FSE 2020 Multiple Linear Cryptanalysis Using Linear Statistics

Jung-Keun Lee and Woo-Hwan Kim

ETRI

Our contribution

- improved and extended approach of multiple linear cryptanalysis[BCQ04] (exploit dominant statistically independent linear trails)
 - Algorithm 1 and Algorithm 2 style attacks
 - threshold based, rank based, combined
 - provide formulas for success probability and advantage in terms of data size, correlations of the trails, and threshold parameter
 - under some hypotheses on statistical independence of wrong key & right key statistics
- application to full DES, exploiting 4 linear trails
 - get attacks with complexity better than or comparable with existing linear attacks on DES
 - provide strong experimental verification

Organization

- Introduction and Preliminaries
- Our multiple linear attacks
- Application to DES
- Generalization
- Conclusion

Linear Trails and Linear Hulls

• key-alternating iterative block cipher

long key cipher \tilde{E}

- linear trail $\Gamma = [\Gamma_0, ..., \Gamma_R]$: sequence of linear masks
- linear hull $\mathcal{H}(\gamma, \gamma')$: the set of linear trails with the initial mask γ and final mask γ'

Linear Correlations

•
$$\varepsilon(\gamma, \gamma'; F) \coloneqq \frac{1}{2^l} \sum_{\chi} (-1)^{\langle \gamma, \chi \rangle} \bigoplus \langle \gamma', F(\chi) \rangle$$

linear correlation of $F: \mathbb{F}_2^l \to \mathbb{F}_2^m$ w.r.t. pair of masks (γ, γ')

• $\varepsilon(\gamma, \gamma'; \tilde{E}, rk) \coloneqq \varepsilon(\gamma, \gamma'; \tilde{E}(rk, \cdot))$ linear correlation of a linear hull for a given long key rk

• $C(\Gamma; \tilde{E}) = \prod_{i=0}^{R-1} \varepsilon(\Gamma_i, \Gamma_{i+1}; F_{i+1})$

(key-independent) linear correlation of a trail

•
$$\hat{\varepsilon}(\gamma, \gamma'; \tilde{E}, rk, D) \coloneqq \frac{1}{|D|} \sum_{(P,C) \in D} (-1)^{\langle \gamma, P \rangle \bigoplus \langle \gamma', C \rangle}$$

undersampled correlation D: data (consisting of plaintext-ciphertext pairs)

Linear Correlations

parity bit determined by Λ and rk

$$\varepsilon(\gamma,\gamma';\tilde{E},rk) = \sum_{\Lambda \in \mathcal{H}(\gamma,\gamma')} (-1)^{\bigoplus_{i=0}^{R-1} \langle \Lambda_i, rk_i \rangle} C(\Lambda;\tilde{E})$$

• Γ: a dominant trail

•
$$\varepsilon(\gamma, \gamma'; rk) \approx (-1)^{\bigoplus_{i=0}^{R-1} \langle \Gamma_i, rk_i \rangle} C(\Gamma)$$
, or

regardless of rk

 $\Rightarrow \stackrel{\bullet}{} \stackrel{\varepsilon(\gamma,\gamma'; rk) \approx (-1)^{-1} \leftarrow \varepsilon(1)}{\bullet} \stackrel{\bullet}{} \stackrel{(-1)^{\bigoplus_{i=0}^{R-1} \langle \Gamma_i, rk_i \rangle} \varepsilon(\gamma,\gamma'; rk) \approx C(\Gamma)}{\bullet}$

Unless mentioned otherwise, we assume:-

- Γ, Γ^{j} : dominant, fixed
- $N = |D| \ll 2^n$, n: block size
- $|\mathcal{C}(\Gamma)|, |\mathcal{C}(\Gamma^j)| \gg 2^{-n/2}$
- K^* and rk^* (correct key, long key): fixed

- Use a single dominant trail $\Gamma = [\Gamma_0, ..., \Gamma_R]$
 - try to recover the parity bit $\beta^* = \bigoplus_{i=0}^{R-1} \langle \Gamma_i, rk_i^* \rangle$
- Given a sample or data D, compute the undersampled correlation $\hat{\varepsilon}(\Gamma_0, \Gamma_{R-1}; rk^*, D)$
 - determine β^* to be 0 iff $\hat{\varepsilon}(\Gamma_0, \Gamma_{R-1}; rk^*, D)C(\Gamma) > 0$

$$\hat{\varepsilon}(\gamma,\gamma';rk,D) \coloneqq \frac{1}{|D|} \sum_{(P,C)\in D} (-1)^{\langle\gamma,P\rangle \bigoplus \langle\gamma',C\rangle}$$

- Right Key Hypothesis
 - Γ: dominant trail

$$\Rightarrow X = (-1)^{\beta^*} \hat{\varepsilon}(\gamma, \gamma'; rk^*, D): \text{ random variable } \text{ letting } D \text{ vary with } |D| = N$$

$$X \sim \mathcal{N}(\epsilon, 1/N) \quad \epsilon = C(\Gamma) \qquad \beta^* = \bigoplus_{i=0}^{R-1} \langle \Gamma_i, rk_i^* \rangle$$

• Success Probability

•
$$P_{\rm S} = \Pr_{X \sim \mathcal{N}(\epsilon, 1/N)}(\epsilon X > 0) = \Phi(\sqrt{N}|\epsilon|)$$

- Add outer rounds to a trail $\Gamma = [\Gamma_s, ..., \Gamma_{s+r}]$ for the inner cipher $E|_s^{s+r}$
 - recover a parity bit and some outer round key bits
- Given D,
 - Use the statistic $(-1)^{\beta} \hat{\varepsilon}(\Gamma, rk^*, \kappa, D)^{\beta: \text{ indeterminate, binary}}$ to pick out candidates for (β^*, κ^*)
 - Proceed with trial encryption threshold based or rank based

 κ : bit string obtained by concatenating outer round key bits involved in the outer round computation of $\langle \Gamma_s, X_s \rangle \bigoplus \langle \Gamma_{s+r}, X_{s+r} \rangle$

 $\langle \Gamma_s, X_s \rangle \bigoplus \langle \Gamma_{s+r+1}, X_{s+r+1} \rangle = g(\kappa, P, C)$

- Right Key Hypothesis (on the distribution of right key statistic) • $(-1)^{\beta^*} \hat{\varepsilon}(\Gamma, \kappa^*, D) \sim \mathcal{N}(\epsilon, \frac{1}{N})$ as *D* varies with |D| = N
- Wrong Key Hypothesis (on the distribution of wrong key statistic) • $\hat{\varepsilon}(\Gamma, \kappa, D) \sim \mathcal{N}(0, \frac{1}{N})$ as (κ, D) varies with $\kappa \neq \kappa^*$
- Hypothesis on independence [Sel08]
 - the order statistics for the wrong key statistics & the right key statistic are independent

success probability, advantage can be estimated for threshold/rank based methods

 X_{S}

F<u>s+</u>2

 $F_{\underline{s+r}}$

 \bar{X}_{s+r}

С

κ_i

• $\Gamma^1, \Gamma^2, ..., \Gamma^m$: dominant, statistically independent trails

•
$$\epsilon_j = C(\Gamma^j) \ (j = 1, ..., m), \ \epsilon = \sqrt{\sum_j \epsilon_j^2}$$

• Given data D, recover (κ^*, β^*) ,

κ*: correct value of the outer key κ
 κ: bit string obtained by combining of κ_i's (removing redundancy)

•
$$\boldsymbol{\beta}^* = (\beta_1^*, \dots, \beta_m^*), \beta_j^* = \bigoplus_{i=s}^{s+r-1} \langle \Gamma_i^j, rk^* \rangle$$

• Use the statistic $T(\boldsymbol{\kappa}, \boldsymbol{\beta}, D) \coloneqq \sum_{j} (-1)^{\beta_{j}} \epsilon_{j} \tau_{j} (\kappa_{j}, D)$

 $\kappa_{j}: \text{ bit string obtained by concatenating outer} round key bits involved in the outer round computation of <math>\langle \Gamma_{s}^{j}, X_{s} \rangle \oplus \langle \Gamma_{s+r}^{j}, X_{s+r} \rangle$ assume for simplicity that bits of κ_{j} 's are either identical or independent $\tau_{j}(\kappa_{j}, D) \coloneqq N\hat{\varepsilon}(\Gamma^{j}, \kappa_{j}, D)$

$$T(\boldsymbol{\kappa},\boldsymbol{\beta},D) \coloneqq \sum_{j} (-1)^{\beta_{j}} \epsilon_{j} \tau_{j} (\kappa_{j},D)$$

- Algorithm 2MT (Threshold based): Pick out (κ, β) 's with $T(\kappa, \beta, D) \ge \theta = tN^2$
- Algorithm 2MR (Rank based): Rank (κ, β)'s according to T(κ, β, D)
- Algorithm 2MC (Combined): Pick out candidates (κ, β) 's with $T(\kappa, \beta, D) \ge \theta$ and then rank them
 - yields better advantage than Algorithm 2MT for $P_{\rm S} \approx 1$

- Wrong key types
 - For $J_0 \subsetneq \{1, ..., m\}$, κ is said to have the wrong key type J_0 if $\{j: \kappa_j = \kappa_j^*\} = J_0$

 $W(J_0)$: the set of κ 's having the wrong key type J_0

- For $J_0, J_I \subset \{1, \dots, m\}$ s.t. $J_0 \neq \{1, \dots, m\}$ or $J_I \neq \{1, \dots, m\}$, (κ, β) is said to have the wrong key type (J_0, J_I) if
 - $\boldsymbol{\kappa}$ has the wrong key type J_0 and $\boldsymbol{\beta}$ has the type J_I

For $J \subset \{1, ..., m\}$, $\boldsymbol{\beta}$ is said to have the type J if $\{j: \beta_j = \beta_j^*\} = J$ If $\boldsymbol{\beta}$ has the type J, denote it by $\boldsymbol{\beta}^J$

 $W(J_0, J_I)$: the set of (κ, β) 's having the wrong key type (J_0, J_I)

Multivariate Normal Distributions

 $\boldsymbol{\mu} \in \mathbb{R}^m$, $\boldsymbol{\Sigma}$: positive definite $m \times m$ matrix over \mathbb{R}

- An *m*-variate random variable **X** is said to have the normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ if it has the p.d.f. $\boldsymbol{x} \mapsto \frac{1}{(2\pi)^{m/2} |\det(\boldsymbol{\Sigma})|^{1/2}} e^{-\frac{(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}{2}} \quad \boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}),$
- Probability that an *m*-variate normal random variable satisfies a linear inequality
 - $X \sim \mathcal{N}(\mu, \Sigma), a \in \mathbb{R}^m, a \neq 0, b \in \mathbb{R}$

•
$$\Pr_X(\langle \boldsymbol{a}, \boldsymbol{X} \rangle + b \ge 0) = \Phi(\frac{\langle \boldsymbol{a}, \boldsymbol{\mu} \rangle + b}{|\boldsymbol{\sigma}^T \boldsymbol{a}|})$$

 $\Sigma = \sigma \sigma^T$

 Φ : c.d.f. of the std normal distribution

For each $J_0 \subset \{1, \dots, m\}$

- X_{J_0} : vector-valued random variable having the distribution determined by the values $((-1)^{\beta_1^*} \epsilon_1 \tau_1(\kappa_1, D), \dots, (-1)^{\beta_m^*} \epsilon_m \tau_m(\kappa_m, D))$ $|D| = N, \kappa \in W(J_0)$
- Hypothesis: $X_{J_0} \sim \mathcal{N}(\mu_{J_0}, \Sigma_{J_0})$ • $\mu_{J_0} = (\mu_1, \dots, \mu_m); \mu_j = N\epsilon_j^2 \text{ for } j \in J_0, \mu_j = 0 \text{ for } j \notin J_0$ • $\Sigma_{J_0} = \text{diag}(N\epsilon_1^2, \dots, N\epsilon_m^2)$

For each
$$J_O$$

Let $\{1, ..., m\} \setminus J_O = \{j_1, ..., j_u\}$
• \widehat{X}_{J_O} : vector-valued random variable having the distribution determined by
 $((-1)^{\beta_1^*} \epsilon_1 \tau_1(\kappa_1^*, D), ..., (-1)^{\beta_m^*} \epsilon_m \tau_m(\kappa_m^*, D), \epsilon_{j_1} \tau_{j_1}(\kappa_{j_1}, D), ..., \epsilon_{j_u} \tau_{j_u}(\kappa_{j_u}, D))$
right key statistic
 $|D| = N, \kappa \in W(J_O)$
• Hypothesis (Stronger): $\widehat{X}_{J_O} \sim \mathcal{N}(\widehat{\mu}_{J_O}, \widehat{\Sigma}_{J_O})$
• $\widehat{\mu}_{J_O} = (\mu_1, ..., \mu_{m+u}), \widehat{\Sigma}_{J_O} = \text{diag}(\sigma_1^2, ..., \sigma_{m+u}^2);$
 $(\mu_j, \sigma_j^2) = (N\epsilon_j^2, N\epsilon_j^2) \text{ for } j \in \{1, ..., m\}, (\mu_{m+l}, \sigma_{m+l}^2) = (0, N\epsilon_{j_l}^2) \text{ for } l \in \{1, ..., u\}$
 $\stackrel{\bullet}{\bullet}$ distribution \mathcal{D}_{J_O}

16

Algorithm 2MT

• Determine $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ to be correct if • $T(\boldsymbol{\kappa}, \boldsymbol{\beta}, D) \ge tN\epsilon^2$

$$T(\boldsymbol{\kappa},\boldsymbol{\beta},D) \coloneqq \sum_{j} (-1)^{\beta_{j}} \epsilon_{j} \tau_{j} (\kappa_{j},D)$$

• Success Probability $p_{S}(t)$: • $\Pr(T(\kappa^{*}, \beta^{*}, D) \ge tN\epsilon^{2})$ = $\Pr_{X \sim \mathcal{D}_{\{1,...,m\}}} (X_{1} + \dots + X_{m} \ge tN\epsilon^{2}) = \Phi((1 - t)\sqrt{N}\epsilon)$ linear inequality • False alarm probability: $\frac{1}{2^{k_{0}+m}} \times \sum_{(J_{0}, J_{I}):wrong} |W(J_{0})| p_{fa}^{2T,(J_{0}, J_{I})}(t)$ • $p_{fa}^{2T,(J_{0}, J_{I})}(t)$: probability that (κ, β) of type (J_{0}, J_{I}) satisfies the threshold condition k_{0} : number of bits in κ

Algorithm 2MT

- False alarm probability $p_{fa}^{2T,(J_O,J_I)}$ for type (J_O,J_I) $\Pr_{D,\kappa\in W(J_O)}(T(\kappa,\beta^{J_I},D) \ge tN\epsilon^2) = \Pr_{X\sim \hat{D}_{J_O}}(\sum_{j\in J_O\cap J_I}X_j - \sum_{j\in J_O\setminus J_I}X_j + \sum_{l=1}^u (-1)^{\beta_{j_l}}X_{m+l}) \ge tN\epsilon^2)$ $= \Phi(\sqrt{N}(\sum_{j\in J_O\cap J_I}\epsilon_j^2 - \sum_{j\in J_O\setminus J_I}\epsilon_j^2 - t\epsilon^2)/\epsilon)$ linear inequality
- The false alarm probability $p_{fa}^{2T}(t)$ • $\frac{1}{2^{k_0+m}} \sum_{(J_0,J_I):wrong} |W(J_0)| p_{fa}^{2T,(J_0,J_I)}(t)$ $\approx \Phi(-t\sqrt{N}\epsilon)$ (in many cases)
- Advantage: $-\log_2 p_{fa}^{2T}(t)$

Algorithm 2MR

- Rank (κ, β) according to the statistic $T(\kappa, \beta, D)$
- Success Probability = 1
- False alarm probability: $\frac{1}{2^{k_0+m}} \times \sum_{(J_0,J_I):wrong} |W(J_0)| p_{fa}^{2R,(J_0,J_I)}$ • $p_{fa}^{2R,(J_0,J_I)}$: probability that $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ of type (J_0, J_I) is ranked higher than $(\boldsymbol{\kappa}^*, \boldsymbol{\beta}^*)$

Algorithm 2MR

• False alarm probability
$$p_{fa}^{2R,(J_0,J_I)}$$
 for type (J_0,J_I) :
Pr $(T(\kappa, \beta^{J_I}, D) \ge T(\kappa^*, \beta^*, D))$
 $= \Pr_{X \sim D_{J_0}} (-\sum_{j:j \le m, j \notin J_0} X_j - 2 \sum_{j \in J_0 \setminus J_I} (-1)^{\beta_j^*} X_j + \sum_{l=1}^u (-1)^{\beta_{j_l}^*} X_{m+l}) \ge tN\epsilon^2)$
 $= \Phi(-\left(N(\sum_{j \in J_0 \setminus J_I} \epsilon_j^2 + \frac{1}{2} \sum_{j \in \{1,...,m\} \setminus J_0} \epsilon_j^2\right)^{1/2})$ linear inequality
 $= \Phi(-\left(N(\sum_{j \in J_0 \setminus J_I} \epsilon_j^2 + \frac{1}{2} \sum_{j \in \{1,...,m\} \setminus J_0} \epsilon_j^2\right)^{1/2})$
• The false alarm probability p_{fa}^{2R}
 $= \Phi(-\sqrt{N/2}\epsilon)$ (in many cases)

•
$$\frac{1}{2^{k_0+m}}\sum_{(J_0,J_I):\text{wrong}} |W(J_0)| p_{\text{fa}}^{2R,(J_0,J_I)} \approx \Phi(-\sqrt{N/2\epsilon}) \text{ (in many call of the set of$$

• Advantage: $-\log_2 p_{fa}^{2R} - 1$

Algorithm 2MC

- Pick out β 's with $T(\kappa, \beta, D) \ge tN\epsilon^2$ and then rank them according to the statistic
- Success Probability: the same as in Algorithm 2MT
 - $\Phi((1-t)\sqrt{N}\epsilon)$
- False alarm probability: $\frac{1}{2^{k_0+m}} \times \sum_{(J_0,J_I):wrong} |W(J_0)| p_{fa}^{2C,(J_0,J_I)}(t)$ • $p_{fa}^{2C,(J_0,J_I)}(t)$: probability that $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ of type (J_0, J_I) is ranked higher than $(\boldsymbol{\kappa}^*, \boldsymbol{\beta}^*)$ and satisfies the threshold condition

Algorithm 2MC

• False alarm probability $p_{fa}^{2C,(J_0,J_I)}(t)$ for type (J_0,J_I) :

$$\Pr_{D,\boldsymbol{\kappa}\in W(J_0)}(T(\boldsymbol{\kappa},\boldsymbol{\beta}^{J_I},D) \ge T(\boldsymbol{\kappa}^*,\boldsymbol{\beta}^*,D),T(\boldsymbol{\kappa},\boldsymbol{\beta}^{J_I},D) \ge tN\epsilon^2)$$

Two linear inequalities

can be estimated numerically or by simulation

- The false alarm probability $p_{fa}^{2C}(t)$ • $\frac{1}{2^{k_0+m}} \sum_{(J_0,J_I):wrong} |W(J_0)| p_{fa}^{2C,(J_0,J_I)}(t) \approx p_{fa}^{2C,(\emptyset,\emptyset)}(t)$ (in many cases)
- Advantage: $-\log_2 p_{fa}^{2C}(t)$

Application to DES

- Exploit 4 linear trails [BV17] • $\Gamma^{1}: \epsilon_{1} = C(\Gamma_{1}) = -2^{-19.75}, \quad k_{0}^{1} = 12$ • $\Gamma^{2}: \epsilon_{2} = C(\Gamma_{2}) = -2^{-20.07}, \quad k_{0}^{2} = 18$ • $\Gamma^{3}: \epsilon_{3} = C(\Gamma_{3}) = -2^{-19.75}, \quad k_{0}^{3} = 12$ • $\Gamma^{4}: \epsilon_{4} = C(\Gamma_{4}) = -2^{-20.07}, \quad k_{0}^{4} = 18$ • $\Gamma^{4}: \epsilon_{4} = C(\Gamma_{4}) = -2^{-20.07}, \quad k_{0}^{4} = 18$ • $\Gamma^{4}: \epsilon_{4} = C(\Gamma_{4}) = -2^{-20.07}, \quad k_{0}^{4} = 18$ • $\Gamma^{4}: \epsilon_{4} = C(\Gamma_{4}) = -2^{-20.07}, \quad k_{0}^{4} = 18$ • $\Gamma^{4}: \epsilon_{4} = C(\Gamma_{4}) = -2^{-20.07}, \quad k_{0}^{4} = 18$ • $\Gamma^{4}: \epsilon_{4} = C(\Gamma_{4}) = -2^{-20.07}, \quad k_{0}^{4} = 18$
- Perform Algorithm 2MC, given data D of size N:
 - compress data and get 4 lists L_j 's applying FWHT.
 - combine lists L_1 and L_2 to get a list $L_{1,2}$; combine lists L_3 and L_4 to get a list $L_{3,4}$
 - Sort $L_{1,2}$ and $L_{3,4}$ and get the list $L_{1,2,3,4}$ considering the threshold condition • True the gap didetes in L and $L_{1,2,3,4}$ considering the threshold condition $T(\kappa, \beta, D) \ge tN\epsilon^2$
 - Try the candidates in $L_{1,2,3,4}$ one by one

Application to DES

24

Multiple linear cryptanalysis [BCQ04]

- Algorithm 1 and Algorithm 2 style attacks
 - formulas for advantage estimated in terms of trail correlations and data complexity
 - rank based, P_S fixed to 1
- limitations
 - advantage not analyzed theoretically for $P_{\rm S} < 1$
 - experimental advantage not satisfactory
 - e.g. when applied to DES [BV17]

Multidimensional linear cryptanalysis [HCN09]

- Algorithm 1 and Algorithm 2 style attacks
 - threshold based or rank based
 - use LLR statistic or χ^2 statistic
 - approximate, asymptotic advantages theoretically provided
 - under certain independence assumptions
 - does not require trails to be dominant
- does not yield attack better than [Mat94] on DES
 - advantage not satisfactory when using a small number of trails
 - LLR method more effective, but not separable in general: adding outer rounds requires much overhead

Recent linear attacks on DES

• multiple linear cryptanalysis using 8 dependent trails [BV17]

Attack

Data

- conditional linear cryptanalysis [BP19]
- analysis using a separable statistic [FS19]_

Our attacks have comparable complexities; advantageous with smaller data size.

cf. 2⁴³ data/ 2⁴³ time / 0.85 [Mat94]

	Multiple	$2^{42.78}$	$2^{38.86}$	0.85	[BV17]
	LC	$2^{41.00}$	$2^{49.76}$	0.80	
I	MultiDim.	$2^{41.81}$	$2^{41.81} + O(2^{41.81})$	0.83	[FS18]
	LC	$2^{41.85}$	$2^{41.85} + O(2^{41.85})$	0.85	
	Conditional	$2^{42.00}$	$2^{41.00}$	0.82	[BP18]
	LC	$2^{41.90}$	$2^{41.90}$	0.85	
		$2^{41.00}$	$2^{50.00}$	0.92	
		$2^{40.00}$	$2^{52.00}$	0.82	
	Multiple	$2^{42.75}$	$2^{38.87}$	0.85	This Work
	LC	$2^{42.00}$	$2^{42.35}$	0.80	
		$2^{41.90}$	$2^{43.77}$	0.85	
		$2^{41.00}$	$2^{48.17}$	0.80	
		$2^{41.00}$	$2^{49.23}$	0.95	
		$2^{40.00}$	$2^{51.14}$	0.80	
		$2^{40.00}$	$2^{51.89}$	0.95	

Time

Reference

 p_S

Merits of the attack

- Why efficient?
 - the linear statistic
 - separable: overhead in adding outer rounds minimized
 - almost the same as the optimal LLR statistic up to a constant
 - parity bits recovered at the same time \Rightarrow advantage increased
 - χ^2 method does not consider recovering parity bits
 - existing LLR methods usually assume parity bits are known
 - multivariate normal distribution
 - allows to get estimates of attack complexity better than using order statistics

Generalization

- Exploit close-to-dominant, dependent trails
- Use modified hypotheses on the distributions of multivariate random variables
 - presume multivariate normal distributions but with different mean vectors and covariance matrices need to be precomputed in advance
- Perform the same procedure with similar statistics
 - Use linear statistics with varying coefficients
- $P_{\rm S}$, $P_{\rm fa}$ can be computed in the same way for each attack
 - probability of regions represented by linear inequalities for an multivariate normal random variable

Conclusion

- Multiple linear attacks using multiple dominant linear trails
 - statistical models regarding the distribution of vector valued random variables consisting of component statistics
 - closed formulas for success probability and advantage of various Algorithm 1 and Algorithm 2 style attacks in terms of data size, correlations of the trails, and threshold parameter incorporating the decomposition of outer key bits
 - best advantage among existing linear attacks when exploiting multiple dominant statistical independent trails
- Application to DES
 - exhibit the validity of the statistical models
 - show the effectiveness of the attack

