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Abstract. We propose an improved and extended approach of the multiple linear
cryptanalysis presented by A. Biryukov et al. at CRYPTO 2004 that exploits dominant
and statistically independent linear trails. While they presented only rank based
attacks with success probability 1, we present threshold based attacks as well as
rank based ones using newly introduced statistic that is a linear combination of
the component statistics for the trails and is an approximation of the LLR statistic.
The rank based Algorithm 1 style attack yields the same estimate for the gain with
Biryukov et al.’s Algorithm 1 style attack. For each of the threshold based Algorithm
1 style and Algorithm 2 style attacks, we provide a formula for its advantage in terms
of the correlations of the trails, the data complexity, and the success probability in
case the aimed success probability is not 1. Combining the threshold based attacks
with the rank based ones, we get attacks each of which has better estimates for the
advantage compared to the threshold based one in case the aimed success probability
is close to 1. We then extend the methods to get a new framework of multiple
linear attacks exploiting close-to-dominant linear trails that may not be statistically
independent. We apply the methods to full DES and get linear attacks using 4 linear
trails with about the same or better complexity compared to those presented at
ASIACRYPT 2017 that use 4 additional trails. With data complexity less than 241,
the attack has better complexity than existing attacks on DES.

Keywords: multiple linear approximation · linear cryptanalysis · success probability ·
false alarm · attack complexity · multivariate normal distribution · statistical model ·
DES

1 Introduction
Since first introduced by Matsui [Mat93], the linear attack has been regarded as one of the
most important attacks against block ciphers. The attack has evolved into many variants
and extensions. The original linear attack was extended to an attack using linear hulls
containing many nondominant linear trails [Nyb94, Ohk09].

B. Kaliski Jr. and M. Robshaw presented an Algorithm 1 style attack using multiple
linear approximations [JR94]. But it has a severe limitation that it is applicable only when
all the parity bits of the approximations are equal.

A. Biryukov et al.[BCQ04] presented Algorithm 1 style and Algorithm 2 style attacks
that use independent and dominant linear trails, not imposing such condition on the parity
bits. Their attack is based on a maximum likelihood approach and they provided a formula
for the gain or advantage of the attack in terms of the sum of the squared correlations of
the linear approximations and the data complexity. It is essentially an exhaustive search
based on the rank of a statistic so that the success probability of the attack is 1. But
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they could not provide ways to get an estimate for the advantage in terms of the success
probability and the data complexity for success probability not 1.

M. Hermelin et al. introduced the multidimensional linear attack [CHN08, HCN09,
HVLN15, HCN19], exploiting the linear span of possibly statistically dependent multiple
linear approximations in an attempt to improve the approach in [BCQ04]. They used
LLR statistics or χ2 statistics to provide an explicit formula for the success probability in
terms of the advantage and presented examples for which such estimates can be regarded
reasonable. The multidimensional linear attack has proven to be powerful against some
ciphers including PRESENT [Cho10].

But, in its original form, it is not more efficient than the attack in [BCQ04] when
using several dominant linearly independent linear trails and, mainly from this reason,
arguably the most efficient multiple linear attack on DES is not a multidimensional one as
of now [BV17]. A recent attack on DES employed the method of multidimensional linear
cryptanalysis but used a new statistic that is separable [FS18]. But the computational
complexity of the attack does not seem to be fully established since the complexity of
some additional computation is not theoretically analyzed and it does not seem to be
experimentally verified.

A. Bogdanov and P. Vejre [BV17] presented a multiple linear attack on DES using 8
linearly dependent approximations, 4 of which are linearly independent. They introduced
a new right key/wrong key model for the joint distribution of correlations for multiple
approximations and proposed a new classifier. They were able to get an attack on DES with
the smallest combined computational and data complexity at the time of the publication.
Their estimates are valid under the assumption that the right key/wrong key distribution
they approximated are accurate, and they presented supporting experimental results.

E. Biham and S. Perle proposed the conditional linear cryptanalysis and applied it to
DES yielding an attack having the smallest complexity on the cipher as of now [BP18].
They presented an attack with both data and time complexity below 242 while maintaining
the success probability of 0.85.

In this work, we propose an improved and extended method of the multiple linear
cryptanalysis presented at CRYPTO 2004. We present three versions of Algorithm 1 style
attacks and Algorithm 2 style attacks. They are threshold based one, rank based one, and
one combining the two. By using suitable linear combination of trail statistics, for each
version, we can provide an explicit formula for the advantage in terms of the correlations
of the trails, the data complexity, and the success probability. We also extend the methods
and present a framework of multiple linear cryptanalysis using trails that are possibly not
dominant or not statistically independent. The framework is very different from the one
for the multidimensional linear attacks. Applying the Algorithm 2 style attacks to DES in
a straightforward way, we get attacks that are comparable with the most efficient ones. A
comprehensive list of attacks on DES can be found in [BP18].

Our Contribution.

• We propose an improved and extended approach of the multiple linear cryptanalysis
presented by A. Biryukov et al. at CRYPTO 2004 that exploits dominant and
statistically independent linear trails. We introduce a new statistic that is a linear
combination of the component statistics for the trails and apply it in three versions of
Algorithm 1 style and Algorithm 2 style attacks. It is an approximation of the LLR
statistic and enables us to get an explicit formula for the estimate of the advantage
for each attack in terms of the correlations of the trails, the data size and the success
probability for each of the versions.

• We develop a new framework of multiple linear cryptanalysis that can exploit multiple
linear trails that are close-to-dominant.
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Table 1: Comparison of Recent Attacks on DES
Attack Data Time pS Reference
Multiple 242.78 238.86 0.85 [BV17]

LC 241.00 249.76 0.80
MultiDim. 241.81 241.81 +O(241.81) 0.83 [FS18]

LC 241.85 241.85 +O(241.85) 0.85
Conditional 242.00 241.00 0.82 [BP18]

LC 241.90 241.90 0.85
241.00 250.00 0.92
240.00 252.00 0.82

Multiple 242.75 238.87 0.85 This Work
LC 242.00 242.35 0.80

241.90 243.77 0.85
241.00 248.17 0.80
241.00 249.23 0.95
240.00 251.14 0.80
240.00 251.89 0.95

• We present a linear attack on the full DES that uses just 4 independent linear trails.
The advantage of the attack is about the same or larger compared to that of the
attack by A. Bogdanov and P. Vejre presented at ASIACRYPT 2017 that uses 4
more linear trails. Moreover, with relatively small data complexity, the attack has
smaller complexity than the best currently known attack on DES [BP18] as in Table
1. We verify by experiments that the success probability and the attack complexity
are correctly predicted.

Organization of the Paper. In Sect. 2 we present the terminology and notations used in
the paper together with an overview of previous related works. In Sect. 3 we describe the
new method of multiple linear attack using dominant and statistically independent trails.
In Sect. 4 we reformulate classical Matsui’s algorithms using a single dominant trail in the
framework of Sect. 3. In Sect. 5 we present an extended framework of the multiple linear
attack that deals with close-to-dominant trails that may not be statistically independent.
In Sect. 6 we present a new attack on full DES applying the method and confirm that
the theoretical estimates for the success probabilities and attack complexities are close to
the experimental ones. In Sect. 7 we discuss additional issues and details regarding the
presented framework. We conclude in Sect. 8.

2 Preliminaries

2.1 Terminology and Notations

The field with 2 elements, the ring of integers, and the field of real numbers are denoted
by F2, Z, and R, respectively. For integers i, j with i ≤ j, the set of integers x such that
i ≤ x ≤ j is denoted by [i..j]. The Boolean inner product of a w-bit mask γ and a w-bit
value x is defined to be ⊕w−1

i=0 γ[i] · x[i] and is denoted by 〈γ, x〉, where ⊕ and · denote the
XOR and AND operation, respectively.
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Figure 1: a long-key cipher

For a Boolean function G : Fl2 → F2, the correlation of G is defined to be the imbalance

1
2l
∑

x∈Fl2
(−1)G(x) = 1

2l (|{x : G(x) = 0}| − |{x : G(x) = 1}|) .

For a vectorial Boolean function F : Fl2 → Fm2 , an l-bit mask γ, and an m-bit mask γ′,
the (linear) correlation of F with respect to the mask pair (γ, γ′) is defined to be the
correlation of the Boolean function G given by G(x) = 〈γ, x〉 ⊕ 〈γ′, F (x)〉 and is denoted
by ε(γ, γ′;F ). Thus

ε(γ, γ′;F ) = 1
2l
∑

x∈Fl2
(−1)〈γ,x〉⊕〈γ

′,F (x)〉

For real numbers µ and σ > 0, the normal distribution with the mean µ and the standard
deviation σ is denoted by N (µ, σ2). The probability density function for N (µ, σ2) is
denoted by φ(µ, σ; ·) so that

φ(µ, σ;x) = 1√
2πσ

e−
(x−µ)2

2σ2 .

The cumulative distribution function of the standard normal distribution is denoted by Φ.
The (central) chi square distribution with degree of freedom m, denoted by χ2

m, is the
probability distribution of Z2

1 + · · · + Z2
m where Z1, · · · , Zm are independent, standard

normal random variables. The noncentral chi square distribution with degree of freedom
m and noncentrality parameter λ, denoted by χ′2m(λ), is the probability distribution of
Z2

1 + · · ·+ Z2
m where Z1, · · · , Zm are independent, normal random variables with variance

1 and
∑m
j=1 E(Zj)2 = λ.

For a vector µ and a matrix Σ, the multivariate normal distribution with mean µ and
covariance Σ is denoted by N (µ,Σ). Thus the probability density function for N (µ,Σ) is

1
(2π)m/2|det(Σ)|1/2

e−
(x−µ)TΣ−1(x−µ)

2 .

For a vector v = (v1, · · · , vm) ∈ Rm, the diagonal m ×m matrix M with M(i, i) = vi
for each i is denoted by diag(v). The m × m identity matrix is denoted by Im. By
abuse of notation, for real vectors v,w ∈ Rm, the real-valued inner product of v and w
is also denoted by 〈v,w〉. For a real vector v, the length of v is denoted by |v|. Thus
|v| = 〈v,v〉1/2. The determinant of a square matrix M is denoted by det(M). The
concatenation of bit strings is denoted by ‖.

2.2 Linear Trails and Linear Hulls
Let E be a key-alternating iterative block cipher obtained from the long key cipher Ẽ and
the key scheduling function ψ. Let k, n, and R be the key size, the block size, and the
number of rounds of E, respectively. So Ẽ is a function FRn2 × Fn2 → Fn2 defined by

Ẽ(rk0‖rk1‖ · · · ‖rkR−1, x) = FR(rkR−1 ⊕ · · ·F2(rk1 ⊕ F1(rk0 ⊕ x)) · · · )
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as in Fig. 1, where each Fi is a fixed n-bit permutation, ψ is a function Fk2 → FRn2 , and
E(K,x) = Ẽ(ψ(K), x) for (K,x) ∈ Fk2 × Fn2 . Now let γ and γ′ be n-bit masks. We denote
ε(γ, γ′; Ẽ(rk, ·)) by ε(γ, γ′; Ẽ, rk) for each long key rk. Note that ε(γ, γ′; Ẽ, rk) is the
correlation of the cipher Ẽ with the initial mask γ and the final mask γ′ for the long key
rk. Thus

ε(γ, γ′; Ẽ, rk) = 1
2n
∑

x∈Fn2
(−1)〈γ,x〉⊕〈γ

′,Ẽ(rk,x)〉.

Here, the pair (γ, γ′) of masks is called a linear approximation of Ẽ.
Let Γ = [Γ0, · · · ,ΓR] be a linear trail of Ẽ. We define επ(Γ; Ẽ, rk) to be

(−1)
⊕R−1

i=0
〈Γi,rki〉ε(Γ0,ΓR; Ẽ, rk)

and call it the parity-adjusted correlation of the linear hull for the long key rk and the
linear trail Γ.

For each linear trail Γ, we call the set of linear trails that share the same initial mask
and final mask with Γ the linear hull of Γ. Note that for two linear trails Γ and Γ′ in the
same linear hull, |επ(Γ; Ẽ, rk)| = |επ(Γ′; Ẽ, rk)|.

Let D be the data of size N that is obtained from Ẽ(rk, ·). So D consists of N pairs
(P, Ẽ(rk, P )) of plaintexts and ciphertexts. We define the undersampled correlation of
Ẽ(rk, ·) for the mask pair (γ, γ′) and data D as

1
N

∑
(P,C)∈D

(−1)〈γ,P 〉⊕〈γ
′,C〉

and denote it by ε̂(γ, γ′; Ẽ, rk, D).
We then define the parity-adjusted undersampled correlation ε̂π(Γ; Ẽ, rk, D) of the

linear hull for the long key, the data, and the linear trail Γ as

(−1)
⊕R−1

i=0
〈Γi,rki〉ε̂(Γ0,ΓR; Ẽ, rk, D).

So |ε̂π(Γ; Ẽ, rk, D)| = |ε̂π(Γ′; Ẽ, rk, D)| for two linear trails Γ and Γ′ in the same linear
hull.

When rk is the long key corresponding to K for the block cipher E, we also denote
ε̂(γ, γ′; Ẽ, rk, D), ε(γ, γ′; Ẽ, rk), ε̂π(Γ; Ẽ, rk, D), and επ(Γ; Ẽ, rk) by ε̂(γ, γ′;E,K,D),
ε(γ, γ′;E,K), ε̂π(Γ;E,K,D), and επ(Γ;E,K), respectively.

We also define C(Γ; Ẽ) to be
R−1∏
i=0

ε(Γi,Γi+1;Fi+1)

and call it the (key independent) correlation of the trail Γ. For simplicity, we omit Ẽ or E
in the notation when no ambiguity is caused. For example, ε̂(γ, γ′;E,K,D) and C(Γ; Ẽ)
are abbreviated as ε̂(γ, γ′;K,D) and C(Γ), respectively.

For a linear trail Γ, we denote the linear hull of Γ by H(Γ) and( ∑
Λ∈H(Γ)

C(Λ)2)1/2
by CH(Γ). H(Γ) and CH(Γ) are also denoted by H(γ, γ′) and CH(γ, γ′), respectively,
where γ is the initial mask and γ′ is the final mask of Γ. We have the following basic
theorem regarding the key-dependent correlation of the linear hull [DR02]:
Theorem 1. The linear correlation of a linear hull is the sum of the parity-adjusted
correlation of the linear trails in it. That is, for masks γ, γ′ and a long key rk for Ẽ, we
have

ε(γ, γ′; Ẽ, rk) =
∑

Γ∈H(γ,γ′)

(−1)
⊕R−1

i=0
〈Γi,rki〉C(Γ; Ẽ).
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Table 2: Notations for correlations
Notation [Abbrev.] Definition Meaning
ε(γ, γ′; Ẽ, rk) 1

2n
∑

x∈Fn2
(−1)〈γ,x〉⊕〈γ′,Ẽ(rk,x)〉 correlation

ε(γ, γ′; rk) of the linear hull
ε̂(γ, γ′; Ẽ, rk, D) 1

N

∑
(P,C)∈D

(−1)〈γ,P 〉⊕〈γ′,C〉 undersampled correlation
ε̂(γ, γ′; rk, D) of the linear hull
επ(Γ; Ẽ, rk)

(−1)
⊕R−1

i=0
〈Γi,rki〉ε(Γ0,ΓR; Ẽ, rk)

parity-adjusted
επ(Γ; rk) correlation

ε̂π(Γ; Ẽ, rk, D)
(−1)

⊕R−1
i=0
〈Γi,rki〉ε̂(Γ0,ΓR; Ẽ, rk, D)

parity-adjusted
ε̂π(Γ; rk, D) undersampled correlation
C(Γ; Ẽ) ∏R−1

i=0 ε(Γi,Γi+1;Fi+1) correlation
C(Γ) of the linear trail

Theorem 2 provides an interpretation of CH(γ, γ′) whose square is also called the
expected linear potential of the linear hull [Nyb94].

Theorem 2. The average of the squares of the correlations of a linear hull over the long
keys is the sum of the squares of the correlations of the linear trails in the linear hull. That
is,

Erk(ε(γ, γ′; Ẽ, rk)2) = CH(γ, γ′)2

2.3 Basic Statistics for Linear Cryptanalysis Using a Single Linear Trail
2.3.1 Statistic for Algorithm 1 Style Attack

In Algorithm 1 style attack, given a linear trail Γ = [Γ0, · · · ,ΓR] for the full cipher E
and a key K∗, and a data D = {(Pi, EK∗(Pi)) : i = 1, . . . , N} of size N , we consider the
statistic

τ I(Γ,K∗, D) := Nε̂(Γ0,ΓR;E,K∗, D)

and try to restore the parity bit β∗ =
⊕R−1

i=0 〈Γi, rk∗i 〉 before trial encryption, where rk∗i is
the i-th round key derived from K∗ for i = 0, · · · , R− 1.

2.3.2 Statistic for Algorithm 2 Style Attack

In Algorithm 2 style attack using a single trail, we try to add more rounds to the trail before
and after it. Such rounds that are added to the trail will be called outer rounds. Suppose
that we have an r-round linear trail Γ = [Γs, · · · ,Γs+r] with the correlation ε = C(Γ) for
an R-round block cipher E with R ≥ s+ r. We need to compute 〈Γs, Xi

s〉 ⊕ 〈Γs+r, Xi
s+r〉

for each data entry (Pi, Ci) with Ci = E(K∗, Pi), where Xi
s and Xi

s+r are the intermediate
states for the start of the s-th round and the end of the (s+ r − 1)-th round, respectively,
that is Xi

s = E|s−1
0 (K,Pi) and E|R−1

s+r (K,Xi
s+r) = Ci for each K. (For integers r1, r2 with

0 ≤ r1 ≤ r2 < R, E|r2
r1

denotes the subcipher of E spanning from the start of the r1-th
round to the end of the r2-th round. So, for example, E|R−1

0 = E.) In the computation
of 〈Γs, Xi

s〉 ⊕ 〈Γs+r, Xi
s+r〉, part of the round key bits for the outer rounds are involved.

We call such bits of outer round keys as outer key bits and denote the concatenation of
the outer key bits by κ. Thus 〈γs, Xi

s〉 ⊕ 〈γs+r, Xi
s+r〉 can be expressed as g(κ, Pi, Ci) for

some function g. Then we define

τ(Γ,K∗, κ,D) :=
∑

i
(−1)g(κ,Pi,Ci).

Sometimes, D = {Pi : i = 1, ..., N} is data of plaintexts only and in this case τ(Γ,K∗, κ,D)
is defined as ∑

i
(−1)g(κ,Pi,EK∗ (Pi)).
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In most of Algorithm 2 style attacks, we need to calculate τ(Γ,K∗, κ,D) for all κ’s. In
this step that is called the analysis phase, we usually perform the data compression first
to reduce the computational cost. The data compression in linear attack is a process
that collapses the data into a new data with multiplicity considering the outer round
computations. So the “compression function” Hc : F2n

2 → Fd2 with 2d � N we need to get
for the data compression is one such that the computation of g(κ, P,C) can be carried out
using κ andHc(P,C) or such that there is a function h such that g(κ, P,C) = h(κ,Hc(P,C))
for any (P,C). Once we have a compression function, we apply it to the data to get the
compressed data

{(v, nv) ∈ Fd2 × Z : nv = |{i : Hc(Pi, Ci) = v}|}.

Then we can compute τ(Γ,K∗, κ,D) for each κ as∑
v:h(κ,v)=0

nv −
∑

v:h(κ,v)=1

nv.

If h(κ, v) can be expressed as h′(κ⊕ v), we can use the Fast Walsh-Hadamard Transform
(FWHT) to reduce the computational complexity as described in [CSQ07].

In some of Algorithm 2 style attacks, we also try to recover the parity bit

β∗ =
s+r−1⊕
i=s
〈Γi, rk∗i 〉

additionally before trial encryption.

2.4 Previous Works
2.4.1 Linear attacks using a single approximation

Matsui’s attack on DES [Mat93] used a dominant linear trail and implicitly assumed the
following hypotheses:

Hypothesis 1. For a dominant trail Γ of E, επ(Γ;K∗) is very close to C(Γ) regardless
of the key K∗.

Hypothesis 2. In Algorithm 2 style attack using a dominant trail Γ, τ(Γ,K∗, κ,D)/2n
is very close to 0 for any wrong outer key κ with the full codebook D for K∗.[BCQ04]

In general, we can regard επ(Γ;K∗) as a random variable, letting the key K∗ vary.
Also, letting the key K∗ and the data D of size N vary, we can regard ε̂π(Γ;K∗, D) as
a random variable. In Algorithm 2 style attack, under Hypothesis 1 and 2, it can be
presumed that

(−1)β
∗
τ(Γ,K∗, κ,D)/N ∼ N (C(Γ), 1/N)

for the correct outer key κ and

τ(Γ,K∗, κ,D)/N ∼ N (0, 1/N)

for wrong κ’s where β∗ is the parity bit.
A. Selçuk presented a rank based Algorithm 2 style attack using a dominant trail

assuming that the wrong key statistics are independent and that the right key statistics
and the order statistics for the wrong key statistics are independent [Sel08]. He considered
the rank of the outer key candidates κ with respect to the value |τ(Γ,K∗, κ,D)| for given
data D as in [JV03] and derived an attack with the success probability

Φ
(√

N |C(Γ)| − Φ−1(1− 2−a−1)
)
, (1)

where a is the advantage of the attack defined as follows:
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Definition 1 (Advantage). A linear attack has advantage a with success probability p if
the search for the right candidate key stops after trying 2l−a−1 candidate keys on average
when the number of candidate keys is 2l and the search is successful with probability p.

Thus a threshold based linear attack has advantage a with success probability p if the
right candidate key satisfies the threshold condition with probability p and there are 2l−a
wrong candidate keys on average satisfying the same threshold condition. In a rank based
attack, the advantage can be estimated differently depending on the attack method.

• In a rank based attack using the order statistic (e.g. [Sel08, JV03, HCN19]), one
considers the probability that the right candidate key is found among the 2l−a highest
ranked candidates as the success probability for each preassigned advantage a. When
the search is performed among the 2l−a highest ranked candidates, it is expected to
stop after trying 2l−a−1 ones on average if successful.

• In our rank based attack, we analyze the average proportion of candidate keys that
are ranked higher than the right key candidate similarly as in [BCQ04].

• In our combined attack, we analyze the average proportion of candidate keys that are
ranked higher than the right key candidate and satisfies the threshold condition after
preassigning a threshold parameter corresponding to the aimed success probability.

We say that a linear trail Γ is significant in its hull if CH(Γ) 6= 0 and |C(Γ)|/|CH(Γ)| is
considerably large. Regarding significant trails, Hypotheses 3 and 4 are postulated [BN16,
BN17].

Hypothesis 3 (Right key randomization). Let Γ be a significant trail such that its linear
hull does not have other significant trails. Then επ(Γ;K∗) has the normal distribution with

mean C(Γ) and variance CH(Γ)2 − C(Γ)2

as the key K∗ varies.
Also, ε̂π(Γ;K∗, D) has the normal distribution with

mean C(Γ) and variance CH(Γ)2 − C(Γ)2 +B/N

as the key K and the data D of size N vary, where B = (2n −N)/(2n − 1) or 1 depending
on whether the data is sampled with or without replacement.

Note that in many recent works, the distribution of ε(Γ0,ΓR, ;K∗) is considered and
it is presumed to have the normal distribution with mean 0 and variance CH(Γ)2(e.g.
[DR07]). If the linear hull of a significant trail Γ contains other significant ones, επ(Γ;K∗)
does not have the normal distribution in general and Algorithm 1 style attacks described
in [RN13, AR16] can be applicable in this case.

Hypothesis 4 (Wrong key randomization). In Algorithm 2 style attack using a significant
trail Γ whose linear hull does not have other significant trails, τ(Γ,K∗, κ, D̄)/2n has the
normal distribution with

mean 0 and variance 2−n

as the wrong outer key κ varies when D̄ is the full codebook for K∗.
Also, τ(Γ,K∗, κ,D)/N has the normal distribution with

mean 0 and variance 2−n +B/N

as the wrong outer key κ and the data D of size N vary, where B is the same as in the
preceding hypothesis.

Hypothesis 1 and 2 can be considered to be in accordance with Hypothesis 3 and 4
only when N � 2n.
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2.4.2 Linear attacks using multiple approximations

Multiple Linear Cryptanalysis. B. Kaliski Jr. and M. Robshaw [JR94] presented an
Algorithm 1 style attack exploiting m linear trails Γ1, · · · ,Γm using the statistic

m∑
j

εjτ
I(Γj , D)/(N

∑
j

|εj |)

varying data D of size N , where εj = C(Γj) for each j. (For the definition of the component
statistic τ I(Γj , D) for each j, see Sect. 3.1.) But the attack is valid only when the m
parity bits are always the same regardless of K∗. They assumed the independence of the
statistics τ I(Γ1, D), · · · , τ I(Γm, D) as D varies.

A. Biryukov et al. [BCQ04] used the “quadratic” statistic∑
j

(
(−1)βj εj − τ I(Γj , D)/N

)2 = ε2 − 2
∑
j

(−1)βj εjτ I(Γj , D)/N +
∑
j

τ I(Γj , D)2/N2

(2)
in their Algorithm 1 style attack exploiting m dominant and statistically independent
trails, where β1, · · · , βm are binary variables. Letting β∗ = (β∗1 , · · · , β∗m) be the correct
parity bit vector as described in Sect. 3.1, they assumed that the statistic vector

((−1)β
∗
1 τ I(Γ1, D)/N, · · · , (−1)β

∗
mτ I(Γm, D)/N)

approximately has the distribution of m-variate normal distribution with mean

(ε1, · · · , εm)

and covariance (1/N)Im. They derived an explicit formula for the gain of the attack with
rank based approach, where the gain of an attack is defined as follows [BCQ04]:

Definition 2 (Gain). The gain of a linear attack is

−log2
2L− 1

2k ,

with L being the average number of keys that are checked until the correct k-bit key for
the block cipher is found.

Note that for a linear attack with success probability 1, its gain is almost equal to its
advantage. The gain of their attack was obtained as

−log2

2−m+1
∑
β 6=β∗

Φ
(
−
√
N

2 |cβ − cβ
∗ |

)
+ 2−m

 ,

where
cβ = ((−1)β1ε1, · · · , (−1)βmεm)

based on the estimate of the average number of false alarms β obtained as∑
β 6=β∗

Φ
(
−
√
N

2 |cβ − cβ
∗ |

)
. (3)

The success probability of their attack is 1 since it is an efficient exhaustive search based
on the rank of the parity bit vectors β = (β1, · · · , βm) with respect to the statistic (2).
They used similar statistic to get an Algorithm 2 style attack, where they assumed in
addition that τ(Γj , κ,D)/N has a normal distribution with mean 0 regardless of wrong
outer key κ. But it is not clear whether they incorporated the distribution of the statistics
for wrong outer keys in their analysis of the Algorithm 2 style attack.
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Multidimensional Cryptanalysis. M. Hermelin et al. presented the framework of multidi-
mensional linear cryptanalysis [CHN08, HCN09, HCN19] based on prior works [BJV04,
BV08]. They presented Algorithm 1 and Algorithm 2 style attacks using various statistics,
e.g., LLR(log-likelihood ratio) and χ2 statistic with different statistical models.

Definition 3 (LLR statistic). Let D0 and D1 be two probability distributions on {0, 1}m
with the pdf p0 and p1, respectively. Let S be a multiset with cardinality N consisting
of elements of {0, 1}m. Let p̂S : {0, 1}m → R be the pdf of the empirical probability
distribution obtained from S so that

p̂S(x) = |{y ∈ S : y = x}|/N

for each x ∈ {0, 1}m. Then the LLR statistic LLR(S,D1,D0) is defined as

LLR(S,D1,D0) = N
∑

x
p̂S(x) log p1(x)

log p0(x) .

In the rank based method using the LLR statistic or χ2 statistic, they assume that
the wrong key statistics are independent and that the right key statistics and the order
statistics for the wrong key statistics are independent similarly as in [Sel08]. The LLR
method is more powerful but can be regarded to be valid only when an accurate knowledge
of the key-dependent behavior of certain probability distribution is accompanied. So χ2

method is usually preferred(e.g. [Cho10]). In the χ2 method, the distribution of the m-bit
value

(〈γ1, x〉 ⊕ 〈γ′1, E(K,x)〉, · · · , 〈γm, x〉 ⊕ 〈γ′m, E(K,x)〉) (4)

is considered varying x ∈ Fn2 where each (γj , γ′j) is a pair of input mask and output mask
for a linear trail Γj such that Γ1, · · · , Γm are linearly independent.

Definition 4 (χ2 statistic). The χ2 statistic χ2(K) is

2mN
2m−1∑
i=0

(ηKi − 2−m)2

2−m ,

where ηKi is the probability that the above m-bit value (4) takes the value i for each
i = 0, · · · , 2m−1.

In the χ2 method, they used the fact that the key-dependent capacity defined as∑
(γ,γ′):linear combination of (γj ,γ′j)′s

ε(γ, γ′;K)2

is equal to χ2(K)/(2mN).
So in the χ2 method, the distribution of the statistic

∑
(γ,γ′)∈Λ ε(γ, γ;K)2 and its

undersampled counterpart can be considered for some set Λ of approximations instead.
The multidimensional cryptanalysis has the advantage that the size of the data needed for
the attack is inversely proportional to the capacity. But as observed in [HCN19], increasing
the number of linear approximations may decrease the advantage of the attack using χ2

statistics. Excluding linear approximations with very small squared correlation can increase
the advantage. Recently, K. Nyberg [Nyb19] introduced the affine linear cryptanalysis
that is expected to improve the complexity of the previous χ2 based multidimensional
attack by discarding trivial approximations.

The key-dependent behavior of the capacity for the multidimensional cryptanalysis
was studied in [HVLN15]. Some statistical models for right keys and wrong keys in the
key-dependent setting appeared in [BN17].
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Multivariate Linear Cryptanalysis. A. Bogdanov et al. [BTV18] presented the multivari-
ate linear cryptanalysis that considers the distribution of

(τ(Γ1,K, κ1, D)/N, · · · , τ(Γm,K, κm, D)/N).

They presumed Hypothesis 5 and 6 regarding multiple linear approximations (γj , γ′j)
(j = 1, · · · ,m) of a block cipher with linearly independent masks.

Hypothesis 5. The correlation vector (ε(γ1, γ′1;K), · · · , ε(γm, γ′m;K)) follows some
m-variate probability distribution Dm as the key K varies.

Hypothesis 6. In Algorithm 2 style attack, for a wrong outer key, the correlation vector
follows the m-variate normal distribution N (0, 2−nIm).

Under the hypotheses, they derived the following result:

Theorem 3. Assume that the correlation of any combination of two approximations among
(γj , γ′j)’s is 0. Then the vector of undersampled correlations measured with data of size N
has distribution Dm +N (0, 2−nIm) as the key and the data varies. For the wrong outer
keys, the undersampled correlation has distribution N (0, (2−n + 1/N)Im).

They also considered the χ2 statistic

T (κ) = 1
N

m∑
j=1

τ(Γj ,K∗, κj , D)2, (5)

where κj ’s are candidate outer keys involved in the outer computation for computation
of the undersampled correlation for Γj and κ is obtained by combining κj ’s removing
redundancy. The χ2 method does not require accurate knowledge on the key-dependent
distribution of correlation vectors and the χ2 statistic is separable in that it is the sum of
quantities that depend on part of the outer key.

2.4.3 Issues with linear attacks on full DES using multiple approximations

A. Biryukov et al. applied their method to full DES but were not able to get an efficient
attack [BCQ04]. One of the main reason is that they didn’t know how to get the tradeoff
between the success probability and the advantage for the attack. For example, their
Algorithm 2 style attack with success probability 1 does not give satisfactory advantage
when using the linear trails in [BV17]. The LLR based multidimensional attack has not
been so successful since no efficient ways to perform the analysis phase of computing
the statistic for all candidate keys have been known when using several trails with large
squared correlation: when the number of the guessed outer key bits is kO, the analysis
phase has been regarded to require at least O(2kO ) computation. (In fact, LLR statistic is
separable when using dominant and statistically independent trails though it seems that
this fact has not been known before at least in the cryptographic context.1) Note that
the analysis phase was performed rather efficiently in the attack on PRESENT [Cho10].
The approach in [FS18] tried to resolve this issue regarding DES by introducing a new
separable statistic. When we apply the multivariate linear attack [BTV18] using some of
the trails presented in [BV17], the advantage of the attack is not large enough to yield
an efficient attack as discussed in Sect. 7. When using a small number of dominant and
statistically independent linear trails in the χ2 based multidimensional attack, the linear
approximations obtained by linear combinations of the trails (other than those obtained
from themselves) do not help to decrease the attack complexity due to having very small
squared correlations. So χ2 based multidimensional attack is not more efficient than the

1The separability was noticed by K. Nyberg during communication with us.
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multivariate linear attack. The linear statistic we use enables us to get large advantage
when used with a small number of dominant trails in an attack combining the threshold
based method and the rank based one. Also, it is separable so that we can perform the
analysis phase rather efficiently running a small number of FWHT(fast Walsh-Hadamard
Transform)’s [CSQ07] on relatively small-sized domains. Thus we can get simple and
arguably the most efficient multiple linear attacks on full DES using 4 of the linear trails
in [BV17].

3 New Methods of Multiple Linear Cryptanalysis

In this section, we present three Algorithm 1 style attacks and three Algorithm 2 style
attacks that use dominant and independent linear trails. The three Algorithm 1 style
attacks are Algorithm 1MT, Algorithm 1MR, and Algorithm 1MC. Algorithm 1MT and
Algorithm 1MR are threshold based and rank based, respectively, and Algorithm 1MC
combines the two methods. Similarly, we have three variants Algorithm 2MT, Algorithm
2MR, and Algorithm 2MC of Algorithm 2 style attacks. Algorithm 1MR yields the same
advantage as the Algorithm 1 style attack given in [BCQ04] though different statistics
are used. Algorithm 2MR yields similar but more precise estimation of the Algorithm
2 style attack with more reasonable statistical model for wrong key statistics. All the
attack methods are quite new. First, we define a new linear statistic both for Algorithm
1 and Algorithm 2 style attacks. Also the analysis using this linear statistic with the
multivariate normal distribution considering the wrong key types is novel. Throughout
this section, we assume that the unknown k-bit key K∗ and its corresponding long key rk∗
as well as the long key cipher Ẽ and the block cipher E with n-bit blocks are fixed. We
also assume that we have fixed m linear trails Γ1, · · · ,Γm spanning from the start of the
s-th round to the end of the (s+ r − 1)-th round such that each trail is dominant in its
linear hull or |CH(Γj)| ≈ |C(Γj)| for each j and the trails are statistically independent.
An extended method that can exploit close-to-dominant linear trails that may not be
statistically independent will be presented in Sect. 5. We assume further that the size N
of the data is very small compared to 2n so that 1/N + 2−n ≈ 1/N . We let εj = C(Γj) for
each j and let ε = (

∑
j ε

2
j )1/2.

3.1 Description of Algorithm 1 Style Attacks

In this attack, we use full round trails and try to recover parity bits. So we assume that
we have m dominant linear trails Γj ’s for the full cipher. Let β∗j be the parity bit for the
j-th trail for each j = 1, · · · ,m. Let D be the available data of size N . We consider the
following linear statistic

T I(β, D) :=
m∑
j=1

(−1)βj εjτ Ij (D)

for each candidate β = (β1, · · · , βm) of β∗ = (β∗1 , · · · , β∗m), where

τ Ij (D) := τ I(Γj , D) = Nε̂(Γj ;K∗, D)

for each j. Let t be the threshold parameter that will be determined according to the
aimed success probability. We have three versions of the Algorithm 1 style attacks, called
Algorithms 1MT, 1MR, and 1MC, that are described below. They have different estimates
on the success probability and the attack complexity.
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3.1.1 Algorithm 1MT: Threshold based

We first compute τ Ij (D) for each j and then compute T I(β, D) for each β. We determine
β to be possibly correct if it satisfies the threshold condition

T I(β, D) ≥ tNε2.

For each possibly correct β’s, check whether it is indeed the correct one by trial encryption.
The attack fails if β∗ does not satisfy the threshold condition.

3.1.2 Algorithm 1MR: Ranking based

After computing T I(β, D) for each β as in Algorithm 1MT, sort the list of all β’s according
to the value T I(β, D) in the descending order. Then check β’s one by one considering the
order in the list by trial encryption.

3.1.3 Algorithm 1MC: Combined

After computing T I(β, D) for each β, pick out β’s for which T I(β, D) ≥ tNε2. Sort the
list of selected β’s according to the statistic T I(β, D) in the descending order. Then check
all the β’s in the sorted list in the order until we find the correct one by trial encryption.
The attack fails if β∗ is not in the list.

3.1.4 False Alarm Probability

We need to clarify the meaning of the false alarm probability for each of the versions.
In Algorithm 1MT, the false alarm probability is the average proportion of the β’s that
satisfy the threshold conditions to 2m. In Algorithm 1MR, it is the average proportion
of the β’s that are ranked higher than β∗ in terms of the statistic to 2m. In Algorithm
1MC, it is the average proportion of the β’s that satisfy the threshold condition and are
ranked higher than β∗ in terms of the statistic to 2m. False alarm probabilities can be
also defined similarly for the attacks to follow in this work.

3.2 Description of Algorithm 2 Style Attacks
We denote by κj the variable representing the candidate outer key for the trail Γj as
described in Sect. 2.3. For simplicity, we assume that bits of κ1‖ · · · ‖κm are identical
regardless of K or are independent. Combining κj ’s by taking bits from κj ’s and removing
redundancy, we get the candidate outer key κ. We denote by kjO the number of bits of
κj for each j. We denote by kO the number of bits of κ so that 2kO is the number of
candidate outer keys. As described in Sect. 2.3, we can get the statistic

τj(κj , D) := τ(Γj , κj , D)

for each j by outer round computation. Let t be the threshold parameter and let D be
the available data of size N . We also have three versions of the Algorithm 2 style attacks,
called Algorithms 2MT, 2MR, and 2MC, that are described below. In each of the versions,
the first step is to compute the following linear statistic

T (κ,β, D) :=
∑
j

(−1)βj εjτj(κj , D) (6)

for each (κ,β), where β is a candidate for the binary vector β∗ consisting of the correct
parity bits.
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Alg. 1 Algorithm 2MT

[Step 1] For each j = 1, · · · ,m, get a list [((−1)βj εjτj(κj , D), (κj , βj)) : κj ∈ Fk
j
O

2 , βj ∈ F2]
of size 2k

j
O

+1.
[Step 2] Compute T (κ,β, D) for some (κ,β)’s and get the list of all (κ,β)’s for which
T (κ,β, D) ≥ tNε2.
[Step 3] For each (κ,β) in the list, try to recover all the key bits by trial encryption.

3.2.1 Algorithm 2MT

Algorithm 2MT is performed as in Alg. 1. After Step 1, we pick out (κ,β)’s satisfying
the threshold condition

T (κ,β, D) ≥ tNε2.

Then we check each selected one by trial encryption. In general we do not need to compute
T (κ,β, D) for all (κ,β)’s in Step 2 since we might be able to discard many (κ,β)’s for
free if, for example, we sort the m lists obtained in Step 1 before Step 2.

3.2.2 Algorithm 2MR

After Step 1 of Algorithm 2MT, sort the list of all (κ,β)’s according to the statistic
T (κ,β, D) in the descending order. Then check (κ,β)’s one by one in the order by trial
encryption.

3.2.3 Algorithm 2MC

After Step 1 and 2 of Algorithm 2MT, sort the resulting list of (κ,β)’s according to the
value of T (κ,β, D) in the descending order. Then we try all the (κ,β)’s in the sorted list
in the order until we find the correct one.

3.3 Statistical Model, Success Probability, and Advantage
We fix the cipher E and the unknown key K∗ in this section and thus we will mostly drop
E,K∗ from the notations regarding the statistics.

3.3.1 Algorithm 1 Style Attacks

Letting D vary, we can regard

((−1)β
∗
1 ε1τ

I
1 (D), · · · , (−1)β

∗
mεmτ

I
m(D))

as a vector-valued random variable. For simplicity, we assume that the parity bits are
independent. To estimate the success probability and the false alarm probability of
Algorithm 1M, we presume the following hypothesis that extends Hypothesis 3 considering
the independence of the distribution of the undersampled correlations of the trails together
with the assumption that N � 2n.

Hypothesis 7. The random variable ((−1)β∗1 ε1τ I1 (D), · · · , (−1)β∗mεmτ Im(D)) has the m-
variate normal distribution with mean

µ = (Nε21, · · · , Nε2m)

and covariance matrix
Σ = diag(Nε21, · · · , Nε2m).
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Algorithm 1MT. Under Hypothesis 7, the success probability pS(t) is

PrD(T I(β∗, D) ≥ tNε2) = Pr(X1,··· ,Xm)∼N (µ,Σ)(
∑
j

Xj ≥ tNε2),

which equals Φ((1− t)
√
Nε) by Proposition 1.

Proposition 1. LetX = (X1, · · · , Xm) be a random variable having the m-variate normal
distribution with mean µ and covariance Σ = σσT , where σ is an invertible matrix. Let
a 6= 0 be an m-dimensional vector and b a real number. Then

PrX(〈a,X〉+ b ≥ 0) = Φ
(
(〈a,µ〉+ b)/|σTa|

)
.

We will use Proposition 1 extensively in this work. Its proof will be provided in the
Appendix. To consider the false alarm probability, we classify the wrong keys as follows:
Let J be a proper subset of [1..m]. β is called the wrong key of type J if

• βj = β∗j for j ∈ J , and

• βj 6= β∗j for j /∈ J .

Note that when β is the wrong key of type J , the probability that it is a false alarm is

PrD
(
T I(β, D) ≥ tNε2

)
= Pr(X1,··· ,Xm)∼N (µ,Σ)(

∑
j∈J Xj −

∑
j /∈J Xj ≥ tNε2)

which equals

Φ

√N
ε

(
∑
j∈J

ε2j −
∑
j /∈J

ε2j − tε2)


by Proposition 1. Thus, considering all the wrong key types, we have

Theorem 4. Under Hypothesis 7, the false alarm probability pfa(t) of Algorithm 1MT is

1
2m

∑
J([1..m]

Φ

√N
ε

(
∑
j∈J

ε2j −
∑
j /∈J

ε2j − tε2)

 .

Algorithm 1MR. The success probability is 1 since we try all β’s. We consider the same
vector-valued random variable ((−1)β∗1 ε1τ I1 (D), · · · , (−1)β∗mεmτ Im(D)) as in the case of
Algorithm 1MT. For a wrong key β of type J , the probability that β is a false alarm is

PrD
(
T I(β, D) ≥ T I(β∗, D)

)
= Pr(X1,··· ,Xm)∼N (µ,Σ)

(∑
j /∈J Xj ≤ 0

)
which equals Φ

(
−
√
N
∑
j /∈J ε

2
j

)
by Proposition 1. Considering all the wrong key types,

we have

Theorem 5. Under Hypothesis 7, the false alarm probability of Algorithm 1MR is

1
2m

∑
J([1..m]

Φ
(
−
√
N
∑

j /∈J
ε2j

)
.

This is the same result as Theorem 1 of [BCQ04] in view of (3) as expected from the
arguments in Sect. 7.1.
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Algorithm 1MC. The success probability is Φ((1 − t)
√
Nε) as in Algorithm 1MT. To

consider the false alarm probability, we again consider the same vector-valued random
variable as in the case of Algorithm 1MT and Algorithm 1MR. For a wrong key β of type
J , the probability that β is a false alarm is

PrD
(
T I(β, D) ≥ T I(β∗, D), T I(β, D) ≥ tNε2

)
= Pr(X1,··· ,Xm)∼N (µ,Σ)

(∑
j /∈J Xj ≤ 0,

∑
j∈J Xj −

∑
j /∈J Xj ≥ tNε2

)
= Pr(Y1,··· ,Ym)∼N (0,Im)

(∑
j /∈J εjYj ≤ −

√
N(
∑
j /∈J ε

2
j ),∑

j∈J εjYj −
∑
j /∈J εjYj ≥

√
N(tε2 −

∑
j∈J ε

2
j +

∑
j /∈J ε

2
j

)
under Hypothesis 7. In the last expression

∑
j∈J εjYj and

∑
j /∈J εjYj are two independent

random variables that jointly have a 2-variate normal distribution by Proposition 2 which
is a rephrasement of Proposition 1.

Proposition 2. Let X = (X1, · · · , Xm) be the random variable as in Proposition 1. Let
a 6= 0 be an m-dimensional vector. Then 〈a,X〉 is a random variable having the normal
distribution with mean 〈a,µ〉 and standard deviation |σTa|.

So the false probability for wrong keys of each type is the probability that a vector-valued
random variable having a 2-variate normal distribution takes a value in the intersection of
two half spaces, one coming from the threshold condition and the other coming from the
rank condition. Such value can be easily computed numerically or by simulation.

3.3.2 Algorithm 2 Style Attacks

To estimate the false alarm probabilities for Algorithm 2 style attacks, we classify the
wrong keys as follows: Let JO and JI be subsets of [1..m]. For JO ( [1..m], a candidate
outer key κ is called a wrong key of type JO if

• κj = κ∗j for j ∈ JO, and

• κj 6= κ∗j for j /∈ JO.

For (JO, JI) 6= ([1..m], [1..m]), a pair (κ,β) of a candidate outer key and an m-bit value is
called a wrong key of type (JO, JI) if

• κj = κ∗j for j ∈ JO,

• κj 6= κ∗j for j /∈ JO,

• βj = β∗j for j ∈ JI , and

• βj 6= β∗j for j /∈ JI .

We denote the set of all wrong keys of type JO and the set of all wrong keys of type
(JO, JI) by

W(JO) and W(JO, JI),

respectively. We let W([1..m]) := {κ∗} and W([1..m], [1..m]) := {(κ∗,β∗)} for complete-
ness. We remind that we let

T (κ,β, D) =
m∑
j=1

(−1)βj εjτj(κj , D)
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for each data D of size N , outer key κ, m-bit value β = (β1, · · · , βm). Let D be the
available data of size N . For each type JO, letting (κ, D) vary with κ ∈ W(JO), we can
regard

((−1)β
∗
1 ε1τ1(κ1, D), · · · , (−1)β

∗
mεmτm(κm, D))

as vector-valued random variable that we denote by XJO . For Algorithm 2 style attacks,
we presume an extension of both Hypothesis 3 and 4, also considering the independence
of right key statistics and wrong key statistics for different trails, noting that N � 2n.
Specifically, we presume

Hypothesis 8. For each JO, XJO has the m-variate normal distribution with mean

(µ1, · · · , µm)

and covariance matrix
diag(Nε21, · · · , Nε2m),

where µj = Nε2j for j ∈ JO and µj = 0 for j /∈ JO.

We also presume a stronger hypothesis which further assumes the independence of
wrong key statistics and right key statistics for each trail. For each JO, let j1, · · · , ju be
the elements in [1..m] \ JO. Varying (κ, D) with κ ∈ W(JO), we can regard(

(−1)β
∗
1 ε1τ1(κ∗1, D), · · · , (−1)β

∗
mεmτm(κ∗m, D), εj1τj1(κj1 , D), · · · , εjuτju(κju , D)

)
as vector-valued random variable that we denote by X̃JO . Thus X̃[1..m] = X[1..m]. The
stronger hypothesis we presume is

Hypothesis 9. For JO = {j1, · · · , ju} or JO = ∅ (in which case u = 0), X̃JO has the
(m+ u)-variate multivariate normal distribution with mean

(µ1, · · · , µm+u)

and covariance matrix
diag(σ2

1 , · · · , σ2
m+u),

where (µj , σ2
j ) = (Nε2j , Nε2j ) for j ∈ [1..m] and (µm+l, σ

2
m+l) = (0, Nε2jl) for j = 1, · · · , u.

We will denote the distribution of XJO and X̃JO by DJO and D̃JO , respectively, for
each JO.

Algorithm 2MT. The success probability of the attack is

Pr(X1,··· ,Xm)∼D[1..m]

(∑
j
Xj ≥ tNε2

)
which is equal to Φ((1− t)

√
Nε) under Hypothesis 8 by Proposition 1. To consider the

false alarm probability, we consider the false alarm probability for each wrong key type.
Let JO = {j1, · · · , ju} or JO = ∅ (in which case u = 0). Under Hypothesis 9, the false
alarm probability pT,(JO,JI)

fa (t) for wrong keys (κ,β) of type (JO, JI) is

Pr(X1,··· ,Xm+u)∼D̃JO

 ∑
j∈JO∩JI

Xj −
∑

j∈JO\JI

Xj +
u∑
l=1

(−1)βjlXm+l ≥ tNε2
 ,

which equals

Φ

√N
ε

 ∑
j∈JO∩JI

ε2j −
∑

j∈JO\JI

ε2j − tε2


by Proposition 1. Thus we have
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Theorem 6. Under Hypothesis 9, the false alarm probability pTfa(t) of Algorithm 2MT is

∑
(JO,JI):wrong

|W(JO)|
2kO+m Φ

√N
ε

 ∑
j∈JO∩JI

ε2j −
∑

j∈JO\JI

ε2j − tε2
 .

We call the wrong key type (JO, JI) with JO = ∅ the major (wrong) key types. All the
component outer keys of the wrong keys of the major types are wrong. Note that wrong
keys of the major types occupy the great majority of the set of the false alarms and pTfa(t)
is approximated by the summation of the terms over (JO, JI) with JO = ∅, which is equal
to

|W(J∅)|Φ(−t
√
Nε)/2kO ≈ Φ(−t

√
Nε)

in many cases. This is mostly the case when each kjO is not very small or Nε2 is not very
large.

Algorithm 2MR. The success probability is 1. To estimate the false alarm probability,
we consider the false alarm probability for each wrong key type. Let (JO, JI) be a wrong
key type. Let j1, · · · , ju be elements of [0..m] \ JO. The false alarm probability pR,(JO,JI)

fa
for wrong keys (κ,β) of type (JO, JI) is

PrD,κ∈W(JO) (T (κ,β, D) ≥ T (κ∗,β∗, D))
= PrX̃JO

(
−2
∑
j∈JO\JI (−1)β

∗
jXj −

∑
j:j≤m,j /∈JO Xj +

∑u
l=1(−1)β

∗
jlXm+l ≥ 0

)
which is equal to

Φ
(
−
(
N

(∑
j∈JO\JI

ε2j + 1
2
∑

j∈[1..m]\JO
ε2j

))1/2
)

by Proposition 1 under Hypothesis 9. Considering the false alarm probabilities for all
wrong key types, we have the following result:

Theorem 7. Under Hypothesis 9, the false alarm probability pRfa of Algorithm 2MR is

∑
(JO,JI):wrong

|W(JO)|
2kO+m Φ

(
−
(
N

(∑
j∈JO\JI

ε2j + 1
2
∑

j∈[1..m]\JO
ε2j

))1/2
)
. (7)

The false alarm probability pRfa is approximated by the summation of the terms over
(JO, JI) with JO = ∅, which is equal to

|W(∅)|Φ
(
−
√
N

2 ε
)
/2kO ≈ Φ

(
−
√
N

2 ε
)

(8)

in many cases. But the difference between the estimate of the advantage obtained from (7)
and the approximated advantage obtained from (8) ignoring the wrong keys other than of
the major types can be large in some cases. For example, assume that we proceed with
Algorithm 2MR using m = 4 linear trails. Assume also that κj ’s does not have any bits
in common with each other, kjO = 6 for each j, and |ε1| = |ε2| = |ε3| = |ε4|. Then the
advantage −log2(pBfa)− 1 and the approximate gain −log2(Φ(−

√
N
2 ε))− 1 are 23.68 and

26.04, respectively when Nε2 = 64. The difference gets larger as N increases.
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Figure 2: Region Rc,t when c > 0, 0 < t < 1

Algorithm 2MC. The success probability of the attack is Φ((1 − t)
√
Nε) as for Algo-

rithm 2MT. To estimate the false alarm probability, for each wrong key type (JO, JI), we
need to compute the false alarm probability pC,(JO,JI)

fa (t) that is equal to

PrD,κ∈W(JO)
(
T (κ,β, D) ≥ T (κ∗,β∗, D), T (κ,β, D) ≥ tNε2

)
.

We can compute pC,(JO,JI)
fa (t) numerically or by simulation for each (JO, JI) since it is the

probability that the random variable X̃JO having a multivariate normal distribution lies
in the intersection of two half spaces, one coming from the threshold condition and the
other from the ranking condition. Actually, we can get the probability as the probability
that a vector-valued random variable having a 4-variate normal distribution takes a value
in the intersection of two half spaces: Let

U =
∑
j∈JO∩JI Xj ,

V =
∑
j∈JO\JI Xj ,

W =
∑u
l=1(−1)β

∗
jlXm+l,

Z =
∑
j∈[1..m]\JO Xj .

Then U, V,W,Z are independent, U ∼ N (µU , σ2
U ), V ∼ N (µV , σ2

V ), W ∼ N (µW , σ2
W ),

Z ∼ N (µZ , σ2
Z), for some µU , σV , · · · , µZ , σZ , that are easily computable in terms of JO,

JI , N and εj ’s by Proposition 2. Then

p
C,(JO,JI)
fa (t) = Pr(U,V,W,Z)(−2V +W − Z ≥ 0, U − V +W ≥ tNε2).

For the wrong key types with JO = ∅, we can get a simple expression for pC,(JO,JI)
fa (t) : In

this case

PrD,κ∈W(JO)
(
T (κ,β, D) ≥ T (κ∗,β∗, D), T (κ,β, D) ≥ tNε2

)
= PrX̃JO

(∑
j(−1)βjXm+j ≥

∑
j Xj ,

∑
j(−1)βjXm+j ≥ tNε2

)
.

Letting U =
∑
j(−1)βjXm+j and V =

∑
j Xj , the probability becomes

Pr(U,V )∼N ((0,Nε2),(Nε2)I2)(U ≥ V,U ≥ tNε2) =
∫
R√Nε,t

φ(0, 1;x)φ(0, 1; y) dx dy,

where Rc,t is the region {(x, y) ∈ R2 : y ≥ x + c, y ≥ tc}(cf. Fig. 2). So we have the
following result:
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Theorem 8. Under Hypothesis 9, the false alarm probability pCfa(t) of Algorithm 2MC
satisfies

pC(t) < pCfa(t) < pC(t) +
∑

(JO,JI):wrong
with JO 6=∅

|W(JO)|
2kO+m min

(
p
T,(JO,JI)
fa (t), pR,(JO,JI)

fa

)
,

where pC(t) := |W(∅)|
2kO

∫
R√Nε,t

φ(0, 1;x)φ(0, 1; y) dx dy.

Note that pCfa(t) ≈ pC(t) ≈ PrX∼N (0,I2)(X ∈ R√Nε,t) in many cases.

Relation between the advantage and the false alarm probability. According to Defini-
tion 1, the advantage of Algorithm 2MT with success probability pS(t) = Φ((1− t)

√
Nε)

is −log2(pTfa(t)). But the advantage of Algorithm 2MR with the success probability of
1 is −log2(pRfa) − 1 and that of Algorithm 2MC with the success probability pS(t) is
−log2(pCfa(t))− 1.

3.4 The Linear Statistic
3.4.1 Geometric Description

To illustrate the linear statistic defined as (6), we consider the Algorithm 2 style attack with
m = 2. The distribution of the statistic vectors (τ1(κ1, D)/N, τ2(κ2, D)/N) for varying κ,
D are as follows under Hypothesis 8:

• When κ is fixed at the correct outer key κ∗ and D varies, the distribution of the statis-
tic vector has a 2-variate normal distribution with mean C0,0 = ((−1)β∗1 ε1, (−1)β∗2 ε2).

• When (κ, D) varies with κ1 = κ∗1 and κ2 6= κ∗2, the distribution has mean C0,1 =
((−1)β∗1 ε1, 0).

• When (κ, D) varies with κ1 6= κ∗1 and κ2 = κ∗2, the distribution has mean C1,0 =
(0, (−1)β∗2 ε2).

• When (κ, D) varies with κ1 6= κ∗1 and κ2 6= κ∗2, the distribution has mean C1,1 = (0, 0).

Each of the 4 distributions has the same covariance matrix
√

1/NI2. In previous works,
the second and third distributions were ignored. For the time being, let us assume that
(−1)β∗1 ε1 > 0 and (−1)β∗2 ε2 > 0. (Other cases can be considered in the same way.)

The red line in the left subfigure of Fig. 3 depicts the set of vectors (x1, x2) ∈ R2

satisfying
(−1)β

∗
1 ε1x1 + (−1)β

∗
2 ε2x2 = tε2.

Each of the black lines depict the set of vectors satisfying

(−1)β1ε1x1 + (−1)β2ε2x2 = tε2

for some β = (β1, β2) with β1 6= β∗1 or β2 6= β∗2 . So for the correct β, we can detect the
correct outer key using the threshold condition probabilistically. For the smaller t, the
success probability, or the probability of detection is larger. The probability that κ with
κ1 6= κ∗1 and κ2 6= κ∗2 satisfies the threshold condition is the same regardless of β due to
the symmetry of the distribution of the statistic vectors for such κ’s with varying D. Such
probability gets smaller as t gets larger. The blue lines in the right subfigure depicts the
threshold lines for different threshold parameters t.
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Figure 3: Centers of statistic vectors and the threshold lines

3.4.2 Relation with the LLR statistic

In this section we will show that when we use dominant and statistically independent
trails, our statistic is very close to the LLR statistic up to a constant when the data size N
is O(ε−2). This implies that we can get similar attacks with the LLR statistic as with our
statistic such that the success probabilities and the advantages are almost identical. For
real numbers c1, · · · , cm such that −1 ≤ cj ≤ 1, let B(c1, · · · , cm) denote the probability
distribution on {0, 1}m with the pdf p defined by

p(x1, . . . , xm) =
m∏
j=1

1 + (−1)xjcj
2

for each (x1, . . . , xm) ∈ {0, 1}m. SoB(c1, · · · , cm) is the joint distribution ofm independent
binary random variables Xj ’s such that Pr(Xj = 0) = (1 + cj)/2 for each j = 1, · · · ,m.
We consider the Algorithm 2 style attacks described in Sect. 3.2. Let D be a data of
size N . Let Sκ,D be the multiset that consists of elements of {0, 1}m obtained by the
outer round computations for the trails using D and κ. Let Sκ be such a multiset for the
full codebook and let Dκ be the empirical probability distribution on {0, 1}m obtained
from Sκ for each κ. For each j, let Sjκ,D be the multiset that consists of elements of
{0, 1} obtained by the outer round computations for the j-th trail using D and κ. By the
dominance and the independence of the trails, Dκ is assumed to be the joint distribution
of independent binary random variables for each κ and, in particular, Dκ∗ is assumed to
be B((−1)β∗1 ε1, · · · , (−1)β∗mεm). Now the LLR statistic described in [HCN19] is

Λ(κ,β, D) := LLR(Sκ,D,B((−1)β1ε1, · · · , (−1)βmεm),B(0, · · · , 0)).

Since LLR statistic is separable as shown in Appendix, Sect. D,

Λ(κ,β, D) =
∑

j
LLR(Sjκ,D,B((−1)βj εj),B(0))

= N
(∑

j

(
1+τj(κj ,D)/N

2 log(1 + (−1)βj εj) + 1−τj(κj ,D)/N
2 log(1− (−1)βj εj

))
= N

∑
j

(
(−1)βj εj τj(κj ,D)

N − ε2
j

2 +O(ε3j )
)

= T (κ,β, D)− Nε2

2 +O(|ε|)

So the threshold condition T (κ,β, D) ≥ tNε2 is about the same condition as Λ(κ,β, D) ≥
(t − 1

2 )Nε2, for example. Note that the Algorithm 2 style attack using LLR static as
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described in [HCN19] provides approximate estimates for the advantage in a different
setting with the assumption that all the wrong key distributions are the same.

4 Matsui’s Algorithms Revisited
In this section, we briefly reformulate classical Matsui’s Algorithms that use a single linear
trail. All the results in this section can be regarded as the restatement of the results in
the preceding section, with the number m of used trails set to 1. But we present the
results in this separate section since the estimates of advantage and success probability
are simple and comparable with that of existing formulations summarized in [BT13]. We
also provide a self-contained proof in the Appendix. Throughout this section, we assume
that the k-bit key K∗ to recover and its corresponding long key rk∗ as well as the long key
cipher Ẽ and the block cipher E with n-bit blocks are fixed. So we also drop the cipher E,
the key K∗ and the trail Γ from the notations. We also assume that each linear trail Γ
used in the attack is dominant in its linear hull, or |C(Γ)| ≈ |CH(Γ)|. We assume further
that the size N of the data is very small compared to 2n as in Sect. 3.

4.1 Matsui’s Algorithm 1
4.1.1 Description

Assume that we have a dominant linear trail Γ for the full cipher E. We try to restore
the parity bit

∑R−1
i=0 〈Γi, rk∗i 〉 using a data D = {(Pi, Ci) : i = 1, . . . , N} of size N . For

that we compute τ I(Γ, D) and then determine the parity bit to be 0 or 1 according as
ετ I(Γ, D) ≥ 0 or not.

4.1.2 Success Probability

Let us consider the attack that uses a data D of size N . If we let D vary, we can regard
(−1)β∗ετ I(D) as a random variable. For the attack, we presume Hypothesis 10 that follows
from Hypothesis 1 that is regarded to be valid with N � 2n.

Hypothesis 10 (Right Key Hypothesis for Algorithm 1). The random variable (−1)β∗ετ I(D)
has the normal distribution with mean Nε2 and variance Nε2.

Under this hypothesis, the success probability of the attack is Φ(
√
N |ε|) (cf. Lemma 2

in [Mat93]).

4.2 Matsui’s Algorithm 2
Assume that we have an r-round linear trail Γ = [Γs, · · · ,Γs+r] with the correlation
ε = C(Γ) for a R-round block cipher E with R ≥ r + s. We try to add outer rounds
to Γ and recover some of the outer round key bits together with the parity bit using
D = {(Pi, Ci) : i = 1, . . . , N} of size N with Ci = E(K∗, Pi) for each i. Let β∗ be the
parity bit and let β denote the candidate value for β∗. Let κ denote the candidate for the
correct outer key κ∗. We write the statistic (−1)βετ(κ,D) as T (κ, β,D) for each (κ, β,D).
Note that κ∗ and β∗ are fixed since K∗ is. Let D be the available data of size N .

4.2.1 Description

Algorithm 2T. Compute the statistic T (κ, β,D) for each (κ, β). Then check only (κ, β)’s
that satisfy T (κ, β,D) ≥ tNε2 in the trial encryption.
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Algorithm 2R. After getting the list [T (κ, β,D), (κ, β)], sort the list of (κ, β)’s according
to the statistic in the descending order. Then try all the (κ, β)’s according to the rank
until we find the correct one.

Algorithm 2C. After computing the statistic T (κ, β,D) for each (κ, β), pick out (κ, β)’s
that satisfy the condition T (κ, β,D) ≥ tNε2. Sort the list of the selected (κ, β)’s according
to the statistic in the descending order. Then try all the (κ, β)’s in the sorted list according
to the order until we find the correct one.

4.2.2 Success Probability and Advantage

Letting D vary, we can regard (−1)β∗ετ(κ∗, D) as a random variable. Also, letting (κ,D)
vary with κ 6= κ∗. we can regard ετ(κ,D) as a random variable. Furthermore, letting
(κ,D) vary with κ 6= κ∗. we can regard ((−1)β∗ετ(κ∗, D), ετ(κ,D)) as a vector-valued
random variable. We presume Hypotheses 11 and 12 that follow from Hypotheses 1 and 2.

Hypothesis 11 (Right Key Hypothesis for Algorithm 2). (−1)β∗ετ(κ∗, D) has the normal
distribution with mean Nε2 and variance Nε2.

Hypothesis 12 (Wrong Key Hypothesis for Algorithm 2T). ετ(κ,D) has the normal
distribution with mean 0 and variance Nε2 as D and the wrong key κ varies.

We just need to presume Hypotheses 11 and 12 for Algorithm 2T. But Algorithm 2R and
2C require the following stronger hypothesis which additionally implies the independence
of the distributions of the undersampled correlations for wrong keys and right keys:

Hypothesis 13. The random variable ((−1)β∗ετ(κ∗, D), ετ(κ,D)) has the 2-variate nor-
mal distribution with mean (Nε2, 0) and covariance matrix (Nε2)I2.

We let K be the set of the candidate outer keys and let kO = log2 |K|.

Theorem 9. Under Hypothesis 11, the success probability of Algorithm 2T with the
threshold parameter t, data size N is Φ((1 − t)

√
N |ε|). Under Hypothesis 12, the false

alarm probability is

2kO − 1
2kO Φ(−t

√
N |ε|) + 1

2kO+1 Φ((−1− t)
√
N |ε|).

Note that the false alarm probability is very close to and not larger than Φ(−t
√
N |ε|)

for not too small kO. With this estimate, rather interestingly, the advantage of the attack
is the same as the one for the rank based attack by A. Selçuk given as (1).

Theorem 10. The success probability of Algorithm 2R is 1. Under Hypothesis 13, its
false alarm probability is

2kO − 1
2kO Φ

(
−
√
N

2 |ε|
)

+ Φ(−
√
N |ε|)

2kO+1 .

Note that pfa ≈ Φ(−
√
N/2|ε|) when kO is not too small.

Theorem 11. Under Hypothesis 13, the success probability of Algorithm 2C with the
threshold parameter t, data size N is Φ((1− t)

√
N |ε|) and its false alarm probability is

2kO − 1
2kO

∫
R√N|ε|,t

φ(0, 1;x)φ(0, 1; y) dx dy + 1
2kO+1 q(

√
N |ε|, t),

where q is a function on R2 defined by q(x, t) = Φ(−x) for t ≤ 0 and q(x, t) = Φ(−(1 + t)x)
for t ≥ 0.
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Figure 4: Theoretical advantages of Algorithms 2T, 2R, and 2C

Note that q(
√
N |ε|, t) ≤ Φ(−

√
N |ε|) so that pfa(t) ≈ PrX∼N (0,I2)(X ∈ R√N |ε|,t)

in many cases. The advantages of the attack for various values of
√
N |ε| and success

probabilities are as in Fig. 4 in case kO is not too small. Note that when the aimed success
probability is close to 1, the advantage of Algorithm 2C over Algorithm 2T, which has
the same advantage as that of the linear attack in [Sel08], is quite visible, especially when√
N |ε| is large. For example, when

√
N |ε| = 4 and pS = 0.9, the advantages of Algorithm

2T and Algorithm 2C are 8.25 and 9.78, respectively.

5 Generalization

In this section, we provide a method of linear attack that uses several linear trails that are
not necessarily dominant. With certain constraints on the linear trails, we will presume
that vector-valued random variables consisting of component statistics for wrong keys
and right keys have multivariate normal distributions as in recent works [BV17, BTV18].
Under such a hypothesis, we provide a method of linear attack with the estimates on
success probability and false alarm probability in Sect. 3 and Sect. 5.3. Let E be an
R-round iterated cipher and 0 ≤ s < s+ r ≤ R. Assume that we have m ≥ 1 linear trails
Γj ’s spanning from the start of the s-th round to the end of the (s+ r − 1)-th round. We
impose the following constraints on the linear trails:

• The number m of used trails is small.

• Each trail is close-to-dominant. More specifically, for each j, |C(Γj)| ≥ CH(Γj)/2
and |C(Λ)| � |C(Γj)| for all Λ ∈ H(Γj) such that Λ 6= Γj .

Let εj = C(Γj) for each j and let ε = (
∑
j ε

2
j)1/2. For simplicity we assume that the

parity bits are independent. We do not fix K∗ so that κ∗ varies depending on K∗ in the
Algorithm 2 style attacks. But we fix the vector β∗ of correct parity bits so that we let
K∗ vary in such a way that its vector of parity bits is equal to β∗. We let K∗ be the set of
all K∗’s whose vector of parity bits are equal to β∗.
Let 1m be the vector in Rm such that each of its component is 1. For J ⊂ [1..m], let
Jc = [1..m] \ J and let eJ ∈ Rm be such that eJj = 1 for j ∈ J and eJj = 0 for j /∈ J .
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5.1 Algorithm 1 Style Attacks
5.1.1 Prerequisites

Letting the set D of plaintexts of size N and K ∈ K∗ vary , we can regard(
(−1)β

∗
1 ε1τ

I
1 (K,D), · · · , (−1)β

∗
mεmτ

I
m(K,D)

)
as a vector-valued random variable. For the generalized Algorithm 1 style attacks, we
presume

Hypothesis 14. The above vector-valued random variable has the m-variate normal
distribution with mean µ = (Nε21, · · · , Nε2j ) and covariance matrix Σ = σσT .

For the attack, we need to know Σ in advance.

5.1.2 Description

We also have three versions of Algorithm 1 style attacks that are carried out in the same
way as the Algorithms 1MT, 1MR, and 1MC described in Sect. 3.1 using the statistic
T I(K∗,β, D) :=

∑
j(−1)βj εjτ Ij (K∗, D).

5.1.3 Success Probability and Advantage

Let t be the threshold parameter.

Generalized 1MT. We use the threshold condition T I(K∗,β, D) ≥ tNε2. The success
probability is

1
(
√

2π)m|det(σ)|

∫
x:〈1m,x〉−tNε2≥0

e−
(x−µ)TΣ−1(x−µ)

2 dx,

under Hypothesis 14 which is equal to Φ((1− t)Nε2/|σT1m|) by Proposition 1. The false
alarm probability for wrong keys of type J is

1
(
√

2π)m|det(σ)|

∫
x:〈eJ−eJc ,x〉−tNε2≥0

e−
(x−µ)TΣ−1(x−µ)

2 dx,

which is equal to

Φ
(
N(
∑
j∈J ε

2
j −

∑
j /∈J ε

2
j − tε2)

|σT (eJ − eJc)|

)
under the same hypothesis, by Proposition 1. Thus we have

Theorem 12. Under Hypothesis 14, the false alarm probability of the Generalized 1MT is

1
2m

∑
J([1..m]

Φ
(
N(
∑
j∈J ε

2
j −

∑
j /∈J ε

2
j − tε2)

|σT (eJ − eJc)|

)
.

Generalized 1MR. The success probability is 1. Under Hypothesis 14, the false alarm
probability for wrong keys of type J is equal to

Pr(X1,··· ,Xm)∼N (µ,Σ)(
∑
j∈J Xj −

∑
j /∈J Xj ≥

∑
j Xj)

= Pr(X1,··· ,Xm)∼N (µ,Σ)(
∑
j /∈J Xj ≤ 0)

= |det(σ)|
(
√

2π)m
∫
x:〈eJc ,x〉≤0 e

− (x−µ)TΣ−1(x−µ)
2 dx,

which is equal to Φ
(
−N(

∑
j /∈J

ε2
j )

|σT eJc |

)
by Proposition 1. Thus we have
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Theorem 13. Under Hypothesis 14, the false alarm probability of the Generalized 1MR is

1
2m

∑
J([1..m]

Φ
(
−N(

∑
j /∈J ε

2
j )

|σTeJc |

)
.

Generalized 1MC. Under Hypothesis 14, the success probability is

Φ((1− t)Nε2/|σT1m|)

with threshold parameter t as for Generalized 1MT. Under the same hypothesis, the false
alarm probability of Generalized 1MC for wrong keys of type J is

pJfa(t) = Pr(X1,··· ,Xm)∼N (µ,Σ)(
∑
j /∈J

Xj ≤ 0,
∑
j∈J

Xj −
∑
j /∈J

Xj ≥ tNε2).

So the false alarm probability is

1
2m

∑
J([1..m]

pJfa(t).

5.2 Algorithm 2 Style Attacks
5.2.1 Prerequisites

To generalize the Algorithm 2 style attack presented in Sect. 3, we consider wrong key
types again. We remind that we have fixed β∗, but K∗ takes values in K∗ and is not fixed
and neither is κ∗. For each j, letting D, K and κj vary with κj being a wrong key for K
regarding Γj , we can regard εjτj(K,κj , D) as a real-valued random variable.

Hypothesis 15. For each j, the random variable εjτj(K,κj , D) has a normal distribution
N (0, σ2

j ) for some σj ≈
√
N |εj |.

Let JO ⊂ [1..m] be a key type. Let K∗ be a key and κ∗ be the correct outer key for K∗.
Then κ is called an outer key of type JO for K∗ if κ∗j = κj exactly for j ∈ J . We denote
by W(JO,K) the set of all outer keys of type JO for K. Letting (K,D,κ) vary, where D
is a set of plaintexts of size N , K is a key in K∗ and κ ∈ W(JO,K), we can regard(

(−1)β
∗
1 ε1τ1(K,κ1, D), · · · , (−1)β

∗
mεmτm(K,κm, D), εj1τj1(K,κj1 , D), · · · , εjuτju(K,κju , D)

)
as a vector-valued random variable that we denote by ỸJO . Let j1, · · · , ju be the elements
of [1..m] \ JO. The hypothesis we presume is

Hypothesis 16. For each JO, the vector-valued random variable ỸJO has the (m+ u)-
variate normal distribution with mean µ = (µ1, · · · , µm+u) and covariance Σ, where
µj = Nε2j for j ≤ m, µj = 0 for j > m and

Σ =
(

ΣR 0m×l
0l×m ΣWJO

)
,

where ΣR = σRσ
T
R for an invertible m×m matrix σR and ΣWJO = diag(σ2

j1
, · · · , σ2

ju
).

Here, ΣR is the joint distribution of statistics for the right keys and it does not depend
on JO. For the attack, we need to know ΣR and σj ’s in advance.
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5.2.2 Description

Let t be the threshold parameter and let D be the available data of size N . We also have
three versions of the generalized Algorithm 2 style attacks, called Generalized 2MT, 2MR,
and 2MC, that are carried out exactly in the same way as Algorithm 2MT, 2MR, and
2MC, respectively, using the statistic T (K∗,κ,β, D) =

∑
j(−1)βj εjτj(K∗,κ, D).

5.2.3 Success Probability and Advantage

Let t be the threshold parameter.

Generalized 2MT. Under Hypothesis 15, the success probability is Φ((1−t)Nε2/|σTR1m|)
with threshold parameter t. Let (JO, JI) be a wrong key type. Then, under Hypothesis
16, the false alarm probability pT,(JO,JI)

fa (t) for wrong keys of type (JO, JI) is

PrỸJO

 ∑
j∈JO∩JI

Yj −
∑

j∈JO\JI

Yj +
∑
l

(−1)βjlYm+l ≥ tNε2
 ,

which is equal to

Φ

 N(
∑
j∈JO∩JI ε

2
j −

∑
j∈JO\JI ε

2
j − tε2)(

|σTR(eJO∩JI − eJO\JI )|2 +
∑
l σ

2
jl

)1/2


by Proposition 1. The false alarm probability pTfa(t) is
∑

(JO,JI):wrong
|W(JO)|
2kO+m p

T,(JO,JI)
fa (t),

where |W(JO)| = |W(JO,K)| for any K.

Generalized 2MR. Success probability is 1. Under Hypothesis 16, for a wrong key type
(JO, JI), the false alarm probability pR,(JO,JI)

fa for wrong keys of type (JO, JI) is

PrỸJO
(∑

j∈JO∩JI Yj −
∑
j∈JO\JI Yj +

∑u
l=1(−1)βjlYm+l ≥

∑
j≤m Yj

)
= PrỸJO

(
−2
∑
j∈JO\JI Yj +

∑u
l=1(−1)βjlYm+l −

∑
j≤m,j /∈JO Yj ≥ 0

)
,

which is equal to

Φ
(

−N(2
∑
j∈JO\JI ε

2
j +

∑
j≤m,j /∈J ε

2
j )(

|σTR(−2eJO\JI − eJcO )|2 + (
∑
l σjl)2

)1/2
)

by Proposition 1. The false alarm probability pRfa is
∑

(JO,JI):wrong
|W(JO)|
2kO+m p

R,(JO,JI)
fa .

Generalized 2MC. Under Hypothesis 15, the success probability is Φ((1−t)Nε2/|σTR1m|)
just as in Generalized 2MT. The false alarm probability pC,(JO,JI)

fa (t) is

PrỸJO
(∑

j∈JO∩JI Yj −
∑
j∈JO\JI Yj +

∑
l(−1)βjlYm+l ≥ tNε2,

−2
∑
j∈JO\JI Yj + (−1)βjlYm+l −

∑
j≤m,j /∈JO Yj ≥ 0

)
.

Under Hypothesis 16, the false alarm probability pCfa(t) is∑
(JO,JI):wrong

|W(JO)|
2kO+m p

C,(JO,JI)
fa (t)

which can by computed by simulation.
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5.3 Attacks Using Close-to-dominant and Independent Trails
Suppose that we use m significant trails Γj ’s that are statistically independent, but not
dominant. Assume that we sample data with replacement and that the data size N is
negligible compared to 2n. For each j, let CH(Γj)2 = C(Γj)2 + ρ2

j . Then we can postulate
Hypothesis 14 and 16, where ΣR = diag((N2ρ2

1 +N)ε21, · · · , (N2ρ2
m +N)ε2m) in view of

Hypothesis 3 and from the statistical independence of the trails. Also we may assume that
ΣW [1..m] = diag(Nε21, · · · , Nε2m). From this, we can get an estimate for the advantage of
Algorithm 1 or Algorithm 2 style attack as provided in Sect. 5.1 and 5.2.

6 Application to DES
In this section, we apply the attack methods in Sect. 3 to the full DES without the initial
and final permutations.

6.1 Description of the Attack
We use 4 of the 8 14-round trails used in [BV17]. With the notations in [Mat93, BV17],
the trails Γj ’are as follows:
- Γ1 = γ1 represented as “-DCA-ACD-DCA-A”, ε1 = C(Γ1) = −2−19.75

- Γ2 = γ4 represented as “-ACD-DCA-ACD-E”, ε2 = C(Γ2) = −2−20.07

- Γ3 = δ3 represented as “A-ACD-DCA-ACD-”, ε3 = C(Γ3) = −2−19.75

- Γ4 = δ2 represented as “E-DCA-ACD-DCA-”, ε4 = C(Γ4) = −2−20.07

The trails are considered to be dominant and statistically independent. We try to
prepend 1 round and append 1 round simultaneously to the trails. The number of bits for
κj ’s are 12, 18, 12, and 18, respectively. κ1 and κ2 have 6 bits in common and so are κ3
and κ4. κ1‖κ2 and κ3‖κ4 do not have any bits in common. Thus κ has 48 bits. The 4
parity bits are independent. Let ε = (

∑4
j=1 ε

2
j )1/2 = 2−18.89.

Let N be the size of the available data D. We set the aimed success probability pS and
let t be the threshold parameter such that Φ((1 − t)

√
Nε) = pS . We first compress the

data for each trail and get 4 compressed sets of size 213, 219, 213, and 219, respectively.
We apply FWHT to each of the compressed set to get 4 lists Lj ’s such that

Lj = [((−1)βj εjτj(κj , D), (κj , βj)) : κj ∈ Fk
j
O

2 , βj ∈ F2]

for each j = 1, 2, 3, 4. The numbers of entries in Lj are 213, 219, 213, and 219 for j = 1, 2, 3, 4,
respectively. Since κ1 and κ2 have 6 bits in common, we combine L1 and L2 to get a list
L1,2 of size 226: L1,2 contains

(T 1,2(κ1,2, β1, β2), (κ1,2, β1, β2))

where κ1,2 is the 24-bit value obtained from combining κ1 with κ2 and

T 1,2(κ1,2, β1, β2) = (−1)β1ε1τ1(κ1, β1, D) + (−1)β2ε2τ2(κ2, β2, D)

for each (κ1,2, β1, β2). After combining the lists, we sort the resulting list L1,2 according
to the value T 1,2(κ1,2, β1, β2) to get a new list L′1,2. We can apply the efficient counting
sort algorithm by suitably rescaling the values T 1,2(κ1,2, β1, β2). In the same way, we also
get a list L3,4 and a sorted list L′3,4 of size 226 from L3 and L4. Using the sorted lists, we
get a new list

L = [(T (κ,β), (κ,β)) : T (κ,β) ≥ tNε2]

noting that
T (κ,β) = T 1,2(κ1,2, β1, β2) + T 3,4(κ3,4, β3, β4).
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Figure 5: Theoretical Complexity for Algorithm 2MC on DES

We have about 252pTfa(t) of (κ,β)’s satisfying T (κ,β) ≥ tNε2. After getting L, we sort it
and try all the (κ,β)’s in the sorted list by guessing 4 additional key bits. We do not need
the final sorting in Algorithm 2MT. Also we can do without the final sorting in Algorithm
2MC with little decrease in its advantage as explained in Sect. E of the Appendix.

6.2 Complexity of the Attacks
We consider the average complexity of Algorithm 2MT and 2MC with the aimed success
probability pS and the size of the available data N . We assume that 240.00 ≤ N ≤ 244.05.
Let t be the threshold parameter such that Φ((1− t)

√
Nε) = pS . Let C1 = 1/16 be the

computational complexity of 1 encryption round (including the key schedule). We estimate
the complexity of the compression step to be C1N similarly as in [BV17]. Considering the
FWHT applied 4 times, we estimate the complexity of Step 1 as C1(N+2·13·213+1.6+2·19·
219+1.6). The complexity of getting two lists L1,2 and L3,4 and sorting them is bounded by
C1(2 ·226 +2 ·226). Getting and sorting the list L costs C1(252+1pTfa(t)+26 ·226) by Lemma
1 in the Appendix since there are about 252pTfa(t) of (κ,β)’s satisfying T (κ,β) ≥ tNε2.
Thus, ignoring the negligible terms, we estimate the complexity of Algorithm 2MC as

C1(N + 252+1pTfa(t)) + 252+4pCfa(t), (9)

where t = 1− Φ−1(pS)/(
√
Nε), and the amount of required memory is 252pTfa(t). But if

we do not perform the final sorting, then the complexity is

C1N + 252+4+αpCfa(t)

with required memory O(232), where α is negligible. The complexity of Algorithm 2MT is

C1N + 252+4−1pTfa(t) (10)

with required memory less than 230. We have presented the complexities given by (9) and
(10) in Fig. 5 varying N and pS .

The computational complexity presented in Fig. 5 seems to be very close to those
presented in Fig. 13 of [BV17] at first sight. For N near 242.6, they are close indeed. But
there is large difference for N less than 242.2 for large pS . For example, for N = 241.75, the
computational complexities are 245.47 and 246.28, for pS = 0.9 and pS = 0.95, respectively.
But those presented in [BV17] are about 248 and 252, respectively. Our estimates are
slightly better than those presented in [BP18] for N less than 241 as shown in Table 1.
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Figure 7: Theoretical and Experimental Advantages for Attacks on DES

6.3 Experimental Verification
We set the data size N to be 237.78+l with l = 0, 1, 2, 3, 4, or 5. We performed the
experiments using 1,000 keys. In each experiment, we fixed N , generated 1,000 keys,
and then generated data of size N with each key. For each (N,K) and aimed success
probability 0.85, 0.9 and 0.95, we proceeded with Algorithm 2MT/2MC until we get the
information necessary to estimate the success probability and the advantage. That is, we
stop when we know whether the attack is successful or not and we know the number of
the false alarms and the number of false alarms (κ,β) ranked higher in the list than the
correct key (κ∗,β∗). The theoretical estimates of advantages for Algorithm 2MT, 2MR,
and 2MC are as in Fig. 7 by Theorems 6, 7 and 8. For Algorithm 2MC, the lower bounds
for the advantage coming from the upper bounds on pCfa(t) are shown by thick curves. The
dotted curves show the approximate advantages obtained from only major wrong key types
for Algorithm 2MT, 2MR, and 2MC. For Algorithm 2MC, the difference between the lower
bound and upper bound for the estimates on pCfa(t) are visible for larger N . Note that the
advantages for 2MR are those for the Algorithm 2 style attacks in [BCQ04]. The small
rectangles and circles correspond to the experimental advantages for Algorithm 2MT and



Jung-Keun Lee and Woo-Hwan Kim 399

Algorithm 2MC . This result confirms the validity of our estimates of the advantage for
each attack.
In case N = 242.78, we used a single PC equipped with 1 Core i7 CPU and 2 GTX 1080
GPUs and the 1,000 experiments took about 3 months. Data generation requiring N DES
encryptions and data compression were performed on the GPUs and the other steps were
carried out on the CPU. In each of the test with one pair of (N,K), most of the time was
spent on the data generation and the CPU time for each test was just a few minutes or
less. The experimental success probabilities are depicted in Fig. 6 which confirms the
correctness of our estimates.

7 Discussion

7.1 Comparison with the Statistic Used in [BCQ04]
A. Biryukov et al.[BCQ04] used the “quadratic” statistic∑

j

(
(−1)βj εj − τ Ij (D)/N

)2 = ε2 − 2
∑
j

(−1)βj εjτ Ij (D)/N +
∑
j

τ Ij (D)2/N2

in their Algorithm 1 style attack. Note that it equals ε2 − 2T I(β, D)/N +
∑
j τ

I
j (D)2/N2

where T I(β, D) is the statistic we have used. Since ε2 is a constant and
∑
j τ

I
j (D)2/N2 is

also a constant for given data D, the rank of β with respect to their statistic is exactly the
same as its rank with respect to ours. It seems that the existence of the added quadratic
term

∑
j τ

I
j (D)2/N2 makes it hard to get a threshold based variant using their statistic.

7.2 The Validity of the Statistical Models
In [BTV18], it is shown that the distribution of the correlation vector may not be normal
taking an example of SMALLPRESENT, where they use many nondominant trails. But we
use a small number of linear trails that are close-to-dominant so we think that our models
do not contradict their observations. We do not claim that the right key statistics and
the wrong key statistics are always independent. But we think that such assumption is
reasonable in many cases considering similar hypothesis adopted in some of the rank based
Algorithm 2 style attacks [Sel08, HCN19]. We think that the validity of the statistical
models when using a small number of dominant and statistically independent trails has
been confirmed by our experiments with full DES. But the validity of the models presented
in Sect. 5 together with the efficiency of the attack methods using them needs to be checked
in future works.

7.3 Experimental Verification with full DES
We think that we have provided the most convincing experimental results for the claims
on the complexity of the attack on the full DES using multiple linear approximations.
We have performed key recovery experiments with 1,000 keys for data size up to 242.78

and provided the details of the used data. In [BV17], no experimental results with key
recovery are provided. Instead it is claimed that corroborating experimental results can be
obtained since the approximated distributions for right keys and wrong keys are accurate.
In [FS18], an experimental result with just 1 key is provided so that the claims therein do
not seem to be verified experimentally. In [BP18], experiments with 79 keys are claimed
to have been performed, but the experimental success probabilities and advantages were
not presented.
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Table 3: Comparison of Advantages for the χ2 method, Algorithm 2MT, and 2MC
N χ2 method Algorithm 2MT Algorithm 2MC

240.78 2.16 4.60 5.63
241.78 5.48 9.08 10.46
242.78 13.66 18.23 19.98

7.4 Necessity of Considering Wrong Key Types
To the best of our knowledge, all the previous works regarding multiple linear attacks
neglect the wrong key types other than the major ones. The consideration of such wrong key
types does not lead to improved attacks. On the contrary, it may decrease the advantage
of the attack. That is, there are cases we need to consider the other wrong key types to
prevent overestimation of the advantage as noted in Sect. 3.3.2 regarding Algorithm 2MR.
We can also observe difference between the advantage and the approximated advantage
in Algorithm 2MT and Algorithm 2MC. It seems straightforward to incorporate the
consideration of wrong key types into multivariate linear attacks using the χ2 statistic
since it is separable. It is not clear whether one can get a refined version of Biryukov et
al’s Algorithm 2 style attack that incorporates the wrong key types using their quadratic
statistic.

7.5 The Coefficients in the Linear Statistic
We have used the statistic T (K∗,κ,β) =

∑
j(−1)βj εjτj(K∗, κj , D) throughout the work.

Considering each τj(K∗, κj , D) as the component statistics, we have used the coefficients
(−1)β1ε1, · · · , (−1)βmεm in forming the linear combination. This yields good tradeoff
between the success probability and the advantage for the attack described in Sect. 3 using
dominant and statistically independent linear trails since it makes the linear combination
an approximation of the LLR statistic. In the generalized attack described in Sect. 5,
we can get estimates for success probability and advantage with different coefficients
by modifying the provided arguments. There will be better combination of coefficients
according to the distribution of right key statistics, but we leave the issue of getting the
optimal combination as future works.

7.6 Comparison with χ2 Method in [BTV18]
Though the multivariate linear cryptanalysis [BTV18] depends less on the knowledge of the
distribution of the statistic vectors, it has small advantage compared to Algorithm 2MC
(and even 2MT) when using dominant and statistically independent linear trails. When we
usem independent dominant trails with correlations ε1, · · · , εm, with data size N � 2n, the
success probability and the false alarm probability of the attack are PrX∼χ′2m(Nε2)(X ≥ θ)
and PrX∼χ2

m
(X ≥ θ), respectively, with the threshold condition

T (κ) ≥ θ,

where T is the χ2 statistic (5) and ε2 =
∑
j ε

2
j . So, if we use the 4 linear trails described

in Sect. 6.1, we get the advantages given in Table 3 with success probability 0.85.

7.7 Other Considerations
Throughout the work, we implicitly have assumed that the concatenation of the parity
bits and the outer key bits is uniformly distributed as K∗ varies. So the parity bits and
the outer key bits don’t have any relations. But we may adapt the methods in this work
to deal with cases when they are related in many cases.
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Dominant trails are not common to observe for modern block ciphers, but the methods
in Sect. 3 seem to be relevant to tweakable blockciphers since it can be argued that each
linear trail behaves like a dominant one when random data is used [LKK18].

8 Conclusive Remarks
We have presented a new method of the multiple linear cryptanalysis exploiting dominant
and statistically independent trails. We have also presented a generalized framework of
multiple linear attack making use of close-to-dominant trails that may not be statistically
independent. Applying the method to DES, we get a strongly verified attack that can be
regarded as one of the most efficient attacks on DES as of now. As further works, one might
try to improve the attack on DES by finding suitable trails with large squared correlations
that can be used together with the 4 trails already used in this work. The generalized
method in this work needs further analysis to confirm its validity and to measure its
efficiency.
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A Proof of Proposition 1
Though Proposition 1 seems to be well-known, we provide a proof since we could not find
one in the literature:

PrX(〈a,X〉+ b ≥ 0) = 1
(
√

2π)m|det(σ)|

∫
x:〈a,x〉+b≥0

e−
(x−µ)TΣ−1(x−µ)

2 dx,

which is equal to
1

(
√

2π)m

∫
y:〈σTa,y〉+〈a,µ〉+b≥0

e−
yT y

2 dy (11)

by change of variables y = σ−1(x−µ). Let Θ be any rigid motion of Rm such that Θ(0) = 0
and Θ(σTa) = (|σTa|, 0, · · · , 0). By change of variables z = Θy, the half space {y :
〈σTa,y〉+〈a,µ〉+b ≥ 0} is sent onto the “vertical” half space {z : |σTa|z1+〈a,µ〉+b ≥ 0}.
So (11) is equal to

1
(
√

2π)m

∫
z:|σTa|z1+〈a,µ〉+b≥0

e−
zT z

2 dz,

which is again equal to Φ
(
(〈a,µ〉+ b)/|σTa|

)
. �
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B Proof of Statements in Sect. 4
Proof of Theorem 9. The success probability pS(t) of the attack is PrD(T (κ∗, β∗, D) ≥
tNε2) which is seen to be Φ((1 − t)

√
N |ε|) by Proposition 1 under Hypothesis 11. To

consider the false alarm probability, we classify the false alarms into two types: Those of
the first type are (κ, β)’s such that κ 6= κ∗; The others are (κ, β)’s such that κ = κ∗ and
β 6= β∗. Using Proposition 1, we also have

Prκ6=κ∗,D((−1)βεT (κ, β,D) ≥ tNε2) = Φ(−t
√
N |ε|)

under Hypothesis 13 for each β. For β 6= β∗,

PrD((−1)βεT (κ∗, β,D) ≥ tNε2) = Φ((−1− t)
√
N |ε|)

under Hypothesis 11. So the false alarm probability is

Pr(cond, (κ, β) 6= (κ∗, β∗)) = Pr(cond, κ 6= κ∗) + Pr(cond, κ = κ∗, β 6= β∗)
= Pr(cond | κ 6= κ∗)Pr(κ 6= κ∗) + Pr(cond | κ = κ∗, β 6= β∗)Pr(κ = κ∗, β 6= β∗)
= (2kO − 1)Φ(−t

√
N |ε|)/2kO + Φ((−1− t)

√
N |ε|)/2kO+1,

where cond is short for the statement T (κ∗, β,D)ε ≥ tNε2. �

Proof of Theorem 10. The success probability is 1 for this attack since we try all the
candidate values for κ∗. To consider the false alarm probability pfa, we classify the false
alarms into two types again. Then the false alarm probability of the first type is

PrD,κ(κ 6= κ∗)PrD,κ6=κ∗
(

(−1)βετ(κ,D) ≥ (−1)β
∗
ετ(κ∗, D)

)
. (12)

Note that PrD,κ(κ 6= κ∗) = (2kO − 1)/2kO . Let (U, V ) be the vector-valued random
variable having the 2-variate normal distribution with mean (Nε2, 0) and covariance matrix
(Nε2)I2. Then, under Hypothesis 13, for each β ∈ {0, 1}

PrD,κ6=κ∗
(
(−1)βετ(κ,D) ≥ (−1)β∗ετ(κ∗, D)

)
= Pr(U,V )(V ≥ U),

which is equal to Φ(−
√
N/2|ε|) by Proposition 1. So (12) is equal to

2kO − 1
2kO Φ

(
−
√
N

2 |ε|
)
.

The false alarm probability of the second type is

PrD
(

(−1)β
∗
τ(κ∗, D) ≤ 0

)
/2kO+1 = Φ(−

√
N |ε|)/2kO+1.

Summing up the false alarm probabilities over all the types, we get the result. �

Proof of Theorem 11. The success probability of the attack is Φ((1− t)
√
N |ε|) just as

in Algorithm 2T. The expected false alarm probability pfa(t) can be estimated similarly as
in Algorithm 2R. We consider two types of false alarms in this case, too, but we further
classify the attacks according as the attack is successful or not. When the attack is
successful, the wrong keys with the statistic larger than that of the correct key are false
alarms. Otherwise, all the wrong keys with the statistic larger than the threshold value
are false alarms. Thus pfa(t) is

2kO−1
2kO PrD,κ6=κ∗(T (κ, β,D) ≥ T (κ∗, β∗, D) ≥ tNε2)

+ 2kO−1
2kO PrD,κ6=κ∗(T (κ, β,D) ≥ tNε2, T (κ∗, β∗, D) ≤ tNε2)

+ 1
2kO+1 PrD(T (κ∗, β∗, D) ≤ min(0,−tNε2))
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Note that
PrD,κ6=κ∗(T (κ, β,D) ≥ T (κ∗, β∗, D) ≥ tNε2)
=
∫∞
t
√
Nε

∫∞
x
φ(ε, 1/

√
N ;x)φ(0, 1/N ; y)dy dx,

and
PrD,κ6=κ∗(T (κ, β,D) ≥ tNε2, T (κ∗, β∗, D) ≤ tNε2)
=
∫ t√Nε
−∞

∫∞
t
√
Nε
φ(ε, 1/

√
N ;x)φ(0, 1/N ; y)dy dx.

under Hypothesis 13. Note also that

PrD
(
T (κ∗, β∗, D) ≤ min(0,−tNε2)

)
is Φ(−

√
N |ε|) for t ≤ 0 and Φ(−(1 + t)

√
N |ε|) for t ≥ 0. �

C An Auxiliary Lemma and Its Proof
Lemma 1. Suppose that we are given two lists [(ai, i) ∈ R × Z : i = 0, · · · , n1] and
[(bj , j) ∈ R× Z : i = 0, · · · , n2] that are sorted according to the values of ai and bj in the
descending order. Let θ be a real number. Assume that there are N1 of (i, j)’s for which
ai + bj ≥ θ. Then the complexity of getting the list [(ai + bj , i, j) : ai + bj ≥ θ] is bounded
by O(min(n2log2(n1), n1log2(n2)) +N1).

Proof. We may assume that n2 ≥ n1. For each i, find ji such that ai + bj ≥ θ exactly
for j ≤ ji. Finding such ji costs log2(n2) additions and comparisons for each i by binary
search. For each i, compute ai + bj and put (ai + bj , (i, j)) into the list for each j ≤ ji.
The complexity of this algorithm is O(n1log2(n2) +N1).

D Separability of the LLR statistic for independent random
variables

We will show that the LLR statistic is separable with respect to independent distributions:

Theorem 14. Let D0
j and D1

j be the probability distributions on {0, 1}dj for each j =
1, · · · ,m such that, for each b = 0, 1, Db1, · · · ,Dbm are independent. For each b = 0, 1,
let Db be the probability distribution of the (d1 + · · · + dm)-bit valued random variable
(Xb

1, · · · ,Xb
m) such that each Xb

j has the probability distribution Dbj . Let S be a multiset
consisting of elements of {0, 1}d1+···+dm . For each j, let Sj be the multiset consisting of
elements of {0, 1}dj obtained by taking the j-th projection for each element of S. Then

LLR(S,D1,D0) =
∑

j
LLR(Sj ,D1

j ,D0
j ).

Proof. For each j and b, let pbj be the pdf of Dbj . Also, for each b,let pb be the pdf of Db.
By the independence of the distributions,

pb(x1, · · · ,xm) =
∏

j
pbj(xj)

for each (x1, · · · ,xm) ∈ {0, 1}d1+···+dm . Let p̂S be the pdf of the empirical probability
distribution on {0, 1}d1+···+dm obtained from S. Also, for each j, let p̂Sj be the pdf of the
empirical probability distribution on {0, 1}dj obtained from Sj . Thus

p̂Sj (xj) =
∑

y:yj=xj
p̂S(y)
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for each j and each xj . Now, letting N = |S|, LLR(S,D1,D0) is, by definition,

N
∑

(x1,··· ,xm)
p̂S(x1, · · · ,xm) log p

1(x1, · · · ,xm)
p0(x1, · · · ,xm) ,

which is equal to

N
∑

(x1,··· ,xm)
p̂S(x1, · · · ,xm)

(∑
j

log p1
j (xj)
p0
j
(xj)

)
= N

∑
j

(∑
(x1,··· ,xm)

p̂S(x1, · · · ,xm) log p1
j (xj)
p0
j
(xj)

)
= N

∑
j

(∑
xj

log p1
j (xj)
p0
j
(xj)

(∑
y:yj=xj

p̂S(y)
))

= N
∑

j

(∑
xj
p̂Sj (xj) log p1

j (xj)
p0
j
(xj)

)
=
∑

j
LLR(Sj ,D1

j ,D0
j )).

E Doing without the final sorting in the last step of Algo-
rithm 2MC with full DES

Divide the sorted lists L′1,2 and L′3,4 into 2b sublists L′(1,2),i’s and L′(3,4),j ’s of the same
size 226−b (where 10 ≤ b ≤ 16 is chosen suitably) also considering the order of the statistics.
That is, the values T 1,2(κ1,2, β1, β2) are not smaller for entries in L′(1,2),i1 than for entries in
L′(1,2),i2 , whenever i1 < i2, and similarly for L′(3,4),j ’s. Then we can sort (i, j)’s according
to the value of L′(1,2),i[0] +L′(3,4),j [0], where L′(1,2),i[0] and L′(3,4),j [0] are the maximum of
the statistics for the entries in L′(1,2),i and L′(3,4),j , respectively. Then in the descending
order, for each (i, j), we try all (κ,β) that are obtained from combining entries in the
list L′(1,2),i and L′(3,4),j if L′(1,2),i[0] +L′(3,4),j [0] ≥ tNε2. This may decrease the advantage
since we do not try the (κ,β)’s in the optimal order, but the decrease is negligible as we
have checked in the experiments setting b suitably for each data size N in the range we
are considering.

F The keys and data used in the experiments with DES
To accelerate the data generation with GPUs, we used the following (keys and) plaintexts
instead of randomly generated ones. For each fixed data size N , the 56-bit key Kl =
(Kl[0], |Kl[1]) for the l-th test was set as follows (l = 0, . . . , 999):

- Kl[0] = 0x012345 + l (mod 228)
- Kl[1] = 0x6789ab + l (mod 228)

For each key Kl, the 64-bit plaintext P li was set to be
0x123456789abcdef×l + 0xfedcba987654321×i (mod 264) (i = 0, . . . , N − 1).
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