,

The theoretical time complexities of all the associated analytical models are listed at
Table 1. In practical programming, the searching space can be pruned by checking whether
some simple constraints are met or not.

With a total complexity of around 242, | K| K| 3-round trail cores of weight up to 53 are
exhaustively generated. The time unit is the process of filtering a constructed «; state. All
the cases in Table 1 are searched, and the experimental results are displayed in Section 7.

417

Table 1: Time complexity of |K|K]| trail core search.

orbitals in «; | Candidate 3; structure | #time complexity of a case | #time complexity in totall

3,8 15.97
3 orbitals ; %;;}2} 313.64 916.23
1. {4,4} 221.06
p 19.97
4 orbitals 3 ﬁgﬁ 321_% 25,10
4. {2,2,2,2} 215.64
1. {4,4,2} 525.06
2. {5.3,2} 920.42
3. {4,3,3} 929.17
2,2 027.64
5 orbitals il) :{131’{2; Z; 22} 2} ;zs.m 229.07
6. b) {3,3,2,2} 925.55
7. ¢) {3,3,2,2} 925.55
8. {2,2,2,2,2} 925.64
1. {6,6} 529.30
2. {6,4,2} 229.30
3. {6.3,3} 929.30
4. {6,2,2,2} 229.30
5. a) {5,3,2,2} 232.74
6. b) {5,3,2,2} 232.74
7. a) {4,4,2,2} 231.06
8. b) {4,4,2,2} 231.64
9. a) {4,3,3,2} 924.70
10. b) {4, 3, .3 2} 224.28
11. ¢) {4,3,3,2} 235.58
6 orbitals 12. a) {3,3,3,3} 237.94 942.21
13. b) {3,3,3,3} o41.11
13. ¢) {3,3,3,3} 241.11
14. a) {4,2,2,2,2} 230.70
15. b) {4,2,2,2,2} 230.64
16. ¢) {4,2,2,2,2} 229.06
17. a) {3,3,2,2,2} 229.61
18. b) {3,3,2,2,2} 929.55
19. cl1) {3,3 2 2 2} 931.19
20. ¢2) {3,3,2,2,2} 229.55
21. d1) {3,3,2,2,2} 231.94
22. d2) {3,3,2,2,2} 229.55
23. {2,2,2,2,2,2} 529.97

Discussion.

e With this algorithm, all 3-round trail cores of 6 orbitals and part trails of 7 orbitals
are obtained. But we cannot cover all cases of 7 orbitals as theoretically there are
too many candidate structures and the time complexity increases vigorously.

The limitation of this exhaustive search algorithm is that it is oriented to orbitals.
All 2-round trail cores of m < 6 orbitals are completely covered. The minimal
propagation weight of 3/4/5/6-orbital |K|K| trails are 33/39/48/53 respectively. As
|K|K]| trails of 7 orbitals cannot be covered and there is no theoretical proof for a
satisfactory lower bound, say 55 or 56 as well, we claim exhaustiveness over 53 which
is experimentally proved.

The weights of 7-orbital trails must be greater than 53. Let’s assume the minimal
weight of 7-orbital trails is 53. Compared to 6-orbital trails, the 7-th orbital must
share rows with two other orbitals at a;. In other words, for the 7-orbital trails
of minimal weight 53, there is an «a; slice that has 3 orbitals. Otherwise, the total
weight of the 7-orbital trails will exceed 53. On the other hand, the 3 orbitals at
the ay slice will be distributed to 6 slices at 3;. Thus, the structure of the 7-orbital
trails are either {2,2,2,2,2,4} or {2,2,2,2,3,3}. For either of the structures, the
previous 6-orbital structure is {2,2,2,2,2,2} which implies a weight increase at (3.
Therefore, compared to the 6-orbital trails, there must be weight increase for the
7-orbital trails.

Based on the above considerations, exhaustive search under threshold weight 53 are

claimed. Without caring exhaustive search, 3-round trail cores of 3, 4, 5, 6 orbitals are
generated. Those paths can be used in collision attack, preimage attack, and differential
distinguisher attack. Particularly, in [GLLT19] one of the newly obtained 3-round trail
cores of 5 orbitals are used to successfully identify a 5-round collision on SHA3-256.

418

5 Generating |N|K| and |N|N| Trail Cores

To obtain valid 3-round trail cores (aq, ag) with at least ay out-Kernel, valid 2-round trail
cores o that allow the existence of valid 3-round trail cores are collected and extended
forward by one round. As in [MDV17], parity-bare states which represent all out-Kernel ay
under the same parity are enumerated to generate valid 2-round trail cores. A propagation
weight T5 is set to list the parity-bare states of candidate parities.

In this section, we illustrate primary properties used to develop the ideal improvement
assumption under which the theoretical representatives of subspaces are generated. Based
on those concepts, out-Kernel o are efficiently covered through wiability check of subspace
V4, . Valid 3-round trail cores can be obtained through extending all the valid a; forward
by one round. Ultimately, the strategy of generating valid 3-round trail cores of |N|K]|
and |N|N| feature is presented.

5.1 Propagation property of out-Kernel o

With observations on differential propagation of out-Kernel ay, 81 does exhibit properties
that can be exploited in the searching phase. Lemma 2 illustrates the elemental properties
used to develop exhaustive search algorithms of |V|K| and |N|N| trails. The analytical
model is shown in Eq 4.

A A
a1 B S D By (4)

Definition 3. Given any difference a (or), a group is comprised of [contiguous active
slices of which the neighbors are nonactive, denoted by «|, or 3|4.

Lemma 2. Given a group pattern Bi|g, assuming x-compatible is not considered, the
corresponding groups as|g that have the minimal propagation weight at S2 must be in-Kernel
when [< 6.

Proof. When checking out-Kernel state a; which is either parity-bare state or state

generated by adding orbitals to parity-bare state, through A operation, the corresponding
n

B is composed of several group patterns, i.e., 81 == |J Bi|4x, where n is the number of

k=1
groups.

For each 31 group B4, there are a set of x-compatible groups as|, which are either
in-Kernel or out-Kernel. Experimentally, the more runs the parity of y-compatible groups
asg have, the more active bits they have which incur heavier propagation weight at 2.

For any group 1|4, without considering x-compatibility, suppose it has in-Kernel as|4
groups. For any S slice of group fi|y, there are a number of in-Kernel a9 slices. The
assumed in-Kernel s slices are prepared following the rule that

e if a 3 slice only has one active row, all as slices of one orbital that have one bit in
the corresponding active row are counted in;

e if a 31 slice has multiple active rows, all the as slices that have the least number of
orbitals which are distributed over the corresponding active rows are counted in.

On the other hand, suppose any group (1|, has optimal out-Kernel as|, groups, i.e.,
the group patterns under 1-run parity which corresponds to the active 1 rows. When
all the in-Kernel and out-Kernel as|, groups are prepared, compare the corresponding
propagation weight at [s.

It is experimentally proved that there is conditional monotonic relation between
the number of active bits ||39],||*> and the number of active rows Rowgs, when [< 6. The

389 is introduced in Eq 1.

419

propagation weight of the supposed optimal out-Kernel patterns is larger than that of the
assumed in-Kernel patterns.
O O

Lemma 3. Without considering x-compatibility, given any (31, the ideal g of minimal
propagation weight at B must be in-Kernel.

Proof. The n-group [can be reorganized according to the decrease of the length of each
group, i.e., when checking propagation weight w(f52), the group with the largest length is
first studied. For each group f1,x, there are two kinds of y-compatible groups as|gx, i.e.,
in-Kernel and out-Kernel where k € {1,--- ,6}. Following Lemma 2, for all the 8, group
patterns, without considering y-compatibility, prepare the corresponding in-Kernel and
out-Kernel as| . pattern.

The computation of propagation weight of w(/3;) starts from the first group g. Ac-
cording to Lemma 2 the in-Kernel states will lead to lower weight. When the second
group ¢ is involved, there might be overlaps on rows with g' which greatly complicates
the whole situation. To address this problem, an experiment of exhaustively adding all
assumed in-Kernel and out-Kernel as)| g2 to in-Kernel as| ¢+ and computing the associated
propagation weight is conducted. The length of group g2 is at most 5. It shows that
the in-Kernel ap|42 always have less propagation weight. When taking the third, fourth
and etc groups into consideration, as the group length decreases, in-Kernel az|,+ patterns
promise lower total w(/32).

Based on the above analysis, it is concluded that without considering y-compatibility,
given any (1, the ideal a5 of minimal propagation weight at 83 must be in-Kernel.

O O

Recall that the ultimate goal is to search 3-round trail cores that satisfy w™(ay) +
w(B1) +w(B2) < T3. Given any oy (or 31), the propagation weight w™®’(ay) and w(81)
are direct. Combining the newly introduced property Lemma 3, w(f2) can be predicted
under some assumptions which will be explained in the following section.

5.2 The ideal improvement assumption

To search valid 2-round trail cores, it is essential to predict how the out-Kernel o propagates
forward (or backward). To clearly explain the strategy and methods, definitions are given
in advance.

Definition 4. The derivative subspace of the original 2-round trail cores. Given
any out-Kernel state o, by adding n orbitals to it, where n € {0,1,2,---}, a set of out-
Kernel states (denoted by o) that have the same parity is generated. Such a set is called
the derivative subspace V, of the original out-Kernel state «.

Instinctively, if ay (or 1) can predict or evaluate the 3-round propagation weight of
all out-Kernel states in its derivative subspace to some extent, valid 2-round trail cores
can be efficiently constructed. According to Def. 4, each parity-bare state a; represents a
derivative subspace of 2-round trail cores under specific parities. However it is impossible
to decide whether there exist valid 2-round trail cores in the subspace directly from the
parity-bare state.

From another perspective, the out-Kernel states oy are classified with parities p under
which each parity-bare state stands for a derivative subspace V,,,. The search space of
out-Kernel 2-round trail cores is divided into disjoint derivative subspaces of the parity-bare
states. A naive method to generate valid 2-round trail cores from each subspace V,,
is to examine all) (where o) € V,,) with the constraint on propagation weight, i.e.,
w™(af)) + w(B]) < T3 — 2. The naive plan is obviously impractical.

420

On the other hand, if there exists some kind of representative 2-round trail core of V),
the derivative subspace as well as the whole search space can be efficiently covered. With
Observation 1, neither the original 2-round trail core a; nor other constructed patterns o
can effectively represent V,, in terms of Rows where Rows = Row,, + Rowg, + Rowg,
is the number of active rows of 3-round trail cores. Based on Observation 2 where the
decrement of Rows is possible by adding orbitals to a1, the theoretical representative af
(vefer to Def. 6) is proposed to represent the subspace. The ideal improvement assumption
of original 2-round trail core oy based on which the theoretical representative of Vy, is
defined will be illustrate in this section.

Observation 1. Given any derivative subspace V,,, comparing to the original oy, the
constructed 2-round trail cores o) have a larger number of active rows (i.e., Row, +Rowg,).
However, of may have less active rows in B2 (i.e., Rowg,) than oy due to the round
operations. Therefore while oy is not valid it is possible to exist valid o) in subspace V,, .

Observation 2. Given a subspace V,,, when ay is not valid it is possible that there exist
some wvalid ofy, which implies adding orbitals to ay really decreases Rows or more precisely
Rowg,. At this case, although adding orbitals to a1 may increase Row,, or Rowg,, the
decrement on Rowg, can compensate the cost so that a valid of is possible.

Definition 5. Common and preferred slice. A (31 slice 8], is common if none of its
x-compatible slices as|, is in-Kernel. Otherwise 31|, is called a preferred slice.

The ideal improvement of a; in terms of Rows. According to the analysis in Sec-
tion 5.1, any < that has common [slices (refer to Def. 5) can be improved with a better
Rowg, by transforming common slices preferred. Here the "improvement” or the later
"improve" means the decrement of the number of active rows, or more precisely a lower
propagation weight. Each common slice can be improved by adding a specific number of
bits to it which introduces the same number of orbitals to «;. For example, a slice of only
one bit is a common slice. To improve it we can add one active bit to the bit positions of
the same column as the previous active bit. For each of the added orbitals, through the
m o p-effect, the other bit is distributed either to an active slice or to an empty slice. In
the most ideal case, the other bit of the added orbital also improves a common slice to be
preferred. Actually, given an original 2-round trail core a; of Vj,,, an theoretically optimal
state in regarding to Rows can be deduced with the following three assumptions.

B is ideally improved to obtain optimal Rowg,. Assume each common slice (1|, is
transformed preferred by only adding one bit to it. The other bit of the corre-
sponding orbital improves another common slice simultaneously. If there are an odd
number of common slices, the impact of the other bit of the left orbital is simply
not considered. With this assumption, no new f; slice is introduced while the least
number of orbitals are taken to improve ;. When all common slices 51|, become
preferred, the improved] has an optimal Rowg, according to the conclusion shown
in 5.1.

Rowpg, is counted with the least increase of #row. For each common slice 31|, there
are several kinds of improvements. For example, a bit of an unactive row and a bit
of an active row may both improve a common slice. When counting Rowg, , choose
the one with the least increase of #row among all the possible improvements. With
this method, Rowpg, is minimal under the circumstance of improving common f1|.

Row,, is counted with the least increase of #row. When counting the new Row,, af-
ter improving 1, choose the added orbital combinations with the least #row increase.

421

The optimal state is called the theoretical representative o of V,,, (defined in below 6). As
shown in Lemma 4, comparing to all 2-round trail cores in V,,, theoretical representative
has the minimal propagation weight wj, where w§ = w"*"(a]) + w(B7) + w(f3).

Definition 6. Theoretical representative of derivative subspace. Under the ideal
improvement assumption, given any out-Kernel 2-round trail core «, the ideally generated
state is called theoretical representative of the derivative subspace V,,, denoted by af.

Lemma 4. The theoretical representative of of a derivative subspace Vy, represents all
the 2-round trail cores, i.e, both oy and o) € V,,, in terms of Rows.

Proof. When «; has no common slices 1., the theoretical representative o is identical
to 1. When oy has at least one common slice, aj has the minimal Rows according to
the ideal improvement assumption. Besides, as of is ideally improved from «y it naturally
has a lower Rows than the other o) except those o that follow the ideal improvement.
Therefore, the theoretical representative always provide the possibly optimal Rows for all
2-round trail cores in V,, .] O

Remark 2. The theoretical representatives of subspaces do not necessarily exist in practice,
ie., af ¢ V,, is acceptable, as the ideal assumption may not comply with the actual
o p-effect.

5.3 The 3-round trail core search

The theoretical representative provides a criteria to evaluate whether there are valid 2-round
trail cores in the subspace. As shown in Lemma 4, if the theoretical representative of V,,
is valid, there possibly are valid 2-round trail cores in the subspace. On the other hand, if
the theoretical representative is not valid, there definitely are not any valid 2-round trail
cores in the subspace. In this section, we explain at length how to generate valid 2-round
trail cores with the ideal improvement assumption. We first illustrate the viability check
of a derivative subspace V,, .

5.3.1 Generating viable 2-round trail cores

Given a subspace V,,, the process of constructing its theoretical representative with the
ideal improvement assumption and checking the validity of the theoretical representative
is called viability check. A subspace that passes the viability check is viable (defined
below). For any viable subspaces, the following problem is to precisely identify the valid
2-round trail cores. In the following sections, we use viable subspace V,, and viable state «
(or 2-round trail cores) indiscriminately. The viability check of a subspace V, equals to
the viability check of a state a.

Definition 7. Viable 2-round trail cores. The 2-round trail cores a of which the
theoretical representatives o of its derivative subspace can pass the viability check, i.e.,
wy < T4, are called viable. The derivative subspace of a viable 2-round trail core is also
called a viable subspace.

Viability check only shows whether it is possible that there exist valid 2-round trail
cores in the subspace. Actually, the viable subspaces do not necessarily promise valid
2-round trail cores. With Lemma 5, the valid 2-round trail cores are obtained by checking
the validity of viable trail cores.

Lemma 5. The valid 2-round trail cores must be in the space of viable 2-round trail
cores.

422

Proof. With the previous illustration, there are definitely not any valid 2-round trail cores
in a non-viable subspace. In a viable subspace, following the definition of viable 2-round
trail core (Def. 7), the valid 2-round trail cores must also satisfy the constraints of the
possibly valid trail cores. Therefore, the space of viable states contains all the valid 2-round
trail cores. 0 O

The strategy used in locating all viable 2-round trail cores in a viable subspace is
introduced in the following paragraph.

Locate all viable 2-round trail cores of a viable subspace V,,. Given a viable subspace
V4, , the 2-round trail cores in it contain the original «; as well as a great number of o)
which are constructed by adding orbitals to a;. To collect all viable 2-round trail cores of
a viable derivative subspace, a strategy of adding one orbital to viable original states each
time is widely used.

e The original 2-round trail core a; are viable which could possibly be valid. Viable
2-round trail cores are stored for further trail extension.

e As for the 2-round trail cores af in V,,, rather than enumerate all o/, only o} with
one orbital added to a; are checked at first. If the sub-subspace V,,, is viable, the
corresponding o/ is a viable 2-round trail core. Otherwise, the sub-subspace can be
safely discarded. Thus) with only one orbital added to «; is covered. Similarly, to
cover o with two orbitals added to «q,add one orbital to the previously collected
viable o} and check the viability of the new derivative subspaces Vay. In this way,
every time the viable 2-round trail cores with n orbitals added to «; are collected,
add one orbital to them and check the viability of the newly generated subspaces.
This process will terminate when none of states generated by adding one orbital to
the newly obtained viable 2-round trail cores can pass the viability check.

The parity-bare states of all candidate parities are enumerated to operate the viability
check after which a set of viable 2-round trail cores are collected. With the method
presented above, we generate the viable 2-round trail cores in each of of the viable
derivative subspaces. In the end, all viable 2-round trail cores of the search space are
collected.

Parity-bare States

/
Qq (o8]

Viable [TAdd

one
orbital

Viable

Extend forward by one round &
obtain 3-round trail cores

Figure 4: The process of 3-round trail core search for trails with |N|K| and |N|N| feature.

5.3.2 Search strategy of 3-round trail cores

Up to now, the ideal improvement assumption and the theoretical representatives of
derivative subspaces are introduced with which the search space of 2-round trail cores can

423

be efficiently covered and filtered out. All viable 2-round trail cores are collected through
the viability check of subspaces. At this part, we give a comprehensive description on how
to generate valid 3-round trail cores with the techniques explained in the previous sections.

1. Prepare parities p of 1-run, 2-run and even 3-run, and enumerate the associated
parity-bare states. With rough estimation on the propagation weight of oy and S,
only states under parities of at most 3-runs can meet the threshold weight.

2. Given any parity-bare state aq, check the viability of its derivative subspace Vg, .

3. Given any viable subspace V,,, collect all the viable 2-round trail cores in the
subspace.

4. Extend all viable 2-round trail cores forward by one round with threshold weight T3
to obtain all valid 3-round trail cores.

The exhaustiveness of the search space. To fully cover the search space of |[N|K]|, | N|N]|
case and |K|N]| case, i.e., the 2-round trail cores, we enumerate the parity-bare states
under all candidate parities as in [MDV17]. To be more specific, candidate parities of
1-run, 2-run, and 3-run are prepared.

e For 1-run parities, the length is up to 7. The time complexity of checking the viability
of the parity-bare states is around 5 x (24)? = 2383, It shows that there are no viable
states for runs of length greater than 5.

e For 2-run case, parities of lengths (1,1) and (1, 2) are listed where (1,1) (or (1,2))
represents the lengths of the two runs are both 1 (or 1 and 2). The time complexity
of checking the viability of the parity-bare states are around 20-6 x (24)6 = 2346 and
2116 5 (24)7 = 2396 yespectively.

For 2-run parities of lengths (2,3), (2,2) and (1,3), we only prepare those with
affected odd columns (as shown in the first example of Fig 5) of which the time
complexity are less than 23°. In fact, for most of the states under those parities,
especially for those of more than 30 active bits in o and 3%, the weights of the
2-round trail cores already exceed the threshold weight T5. Thus we do not need to
conduct the viability check for those states.

And there are no viable states under (2,3), (2,2) and (1, 3) parities.

7 7
6 X 6 X
5 oy 5 +O
4| OL 4 | O X
3| |ood 3 (oL O
2 LOto 2 o [3o
1| O 1 OTX1 O
Z| o Z| 0|0
01 2 3 4 012 3 4
X X

Figure 5: Examples of 2-run parities with and without affected odd columns

e For 3-run parities of length (1,1,1), only those with affected odd columns are prepared.
The time complexity of checking the viability of the parity-bare states under those

424

parities are around 23%. The weights of all 2-round trail cores under those parities
are greater than the threshold weight 75 implying there are no viable states under
3-run parities.

With the increase on lengths of the runs, the number of active bits in « and Y increases
accordingly. To be specific, wherever the positions of affected columns, the 2-run (or 3-run)
parities have 2 X 2 X 54 2 x Zle n; (or 3x2x54+2x Zle n;) active bits in o and (?
where k is the number of odd columns minus the number of affected odd columns (i.e.,
the number of unaffected odd columns), and n; is the number of active bits of the i-th
unaffected odd column. While a greater number of active bits does not always mean a
heavier weight, it is so when the number of active bits are small enough.

Although for different parities the active bits are placed at different positions, the
increase of active bits at o and 3% will not decrease the weights under this context. Thus
with the experimental verification, the longer the lengths of runs, the heavier the weights
under those parities. In total, we prepare as many candidate parities as possible. When
there is no viable states under a parity pattern, e.g., the (1,1,1) 3-run parities, we just
quit and do not check other cases under this category that have more active bits in o and
(%, In this way, all parities that may contain viable states are covered.

Figure 4 shows the complete process. The enumeration of parity-bare states and trail
extension methods are directly taken from [MDV17]. In practice, 3-round trail cores with
T3 = 53 are generated with a time complexity of around 24° whose time unit is the viability
check of a 2-round trail core. The search results are summarized in Section 7.

5.4 The list of assumptions used to exhaustively cover the search space

The exhaustive search algorithms of 3-round trail cores with |N|N|, |N|K| and |K|N|
features are based on several assumptions, i.e., the ideal improvement assumption and the
assumptions used to fully cover the search space. To clarify the logic behind, we summarize
them in this section.

1. The assumptions used to fully cover the search space According to the search strat-
egy, the search space is divided into subspaces derived from parity-bare states which
are generated under parities. Parities are organized by runs, for example, 1-run,
2-run and 3-run parities. As discussed in Section 5.3.2, the number of active bits of
a and BY of parity-bare states is m x 2 x 5+ 2 x Zle n;, where m is the number of
runs of parities, k is the number of unaffected odd columns, and n; is the number of
active bits of the i-th unaffected odd column. To enumerate all candidate parities,
we have the following assumptions.

e The more runs of a parity, the larger the number of active bits of o and 39 of
parity-bare states under the parity.

e With the increase of length and number of runs, the number of active bits
increases accordingly. Under this context, it is experimentally verified that the
increase of the number of active bits will not decrease the propagation weight
w"(a) + w(f).

e Therefore, when enumerating parities organized by runs, if all the parity-bare
states of one parity are not viable, we quit checking other parities of longer
length or more runs.

Starting from 1-run parity, we enumerate all possible parities with these assumptions.

2. The ideal improvement assumption. As described in Section 5.2, the ideal improve-
ment assumption is used to determine whether a subspace is viable or not. In other
words, with this assumption we decide whether it is possible to exist valid 3-round

425

trail cores in a subspace. To that end, an ideal representative of the subspace in
terms of 3-round propagation weight is built upon the assumption that all the most
ideal cases happen at the same time when improving the original 2-round trail core.

6 Generating |K|N| Trail Cores

|K|N| trail core search shares the same strategy with |[N|K| and |N|N| trail core search.
Concepts and definitions illustrated in Section 5 are equally applied to |K|N| trail core
search. In searching 3-round trail cores, the principal technique is to compute Rows of
theoretical representatives of derivative subspaces V,,, i.e., the viability check. In this
section, the ideal improvement assumption under the |K|N| situation is introduced to
construct theoretical representatives. With the dedicated ideal compensating assumption,
the algorithm of counting Rows is explained in detail. Finally, the general process of
generating |K|N| 3-round trail cores with threshold propagation weight T3 is provided.

6.1 The ideal improvement assumption in compensating o

3-round trail cores with |K|N| feature require oy in-Kernel. With the analytic model
shown in Eq. 5 where N'~1: = p~lon~! the theoretical representatives of subspaces Vo,*
are generated and checked. In each subspace V,,, suppose there are at least one 2-round
trail cores that have in-Kernel a;, i.e., either as or states generated by adding orbitals
to ag have in-Kernel a;. Basically, it is assumed that the least number of orbitals are
added to as to ensure theoretical representative with in-Kernel a;;. Additionally, the added
orbitals also impose the least number of row increase on Row,, + Rowg,. Some definitions
are given before introducing the ideal assumptions.

)\/—1 —1 A
a1%61<x—a2—>52 (5)

Definition 8. Orbital and Non-Orbital bit and row of difference 3;. Given a
difference 31, among all the active rows, through p~! o 7~1, if one bit of an active row 31 |%
is distributed to the same column at oy with another bit from another active row £1]7,
the bit is called an orbital bit. If an active row 1|, contains at least one orbital bit, it is
called an orbital row. Otherwise, it is a non-orbital row.

Definition 9. Sharing bit and Sharing row of difference ;. Given a difference f1,
among all the active rows, through p=! o 7~1, if one bit of an active row 3| is distributed
to the same row at o with another bit from another active row ﬁ1|2;, the bit is called a
sharing bit. If an active row (1|, contains at least one sharing bit, it is called a sharing
row.

Definition 10. Compensating row of a non-orbital row. For any non-orbital 5;
row, there are around 5 x 4 = 20 ao rows that can form «; orbitals with it. Such as rows
are called the compensating rows of the non-orbital row.

The process of adding orbitals to ay to make the related non-orbital 8; rows orbital is
called compensating the non-orbital rows. Similar to the concept of improving a common
slice in the last chapter, here compensating a row means decreasing the total number of
active rows Rows.

4The theoretical representative ai of Vi, promises the minimal propagation weight wi of the subspace,
where w} = w(a]) + w(B]) + w(B3).

426

The ideal compensating assumption. Given an out-Kernel state a3, to efficiently deter-
mine whether there are valid 2-round trail cores in its derivative subspace, the validity
of the theoretical representative ought to be checked. The assumptions used to compute
Rows of the theoretical representative of V,,, are listed below.

Superset of 3; active row. To ensure a; in-Kernel with the minimal cost of orbitals
added to g, without considering the compatibility of x~!, assume all the (2° — 1)
nonzero (31 row value are valid. With this assumption, active rows at 3; are classified
into two categories, i.e., orbital and non-orbital rows (refer to Def 8). The orbital
rows naturally form orbitals at a; through p~! o 7!, while the non-orbital rows
need to be compensated to be orbital rows by adding orbitals to as. The « orbitals
that correspond to orbital 51 rows through 7o p are called natural orbitals as there is
no need to add extra orbitals to as to make such «y orbitals possible. Comparatively,
the «a; orbitals that corresponds to non-orbital 8, rows are called compensating
orbitals because such 1 rows need to be compensated to be orbital at a; (through
adding orbitals to «s).

For any active rows of as, as the superset of the corresponding 81 row is considered,
the x~! layer can be bypassed.

The optimal Row,,. Practically, oy of the theoretical representative is comprised of a
set of natural orbitals and compensating orbitals. When selecting the combination of
a1 orbitals from both orbital and non-orbital 51 rows, it is possible that the involved
B1 rows are also sharing rows (refer to Def 9). Therefore, there are cases that either
the natural orbitals or the compensating orbitals share some 1 rows. In that case
the oy orbitals of sharing rows are always selected. Under the above assumption,
the optimal Row,, of the theoretical representative can be obtained.

The least increase on the number of rows to Row,, + Rowg,. To compensate the non-
orbital 8, rows, orbitals are added to ay. At this phase, whatever as orbitals are
chosen, suppose the optimal o generated in the last step always holds. The orbitals
added to as must at first compensate all the non-orbital 8y rows. In other words,
the added ay orbitals at least lie in one compensating row (refer to Def 10). Then
the finally chosen orbital combination must have the least influence on o and (s in
regard of the number of active rows. The number of active rows of ay and Sy of the
theoretical representative is computed with this assumption.

The ideal compensating assumption described above ensures a theoretical representative
of subspace V,,, with |K|N| feature. To check the viability of V,,, the ideal Rows of the
theoretical representative is computed with the optimal Row,, and Row,, + Rowg,. We
introduce the detailed algorithm used in computing Rows of theoretical representative
under the ideal improvement assumption in the next section.

6.2 Counting Rows of theoretical representatives

Rows of the theoretical representative stands for all states in subspace V,, in regard
to the constraints imposed by |K|N| feature and threshold propagation weight T5. If
Rows > | L2], there is no valid 2-round trail cores in V,,. The subspace can be safely
discarded. The search space can be pruned effectively in this way.

With the ideal assumption, Rows is the sum of Row,, and Row,, + Rowg,. The exact
algorithm is listed below.

Counting Row,,. According to the previous analysis, there are two kinds of orbitals
in a1, i.e., the natural orbitals that come from the active 8; rows of original as, and

427

the compensating orbitals that are generated through adding orbitals to ao. In counting
Row,, , natural orbitals and compensating orbitals are considered separately.

e Natural orbitals. The natural a; orbitals that correspond to (1 orbital rows which
have only one orbital bit must be counted in computing Row,,. Some orbital £ rows
contain multiple orbital bits which implies they correspond to multiple a; orbitals.
In that case, if any of the a; orbitals has been counted, the other o orbitals of the
[1 rows can be discarded. Otherwise, if none of the associating a; orbitals have
been counted, choose the one with the least increase on Row,,. With this rule, the
theoretically optimal #row of natural orbitals is obtained.

e Compensating orbitals. The compensating «; orbitals of a non-orbital 5, row
might share a; rows with natural orbitals or with other compensating orbitals. In
that case, always choose the compensating orbital that shares rows with natural
orbitals over the one that shares rows with other compensating orbitals. If the
non-orbital row has no sharing row, i.e., its compensating orbitals neither share rows
with natural orbitals nor with other compensating orbitals, simply increase #row
with 2.

Counting Row,, + Rowg, with added orbitals. As explained earlier, when considering
Row,, + Rowg, suppose the theoretically optimal Row,, always holds whatever the orbital
combinations are added to as. At «a, orbitals with compensating rows are added to as
to make the non-orbital 8 rows orbital. The combinations of added as orbitals with the
least increase on #row to as and [y are chosen.

In compensating the non-orbital §; rows, there are theoretical cases that one ap
compensating row compensates multiple non-orbital 5; rows. There are also theoretical
cases that one «y slice contains several compensating rows. In general, there are some
situations to be considered when choosing the added orbitals to as.

e If there are as slices in which the number of compensating as rows is less than that
of the compensated non-orbital 5; rows, such compensating asy orbitals always have
the least increase on the number of active rows to Row,, + Rowg,. If such best case
exists, the related s rows will be chosen over all the other compensating rows.

e There are cases that an as slice contains multiple compensating rows each of which
compensates a different non-orbital 5; row. If the corresponding non-orbital 5; rows
can not be compensated in the best situation, it should be compensated under this
circumstance.

e In the worst case, there is only one compensating as row that can only compensate
one non-orbital §; row in a s slice. If a non-orbital 8, row cannot be compensated
with the last two cases, it has to be compensated in this way. The corresponding as
orbitals of the compensating o rows will be counted in computing Row,, + Rowsg,.

At last, compute the #row of as and By with the orbitals of compensating rows added to
ao by the above rule.

The key technique in our search strategy is to determine Rows of the theoretical
representative of V,,. With the above algorithm of computing Row,, and Row,, + Rowsg,,
the complete process of exhaustively searching 3-round trail cores of |K|N| characteristic
is illustrated in next part.

6.3 Search strategy of |K|N| 3-round trail cores

Following the same idea in Section 5, the search space of all out-Kernel a5 is divided into
a series of subspaces V,, where the original states s are the parity-bare states under

428

candidate parities. With ideal improvement assumption, viability check is conducted to
the subspaces to collect viable ay. Ultimately all viable as are collected and extended
backward by one round to generate valid 3-round trail cores of |K|N| feature. Depicted in
Fig 6, the complete search steps are introduced in the following paragraphs.

Parity-bare States

az| ol

Viable [TAdd

one
orbital

Viable

Extend backward by one round
& obtain 3-round trail cores

Figure 6: The process of 3-round trail core search for trails with |K|N| feature.

1. To cover the space of out-Kernel as, prepare parities p of 1-run, 2-run and 3-run.
Enumerate parity-bare states under candidate parity.

2. Conduct viability check to subspaces V,,, where ay are parity-bare states. The viability
check is to check the validity of the theoretical representative of the derivative subspace

by checking whether Rows < [£3] is met or not.

3. For each viable derivative subspace V,,, by adding one orbital each time and checking
the viability accordingly, collect all the viable 2-round trail cores in the subspace.
The method is the same as in Section 5, i.e.,

(a) For all viable ag, add one orbital to it to construct new 2-round trail cores
. Conduct viability check to new generated V,, and collect the viable oz,
accordingly.

(b) Repeat the above process on the freshly viable o/ until all the new 2-round
trail cores that are constructed from adding one orbital to the current viable
2-round trail core cannot pass the viability check.

4. Extend all viable as backward by one round to generate valid 3-round trail cores
with |K|N| feature.

In our experiments, 3-round trail cores of weight up to 53 are exhaustively searched
with a time complexity of 24°. Similar to |[N|K| and |N|N| case, parities of at most 3-runs
are prepared after rough estimation on propagation weight. The search results are reported
in Section 7.

7 Search Result And Bounds for Trails Covering More

Rounds

7.1 Summary of the search result

According to the methods and algorithms introduced in Section 4, 5 and 6, 3-round trail
cores with threshold propagation weight T3 are exhaustively searched. More specifically,

429

Table 2: Summarized result of 3-round trail cores search.

| IKIK| | INIK] | ININ| | |K|N]

T3 53 53 53 53
Time Complexity 242 240 240 245
Minimal Weight 35 46 48 32

|K|K]| trail cores, |N|K| and |N|N| trail cores, and |K|N]| trail cores of propagation weight
up to 53 are generated with time complexity 242, 240, and 2%° respectively. The results of
exhaustive 3-round trail core search are summarized in Table 2.

The propagation weight distribution of 3-round trail cores under distinct categories are
listed in Fig 7. There is a trend that when «; is in-Kernel it is more likely to propagate to
valid 3-round trail cores.

Number of 3-round trail cores of weight ws

13 | & ININ]
—— |N|K]|
—-o— |K|K]

[KIN]

Cores(log2)
=]
1

0 &

35 40 45 50 55 60

Figure 7: The propagation weight distribution of 3-round trail cores.

7.2 Bounds for 4/5/6-round trails

With all 3-round trail cores of threshold propagation weight 75 = 53 at hand, we can
update the lower bound on propagation weight of 4/5/6-round trails. Using the same
idea as in [MDV17], lower bound for 4/5/6-round trails can be updated to 56, 58 and 108
respectively compared to the previous 48, 50 and 92.

8 Conclusion

Based on whether a; and as are in-Kernel, 3-round trail cores are classified into four
categories, i.e., |K|K|, |K|N|, |[N|K| and |N|N| trail cores. In this work, we study the
propagation properties of different kinds of 3-round trail cores and deduce dedicated
exhaustive search algorithm for each of them. For |K|K]| trail cores, candidate in-Kernel

430

ay are constructed and filtered based on 31 structures. For trail cores with at least one
out-Kernel ay, idealized differentials of subspaces are constructed to effectively prune the
search space.

In conclusion, 3-round trail cores with threshold weight 53 are obtained. With exhaus-
tively searched 3-round trail cores, lower bound on propagation weight of 4/5/6-round
trails can be improved to 56/58/108 accordingly.

Acknowledgments

The first two authors are supported by the National Key Research and Development
Program of China under Grand 2017YFB0802704, and the National Natural Science
Foundation of China under Grand 61972249. The last author is supported by the National
Research Foundation, Prime Minister’s Office, Singapore, under its Strategic Capabil-
ity Research Centres Funding Initiative, Nanyang Technological University under grant
M4082123, and Singapore’s Ministry of Education under grants M4012049, M4012153, and
M4020466. We especially thank Prof. Guo Jian of Nanyang Technological University who
offers us advice and guidance for this work. We thank Gilles Van Assche for helping us
improve this paper. We also thank all the fellows and peers who give us advice, support
and encouragement.

References

[AMO9] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced
Keccak-f and for the core functions of Luffa and Hamsi. Comment on the
NIST Hash Competition, avaiable via https://131002.net/data/papers/
AMO9 . pdf, 2009.

[BDHT] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaél Peeters, Gilles Van Assche,
and Ronny Van Keer. The Keccak Crunchy Crypto Collision and Pre-image
Contest.

[BDL*19] Wenquan Bi, Xiaoyang Dong, Zheng Li, Rui Zong, and Xiaoyun Wang. MILP-
aided cube-attack-like cryptanalysis on Keccak Keyed modes. Des. Codes
Cryptography, 87(6):1271-1296, 2019.

[BDP*16a] Guido Bertoni, Joan Daemen, Michaél Peeters, Gilles Van Assche, and Ronny
Van Keer. CAESAR submission: Ketje v2. Candidate of CAESAR Competi-
tion, September 2016.

uido Bertoni, Joan Daemen, Michagl Peeters, Gilles Van Assche, and Ronny

BDP*16b] Guido B i, J D Michaél P Gilles Van Assch d R
Van Keer. CAESAR submission: Keyak v2. Candidate of CAESAR Competi-
tion, September 2016.

[BDPV11] Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. The
Keccak Reference. https://keccak.team/files/Keccak-reference-3.0.
pdf, January 2011. Version 3.0.

[DDS12] Itai Dinur, Orr Dunkelman, and Adi Shamir. New Attacks on Keccak-224 and
Keccak-256. In Anne Canteaut, editor, Fast Software Encryption — FSE 2012,
volume 7549 of Lecture Notes in Computer Science, pages 442-461, Washing-
ton, DC, USA, March 19-21, 2012. Springer, Heidelberg, Germany.

[DDS14a] Itai Dinur, Orr Dunkelman, and Adi Shamir. Collision Attacks on Up to 5
Rounds of SHA-3 Using Generalized Internal Differentials. In Shiho Moriai,

431

https://131002.net/data/papers/AM09.pdf
https://131002.net/data/papers/AM09.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf

[DDS14b)]

[DGPW12]

[DHVV18]

[DLWQ17]

[DMP+15]

[DV12]

[GLL*19]

[GLS16]

[HWX*17]

[LBDW17]

editor, Fast Software Encryption — FSE 2013, volume 8424 of Lecture Notes
in Computer Science, pages 219-240, Singapore, March 11-13, 2014. Springer,
Heidelberg, Germany.

Itai Dinur, Orr Dunkelman, and Adi Shamir. Improved Practical Attacks on
Round-Reduced Keccak. Journal of Cryptology, 27(2):183-209, April 2014.

Alexandre Duc, Jian Guo, Thomas Peyrin, and Lei Wei. Unaligned Rebound
Attack: Application to Keccak. In Anne Canteaut, editor, Fast Software
Encryption — FSE 2012, volume 7549 of Lecture Notes in Computer Sci-
ence, pages 402-421, Washington, DC, USA, March 19-21, 2012. Springer,
Heidelberg, Germany.

Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of Xoodoo and Xoofff. TACR Transactions on Symmetric Cryptology,
2018(4):1-38, 2018.

Xiaoyang Dong, Zheng Li, Xiaoyun Wang, and Ling Qin. Cube-like Attack on
Round-Reduced Initialization of Ketje Sr. TACR Transactions on Symmetric
Cryptology, 2017(1):259-280, 2017.

Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Cube Attacks and Cube-Attack-Like Cryptanalysis on the Round-
Reduced Keccak Sponge Function. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology — EUROCRYPT 2015, Part I, volume 9056 of
Lecture Notes in Computer Science, pages 733-761, Sofia, Bulgaria, April 26—
30, 2015. Springer, Heidelberg, Germany.

Joan Daemen and Gilles Van Assche. Differential Propagation Analysis of
Keccak. In Anne Canteaut, editor, Fast Software Encryption — FSE 2012, vol-
ume 7549 of Lecture Notes in Computer Science, pages 422-441, Washington,
DC, USA, March 19-21, 2012. Springer, Heidelberg, Germany.

Jian Guo, Guohong Liao, Guozhen Liu, Meicheng Liu, Kexin Qiao, and Ling
Song. Practical Collision Attacks against Round-Reduced SHA-3. Journal of
Cryptology, 2019. To appear.

Jian Guo, Meicheng Liu, and Ling Song. Linear Structures: Applications to
Cryptanalysis of Round-Reduced Keccak. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology — ASITACRYPT 2016, Part I, volume
10031 of Lecture Notes in Computer Science, pages 249-274, Hanoi, Vietnam,
December 4-8, 2016. Springer, Heidelberg, Germany.

Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional Cube Attack on Reduced-Round Keccak Sponge Func-
tion. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology — EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes
in Computer Science, pages 259-288, Paris, France, April 30 — May 4, 2017.
Springer, Heidelberg, Germany.

Zheng Li, Wenquan Bi, Xiaoyang Dong, and Xiaoyun Wang. Improved
Conditional Cube Attacks on Keccak Keyed Modes with MILP Method.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology
— ASTACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer
Science, pages 99-127, Hong Kong, China, December 3-7, 2017. Springer,
Heidelberg, Germany.

432

[LS19]

[LSLW17]

[MDV17]

[QSLG17]

[SGSL1§]

[SLG17]

[Thel5]

[Thel6]

[WYO05]

[WYYO05a)]

[WYYO05b]

Ting Li and Yao Sun. Preimage Attacks on Round-Reduced Keccak-224/256
via an Allocating Approach. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology — EUROCRYPT 2019, Part III, volume 11478 of
Lecture Notes in Computer Science, pages 556584, Darmstadt, Germany,
May 19-23, 2019. Springer, Heidelberg, Germany.

Ting Li, Yao Sun, Maodong Liao, and Dingkang Wang. Preimage Attacks on
the Round-reduced Keccak with Cross-linear Structures. TACR Transactions
on Symmetric Cryptology, 2017(4):39-57, 2017.

Silvia Mella, Joan Daemen, and Gilles Van Assche. New techniques for trail
bounds and application to differential trails in Keccak. TACR Transactions
on Symmetric Cryptology, 2017(1):329-357, 2017.

Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo. New Collision Attacks
on Round-Reduced Keccak. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology — EUROCRYPT 2017, Part 11, volume
10212 of Lecture Notes in Computer Science, pages 216-243, Paris, France,
April 30 — May 4, 2017. Springer, Heidelberg, Germany.

Ling Song, Jian Guo, Danping Shi, and San Ling. New MILP Modeling:
Improved Conditional Cube Attacks on Keccak-Based Constructions. In
Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology — ASI-
ACRYPT 2018, Part 11, volume 11273 of Lecture Notes in Computer Science,
pages 65-95, Brisbane, Queensland, Australia, December 2-6, 2018. Springer,
Heidelberg, Germany.

Ling Song, Guohong Liao, and Jian Guo. Non-full Sbox Linearization: Appli-
cations to Collision Attacks on Round-Reduced Keccak. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology — CRYPTO 2017, Part I,
volume 10402 of Lecture Notes in Computer Science, pages 428-451, Santa
Barbara, CA, USA, August 20-24, 2017. Springer, Heidelberg, Germany.

The U.S. National Institute of Standards and Technology. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions . Federal Infor-
mation Processing Standard, FIPS 202, 5th August 2015.

The U.S. National Institute of Standards and Technology. SHA-3 Derived
Functions: ¢cSHAKE, KMAC, TupleHash and ParallelHash. NIST Special
Publication 800-185, 21st December 2016.

Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, Advances in Cryptology — EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 19-35, Aarhus,
Denmark, May 22-26, 2005. Springer, Heidelberg, Germany.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, Advances in Cryptology — CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science, pages 17-36, Santa
Barbara, CA, USA, August 14-18, 2005. Springer, Heidelberg, Germany.

Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search
Attacks on SHA-0. In Victor Shoup, editor, Advances in Cryptology —
CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
1-16, Santa Barbara, CA, USA, August 14-18, 2005. Springer, Heidelberg,
Germany.

433

A Analytic Model In |K|K| Trail Search

The candidate By structures of 3, 4, and 5 orbitals are listed in this section. The [
structures of 6 and even 7 orbitals can be deduced in the same way. As there are too many
structures, we omit them.

The n orbitals in «; are denoted as p1,q1,------ , P, @n With coordinates (xp,, Yp,, 2p;)
and (z4;,Yy,, 24;) Tespectively. Note it is possible that two orbitals are in the same slice z
in a, i.e., there may exist z; and z; so that z; = z; (i,7 € {1,2,--- ,n}). The 2n bits are
transformed to bits p}, ¢}, - -- , Dy q), at 81 through p, and to bits pf,qf,------ D
at (1 through 7.

/
B1
Elap% 921 LN 1> P2, D3 21
7 o2a 2y M1 5,447 %

(a) A candidate 51 structure {37 3}.
A1

o
1| [pe][ps -z1 e
q1| |q2|193 22 _> MZZ
Z1 22 23 mZS 23

(b) A candidate j; structure {2,2,2}.

Figure 8: Candidate (3; structures of 3 orbitals.

434

a1 B, B
B]ypz pz pﬁzl @]J)zvp} p4)21
q1 QQ CI3 Q4
21 22 23 24 22 17(12#1 Q4Z2

(a) A candidate ;1 structure {4,4}.
B B

!/

p2 P3| P4 2 Phpapspl s
q1|92]| 93)| 94] > Iz 5
5 g 45 Bg

Z1 Z2 %3 24 “3 TR

(b) A candidate §1 structure {4,2,2}.

b B
4 %
91|92 93] 94] Py z§ LN zé
Z1 %2 23 24 2 a5, Py 2

(c) A candidate ﬂl structure {3,3,2}.
&3}

P1||P2||P3||P4 21 Zi
ng IS 45, 3 2
A e M 23

21 22 23 24 -Z4 24/1

(d) A candidate (3 structure {2,2,2,2}.

Figure 9: candidate (51 structures of 4 orbitals

435

b
PLpas P, 210 10, P, P2

q1)92|(93)|94/ 95 1 45 44 %5 N a1, 45 457
21 22 23 24 25 a5, d4, P 25 5, 4, P

(a) A candidate ﬁl structure {4, 3, 3}.

A
pLpapsp] # plps . pF
m SN
21 22 23 24 %5 4, PY 2 4, Dy 24
(b) A candidate 61 structure {4, 4, 2}.
A

3P4||P lvp » P35, P4, PH Zl P1,P2,P35P4,D Zi
1)/92]|93)|94||95 » 92, ngg Zé

21 Z9 23 24 %5 m 23 zé

(c) A candidate 51 btructure {5,3,2}.

b1
le NS
yA y4
aladlaaladas ,qq 2w, H107.3 %

Z1 %2 23 %4 %5 24/1 TN
(d) A candidate S1 structure {3,3,2,2}(a).
B

1
m 2 2
/
q1)92||93]|94|95 ,q,q Zé LMZ?
Z3 43, D, Ziﬂ

(e) A candidate 51 structure {3,3,2,2}(b).

/
b1

Loy, pdzr PPy pY s
a4, 4 z’ 2!
0192/ |93)|q4] g5 = 4’ 2 7, 44,95 %

Z3 CIQ 7p£ Z;
21 %2 23 24 %5 ZAI; 24

(f) A candidate S structure {3,3,2,2}(c).

Figure 10: Candidate 31 structure of 5 orbitals.

436

/

a1 B b1

P1[p2 P3| pa|Ps 2 5. pE. iz
/ /

q1/|92193/|94/ 95 £> Z2 1> Z2

! !
05, 43 %3 4, a5 3
21 %2 73 24 %5 N 45, 44)%a
(a) A candidate §; structure {4, 2,2, 2}.
B A

s P75 2

q2| |43) |94]|95 m’z‘l \(14_,]91-3 %

Z1 22 23 Z4 Z5 ﬁsﬂzs (J”api Zé
(b) A candidate 3y structure {2,2,2,2,2}.

1| [P2 [P3] [P4|[P5 -2’1 2
ﬁz,p§ % lg,py %

Figure 11: Candidate ; structure of 5 orbitals.

437

	Introduction
	The birth of Keccak
	The security status of Keccak
	Differential trail search
	Our contributions

	Keccak and Propagation Properties
	Keccak
	Propagation properties of linear layer operations

	3-Round Differential Trail Cores
	3-round trail cores
	Classification of 3-round trail cores

	Generating |K|K| Trail Cores
	Generating target 1
	Exhaustive search algorithm of |K|K| trail cores

	Generating |N|K| and |N|N| Trail Cores
	Propagation property of out-Kernel 1
	The ideal improvement assumption
	The 3-round trail core search
	The list of assumptions used to exhaustively cover the search space

	Generating |K|N| Trail Cores
	The ideal improvement assumption in compensating 2
	Counting Row3 of theoretical representatives
	Search strategy of |K|N| 3-round trail cores

	Search Result And Bounds for Trails Covering More Rounds
	Summary of the search result
	Bounds for 4/5/6-round trails

	Conclusion
	Analytic Model In |K|K| Trail Search

