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Abstract. AEGIS is one of the authenticated encryption designs selected for the final
portfolio of the CAESAR competition. It combines the AES round function and
simple Boolean operations to update its large state and extract a keystream to achieve
an excellent software performance. In 2014, Minaud discovered slight biases in the
keystream based on linear characteristics. For family member AEGIS-256, these could
be exploited to undermine the confidentiality faster than generic attacks, but this still
requires very large amounts of data. For final portfolio member AEGIS-128, these at-
tacks are currently less efficient than generic attacks. We propose improved keystream
approximations for the AEGIS family, but also prove upper bounds below 2−128 for
the squared correlation contribution of any single suitable linear characteristic.
Keywords: Authenticated encryption · CAESAR · AEGIS · Linear cryptanalysis

1 Introduction
AEGIS [WP16, WP13] is a family of authenticated ciphers with excellent performance in
high-speed software applications thanks to an AES-based state update function combined
with bitwise operations And and Xor to extract a keystream from the large internal state.
The AEGIS family, consisting of family members AEGIS-128, AEGIS-256, and AEGIS-128L,
is a finalist of the CAESAR competition and in 2019, family member AEGIS-128 was
elected to be part of the final CAESAR portfolio [CAE19].

Surprisingly, very few cryptanalytic results on AEGIS have been published so far. The
designers provide a general security analysis of AEGIS [WP16] including comments on
generic attacks, nonce misuse attacks, and differential attacks on the initialization, state
update, and finalization. Based on a very conservative bound on active AES rounds and
active S-boxes, they argue that an attacker trying to inject differences via the message to
produce internal collisions will only obtain differential characteristics with a probability
of less than 2−156 (for AEGIS-128 and AEGIS-256) or less than 2−150 (for AEGIS-128L),
leading to attack complexities higher than generic forgery attempts. Vaudenay and Vizár
[VV18] and Kales et al. [KEM17] further analyze the security of AEGIS under nonce
misuse and propose state recovery attacks.

The most notable third-party cryptanalysis result on AEGIS was published by Minaud
[Min14] soon after the beginning of the CAESAR competition. He proposes keystream
approximations based on linear characteristics of the round function. For AEGIS-128,
the attack is based on a characteristics with squared correlation contribution 2−154, and
Minaud estimates an attack would require about 2140 blocks of data, which is still above
the security claim. For AEGIS-256, however, the resulting keystream distinguisher with
2178 blocks of data is significantly better than generic attacks. While these attacks have
very high data requirements, the data may be collected across different secret keys as long
as the plaintexts remain known or constant. AEGIS-256 was not selected as part of the
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final CAESAR portfolio and remains a finalist. The third family member and the designers’
primary recommendation, AEGIS-128L, was not discussed in Minaud’s analysis, but is also
not part of the final portfolio: in the announcement of the finalists in 2018 [Ber18], it was
already declared that at most one of the two members AEGIS-128 and AEGIS-128L would
proceed to the final portfolio. To the best of our knowledge, no further improvements or
bounds on similar attacks have since been proposed.

Related work. Minaud’s analysis of AEGIS [Min14] has also inspired similar keystream
bias attacks on another CAESAR finalist, MORUS: Ashur et al. [AEL+18] first proposed
a distinguisher based on a linear characteristic found by hand and discussed in more detail
how such keystream correlations could be exploited in practice, referring to TLS attacks
that exploit the biased keystream of RC4 [IOWM13, ABP+13]. Shi et al. [SSS+19] then
succeeded in substantially improving the distinguishers by applying Mixed-Integer Linear
Programming (MILP) solvers to search for better characteristics. While the state update
functions of MORUS and AEGIS are quite different and the ideas introduced by Shi et al.
are not directly relevant for AEGIS, their results still illustrate the advantages of off-the-
shelf solvers for finding better attacks. AES and (tweakable) block ciphers with a similar
structure have been among the first [MWGP11] and most popular targets of MILP-based
cryptanalysis [CHP+17, BJK+16, Ava17]. For strongly aligned designs like AES, models are
usually truncated to cell-level, since bitwise models of large S-boxes [AST+17] are usually
too costly; but for other designs, bitwise models have been applied for linear cryptanalysis
and other attack vectors [SHW+14, TIM+18, SSS+19]. Besides improving cryptanalytic
attacks, MILP models have been particularly popular with designers for proving bounds on
the maximum possible differential probability of differential characteristics or the maximum
possible correlation contribution of linear characteristics. However, somewhat surprisingly,
neither attempts at improved attacks nor upper bounds on attacks similar to Minaud’s
have been published. For AEGIS-128 in particular, the latter would be relevant in order to
better understand its security against an attacker as defined by the 128-bit security claim.

Contribution. We search for better linear characteristics, as well as upper bounds on
the best possible correlation. We observe that straightforward truncated models of
linear characteristics of AEGIS only produce very weak bounds since they fail to capture
connections and constraints that follow from dependencies in the AEGIS state update
function. To obtain tighter bounds and consistent solutions, we identify additional
constraints on the differences and higher-order differences of the linear masks and propose
an improved truncated model. This model yields much better results, including consistent
solutions for AEGIS-128, but still shows a significant gap between the bounds and the best
found characteristics, mainly due to the Boolean output function. We propose a partially
bitwise model to close this gap. As a result, for all AEGIS family members, we derive
upper bounds below 2−128 for the squared correlation contribution of any single suitable
linear characteristic. Finally, we apply Constraint Programming (CP) to find consistent
characteristics and obtain improved attacks for all members. Table 1 details our results.

Table 1: Bounds for the inverse squared correlation contribution c−2 of the best suitable
linear characteristics of AEGIS. Lower bounds are derived using MILP models, upper
bounds are based on best found characteristics (see Subsection 4.3 on their accuracy).

AEGIS-128 AEGIS-256 AEGIS-128L
Manual analysis [Min14] c−2 ≤ 2154 c−2 ≤ 2178

Truncated model (Sect. 3.2) 292 ≤ c−2 2116 ≤ c−2 2114 ≤ c−2 ≤ 2172

Improved model (Sect. 3.3) 2102 ≤ c−2 ≤ 2140 2120 ≤ c−2

Bitwise model (Sect. 3.4) 2132 ≤ c−2 ≤ 2140 2152 ≤ c−2 ≤ 2162 2140 ≤ c−2 ≤ 2152
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Outline. We recall the design and previous analysis of the AEGIS family in Section 2.
In Section 3 we develop several successively refined MILP models of truncated linear
characteristics for AEGIS and derive upper bounds on the squared correlation contribution of
linear characteristics. In Section 4 we reuse the best truncated MILP solutions as a basis for
searching consistent characteristics with CP solvers and find improved attacks. Our source
code is available on https://extgit.iaik.tugraz.at/krypto/aegis_linear_trails.

2 Description and Previous Analysis of AEGIS

2.1 The AEGIS Family of Authenticated Ciphers

AEGIS [WP16] is a stream cipher design that achieves high performance by utilizing
hardware support of the AES round function that is nowadays available on a large variety
of devices. The final version of the submission document specifies 3 versions of AEGIS:
AEGIS-128, AEGIS-128L, and AEGIS-256, with their main difference being their state and
key sizes. While AEGIS-128 uses a 640-bit state that is comprised of 5×128-bit AES states,
AEGIS-256 uses a 768-bit state (6×128-bit), and AEGIS-128L uses a 1024-bit state (8×128-
bit) to fully utilize the 8-staged pipeline of AES instructions on modern desktop CPUs.
The key sizes are 128-bit for AEGIS-128 and AEGIS-128L, and 256-bit for AEGIS-256.

The schemes encrypt a message M of arbitrary length to a ciphertext C of the
same length plus a 128-bit authentication tag T , both depending on a 128-bit (for
AEGIS-{128, 128L}) or 256-bit (for AEGIS-256) key K and nonce IV as well as asso-
ciated data A of arbitrary length. The encryption and decryption procedures of AEGIS
are split into 4 stages: initialization, absorbing associated data, encryption or decryption
of message blocks, and the finalization.

For AEGIS-128, these are defined as follows. During the initialization, the inner state
S−10,0, . . . , S−10,4 is initialized with the key K, nonce IV , and some constants, followed
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· · · · · ·

(a) AEGIS-128
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Figure 1: State update function of the AEGIS family members.

https://extgit.iaik.tugraz.at/krypto/aegis_linear_trails
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by 10 iterations of the state update function F(Si, xi) illustrated in Figure 1:

Si+1,0 = AES1(Si,4)⊕ Si,0 ⊕mi

Si+1,1 = AES1(Si,0)⊕ Si,1
Si+1,2 = AES1(Si,1)⊕ Si,2
Si+1,3 = AES1(Si,2)⊕ Si,3
Si+1,4 = AES1(Si,3)⊕ Si,4 ,

where AES1 is the AES round function without key addition and mi denotes a data block,
which is derived from K and IV during initialization. The associated data is processed by
repeatedly calling F using blocks Ai of the associated data A as mi until all blocks are
absorbed. AEGIS then encrypts each plaintext block Mi by extracting a keystream block
Zi from the large internal state with the output function G, where ⊕ denotes bitwise Xor
and � is bitwise And of substates:

Zi = Si,1 ⊕ Si,4 ⊕ (Si,2 � Si,3)

to compute the ciphertext block Ci = Mi ⊕ Zi and updating the internal state with F :

Si+1 = F(Si,Mi) .

During the finalization, 7 state updates are performed with a message blockm = Si,3⊕(|A| ‖
|M |) containing the associated data and message lengths |A| and |M | as 64-bit integers:

Si+1 = F(Si,m) .

Then 128-bit tag T can be derived as T =
⊕4

j=0 Si,j .
The descriptions for AEGIS-256 and AEGIS-128L are similar, the main differences are

due to the different state and key sizes. Most notably, the number of initialization rounds
for AEGIS-256 is increased to 16, the output function G in AEGIS-256 is defined as:

Zi = Si,1 ⊕ Si,4 ⊕ Si,5 ⊕ (Si,2 � Si,3) ,

whereas G in AEGIS-128L is defined as:

Zi = Si,1 ⊕ Si,6 ⊕ (Si,2 � Si,3)
Zi+1 = Si,2 ⊕ Si,5 ⊕ (Si,6 � Si,7) ,

and thus produces two ciphertext blocks at once. For a full specification, we refer to the
design papers [WP16, WP13].

2.2 Minaud’s Analysis of AEGIS
Minaud [Min14] showed that an attacker can exploit biased linear approximations involving
only the keystream Z0, Z1, . . . to undermine the confidentiality of AEGIS. The attack
requires collecting sufficient amounts of data with known or constant plaintext blocks.

The complexity of the attacks depends on the correlation of the bits selected by the
keystream masks. We consider linear characteristics [Mat93] and evaluate their correlation
contribution c [DGV94, DR02], computed as the product of the correlations 2p− 1 of the
individual approximations of nonlinear operations (S-boxes, And) using their probability
p. Assuming that the correlation contribution is a good estimate for the actual correlation,
we expect a data complexity proportional to the inverse squared correlation contribution
c−2 to distinguish the keystream based on the approximation.
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Minaud proposes linear characteristics covering 2 iterations of F , corresponding to 3
keystream blocks Zi, Zi+1, Zi+2. For AEGIS-128, the squared correlation contribution is
c2 = 2−154, and for AEGIS-256, c2 = 2−178. In an appendix, he observes that based on an
exhaustive evaluation of larger blocks of the characteristic, the squared correlation appears
to be higher by a factor of about 210, i.e., about 2−144. Furthermore, he estimates that by
using permuted variants of the same characteristic to obtain 16 different approximations,
the data requirements could be as low as about 2140 instead of about 2154.

3 Upper Bounds for the Keystream Bias in AEGIS
In this section, we develop several successively refined Mixed-Integer Linear Programming
(MILP) models of truncated linear characteristics for AEGIS and derive upper bounds
on the squared correlation contribution of linear characteristics. We first provide some
context and introduce the necessary notation in Subsection 3.1. In Subsection 3.2, we
define a simple first model following the usual modeling approach for AES-like designs but
obtain only very weak bounds and no consistent solutions. In Subsection 3.3, we identify
several reasons for these inconsistencies and consequently extend the simple model with
additional constraints on differences and second-order differences of linear masks to obtain
tighter bounds as well as consistent truncated solutions. Since there is still a significant
gap between the truncated bounds and the best found bitwise solutions, we proceed with
a bitwise model of all linear operations in Subsection 3.4. This last model improves the
bounds significantly and proves that, under Markov assumptions, no individual linear
characteristics for attacks similar to Minaud’s have a squared correlation contribution
better than 2−128 for AEGIS-128, AEGIS-256, or AEGIS-128L.

3.1 Notation for Linear Approximations of the AEGIS Keystream

We aim to find better approximations with a higher bias for more efficient attacks than
Minaud’s manually constructed approximations, as well as upper bounds on the best
possible bias to better evaluate the security margin of AEGIS. To find and evaluate
approximations, we model linear characteristics for the state update function F and the
output function G with MILP. We denote the number of rounds involved as k. Thus we
consider the keystream blocks Zi to Zi+k, denoted Z0 to Zk in the following for the sake
of simplicity. Similar to the notation for MORUS by Shi et al. [SSS+19], we denote the
linear masks for the i-th output function call G by (γi, λi) and those for the following state
update F by (αi, βi), as illustrated in Figure 2.

. . . F

G

Z0

γ0

λ0

β−1 α0
F

G

Z1

. . .

G

Z2

γ1

λ1

β0 α1 β1 α2

γ2

λ2

Figure 2: Linear masks αi, βi, γi, λi for 3 consecutive keystream blocks Zi of AEGIS.

Additionally, we need masks for the inputs of the SubBytes, ShiftRows, and MixColumns
layers, denoted as σi, ρi, and µi, respectively. The output mask of MixColumns must equal
the corresponding round function output mask βi due to the following Xor operation.
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Besides the round number i, masks like αi,j [r, c, b] are indexed as follows, where index
computations for j, r, c are always modulo the corresponding set size (see Figure 3):

Round number i ∈

{
I = {0, . . . , k − 1}, for round functions F
I ′ = {0, . . . , k}, for output functions G

Substate index j ∈ J =


{0, . . . , 4}, for AEGIS-128
{0, . . . , 5}, for AEGIS-256
{0, . . . , 7}, for AEGIS-128L

AES Row r ∈ R = {0, 1, 2, 3}
AES Column c ∈ C = {0, 1, 2, 3}
Bit position b ∈ B = {0, . . . , 7} .

...
...

...
...

...

γi,1 γi,2 γi,3 γi,4

λi G

αi,0 αi,1 αi,2 αi,3 αi,4

σi,0 σi,1 σi,2 σi,3 σi,4

SB SB SB SB SB

ρi,0 ρi,1 ρi,2 ρi,3 ρi,4 F

SR SR SR SR SR

µi,0 µi,1 µi,2 µi,3 µi,4

MC MC MC MC MC

βi,1 βi,2 βi,3 βi,4 βi,0· · · · · ·

βi,0 βi,1 βi,2 βi,3 βi,4

...
...

...
...

...

Figure 3: Notation for linear substate masks in round i of AEGIS-128.

3.2 Simple Truncated Model
We want to find a lower bound on the number of active S-boxes and byte-And-operations
using a MILP model of the truncated linear behavior of AEGIS. This truncated model
defines which byte-sized cells of the state are active (i.e., have non-zero masks) and which
ones are not for compatible linear characteristics. We refer to a truncated characteristic as
consistent or valid if there is at least one compatible linear characteristic with non-zero
correlation contribution (estimated under Markovian independence assumptions), and as
inconsistent or contradictory otherwise. We denote the truncated mask by adding a bar
to the above cell mask names; for example, the truncated mask ᾱi,j [r, c] for byte mask
αi,j [r, c] is active if any of its bits αi,j [r, c, b] is active: ᾱi,j [r, c] =

∨
b∈B αi,j [r, c, b], with

∨ denoting logical Or. The MILP model includes a binary decision variable for each
truncated mask corresponding to the masks in Figure 3.
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In the following, we describe the constraints imposed on ᾱ, β̄, γ̄, and λ̄ by the state
update function F and the output function G, which are very similar to other AES-based
truncated models inspired by the original model of Mouha et al. [MWGP11]. In particular,
many of the steps involving some N truncated mask variables x1, . . . , xN are defined by
their branch number B, i.e., either 0 or ≥ B of the variables must be active. This can
be modeled with two R-linear MILP equations using a binary dummy variable d that is
active iff any of the xn is active as B · d ≤

∑N
n=1 xn ≤ N · d.

3.2.1 Constraints for the State Update Function F and Output Function G

Model of the Mode: Branches and Boundary Constraints For the branch between F
and G that links masks βi−1, αi, and γi, each bit position must be active in either 0 or
2 of the 3 masks. However, we are modeling bytes, so within one byte some bits may
come from the first part of the branch while other bits are modeled using the other side
of the branch. This leaves us with the options of 0, 2, or 3 bytes active in the truncated
model, i.e., ∀i ∈ I ′, j ∈ J , r ∈ R, c ∈ C : β̄i−1,j [r, c] + ᾱi,j [r, c] + γ̄i,j [r, c] ∈ {0, 2, 3}. This
corresponds to a linear function with branch number 2 and can be modeled using a binary
dummy variable d >γ̄i,j [r, c] ∈ {0, 1} for each cell:

2 d >γ̄i,j [r, c] ≤ β̄i−1,j [r, c] + ᾱi,j [r, c] + γ̄i,j [r, c] ≤ 3 d >γ̄i,j [r, c] ∀i ∈ I
′, j ∈ J , r ∈ R, c ∈ C .

Alternatively, we can eliminate the dummy variable by disallowing all invalid transitions,
which leads to significantly reduced solving runtimes:

β̄i−1,j [r, c] + γ̄i,j [r, c] ≥ ᾱi,j [r, c] ∀i ∈ I ′, j ∈ J , r ∈ R, c ∈ C ,
ᾱi,j [r, c] + γ̄i,j [r, c] ≥ β̄i−1,j [r, c] ∀i ∈ I ′, j ∈ J , r ∈ R, c ∈ C ,

ᾱi,j [r, c] + β̄i−1,j [r, c] ≥ γ̄i,j [r, c] ∀i ∈ I ′, j ∈ J , r ∈ R, c ∈ C .

The alternative model provided significant speedups for the bitwise model which will be
discussed in Section 3.4.

Since the internal state of the cipher is unknown, we cannot use bits of the internal
state before and after our characteristic as part of our approximation. Hence, for a k-round
characteristic, we require

β̄−1 = 0, ᾱk = 0 .

Finally, to exclude all-zero characteristics, we add a non-triviality constraint on λ̄0; a
similar constraint can optionally be added for the last keystream block λ̄k to set a precise
number of keystream blocks instead of a maximum number:∑

r∈R
c∈C

λ̄0[r, c] ≥ 1 .

Model of the State Update Function F The state update function takes the input
substates (masks αi), branches each substate to apply one AES round (input masks σi),
and Xors the result to the neighbouring substate. Thus, the masks for the output of F ,
outputs of MixColumns, and the state after branching the AES round input must all equal
βi = αi ⊕ σi. We model the branching in exactly the same way as the one for G, either
by using a binary dummy variable d >σ̄i,j [r, c] ∈ {0, 1} for each cell as follows or with the
alternative model:

2 d >σ̄i,j [r, c] ≤ ᾱi,j [r, c] + β̄i,j [r, c] + σ̄i,j [r, c] ≤ 3 d >σ̄i,j [r, c] ∀i ∈ I, j ∈ J , r ∈ R, c ∈ C .
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For SubBytes, each output byte is active iff the input byte is active. For ShiftRows, we
require the equality of the variables according to the specification of the ShiftRows step.
For the truncated model, both steps boil down to a renaming of variables:

ρ̄i = σ̄i ∀i ∈ I ,
µ̄i,j [r, c] = ρ̄i,j [r, r + c] ∀i ∈ I, j ∈ J , r ∈ R, c ∈ C .

The truncated linear behavior of MixColumns is defined by its branch number of 5
[DR98], i.e., the sum of active truncated input and output masks must be in {0, 5, 6, 7, 8}.
Using a binary dummy variable dMCµ̄

i,j [∗, c] ∈ {0, 1} per column, we get

5 dMCµ̄
i,j [∗, c] ≤

∑
r∈R

β̄i,j+1[r, c] +
∑
r∈R

µ̄i,j [r, c] ≤ 8 dMCµ̄
i,j [∗, c] ∀i ∈ I, j ∈ J , c ∈ C .

Model of the Output Function G The output functions for AEGIS-128 and AEGIS-256
compute the Xor of several substates and the And of two substates. The Xor implies{

λ̄i = γ̄i,1 = γ̄i,4 for AEGIS-128
λ̄i = γ̄i,1 = γ̄i,4 = γ̄i,5 for AEGIS-256

∀i ∈ I ′ .

The And operation is the same for both variants of the cipher. Its output can be
approximated using any input mask, but an active input mask implies an active output:

γ̄i,2[r, c] ≤ λ̄i[r, c] and γ̄i,3[r, c] ≤ λ̄i[r, c] ∀i ∈ I ′, r ∈ R, c ∈ C .

Furthermore, because the leftmost substate is not part of the output function, γ̄i,0 = 0.
For AEGIS-128L, the output function computes two outputs with masks λa

i , γ
a
i and

λb
i , γ

b
i with similar functions, where γi = γa

i ⊕ γb
i . The truncated model is analogous, with

the additional requirements that γ̄a
i,0 = γ̄a

i,4 = γ̄a
i,5 = γ̄a

i,7 = γ̄b
i,0 = γ̄b

i,1 = γ̄b
i,3 = γ̄b

i,4 = 0.

3.2.2 Objective Function

The quality of our truncated linear characteristic is determined by (an upper bound on)
the maximum possible correlation contribution c of a compatible characteristic, which we
want to maximize. By assuming the independence of the parts of the characteristic, we
can model the overall correlation contribution as the product of individual correlations
[DGV94, DR02], similar to the piling-up lemma [Mat93] for the bias ε = c/2. Then, the
inverse of the squared correlation contribution, c−2, is an estimate for the necessary data
to exploit the corresponding approximation.

To obtain a linear objective function, we equivalently work with the cost function
corresponding to the logarithm of the squared correlation contribution, w = −2 log2 |c|. In
order to derive an upper bound, we want to rate each active nonlinear component with the
upper bound of its correlation. The best correlation for an active S-box is c = ±2−3, thus
we rate it with w = 6. An active byte in the And-operation at the output function requires
at least one active bit, thus the maximum absolute correlation is given by c = ±2−1 and
we rate it with w = 2. The resulting objective function is

minimize 6
∑
i∈I
j∈J
r∈R
c∈C

σ̄i,j [r, c] + 2
∑
i∈I′

r∈R
c∈C

λ̄i[r, c] .
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3.2.3 Results for the Truncated Model

We can consider models for a varying number of keystream blocks. There are no solutions
for only one round of the state update function and two blocks. Bounds for more than two
rounds are significantly higher, e.g., 2−158 for 3-round AEGIS-128 and 2−192 for 3-round
AEGIS-256. Thus, we focus on the best case of two rounds and three blocks in the following.

Solving this model quickly yields an upper bound for the squared correlation contribution
of 2−92 for AEGIS-128 and 2−116 for AEGIS-256, along with several truncated patterns
meeting this bound. Trying to find compatible characteristics with bitwise masks, however,
fails for all “optimal” and “near-optimal” results in the solution pool: they are apparently
inconsistent. An exemplary invalid solution is listed in Figure 4.

For AEGIS-128L, the resulting bound for two rounds is 2−114, and the best truncated
characteristics are indeed consistent; a short heuristic search with the methods of Section 4
yields an example characteristic with squared correlation contribution 2−172.

3.3 Improved Truncated Model

To understand why the solutions are inconsistent despite the apparent validity of the
patterns for individual AES rounds, it is necessary to consider pairs of AES rounds either
in the same AEGIS round or in consecutive rounds. Such cross-round inconsistencies have
previously been observed in related-key differential characteristics for AES [GLMS18].

3.3.1 Limitations of the Simple Truncated Model

In the invalid example in Figure 4, two sources of conflicts are highlighted: One within the
first round across substates in blue and green, the second within one substate across the
first two rounds in yellow and green.

Consider the bitwise mask for the last column of α0,1 = γ0,1 = γ0,4 = α0,4, highlighted
in blue. Recall that for consistent linear characteristics, any three bitwise masks for the
inputs and output of an Xor (⊕) operation must be identical and that any three masks for
the input and two outputs of a variable branch (•) must Xor-sum to zero. Based on the
definition of the output function G and the requirement for all-zero initial masks β−1, these
columns must have identical masks. Furthermore, since the corresponding last columns in
σ0,1 and σ0,4 are both all-zero except for the first cell of σ0,4, the bottom three cells of
β0,1 (green) and β0,4 must also be identical. Their first cell, on the other hand, must be
different. These columns correspond to the outputs of MixColumns in the first-round AES
round functions. The corresponding input masks before MixColumns in the diagonals of
ρ0,0 and ρ0,3 must be all-zero and thus identical in the bottom three cells, while the first
cell may or may not be different.

We thus need a pair of masks with difference (**, 00, 00, 00) at the input and a pair
with difference (xx, 00, 00, 00) at the output, where xx 6= 00. This is, however, not possible
due to the MDS property of the MixColumns matrix A [DR02]. Since A is MDS, all its
square submatrices are invertible, implying that the transposed matrix AT is also MDS
and thus has a differential branch number of 5. This contradicts our requirements of mask
differences with either 1 or 2 active cells.

The situation is similar for the yellow columns: The difference between the MixColumns
output masks β0,1 in the first round and β1,1 in the second round must be precisely
γ1,1 ⊕ σ1,1 and thus have exactly 2 active cells, while the corresponding input mask
difference in the diagonal of ρ0,0 ⊕ ρ1,0 may have at most one active cell, contradicting the
differential branch number of AT .
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Figure 4: Inconsistent truncated linear characteristic for AEGIS-128 (11 S-boxes, 13 Ands).
Highlighted columns in blue+green or in yellow+green permit no bitwise consistent masks.
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3.3.2 Additional Constraints for an Improved Truncated Model

More generally, the problem arises from linear constraints between the MixColumns output
masks of a pair of AES rounds that are not reflected in the local truncated descriptions.
In the following, we propose a refined MILP model with additional constraints to reflect
the differential branch number for relevant pairs of masks. Such relevant pairs are linked
by (undirected) paths with linear operations (Xor, branches), and their difference is
constrained according to the difference patterns in those branches.

For each relevant pair, we introduce decision variables corresponding to the truncated
difference between masks:

1. For the first active round (blue+green example): MixColumns input difference
∆ρ0,(0,3) = ρ0,0 ⊕ ρ0,3 (or, equivalently, ∆µ0,(0,3) after ShiftRows), output dif-
ference ∆β0,(1,4) = β0,1 ⊕ β0,4, constrained by the identical branch difference
∆β0,(1,4) = σ0,1 ⊕ σ0,4.

2. For each active round i (similarly to the blue+green example, but with the following
output function): MixColumns input difference ∆ρi,(0,3) = ρi,0⊕ρi,3, output difference
∆βi,(1,4) = βi,1 ⊕ βi,4, constrained by the identical branch difference ∆βi,(1,4) =
αi+1,1 ⊕ αi+1,4.

3. For substate j of two consecutive rounds i, i+1 (yellow+green example): MixColumns
input difference ∆ρ(i,i+1),j = ρi,j⊕ρi+1,j , output difference ∆β(i,i+1),j = βi,j⊕βi+1,j ,
constrained by the identical branch difference ∆β(i,i+1),j = γi+1,j ⊕σi+1,j (for j 6= 0)
or ∆β(i,i+1),0 = σi+1,0 (for j = 0).

4. For any two consecutive rounds i, i+1, we can combine the above constraints to obtain
second-order differential constraints: The difference of two consecutive MixColumns in-
put differences ∆2ρ(i,i+1),(0,3) = ∆ρ(i,i+1),0⊕∆ρ(i,i+1),3 = ∆ρi,(0,3)⊕∆ρi+1,(0,3) and
output differences ∆2β(i,i+1),(1,4) = ∆β(i,i+1),1⊕∆β(i,i+1),4 = ∆βi,(1,4)⊕∆βi+1,(1,4),
constrained by the identical branch difference ∆2β(i,i+1),(1,4) = σi+1,1 ⊕ σi+1,4, since
γi+1,1 ⊕ γi+1,4 = 0.

In the truncated MILP model, both the required MDS branch number for the MixColumns
input and output difference variables and the Xor-based definition of the differences
based on the original masks are only modeled by their branch numbers (5 for differential
MixColumns, 2 for Xor). These can be translated to MILP constraints in exactly the same
way as the linear models of MixColumns and branches in Subsection 3.2, using yet another
set of activity helper variables.

In total, for the two-round model of AEGIS-128, this adds 16× 2× (1 + 2 + 5 + 1) = 288
new binary variables for the differences plus slightly less than (4 + 16× 3)× (1 + 2 + 5) +
(4 + 16 × 5) × 1 = 500 new binary helper variables for MixColumns and Xors, as well
as about 2 × 500 linear constraints. This is in addition to the 1741 variables and 1610
constraints needed for the simple truncated model. For the larger variants AEGIS-256 and
AEGIS-128L, the conditions can be easily adapted to the extended state size and different
output functions; for example, for AEGIS-256, the Xor of three substates appears in the
output function, so the conditions for substate pair (1, 4) above need to be applied for all
pairs (1, 4), (1, 5), and (4, 5). The objective function remains unchanged.

3.3.3 Results for the Improved Model

Solving this refined truncated model improves the upper bound for the squared correlation
contribution to 2−102 for 2 rounds of AEGIS-128. The resulting optimal truncated solutions
appear to be consistent, and corresponding bitwise characteristics can be found easily (see
Section 4). On the downside, there is a significant gap between this bound and the best
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found bitwise characteristic, whose squared correlation contribution is 2−140. For 2 rounds
of AEGIS-256, the bound is slightly improved to 2−120, but the obtained optimal solution
still appears to be inconsistent.

3.4 Bitwise Model
Although the best truncated linear characteristics for AEGIS-128 found with the improved
truncated model of Subsection 3.3 are consistent, there is a significant gap between the
resulting bounds and the best found solutions. Most notably, while the bound suggests
potential attacks with complexity below 2128, the best found attacks are above this bound.
The main reason for this gap is not the correlation of non-optimal S-box transitions, which
are only slightly worse than the optimal ones, but the contribution of the output function
and its And-gates. While the bound assumes the optimal case of only 1 active bit per byte
and thus a squared correlation of 2−2, this may rise up to all 8 active bits and a squared
correlation of 2−16.

To improve the tightness of the bound, we chose to include a full bitwise model of
the linear operations in the MILP model alongside the truncated constraints. The goal
of this model is to capture constraints on the number of active bits in the nonlinear
output functions and thus better estimate their correlation. Running the truncated and
non-truncated models in parallel allows the MILP solver to find better bounds faster.

Linked Truncated and Bitwise Models We propose a partial bitwise model of the state
update function to model each bit of the masks using MILP. For each binary decision
variable corresponding to a truncated mask, we add 8 binary decision variables to model
the activity of each bit, i.e., whether the mask is 0 or 1. For example, the truncated
variable ᾱi,j [r, c] is connected with its corresponding individual bitwise mask variables
αi,j [r, c, b], b ∈ B, as follows:

ᾱi,j [r, c] ≤
∑
b∈B

αi,j [r, c, b] ≤ 8 ᾱi,j [r, c] ∀i ∈ I, j ∈ J , r ∈ R, c ∈ C .

Simple variable renaming steps, such as ShiftRows or the mask equality constraints corre-
sponding to Xor operations, can be directly applied to the mask variables in the same
fashion as for the truncated variables.

Modeling AES SubBytes Although there has been some work done regarding the mod-
eling of large S-boxes in MILP [AST+17], such approaches are impractical for our AEGIS
model due to the sheer number of S-boxes involved, combined with the density of the
Linear Approximation Table (LAT) of the AES S-box. Consequently, we simply do not add
any additional constraints for the S-box transitions and assume that any S-box transition is
possible with the optimal squared correlation of 2−6. Indeed, about 93 % of all transitions
are possible for the AES S-box, with squared correlation between 2−6 and 2−12.

Modeling AES MixColumns The MixColumns step is linear over F2 and can thus be
represented as a matrix-vector multiplication over F2. We denote the corresponding 32×32
matrix as A. Thus if we denote the input of AES MixColumns as m and the output as b,
with 32-bit columns denoted by mc and bc, respectively, then ∀c ∈ C : bc = Amc. The
corresponding columns of our linear masks are:

µi,j [∗, c] := µi,j [0, c] ‖ µi,j [1, c] ‖ µi,j [2, c] ‖ µi,j [3, c] for mc ,

βi,j [∗, c] := βi,j [0, c] ‖ βi,j [1, c] ‖ βi,j [2, c] ‖ βi,j [3, c] for bc .
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Then the linear masks must satisfy:

µi,j [∗, c] = AT βi,j [∗, c] ∀i ∈ I, j ∈ J , c ∈ C ,

where the matrix multiplication is over F2. This way, we obtain Xor-equations involving
either 6 or 12 variables. To model these Xor-equations as R-linear equations for MILP, we
simply require that the integer sum of all involved variables equals 2 · d for a new integer
dummy variable d.

Modeling Branches and the Output Function G The bitwise model of And operations
as well as the equality constraints corresponding to Xor operations are analogous to the
truncated model described in Section 3.2.1. The Xor constraints corresponding to variable
branches can be modeled the same way as the Xor equations in MixColumns, i.e., by
using dummy variables. There is, however, a much better model possible: Similar to the
truncated model we can disallow all invalid transitions using constraints. Thus for each
triplet of bits (a, b, c) and for each branch we require:

a+ b+ c ≤ 2 , b+ c ≥ a , a+ c ≥ b , a+ b ≥ c .

By applying this alternative model to all branches in the bitwise model as well as in the
linked truncated model, we eliminate 3 600 dummy variables for two rounds of AEGIS-128.
This reduced the solving runtime for AEGIS-128 from approximately 3 days to 25 minutes
in a multi-core setup.

This speedup is explained by the way the branch and bound algorithm works: It first
removes all integrality constraints and solves this so-called LP relaxation. This solution
provides a first bound for the problem. Of course there may still be integer variables with
non-integer values; the solver now picks one variable v with value x of them and branches
on that variable i. e. it creates two subproblems one with the additional constraint that
v ≤ bxc and the other with the constraint v ≥ dxe. If an integer solution is found, it is
optimal for that subtree. This is repeated until all subtrees have either been exhausted or
cut (because their bound is worse than the current best solution) and only one (integer
optimal) solution remains. By using the alternative model, we can capture the branch
constraints in the LP relaxation and thus the algorithm needs to branch much less and
finds better bounds faster.

Objective Function For the objective function, we keep the truncated bounds for the
S-box transitions, but evaluate the exact bitwise cost of approximating the And operations
in the output function based on the output masks λ:

minimize 6
∑
i∈I
j∈J
r∈R
c∈C

σi,j [r, c] + 2
∑
i∈I′

r∈R
c∈C
b∈B

λi[r, c, b] .

3.4.1 Results for the Bitwise Model

Solving the bitwise model is significantly more costly than the truncated model, but
also produces significantly tighter bounds: While the truncated and improved models
can be solved instantaneously by Gurobi, the bitwise model takes about 20 minutes for
AEGIS-128, 1 hour and 20 minutes for AEGIS-256, and about 5 minutes for AEGIS-128L to
find an optimal solution in a multi-core setup. The resulting upper bound for the squared
correlation contribution of 2 rounds of AEGIS-128 is 2−132 and thus very close to the best
found solution with 2−140 (using the LAT details, see Section 4). For 2-round AEGIS-256,
the bound of 2−152, obtained after running Gurobi for almost a week on 32 cores (with
the original Xor model), is similarly close to the best found solution with 2−162, as is the
bound of 2−140 for 2-round AEGIS-128L compared to 2−152.
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4 Improved Linear Approximations of AEGIS
So far, we focused on deriving bounds on the maximum possible squared correlation
contribution of characteristics. In this section, we discuss our search for solutions with
close-to-optimal quality and discuss the estimated cost of resulting attacks in more detail.
We first introduce a suitable Constraint Programming (CP) model based on the results
of Section 3 in Subsection 4.1 and then present our results in Subsection 4.2, including
characteristics with squared correlation contribution within factors 28 to 212 of the derived
bounds. In Subsection 4.3, we describe our efforts in experimentally verifying part of these
results, as well as the derived estimates on the attack complexity.

4.1 Constraint Programming Model
We model the constraints for valid linear characteristics in the CP tool Z3, including a
bitwise model for the linear operations similar to the one of Subsection 3.4 and a model
and cost definition of all (or some) of the valid transitions as described by the Linear
Approximation Table (LAT) of the AES S-box.

In addition to classical (hard) constraints we use weighted soft constraints: These may
be violated, but if they are, they incur a weight. The solver then tries to minimize the total
weight. We include soft constraints with the corresponding weights that try to exclude
the more costly S-box transitions, while hard constraints forbid impossible transitions.
Additionally, we include soft constraints for the outputs of the And-gates.

We split the linear approximation table of the S-box into multiple tables in such a way
that we end up with one table per correlation value. We then add soft constraints for each
correlation value of each S-box with corresponding weights.

Since the LAT is large and dense – out of 65536 possible mask pairs, 60946 are valid,
with 9 different correlations –, we quickly run into unmanageable runtimes with our model.
Therefore, we tweak the parameters of our model in two different ways: In one model
we include only the two best (non-zero) transition classes of the S-boxes. In the other
model we include the five best (non-zero) transition classes of S-boxes but remove the
optimization goal (i.e., the exact correlation) for the S-box class. To compensate for the
missing optimization goal, we generate many solutions in a loop and pick the best one.

Additionally, we define starting constraints based on minor variations of the best
truncated linear characteristics identified by the MILP solver and only include the LAT
constraints for S-boxes that are active in the truncated characteristic. Such reductions of
the search space are necessary for manageable runtimes, but of course, they imply that
the resulting solutions are not necessarily globally optimal, and slightly better solutions
may still exist.

4.2 Results
For AEGIS-128 we allow the 14 535 LAT transitions with squared correlation c2 ≥ 2−6.83

and do not distinguish between them. After 13 minutes we obtained the linear characteristic
with squared correlation contribution of 2−140 depicted in Figure 5. Generating many
solutions in a loop did not provide any better characteristics.

For AEGIS-256 we allow the 20 655 LAT-transition with squared correlation c2 ≥ 2−7.36

and do not distinguish between them. We generate many solutions in a loop and pick the
best one with squared correlation contribution of 2−162, which is depicted in Figure 6.

For AEGIS-128L we allow the 14 535 LAT transitions with squared correlation c2 ≥
2−6.83 and do not distinguish between them. By generating many solutions for about 2
days, we are able to pick the best of these solutions with squared correlation contribution
of 2−152. It is depicted in Figure 7.
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Figure 5: Linear approximation for AEGIS-128 with squared correlation contribution
2−140.
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Figure 6: Linear approximation for AEGIS-256 with squared correlation contribution
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Figure 7: Linear approximation for AEGIS-128L with squared correlation contrib. 2−152.
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The model with two possible classes of S-box transitions and corresponding optimization
targets takes multiple hours to solve. The characteristics generated by this model were
superseded by characteristics identified by running the quicker model in a loop. Runtime
numbers use an AMD Ryzen 2700X with a single core each due to limitations of Z3.

We remark that all three truncated characteristics share some structural patterns;
particularly the characteristics for AEGIS-128 and AEGIS-256 are quite similar. They are,
however, quite different from the approximations found by Minaud [Min14], which involve
only the first and last keystream blocks Z0 and Z2, while the mask for Z1 is zero.

4.3 Experimental Verification
We experimentally verified the squared correlation of parts of these characteristics. For
AEGIS-128, we first split the approximation corresponding only to the state update function
F into two “vertical” parts and verified them separately based on the AEGIS reference
implementation, within a continuous keystream (without re-initialization): The first part
covers the characteristic for substates with indices j ∈ {0, 1, 2}, with a predicted squared
correlation contribution of 2−41.075 and a measured result of 2−40.490 using 244 samples.
The second part covers j ∈ {3, 4} with an expected contribution 2−39.27 and a measured
result of 2−38.4 using 243 samples.

Second, we split the characteristic into three horizontal parts, each corresponding to one
output function call G and (the S-box layer of) one state update call F . In particular, this
addresses dependencies related to the consecutive And-operation and S-box approximations
of the same byte, which occurs in the first byte of substate j = 3 in each active round
of the characteristics for both AEGIS-128 and AEGIS-256, as well as in the first diagonal
of substate j = 3 in the first round for AEGIS-128L. In all these cases, the S-box input
masks must be identical to the masks for one And-input, so their mask value is irrelevant
for the overall correlation, as illustrated in Figure 8. The characteristics in Figures 5, 6,
7 define specific identical input masks for the S-box and one And input and thus treat
the two operations like separate, independent subfunctions of the characteristic, while the
combined gadget takes the dependencies of the shared input and the resulting linear hull
effect into account with a zero mask on the shared input. An exhaustive evaluation of all
possible byte mask values for ρi,2, λi, and ρi,3 with all 216 possible input values shows
that the best possible combined squared correlation is 2−7.36 and takes about 20 minutes
on a 44-core CPU with a fairly unoptimized search implementation. The best found
squared correlation is slightly, but not drastically better than the bound of 2−2−6 based
on the individual squared correlation contributions of And and the S-box. Still, there
may be more significant deviations from the expected correlation for specific mask values.
Furthermore, lower values may be possible in other characteristics where βi−1,3 ⊕ βi,3 6= 0.

The two examples in Figure 8 are from an alternative characteristic found for the same

γi,2 0

SB

λi ρi,3

(a) βi−1,3 ⊕ βi,3 = 0

24

SB
24 0e

(b) 2−7.66 instead of 2−4−6.39

21

SB
e1 0e

(c) 0 instead of 2−8−6.39

Figure 8: Examples for characteristic parts with different combined squared correlation.
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truncated characteristic of AEGIS-256. Their measured correlation deviates significantly: it
is much better in the first example (from the second round), where the combined squared
correlation of And and S-box in byte 0 of S1,4 is 2−7.66 instead of the predicted 2−10.39,
and thus even higher than the upper bound of 2−2−6 for the product of the individual
squared correlation contributions. By choosing different S-box input masks consistent with
the characteristic, the estimate for the same gadget could be as bad as 2−16. On the other
hand, in the second example (first round), the selected bits in the same byte position are
not correlated at all. Since the latter occurred in several example solutions produced by
Z3, we added the verification of the gadget as an output condition when searching for good
solutions, which only takes a couple of minutes per found solution. It is also possible to
constrain the masks involved in gadgets to a list of values corresponding to correlations
above a particular bound, similar to the S-box constraints in Z3.

The bounds we provided cannot completely take such linear hull effects into account,
as discussed in Subsubsection 3.4.1. The truncated models will be less affected than
the bitwise models, since they already approximate each such gadget with 2−8, which is
not too different from 2−7.36. For the bitwise models, larger deviations may occur for
characteristics with higher Hamming weights of the output masks, but a potentially high
correlation in the gadget. Since the objective function discourages high Hamming weights
and the S-box is always bounded by the optimal 2−6, we expect that the deviation from
the bound is not too large. Of course, there may also be other linear hull effects that could
allow approximations with a better correlation.

For the characteristics in Figures 5, 6, 7, the observed correlation quite closely confirms
the expectation based on the correlation contributions: For AEGIS-128 (Figure 5), due to
the Hamming weight of 1 in λi, the S-box input difference specified by the characteristic
is the only possible one, so the evaluation precisely confirmed the squared correlation
contribution of 2−140. For AEGIS-256 (Figure 6), the same is true in the second round; in
the first round with a Hamming weight of 2, there are 3 possible masks and the observed
squared correlation is slightly better at 2−10 instead of 2−10.39. For AEGIS-128L (Figure 7),
byte 0 in the first round is also slightly better at 2−9.36 instead of 2−10.83 (3 masks).

When using these characteristics for attacks, the data complexity of about c−2 can be
improved, similar to Minaud’s, by combining multiple approximations: for example, the
characteristics can be shifted to 16 different anchor positions for the byte at the intersection
of the diagonal and the column in Z0, and can be evaluated in an overlapping way on the
keystream (though this may introduce additional dependencies).

5 Conclusion

We proposed improved keystream approximations for the AEGIS family, but also proved
upper bounds for the squared correlation contribution of any single suitable linear char-
acteristic. All bounds are below 2−128 and thus support AEGIS’ security with realistic
amounts of data. Still, these bounds should be taken with a grain of salt and do not
necessarily prove security against linear cryptanalysis using keystream approximations in
general: First, the bounds apply to individual characteristics, and better approximations
may exist due to the linear hull effect. However, we expect this effect to be limited, since
the fixed λi masks in each round limit the number of potentially compatible characteristics.
Second, and much more importantly, the inputs to individual nonlinear operations are
definitely not independent. There is no key, and in particular, G’s And-operations share
the exact same input values with some of F ’s S-boxes. This effect was also observed in
Minaud’s analysis [Min14], where it improved the attack complexity.
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