
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2019, No. 4, pp. 318–347. DOI:10.13154/tosc.v2019.i4.318-347

Improved Meet-in-the-Middle Preimage Attacks
against AES Hashing Modes

Zhenzhen Bao1,2, Lin Ding3, Jian Guo1, Haoyang Wang1(B) and Wenying
Zhang1,4

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore
{zzbao,guojian}@ntu.edu.sg,wang1153@e.ntu.edu.sg

2 Strategic Centre for Research in Privacy-Preserving Technologies and Systems,
Nanyang Technological University, Singapore, Singapore

3 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai,
China

dinglin@sjtu.edu.cn
4 School of Information Science and Engineering, Shandong Normal University, Jinan, China

zhangwenying@sdnu.edu.cn

Abstract. Hashing modes are ways to convert a block cipher into a hash function, and
those with AES as the underlying block cipher are referred to as AES hashing modes.
Sasaki in 2011, introduced the first preimage attack against AES hashing modes with
the AES block cipher reduced to 7 rounds, by the method of meet-in-the-middle. In
his attack, the key-schedules are not taken into account. Hence, the same attack
applies to all three versions of AES. In this paper, by introducing neutral bits from
the key, extra degree of freedom is gained, which is utilized in two ways, i.e., to reduce
the time complexity and to extend the attack to more rounds. As an immediate
result, the complexities of 7-round pseudo-preimage attacks are reduced from 2120

to 2104, 296, and 296 for AES-128, AES-192, and AES-256, respectively. By carefully
choosing the neutral bits from the key to cancel those from the state, the attack
is extended to 8 rounds for AES-192 and AES-256 with complexities 2112 and 296.
Similar results are obtained for Kiasu-BC, a tweakable block cipher based on AES-128,
and interestingly the additional input tweak helps reduce the complexity and extend
the attack to one more round. To the best of our knowledge, these are the first
preimage attacks against 8-round AES hashing modes.
Keywords: AES · MITM · preimage · hashing mode · key-schedule

1 Introduction

The Advanced Encryption Standard (AES). Designed by Daemen and Rijmen in
1998 [AES01], and later formally standardized by the U.S. National Institute of Standards
and Technology (NIST) in 2001, AES becomes the most widely deployed block cipher
nowadays in the world among both industry and government agencies, for its long-standing
security against massive cryptanalysis and efficiency in both software and hardware. There
are three variants, and according to the key sizes and hence security level in bits from the
set {128, 192, 256}, they are named as AES-128, AES-192, and AES-256, respectively.

The PGV Hashing Modes. Hashing modes are ways to convert block ciphers to com-
pression functions, and then to hash functions under some domain extensions. Compared

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-09-01, Accepted: 2019-11-01, Published: 2020-01-31

https://doi.org/10.13154/tosc.v2019.i4.318-347
mailto:{zzbao,guojian}@ntu.edu.sg, wang1153@e.ntu.edu.sg
mailto:dinglin@sjtu.edu.cn
mailto:zhangwenying@sdnu.edu.cn
http://creativecommons.org/licenses/by/4.0/

with designs from scratch, hashing modes enjoy both inherited security and performance
efficiencies from the underlying block ciphers. Security proofs of hashing modes, which
deduce the security, such as collision resistance of a hash function to the security of the
underlying block cipher, ensure that no attack against the hash function could be possible
before an attack against the underlying block cipher is found. This removes the hassle
of intensive cryptanalysis required by hash functions designed from scratch, when the
hashing mode is instantiated by a secure block cipher such as AES. For environments like
resource-constrained hardware where a block cipher is already implemented, a hashing
mode could be the most economical way to achieve a hash function for purposes like
digest and signature, since in most of the cases implementing a hashing mode on top of an
existing block cipher costs much lesser than that of a standalone hash function.

In [PGV94], Preneel, Govaerts, and Vandewalle summarized that there are 12 secure
ways to convert a block cipher to a compression function, and these constructions are
referred to as PGV modes nowadays after the name of the authors. Out of them, there are
three modes named Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO), Miyaguchi-Preneel
(MP) commonly used in practice. For instance, all the hash functions in the MD-SHA
hash family, including MD4, MD5, SHA-1, and SHA-2, can be viewed as DM modes.

Use-Cases of AES Hashing Modes. Using block cipher MMO-mode to build hash
functions is one of ISO/IEC standardized methods [ISO10], which specifies how to use an
n-bit block cipher building a hash function with an n-bit digest. In [ISO10], such a block
cipher-based hash function (Hash function 1) is instantiated using AES as an example.
Besides, the instantiation of DM-mode by AES was once submitted to NIST as a formal
proposal under the name AES-Hash [CL01]. Furthermore, there are cryptographic protocols
with rich functionality using hash functions as building blocks, e.g., Symmetric Searchable
Encryption (SSE), which is designed to achieve the best trade-offs between security,
efficiency, and functionality. In [Bos16, BMO17], secure SSE schemes are proposed, which
use hash functions with a requirement of preimage resistance. In particular, it is crucial
that the hash functions are pre-image resistant for the security of the schemes [Bos16].
And, in the implementation of the proposed SSE scheme named Diana, the hash function
is the AES block cipher used in Matyas-Meyer-Oseas mode [BMO17]. 1 Due to the
standardization, the well-studied security of PGV-mode, and the AES-NI instructions in
modern CPUs, hash functions built based on AES PGV-mode may have also attracted
other real-life cryptographic applications that require loose but finely controllable security.
A hash function with a 128-bit internal state has potential applications in cases where it
requires (second-)preimage resistance but explicitly does not require collision resistance
(e.g., hashing with short-input for signature schemes [KLMR16]).

The MITM Preimage Attack. The preimage attack against a hash function is to
find a message whose digest equals to the given value. The most naive way is to ran-
domly select a message, evaluate its digest and check against the given value. This
brute-force method costs 2n hash evaluations for an n-bit hash function. A method
running faster than 2n is considered as an attack. Sasaki and Aoki introduced the
Meet-in-the-Middle (MITM) preimage attack in 2008 [SA08], and the technique was ex-
tended and used to break the theoretical preimage security claims of MD4 [GLRW10a],
MD5 [SA09], Tiger [WS10, GLRW10a], HAVAL [SA08, GSY15] and round-reduced variants
of many other hash functions such as SHA-0 and SHA-1 [AS09a, KK12, EFK15], SHA-
2 [AGM+09], BLAKE [EFK15], HAS-160 [HKS10], RIPEMD and RIPEMD-160 [WSK+11],

1Corresponding open-source libraries are released, and one can find the implementation of the hash
function built using AES MMO-mode via https://gitlab.com/sse/crypto/blob/master/src/block_hash.
cpp, and https://github.com/jgharehchamani/SSE/blob/master/third_party/crypto/src/block_hash.
cpp. We found that in the newest repository moved to GitHub, the hash function used has been replaced
with BLAKE2b and SHA-512, see https://github.com/OpenSSE/crypto-tk/blob/master/src/hash.cpp.

319

https://gitlab.com/sse/crypto/blob/master/src/block_hash.cpp
https://gitlab.com/sse/crypto/blob/master/src/block_hash.cpp
https://github.com/jgharehchamani/SSE/blob/master/third_party/crypto/src/block_hash.cpp
https://github.com/jgharehchamani/SSE/blob/master/third_party/crypto/src/block_hash.cpp
https://github.com/OpenSSE/crypto-tk/blob/master/src/hash.cpp

Stribog [AY14a], and Whirlwind [AY14b]. It is interesting to see that the idea of MITM
preimage attacks also leads to the progress of collision attacks against reduced SHA-
2 [LIS12]. These preimage attacks are generally converted from MITM pseudo-preimage
attacks by using a generic algorithm, where pseudo-preimage attacks are attacks with
unconstrained IVs (one allows free choice of IVs). Thus, formally, denote the hash function
by H, for pseudo-preimage attacks, given a target T , the goal is to find an initialization
vector or chaining value V and a message M such that H(V,M) = T .

MITM Preimage Attack against AES Hashing Modes. AES hashing modes refer
to the hashing modes instantiated by AES block cipher. In 2011, Sasaki [Sas11] introduced
the first attack against AES hashing modes with the underlying AES reduced to 7 rounds
and the last round without the MixColumns operation. The complexity of the attack was
sightly improved by Wu et al. [WFW+12] in 2012. To the best of our knowledge, there is
no more public progress on this topic since then.

The general idea of MITM preimage attack is to split the cipher (or compression
function) into two independent chunks, which can be computed independently from each
other with respect to some neutral bits. Technically, the source of neutral bits of most
previous works is the key bits of the block cipher or the message bits of the compression
function. However, in [Sas11], the neutral bits are chosen from the state while the key
bits are not used and fixed to some random constants. The key bits are not used because
finding neutral bits in the key is difficult due to the key-schedule which diffuses all key
bits quickly. It is then natural to ask whether it is possible to eventually find neutral bits
from key to either improve the attack complexity or to extend the number of attacked
rounds. In this paper, we achieve both.

Our Contributions. On one hand, additional neutral bits from the key improves the
attack in two directions, i.e., improving the time complexity directly due to more neutral
bits and extending the attack to more rounds since local collisions of neutral bits from
the encryption state and the key state are possible. On the other hand, to avoid dealing
with the quick diffusion of the key-schedule of AES, we choose neutral bits from the key
state for one chunk v.s. for both chunks. This is possible thanks to the improvement of
the attack in [WFW+12], where the unbalanced 8 and 32 bits neutral bits are found for
the two chunks. The additional neutral bits from key makes it closer to the balanced 32
and 32 bits, which improves the time complexity of the final attack by a factor of at most
232−8 = 224.

Larger key sizes allow more degrees of freedom for the choices of neutral bits, and
also AES with a larger key size comes with a slower key diffusion. These factors lead
us to a higher number of attacked rounds and lower time complexities for AES-192 and
AES-256, compared with the previous attacks against AES-128 in [Sas11, WFW+12]. The
details of attacks, including the number of attacked rounds and time/memory complexities,
compared with the previous works, are summarized in Table 1.

Organization. The rest of the paper is organized as follows. Section 2 gives the prelimi-
naries of AES and the PGV hashing modes, followed by a general description of the MITM
preimage attack in Section 3. The main techniques of MITM attack on AES hashing modes
are summarized in Section 4, including those used in previous attacks and in our attacks.
Results of 7 and 8 rounds are given in Section 5 and 6, respectively. The applicability of
the presented pseudo-preimage attacks on the PGV modes and on conversion into full
(second-)preimage attacks are discussed in Section 7. Section 8 concludes the paper.

320

Table 1: Summary of our improved pseudo-preimage attacks against the round-reduced
compression function of AES hashing modes, compared with previous works

Target #Rounds Time-1 Time-2 Memory (d1, d2,m) Source

AES-128
7 2120 2125 * 28 (8, 8, 32) [Sas11]
7 2120−min(t,24) 2123 * 28+min(t,24) (8, 32, 32) [WFW+12]
7 2104 2117 224 (24,32,24) Section 5.1

AES-192
7 2120 2125 * 28 (8, 8, 32) [Sas11]
7 296 2113 232 (32,32,32) Section 5.2
8 2112−min(t,16) 2116 216+min(t,16) (16,32,32) Section 6.3

AES-256
7 2120 2125 * 28 (8, 8, 32) [Sas11]
8 296 2113 232 (32,32,32) Section 6.2

Kiasu-BC
7 2104−min(t,8) 2117 224+min(t,8) (24,32,32) Section 5.3
8 2120−min(t,24) 2123 28+min(t,24) (8,32,32) Section 6.4

– Time-1 is the time complexity of pseudo-preimage. Here, 2t is the number of available targets for
multi-target pseudo-preimage attacks. In the full (second-)preimage attacks, that can be the number of
available nodes in the unbalanced-tree-based conversion from multi-target pseudo-preimage to preimage
attacks (refer to Sect. 3.2), or the number of blocks of given message for second-preimage attacks.

– Time-2 is the complexity of using the (multi-target) pseudo-preimage attacks to do (second-)preimage
attacks when requiring an upper layer of meet-in-the-middle procedure of conversion (refer to Sect. 3.2)
for some PGV modes, such as DM-mode, and here a single target is given.

– * Note that for some PGV modes, such as MMO and MP modes, converting the pseudo-preimage
attacks in [Sas11, WFW+12] to second-preimage attacks will not require the upper-layer
meet-in-the-middle procedure, and the time complexities will be the same as that of the pseudo-preimage
attacks (refer to [Sas11] for details). Whereas, the presented attacks in this paper always require an
upper-layer meet-in-the-middle procedure to be converted into (second-)preimage attacks, because they
require that both of the inputs to the encryption and to the key-schedule be unfixed.

2 Preliminaries
2.1 Description of AES
AES is an iterated block cipher that encrypts 128-bit plaintext with a secret key of sizes
128, 192, and 256 bits. AES with 128-bit (192, 256) master keys is denoted by AES-128
(192, 256). AES-128, AES-192, and AES-256 share the same round function with a different
number of rounds: 10, 12, and 14, respectively. The rounds are numbered 0, · · · , Nr − 1,
where Nr ∈ {10, 12, 14} is the number of rounds. Its internal state can be represented as a
4× 4 matrix whose elements are byte value (8 bits) in a finite field of GF(28). The round
function consists of four basic transformations in the following order:

- SubBytes (SB) is a nonlinear substitution that applies the same S-box to each byte
of the internal state.

- ShiftRows (SR) is a cyclic rotation of i-th row by i bytes to the left, for i = 0, 1, 2, 3.

- MixColumns (MC) is a multiplication of each column with a Maximum Distance
Separable (MDS) matrix over GF(28).

- AddRoundKey (AK) is an exclusive-or with the round-dependent key.

321

MDS guarantees that the sum of active bytes (a.k.a. non-zero bytes) in the input and
output of the MixColumns operation is at least 5 unless all bytes are non-active (a.k.a.
zeros). The matrices for the encryption and decryption are shown below. Note that X[j]
is the input value and Y [j] is the updated value. Numbers in typewriter font, e, b, d, and
9, are in hexadecimal.

Y [0]
Y [1]
Y [2]
Y [3]

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

X[0]
X[1]
X[2]
X[3]

 ,

X[0]
X[1]
X[2]
X[3]

 =

e b d 9
9 e b d
d 9 e b
b d 9 e

Y [0]
Y [1]
Y [2]
Y [3]

One round of AES is depicted in Figure 1 as follows:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) Byte order

SB
0
1
2
3

0 1 2 3

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

SR MC AK

(b) AES round function

Figure 1: AES byte order and AES round function

At the very beginning of the encryption, an additional whitening key addition is
performed, and the last round does not contain MixColumns.

The key-schedule of AES transforms the master key into Nr + 1 subkeys of 128 bits
each. The master key is divided into Nk 32-bit words (W [0],W [1], ...,W [Nk − 1]), then
W [i] for i = Nk, · · · , 4 ·Nr + 3 is computed as

W [i] =

W [i−Nk]⊕ SB(RotByte(W [i− 1]))⊕Rcon[i/Nk], i ≡ 0 mod Nk;
W [i− 8]⊕ SB(W [i− 1]), Nk = 8 and i ≡ 4 mod 8;
W [i−Nk]⊕W [i− 1], otherwise.

<<S

<<S

<<S

S

Figure 2: Round functions of key-schedules of AES-128, AES-192, and AES-256 [Jea16]

The i-th round key is the concatenation of 4 wordsW [4i] ‖W [4i+1] ‖W [4i+2] ‖W [4i+
3]. RotByte is a cyclic shift by one byte to the left, and Rcon is the round constant, for
which we refer to [AES01] for details. The graphic representation of the key-schedules is
depicted in Figure 2.

322

2.2 Description of Kiasu-BC
Kiasu-BC is the underlying tweakable block cipher (TBC) used in the authenticated
encryption scheme Kiasu proposed by Jean et al. [JNP14a] alongside their TWEAKEY
framework [JNP14b] at ASIACRYPT 2014. The TBC is almost identical to the AES-128
except for the additional input tweak, which renders it an attractive primitive for various
modes of operation and applications requiring tweakable block ciphers. Therefore, studying
how the additional tweak input affects the security strength compared to that of AES is
highly valuable to gain trust for more adoptions.

K AES KS AES KS ...

P
⊕

F
⊕

F
⊕

...
⊕

C

T ...

AES-128

Figure 3: The Kiasu-BC tweakable block cipher based on AES-128

The TBC Kiasu-BC takes three inputs: a 64-bit tweak T , a 128-bit key K and a 128-bit
plaintext P . It outputs a 128-bit ciphertext C = EK(T, P) as the encryption of P under
the key K for the tweak value T . As depicted in Figure 3, Kiasu-BC is exactly the AES-128
cipher, but with a 64-bit tweak value XOR-ed to the first two rows of the internal state
after each round key addition in the round function of the encryption, including after the
pre-whitening key addition. There is no tweak schedule, i.e., the same T is used every
time in its original form. Kiasu-BC can actually be viewed as one of the simplest instances
of the TWEAKEY framework based on AES.

3 The MITM Preimage Attack

The MITM Attack. In its early stages of development, the meet-in-the-middle approach
proposed by Diffie and Hellman in [DH77] is mainly used as a generic time-memory trade-
off technique to attack against encryption schemes with clear separations, e.g., Double DES.
That is because it is straightforward to divide the whole computation into two or multiple
independent computational chunks. Thus, the whole ‘for’ loop in a brute force attack can
be separated into two or multiple independent ‘for’ loops, which have a quite smaller and
mutually balanced amount of computations, and which independently generate lists of
candidates (of partial solutions). The independence between the smaller ‘for’ loops makes
each element in one list be able to make a pair with any element in other lists to form a
candidate solution. Such an effect of taking cartesian product between two sets enlarges
the number of candidates of the correct computation dramatically. Then, according to the
birthday paradox, say for two lists of 2` entries of n-bit values, to find a match with high
probability, it is required 2(`+`) ≥ 2n, i.e., ` ≥ n/2. Thus, the minimum time complexity
of a simple MITM attack is 2n/2, together with 2n/2 memory.

3.1 Application to Pseudo-Preimage Attacks
Using the MITM approach in preimage finding on hash function can be seen in [AMM09,
Leu08, IP07]. Aoki and Sasaki in [SA08] for the first time combined the MITM and local-
collision approaches to devise preimage attacks on hash function HAVAL. Whereas, before
that local-collision approach is mainly used in collision attacks on hash functions. Based

323

on these primary works, the MITM-based preimage attack on hash functions developed in
a series of papers and advanced further.

3.1.1 Techniques Developed for MITM Preimage Attacks.

Techniques invented along the development of the attacks are as follows.

Splice-and-cut and neutral words. Aoki and Sasaki in [AS09b] invented the splice-
and-cut MITM attack and proposed the concept of “neutral word.” In the splice-and-cut
MITM attack as depicted in Figure 4, the first and last steps of the attack target can be
spliced to be consecutive steps by feed-forward mechanisms in the compression function
of hashing modes (e.g., DM-mode) or by querying the decryption in encryption schemes.
The chain of computational steps of the attack target is cut starting from an internal
step (named starting point), such that the chain is divided into two chunks of steps.
Conventionally, the chunk of steps, which need to be computed forward (resp. backward)
to reach the matching point, is named forward chunk (resp. backward chunk). The starting
point is chosen so that each chunk includes at least one message (or key) word that is
independent of the other chunk, where such message (or key) words are called “neutral
words.”

Initial-structure technique [SA09]: Initial-structure is a generalization of the local-
collision technique that enables one to skip several steps at the beginning of chunks.

“Initial structure is a few consecutive steps including at least two neutral words
named m2nd and m1st, where steps after the initial structure (2nd chunk) can
be computed independently of m1st and steps before the initial structure (1st
chunk) can be computed independently of m2nd [SA09].”

Partial matching [AS09b, SA09]: In the primary MITM approach, the final phase
of the attack involves matching between all-word in two states computed independently.
Whereas, by executing only one-word (or several-words) matching instead of all-word
matching, the required independent computations can be expanded by more steps, thus
enables to attack more steps of the target.

Partial-fixing [AS09b, SA09]: Fixing a part of the neutral words (e.g., lower x-bits of
a neutral word) enables one to partially compute more steps within a chunk even if in
company with a neutral word for the other chunk.

Multi-targets [GLRW10a]: When incorporating multi-target scenarios into the MITM
framework, the multiple available targets can directly provide additional freedoms to one
computation chunk without influencing the other.

3.1.2 The Attack Framework.

As depicted in Figure 4, the attack framework of the splice-and-cut MITM attack using
the initial structure and the partial match is as follows. Before the execution of the attack
procedure, the configuration of the attack should be set up, which involves:

1. Chunk separation: by splicing and cutting, decide where the computation be the
starting point of the forward/backward computation, and at which state, be the
matching point. The principle of the chunk separation is to find the best balance
between freedom degrees and the size of the matching point that the freedom degrees
are fully used. That requires one to decide:

324

Forward
chunk

Backward
chunk

Initial
structure

Forward
chunk

Target

Splice

CutPartial match

Message/Key-schedule

ma ma ma mambmb mb

ML ma mb

Let the space for both neutral words ma and mb be 2`, the time complexity is 2n−`, and memory
complexity is 2`.

Figure 4: The advanced MITM pseudo-preimage attack on DM-mode [Sas11]

2. The neutral bytes for each chunk – the selection on the neutral bytes will determine
the freedom degrees.

3. The bytes for matching – the derivation on the bytes for match also depends on the
selection of neutral bytes and the computation rule of the attack target.

With the above configurations decided, the attack procedure goes as follows (Figure 4
illustrates the MITM pseudo-preimage attack integrating with these advanced techniques
on Davies-Meyer mode): Denote the neutral words for the forward chunk and backward
chunk by Nf and Nb, respectively:

1. Fix all other words except for the neutral words Nf and Nb in the initial structure
to arbitrary values.

2. For all possible values of Nf, forward compute from the starting point to the matching
point at the final state of the forward chunk to get a list Lf of candidate values
indexed by the value of Nf.

3. For all possible values of Nb, backward compute from the starting point to the
matching point at the final state of the backward chunk to get a list Lb of candidate
values indexed by the value of Nb.

4. Sorting the two lists Lf and Lb using hash tables, check whether there is a match/partial-
match between them.

5. In case of partial-matching used in the above step, for the surviving pairs, check for
a full match.

6. Repeat the whole procedure to find full state matches by changing the values of fixed
words.

3.1.3 The Complexity Analysis.

Denote the size of the internal state by n, the freedom degrees in the forward and backward
directions by d1 and d2 respectively, and the number of bits for the match by m.

325

1. Forward computing to get a list Lf of size 2d1 requires 2d1 computations of the
forward chunk.

2. Backward computing to get a list Lb of size 2d2 requires 2d2 computations of the
backward chunk.

3. Matching between Lf and Lb requires 2max(d1,d2) memory access which is usually
ignored, compared with the 2max(d1,d2) computations of the compression function of
the target in above steps.

4. 2d1+d2−m pairs are left after partial matching, hence the same complexity is required
for full-match checking.

5. Finding a full match requires 2m−(d1+d2) × 2n−m = 2n−(d1+d2) repetitions.

When d1, d2 are different, i.e., unbalanced, we use max(2d1 , 2d2) to denote the sum of
complexities for computing the two chunks. Note, when d1 = d2, the computation
complexity is 2d1 full target (= forward chunk + backward chunk). Hence, max(2d1 , 2d2)
is used for all cases. The above complexity analysis gives

2n−(d1+d2) · (2max(d1,d2) + 2d1+d2−m) = 2n−min(d1,d2) + 2n−m ' 2n−min(d1,d2,m). (1)

From this formula, it can be seen that the critical point for the attack being optimized is to
reach a balance between the freedom degrees for the forward chunk and the backward chunk.
Because at last, it will only depend on the minimum between the two freedom degrees.
Besides, the memory complexity can be 2min(d1,d2) by only storing the list computed by the
direction with less freedom and make a match at once a candidate for the other direction
being available. Accordingly, the larger the min(d1, d2) the lesser the time complexity
and at the same time the larger the memory complexity. However, generally, in such
MITM preimage attack on hash function, the min(d1, d2) is less than n/2, thus, compared
with memory complexity, time complexity is the bottleneck. Therefore, generally, the
larger the min(d1, d2) the better the attack. The second term 2n−m is usually minor when
m > min(d1, d2), i.e., the number of matching bits is more than that of neutral bits.

3.2 Conversion from Pseudo-Preimages to Preimages
Note that, the above MITM attack only gives pseudo-preimage. Below we consider the
methods to convert pseudo-preimages to preimages.

Converting pseudo-preimages to a preimage [MvV97, Fact9.99]: For n-bit narrow-
pipe iterated hash function, using the unbalanced meet-in-the-middle approach, a pseudo-
preimage attack with a computational complexity of 2` (` < n− 2) can be converted into
a preimage attack with computational complexity of 2(n+`)/2+1. That is done by first
finding 2(n−`)/2 pseudo-preimages (mapping 2(n−`)/2 random starting chaining values to
the given target T), and then starting from the real initialization value vector IV , using
2(n+`)/2+1 random message blocks to get 2(n+`)/2+1 random chaining values. Among the
2(n+`)/2+1 chaining values mapped from the real IV and the 2(n−`)/2 starting chaining
values mapped by the pseudo-preimages to the given target T , we can expect to find one
match due to the birthday paradox, which leads a valid preimage. Figure 5a visualizes the
above generic meet-in-the-middle procedure.

An improvement over the above meet-in-the-middle procedure of converting pseudo-
preimage attacks to preimage attacks is made possible by Leurent in [Leu08], where he
proposed to use multi-target pseudo-preimage attacks which form an unbalanced-tree,
and require the assistance of the expandable message technique to overcome the length
padding (see Figure 5b). The main idea is as follows. Like in the above meet-in-the-middle

326

procedure, one has to first launch many procedures of pseudo-preimage attack. But instead
of using the starting chaining values of the pseudo-preimages attacks until the matching
phase, those starting chaining values determined by previous procedures of pseudo-preimage
attack are immediately used as targets for later procedures of pseudo-preimage attack.
Suppose we have already launched i procedures of pseudo-preimage attack, there are
then i targets for the (i + 1)-th procedure of pseudo-preimage attack. Given i targets,
the complexity of a pseudo-preimage attack is possible to be reduced from 2` to 2`/i.2
As a result, to obtain 2k starting chaining values in total by launching 2k procedures of
pseudo-preimage attack, it takes 2`/1 + 2`/2 + 2`/3 + · · ·+ 2`/2k ' k ln(2) · 2`. Then, by
generating 2n−k chaining values mapped by the expandable messages from the real IV ,
one match is expected, which leads to a real preimage. Taking the optimal k = n− `, the
overall time complexity of this improved method is

((n− `) · ln(2) + 1) · 2` = (min(d1, d2) · ln(2) + 1) · 2n−min(d1,d2), (2)

where a pseudo-preimage attack costs 2` computations given a single target (` = n −
min(d1, d2) in our notation), and 2`−t computations given 2t targets.

The assumption that 2t-target pseudo-preimage attack costs 2`−t computations is
possible in our attacks when the target can be used as the additional source of neutral
words. Without loss of generality, let us assume targets can be used as part of the forward
chunk, hence the size of Lf list is increased from 2d1 to 2d1+t, then Eq. (1) gives complexities

Time: 2n−min(d1+t,d2,m); Memory: 2min(d1+t,d2,m) (3)

In other words, the complexity of pseudo-preimage attack reduces linearly with respect to
the number of targets available, as long as d1 + t < d2 and m > min(d1 + t, d2).

When these conditions could not be met, the complexity of pseudo-preimage attack
remains as 2n−min(d1,d2) + 2n−m ' 2n−min(d1,d2,m) for d1 + t ≥ d2 (i.e., t ≥ d2 − d1), for
which the time complexity of preimage conversion will follow the original unbalanced
MITM

2(n+`)/2+1 ' 2n+1−min(d1,d2,m)/2. (4)

t...

IV
link

(a) Traditional Conver-
sion

t

...
link

IV
Expandable Message

(b) Multi-Target Pseudo-Preimage

Figure 5: Converting Pseudo-Preimages to Preimages: circle denotes state, arrow denotes
message block [GLRW10b]

3.3 Converting Block cipher to Compression Function
In [PGV94], Preneel et al. summarized 17 mode-of-operations to build a compression
function for hash from a block cipher. Twelve of them are shown to be secure. Denote the
compression function composed of a hash function by CF and the block cipher E with a
key K by EK . The twelve secure PGV constructions of CF can be expressed by formulas

2In our attacks, this is possible when there is a gap i between the freedom provided by neutral words of
the forward computation and that of the backward computation, which can be filled by exploiting freedom
provided by the multiple targets, as will be shown later.

327

Table 2: Twelve secure PGV constructions [PGV94, Sas11].
No. Computation No. Computation No. Computation No. Computation

Class 1 1 EHi−1 (Mi)⊕Mi 2 EHi−1 (Xi)⊕Xi 3 EHi−1 (Mi)⊕Xi 4 EHi−1 (Xi)⊕Mi

Class 2 5 EMi
(Hi−1)⊕Hi−1 6 EMi

(Xi)⊕Xi 7 EMi
(Hi−1)⊕Xi 8 EMi

(Xi)⊕Hi−1

Class 3 9 EXi
(Mi)⊕Mi 10 EXi

(Hi−1)⊕Hi−1 11 EXi
(Mi)⊕Hi−1 12 EXi

(Hi−1)⊕Mi

Xi represents Hi−1 ⊕Mi.

EHi−1 Hi

Mi

(a) DM-mode (PGV No.5)
Hi = EMi (Hi−1) ⊕ Hi−1

EMi Hi

Hi−1

(b) MMO-mode (PGV No.1)
Hi = EHi−1 (Mi) ⊕ Mi

EMi Hi

Hi−1

(c) MP-mode (PGV No.3)
Hi = EHi−1 (Mi)⊕Mi ⊕Hi−1

Figure 6: Illustrations for DM, MMO, and MP modes [Sas11, Jea16]

in Table 2, where Hi−1 and Hi denote the chaining states before and after the update,
Mi the message block, and Xi the XOR of Hi−1 and Mi. These twelve PGV modes can
be classified according to the material fed in through the key into three classes: Class 1 –
chaining values are fed in through the key (row 1 in Table 2); Class 2 – messages are fed
in through the key (row 2 in Table 2); Class 3 – XOR sum of message and the chaining
values are fed in through the key (row 3 in Table 2). Three of these PGV modes, known
as DM-mode, MMO-mode, and MP-mode, are used in practice (see Figure 6).

In the original pseudo-preimage attack on AES hashing mode by Sasaki [Sas11], the
key is preset to random constants, which can be used by attacker, and the input state is
determined by the attack, hence such pseudo-preimage can be converted into preimages
for modes in Class 1 such as MMO and MP with the same complexity as pseudo-preimage.
Other modes in Class 2 and 3 require conversion, and hence result in higher complexities
for preimages as discussed in the subsection above.

Converting TBC to Compression Function. The tweakable block cipher, denoted
here as Ẽ(Kt, Tt, P), has an additional input tweak T , compared with block ciphers E(K,P).
We consider here converting a TBC to a block cipher, then to a compression function
through the modes above. The TBC-to-BC conversion can be divided into 3 types:

• Type-I: E(K,P) = Ẽ(Kt = K,Tt = C,P), where C is a constant.

• Type-II: E(K,P) = Ẽ(Kt = C, Tt = K,P), where C is a constant.

• Type-III: E(K,P) = Ẽ(Kt = K1, Tt = K2, P), where K = K1||K2, i.e., both key and
tweak of Ẽ are used as the key of the block cipher.

From the cryptanalyst’s point of view, Type-III gives additional input to the attacker;
hence it is likely more rounds could be attacked for Type-III, compared with the other
two types.

4 Techniques of MITM Attack on AES Hashing Modes
4.1 The 7-Round Attack by Sasaki and Its Improvement by Wu et al.
Following the framework of splice-and-cut MITM attack depicted in Figure 4, and based
on an important observation on the slow diffusion of a 4-round AES with the omission of

328

MixColumns in the second round, Sasaki [Sas11] invented a MITM preimage attack on AES
hashing mode. In [Sas11], a basic splice-and-cut MITM attack on 4-round AES (with the
omission of MixColumns in the last round as in the full version of AES) hashing mode was
first proposed, which was then extended to 7-round using two main techniques that will
be introduced next. In the basic 4-round attack, the computation flow is spliced using the
feed-forward mechanism in the hashing mode, and it is cut exactly in the middle (at the
beginning of the third round). In doing this, the round missing MixColumns becomes the
second round viewing from the starting point at where the computation was cut. Due to
the slow diffusion observed, importing two neutral bytes at the starting point, the influence
of a neutral byte penetrating forwardly and undisturbedly through 3-round (across the
sliced point) and the influence of a neutral byte penetrating backwardly and undisturbedly
through 1-round can be matched at the end of the first round.

Different from previous MITM preimage attacks on hash functions such as MD5 and
Tiger, neutral words in the attack on AES hashing mode in [Sas11] are not chosen from the
message. Instead, they are from the internal state values of the compression function. This
choice is mainly due to the fast diffusion of the AES key-schedule, i.e., the key-schedule
quickly diffuses any choice of key byte (as the neutral word) to all other key bytes in just
a few rounds. As a result, in [Sas11] the key-input/message-input is fixed to arbitrary
constant values. Although the number of rounds of AES is much smaller than that of
many dedicated hash functions such as MD5 and SHA-1, the round function is relatively
heavier and the computation has faster diffusion, which prevents the MITM attacks from
penetrating many rounds. Thus, more techniques were invented in [Sas11] for attacking
more rounds (up to 7 rounds, yet the results are still not for the full rounds, and currently
leaves comfortable margins).

There are two main techniques used for attacking more rounds in the MITM pseudo-
preimage attack in [Sas11]. In a nutshell, the first is a carefully crafted initial structure, and
the second is matching through indirect but efficiently computable MixColumns relations.

Initial Structure (IS). Concretely, when constructing the initial structure, by restricting
the values of neutral bytes to a special set, the initial structure can extend the number
of rounds in each chunk by one round. These special values of the neutral bytes are
chosen in such a way that their impacts on particular output bytes of the MixColumns (or
InverseMixColumns) are known constants, i.e., have no impact. This reduces the number
of unknown bytes after (resp. before) the first MixColumns (resp. InverseMixColumns)
in each chunk, which is the starting point of each chunk. For example, when 4 bytes
Bb[0, 1, 2, 3], i.e., the bytes in the first column of the state Bb, are chosen as the neutral
bytes for the forward chunk, there are 232 possible values. Among them, we can choose a
small subset of size 28 in the following way: first, fix an arbitrary constant Cneut of 3 bytes,
then, impose the restriction of Bf = MC−1(Bb[0, 1, 2, 3]) 3and Bf[1, 2, 3] = Cneut. Since
Cneut is of 24 bits and Bb[0, 1, 2, 3] is of 32 bits , there will be 28 solutions for Bb[0, 1, 2, 3],
which can be obtained by enumerating all possible values of Bb[0] and for each computing
the unique value of the other 3 bytes according to the restriction imposed through Cneut.

Matching Through MixColumns (MTM). In the second technique, when matching at
the meeting point, properties of the MixColumns are used again: instead of directly matching
values of the same bytes in a state, matching via deterministic relations between bytes
in different states (specifically, the states immediately before and after the MixColumns).
This can extend the attack by one more round. Concretely, the AES MixColumns has
the following feature: knowledge of any 4 out of the 8 input/output bytes to the MC
will determine all other bytes, and knowledge of any additional byte(s) (i.e., more than

3In the sequel, we informally use MC(X) (resp. MC−1(X)) to represent the multiplication of a column
X with the matrix (resp. its inverse) used in MixColumns.

329

4 bytes) can be used as an 8 · (x − 4)-bit filter when a total of x bytes are known for
4 < x ≤ 8. With an example below, we demonstrate how this can be done in the way of
meet-in-the-middle.

To efficiently check whether the paired values in the two lists match through the
MixColumns operation, one can test the consistency between the bytes column-wise,
individually for each column in sequence. Suppose the two states before and after the
MixColumns are Bf and Bb, of which some bytes have been obtained independently via
the forward and backward chunks, and the candidate values have been stored in two lists,
e.g., Bf[0, 2] and Bb[1, 2, 3] in the first column. These bytes are related through MC as
follows:

Bf[0] = (e, b, d, 9) · (Bb[0], Bb[1], Bb[2], Bb[3])T ,

Bf[2] = (d, 9, e, b) · (Bb[0], Bb[1], Bb[2], Bb[3])T .

Let us denote by g′(Bb[1, 2, 3]) = (b, d, 9) · (Bb[1], Bb[2], Bb[3])T a linear mapping from
3 bytes to 1 byte, and by g′′(Bb[1, 2, 3]) = (9, e, b) · (Bb[1], Bb[2], Bb[3])T another linear
mapping. Then

Bf[0] = e ·Bb[0]⊕ g′(Bb[1, 2, 3]) and Bf[2] = d ·Bb[0]⊕ g′′(Bb[1, 2, 3]).

Canceling out Bb[0] implies

d ·Bf[0]⊕ e ·Bf[2] = d · g′(Bb[1, 2, 3])⊕ e · g′′(Bb[1, 2, 3]).

For the sake of simplicity, denote byMf = f(Bf[0, 2]) = d·Bf[0]⊕e·Bf[2] a linear mapping
from 2 bytes to 1 byte, and by Mb = g(Bb[1, 2, 3]) = d · g′(Bb[1, 2, 3])⊕ e · g′′(Bb[1, 2, 3])
another linear mapping from 3 bytes to 1 byte. Then find matches with Mf = Mb, which
can be computed independently and stored in hash tables, then matched in the way of
MITM. To be more general,

Property 1. When x out of the 8 input and output bytes of the MixColumns are known,
there is a filter of (x− 4) bytes (= 8 · (x− 4) bits), and such filtering can be done in the
way of meet-in-the-middle.

This property is used in the matching of all attacks to be given in the rest of the paper,
and for the sake of simplicity, the explicit expressions of Mf and Mb, i.e., the derived
matching functions f and g from the input Bf and Bb, are omitted. The total bits of
filtering m is then the sum of 4 independent columns.

Attacks to be given in the rest of the paper inherit both those techniques and the
splice-and-cut framework of the attack in [Sas11].

Exploiting the Freedom Lying in Multiple Targets (MT). In [WFW+12], authors
observed that there is actually quite a great amount of additional degree of freedom for
backward chunk in the attack in [Sas11], which are not utilized (set as constant). That is
because, the bottleneck for the attack in [Sas11] lies in the lack of freedom for forward
chunk. That is, for the forward chunk, the degree of freedom is much less than that of
the backward chunk (i.e., d1 ≪ d2), which determines the time complexity. However,
authors in [WFW+12] observed that in the setting of multi-target attack, the freedom
that lies in the target can be integrated into the forward chunk and thus increase the
degree of freedom for the forward chunk. In doing that, those additional neutral bytes
for the backward chunk can be utilized more fully. As a result, the attack in [Sas11] was
improved to be a more efficient multi-target pseudo-preimage attack, and the complexity
of the overall preimage attack can be reduced.

330

4.2 Introducing Neutral Bytes in Key
Sasaki in [Sas11] has already discussed the possibility to improve the attack described in
Sect. 4.1 in chosen-key setting, i.e., introduce neutral bytes from key values. However, the
conclusion is negative in consideration of the difficulties in adopting the splice-and-cut
technique in the key-schedule function.

However, in this paper, we show that neutral bytes can be introduced from the key
state to improve the computational complexity or increase the number of rounds that can
be attacked. In our attacks, neutral bytes in the key are used as part of the forward chunk
only, i.e., none is used for the backward chunk. This enables us to avoid separating the
key bytes in every round key generated by the key-schedule function, and in the meantime,
to exploit freedom from the key to balance the computations of forward and backward.

Explicitly, we introduce neutral bytes in the key state in addition to the original neutral
bytes in the encryption state. Those neutral bytes are all for the forward chunk, while
the effect of neutral bytes in the encryption state and those in the key state are different:
neutral bytes in the encryption state affect the candidate values at the matching point
through the AES round functions in each direction, and neutral bytes in the key state affect
through all subsequent round keys (via key-schedule). Thus, although they both affect
the same bytes at the matching point, they both provide possible candidate values for the
matching bytes. Moreover, because the independent constructions between the AES round
function and the AES key-schedule, even the values that are chosen for the neutral bytes
in encryption state and that in key state are within the same algebraic structure, e.g., the
same linear subspace, their effect on the matching values can be seen as independent.

At a high level, introducing neutral bytes in key state can play roles in various ways:

1. XORing neutral bytes in key state to neutral bytes in encryption state without
any restriction on the values. In doing that, the lacking degree of freedom can be
increased, and the amount of computation cost by the forward chuck and that cost
by the backward chunk can be balanced, resulting in an improvement in the overall
complexity. Abstractly, we represent this case as A⊕A = A, where A (the abbr. of
‘All’) represents an attribute of being fully free (can take any value) of neutral bytes.

2. XORing neutral bytes in key state to neutral bytes in encryption state with a
restriction that the XOR sum is constant. In doing that, the impact caused by
neutral bytes in one computation chunk on the other computation chunk can be
canceled, providing an opportunity to extend the attack to more rounds. Abstractly,
we represent this case as A ⊕ Ā = C, where Ā represents an attribute of being
restricted by the value of other fully free neutral bytes, and C represents an attribute
of being constant.

3. Combining neutral bytes in key state with neutral bytes in encryption state by linear
equations (related with the linear diffusion layer of the cipher) such that their XOR
sum can take any value, but after being operated by the linear layer of the cipher,
part of the result is constant. In doing that, the impact caused by neutral bytes in
one computation chunk on the other computation chunk can be partially canceled, at
the same time additional freedom is imported, providing an opportunity to improve
the overall complexity and/or extend the attack to more rounds. Abstractly, we
represent this case as L(A,A) = A‖C, where L(A,A) represents an attribute of
several fully free neutral bytes being restricted by linear equations.

In the next two sections, we first present our 7-round pseudo-preimage attacks on
AES-128, AES-192, and Kiasu-BC hashing mode improved in terms of the attack complexity,
and then present our 8-round attacks on AES-192, AES-256, and Kiasu-BC hashing mode
improved in terms of the number of attacked rounds, which are all enabled by introducing
neutral bytes in the key.

331

5 Reducing the Complexities of 7-Round Attacks
5.1 Improved Attack on 7-Round AES-128 Hashing Mode
As mentioned above, in [WFW+12], authors identified a great amount of freedom that
can be imported by activating bytes that were set as constant previously in [Sas11] as
neutral bytes for the backward chunk. The problem is then the lack of freedom for the
forward chunk. In [WFW+12], the authors exploited the freedom that lies in the target in
the setting where multiple targets are available. In our attack, we import freedom for the
forward chunk by activating particular bytes that were set as constant previously in [Sas11]
both in the encryption state and in the key state as neutral bytes. The introduced neutral
bytes from the key can cancel out the diffused impact caused by (inverse) MixColumns
operated on a neutral byte in the forward chunk, at the same time provide an additional
degree of freedom.

Details of our improved pseudo-preimage attack are as follows (illustrated in Figure 7):

Attack 1: Improved pseudo-preimage attack on 7-round AES-128 hashing
mode

Attack configuration

1. Initial structure: from #12 – #19 including k3 – k4

• Neutral bytes for forward:
– In encryption state: #12[0, 5]
– In key state: k3[4, 5, 6, 7], such that{

MC−1((0,#12[5], 0, 0)⊕ k3[4, 5, 6, 7])[1, 2, 3] = Cneut
1

k3[0, 1, 2, 3]⊕ k3[4, 5, 6, 7] = Ckey
1

In the first equation, Cneut
1 is a 3-byte constant, #12[5], k3[4], k3[5], k3[6], k3[7]

are 1-byte variables. That is, the first equation essentially consists of three
linear equations on five variables, i.e.,

 9 e b d e
d 9 e b 9
b d 9 e d

×

k3[4]
k3[5]
k3[6]
k3[7]
#12[5]

 =

 Cneut
1,0

Cneut
1,1

Cneut
1,2

 .
Because the matrix used in AES MixColumns is MDS, the rows are pair-
wise independent. The rank of the above coefficient matrix is three. Thus,
the number of solutions for these equations is 2(5−3)×8 = 216. By solving
the linear equations, one can efficiently obtain all the values of the neutral
bytes fulfilling the constraintsa. In short, the first equation brings 2 bytes
degree of freedom for the forward computation, at the same time makes the
impact of those neutral bytes on the backward computation of #11[5, 6, 7]
be predefined constant Cneut

1 .
Fix all other bytes in k3, i.e., k3[8..15] as constant. By the second equation
and according to the key-schedule of AES-128, k4[0, 1, 2, 3]⊕ k3[0, 1, 2, 3]
and all other bytes in k4 are constant. Denotes all constant materials in
the key state as Ckey.

332

As a result, there is 3-byte degree of freedom brought by neutral bytes for
the forward chunk, i.e., d1 = 24.
• Neutral bytes for backward:

– In encryption state: #19[1, 2, 3; 4, 5, 6; 8, 9, 11; 12, 14, 15], such that
MC((0, #19[1], #19[2], #19[3])) = Cneut

2,0
MC((#19[4], #19[5], #19[6], 0)) = Cneut

2,1
MC((#19[8], #19[9], 0, #19[11])) = Cneut

2,2
MC((#19[12], 0, #19[14], #19[15])) = Cneut

2,3

That is, their impact on the forward computation of
#20[0, 2; 5, 7; 8, 10; 13, 15] equal to predefined constants
Cneut

2 = Cneut
2,0 ‖Cneut

2,1 ‖Cneut
2,2 ‖Cneut

2,3 , where Cneut
2,i for 0 ≤ i ≤ 3 are

2-byte constants.
As a result, there is 4-byte degree of freedom brought by neutral bytes for
backward computation, i.e., d2 = 32.

2. Chunk separation:

• Forward chunk: the computation following #20 – #28 – #0 – #7
• Backward chunk: the computation following #11 – #8

3. Bytes for match: denote the equivalent sub-key of k2 by uk2, which can be
computed via MC−1(k2):

• Bf = (#7⊕ uk2)[0, 2; 8, 10; 13, 15], note the second column is not utilized.
• Bb = #8[1, 2, 3; 8, 9, 10; 12, 13, 14], note the second column is not utilized.

As a result, there are equivalently 3 bytes for the match, i.e., m = 24.

Attack procedure.

1. Fix constants:

• Ckey: constant materials in the key state, including Ckey
1

• Cneut
0 : 2 bytes values for #12[10, 15]

• Cneut
1 : 3 bytes values for impacts from #12[5] and k3[4, 5, 6, 7] on #11[5, 6, 7].

• Cneut
2 : 8 bytes values for impacts from #19[1, 2, 3; 4, 5, 6; 8, 9, 11; 12, 14, 15]

on #20[0, 2; 5, 7; 8, 10; 13, 15]

2. Forward computation: for each of the 2d1=24 values of the neutral bytes for
forward – #12[0, 5] and k3[4, 5, 6, 7] s.t. their impact on #11[5, 6, 7] = Cneut

1 :

• Compute all required sub-key bytes from k3[4, 5, 6, 7] and Ckey, note that
k3[0, 1, 2, 3]⊕ k3[4, 5, 6, 7], k4[0, 1, 2, 3]⊕ k3[4, 5, 6, 7], and all other bytes in
k3 and k4 are constants.
• Compute in forward from #12 – #28 (blue cells in Figure 7)

– xor state #28 with T , and compute #0 – #7 (blue cells in Figure 7)
– compute Mf from Bf, store results in Lf

333

3. Backward computation: for each of the 2d2=32 values of the neutral bytes
for backward – #19[1, 2, 3; 4, 5, 6; 8, 9, 11; 12, 14, 15] s.t. their impact on bytes
#20[0, 2; 5, 7; 8, 10; 13, 15] = Cneut

2 :

• Compute in backward from #19 – #8 (red cells in Figure 7)
• Compute Mb from Bb, store the results in Lb

4. Matching: find matches between Lf and Lb, for each such match of partial
state, all bytes at the initial structure are fixed, and hence the full states of
#7 and #8 can be tested for full-state matching. Output (HN−1,MN) if a full
match is found, otherwise, go back to step 1 with some other values for the
fixed constants at initial structure and repeat.

aPlease refer to the example codes for obtaining the values of the neutral bytes via https:
//www.dropbox.com/sh/c5dm28821f2jmfl/AAC3iGXUtA6crWaLwdS9LC2Ca?dl=0.

Attack complexity. By directly applying the complexity analysis Eq. (1) and plugging
d1 = 24, d2 = 32, and m = 24, we can immediately conclude that the time complexity of
this attack is 2128−min(24,32,24) = 2104 and the memory complexity is 224.

In summary, in this attack, we introduce neutral bytes from the key in addition to
two neutral bytes in the encryption state, and make them play a role in the third way,
i.e., L(A,A) = A‖C. In doing that, the degree of freedom for the forward chunk is
increased with a limited impact on the backward chunk. Note that the limited impact
is the loss of 8 bits for the match. Nevertheless, the computations of the forward chunk
and that of the backward chunk are more balanced. As a result, the computational
complexity can be reduced from 2120 to 2104 given a single target compared with the attack
in [Sas11], and changed from 2120−min (t,24) to 2104 given 2t targets compared with the
attack in [WFW+12].

5.2 Application to 7-Round AES-192 Hashing Mode
Unlike the 7-round attacks in [Sas11, WFW+12], the attack presented in above Sect. 5.1
is not quite general due to its dependence on key-schedule algorithms. Thus, it cannot be
applied without modification for AES-192/256. However, the idea of introducing neutral
bytes in the key can nevertheless be applied.

Compared with AES-128, the key-schedule of AES-192 has relatively slow diffusion.
Consequently, it is possible to select more neutral bytes from the key to completely cancel
out the impact caused by neutral bytes in the forward chunk on the backward chunk.
Concretely, for AES-192, according to the key-schedule, the full key state k3 can be fixed
without dependence on neutral bytes in the first column of k4 (as depicted in Figure 8b).
Thus, the propagation of the influence brought by the neutral bytes in k4 will not impact
the backward computation which is relatively short.

An attack follows the same framework as previous attacks but with improved complexity
can then be devised. The main different part is depicted in Figure 8. As can be seen in
Figure 8, for forward chunk, when introducing neutral bytes #17[0, 1, 2, 3] in encryption
state and k4[0, 1, 2, 3] in key state and restricting their XOR sum to be constant, their
impact on the backward chunk is completely canceled; and at the same time, both the
degree of freedom for the forward chunk and that for the backward chunk reach an amount
of 32, i.e., d1 = d2 = 32. The number of bits for match becomes even more, i.e., m = 64.
Applying Eq. (1) to the complexity analysis, we conclude that, for this attack on 7-round
AES-192 hashing mode, the total computational complexity is 2128−min(32,32,64) = 296

computations of 7-round AES. The memory complexity is 232.
Note that compared with the key-schedule of AES-192, the diffusion of the key-schedule

334

https://www.dropbox.com/sh/c5dm28821f2jmfl/AAC3iGXUtA6crWaLwdS9LC2Ca?dl=0
https://www.dropbox.com/sh/c5dm28821f2jmfl/AAC3iGXUtA6crWaLwdS9LC2Ca?dl=0

k0

AK

#0

KS

KS

k1

AK
#1

SB

#2

SR

#3

MC

#4

KS

k2

MC
AEK#5

SB

#6

SR

#7

MC

Match

#8

KS

k3

MC
AEK#9

SB

#10

SR

#11

MC

Initial Structure Start

#12

KS

k4

AK
#13

SB

#14

SR

#15

MC

#16

KS

k5

AK
#17

SB

#18

SR

#19

MC

Initial Structure End

#20

KS

k6

AK
#21

SB

#22

SR

#23

MC

#24

k7

AK
#25

SB

#26

SR

#27

#28

T

forward backward constant uncertain

Figure 7: Introducing free bytes in the key to improve the 7-round preimage attack on
AES-128 hashing mode

of AES-256 is even slower. Again, the full key state k3 can be fixed as constant without
being impacted by the neutral bytes in the first column of k4. Thus, this attack directly
applies to AES-256 hashing mode also.

In summary, in this attack, we introduce neutral bytes from the key and make them
play a role in the second way, i.e., A⊕ Ā = C. Due to the relatively low diffusion of the
key-schedule, the introduced large number of neutral bytes from the key can completely
cancel out the impact caused by the forward neutral bytes in the encryption state on the
backward chunk, at the same time, leave an adequate degree of freedom for the forward
chunk.

5.3 Application to 7-Round Kiasu-BC Hashing Mode
In the scenario where a tweakable block cipher is used in the PGV hashing mode and the
tweaks can accept chosen inputs, freedom from this additional input might be exploited in
similar attacks to the above ones.

335

KS

k2

MC
AEK

forward

#7

MC

Match

#8

KS

k3

MC
AEK#9

SB

#10

SR

#11

MC

#12

KS

k4

AK
#13

SB

#14

SR

#15

MC

#16

Initial Structure

KS

k5

AK
#17

SB

#18

SR

#19

MC

#20

forward

(a) The attack configuration

k3 k4

k4 k5

<<S

k1 k2

<<S

(b) Neutral
bytes in k4

Figure 8: Introducing free bytes in the key to improve the 7-round preimage attack on
AES-192 hashing mode

KS

k2

MC
AEK

tk

forward

#7

MC

Match

#8

KS

k3

MC
AEK

tk

#9

SB

#10

SR

#11

MC

Initial Structure Start

#12

KS

k4

AK

tk

#13

SB

#14

SR

#15

MC

#16

KS

k5

AK

tk

#17

SB

#18

SR

#19

MC

Initial Structure End

#20

forward

Figure 9: Introducing free bytes in the key to improve the 7-round preimage attack on
Kiasu-BC hashing mode

336

Take Kiasu-BC for example whose encryption algorithm and key-schedule are exactly
that of AES-128. The attack on 7-round AES hashing mode in [WFW+12] can be directly
improved by introducing two additional neutral bytes for the forward computation from
the tweak without any impact on the backward computation. Specifically, we choose
#tk[0, 1] as the neutral bytes for the forward chunk, which can take 216 values and which
has limited impact on the backward chunk (refer to Figure 9). In this way, together with
the 28 freedom from neutral byte #12[0], we can finally obtain 2d1=8+16=24 candidates
in Mf without any cost (which is unlike in Attack 1 that reduces the number of bits for
the match from 32 to 24). Corresponding to the complexity analysis equation Eq. (3) and
compared with that of the attack in [WFW+12], the parameter d1 increases from 8 to 24
and leaves all other parameters unchanged. Note that the number of bits for the match
is still 32 which is unlike Attack 1. Thus, additional freedom in the target can still be
utilized in the setting of a multi-target attack.

Consequently, for 7-round Kiasu-BC hashing mode, by introducing two neutral bytes
from the tweak in addition to one neutral byte in the encryption state, and in the setting
given 2t targets, the attack will have a computational complexity 2128−min(24+t,32) =
2104−min (t,8) and a memory complexity 224+min(t,8) (recall Eq. 3). Note that both the key
and the tweak values are used here, so Type-III TBC-to-BC conversion is assumed here.

In summary, in this attack, we introduce neutral bytes from the tweak and make them
play a role in the first way, i.e., A ⊕A = A. By adding neutral bytes from the tweak
directly to neutral bytes in the encryption state without any restriction on the XOR sum,
the gain of degree of freedom is completely free in the sense that the neutral bytes from the
tweak brings no additional impact on the backward chunk (on top of the impact caused by
the neutral bytes in the encryption state).

6 Extension to 8-Round Attacks
In this section, we extend the 7-round attacks of the previous section to 8-round attacks
by introducing freedom from the key. We first explain the technique used in our extension,
then provide its application to AES-256, AES-192, and Kiasu-BC.

6.1 Techniques for Attacking 8 Rounds
We add one more round to the backward chunk based on the previous 7-round attacks, and
the new chunk separation is shown in Figure 10 (for a comparison, see Figure 7, 8, and 9).
Notice that #17[0] is a neutral byte for the forward computation and can have 28 values,
and it is denoted by x. We regard the whole key-schedule as a part of the forward chunk
and set the value of k4[0] to be x⊕ c, where c is a constant value, and the left 15 bytes
of k4 equals to predefined constant values. In this way, the forward chunk is computed
with the knowledge of neutral bytes from both key and internal states. While for the
backward computation, the value of #16[0] is fixed to be c, thus states #13 to #15 can be
computed deterministically. As for k3, at most one column can be the forward neutral
bytes, otherwise, #8 would have more than one unknown bytes in each column, which
invalidates the matching step. And the neutral bytes in k5 should not overlap with the
neutral bytes for the backward chunk in state #20. The value of k2 does not have any
impact on the backward computation since the MixColumns is linear and we can instead
find the match between #7⊕MC−1(k2) and #8 through the MixColumns.

6.2 The 8-Round Attack against AES-256
Due to the slower diffusion in the key-schedule, we can apply the technique of Section 6.1
to the attack on the 8-round AES-256 hashing mode. The key path is initialized from the

337

KS

k2

MC
AEK

Forward chunk

#7

MC

Match

#8

KS

k3

AK
#9

SB

#10

SR

#11

MC

#12

KS

k4

AK
#13

SB

#14

SR

#15

MC
c
#16

k5

AK
#17

SB

#18

SR

#19

MC

#20

Initial Structure

#21

SB

#22

SR

#23

Forward chunk

Figure 10: Basic idea of the extended 8-round attack, k3 and k5 can have at most one
column of neutral bytes each.

KS

k2

MC
AEK

Forward

#7

MC

Match

#8

KS

k3

AK
#9

SB

#10

SR

#11

MC

#12

KS

k4

AK
#13

SB

#14

SR

#15

MC

#16

k5

AK
#17

SB

#18

SR

#19

MC

#20

Initial Structure

#21

SB

#22

SR

#23

Forward

#24

MC

(a) The attack configuration

k2 k3

k4 k5

<<S

S

(b) Key states

Figure 11: Introducing free bytes in the key to launch an 8-round preimage attack on
AES-256 hashing mode

256-bit state k4 and k5 in the way that the freedom in k4 could neutralize the randomness
in the backward chunk, and additional 232 freedom degrees could be introduced in k5,
which is shown in Figure 11.

338

Attack 2: The pseudo-preimage attack on 8-round AES-256 hashing mode

Attack configuration

1. Initial structure:

• Neutral bytes for forward (in encryption state): 28 possible values of
#20[12,13,14,
15], s.t., #19[12,14,15] equals predefined constant Cneut

0 ,
• Neutral bytes for forward (in key state): 232 possible values of k5[12, 13, 14,

15], s.t., their impacts on #19[12, 14, 15] equals predefined constant Cneut
1 .

The value of k4[1] is chosen in the way so that its XOR difference with
#17[1] equals to a predefined constant Cbyte, i.e., k4[1] = #17[1]⊕ Cbyte.
As a result, for the backward chunk, states #13 to #16 can be computed
deterministically.
Other bytes in k4 and k5 equal to predefined constant Ckey.
• Neutral bytes for backward: (28)4 = 232 possible values of

#23[0, 1, 2],#23[4, 5, 7],#23[8, 10, 11],#23[13, 14, 15],
s.t., their impacts on #24[0, 2],#24[5, 7],#24[8, 10],#24[13, 15] equal pre-
defined constant Cneut

2 = Cneut
2,0 ‖Cneut

2,1 ‖Cneut
2,2 ‖Cneut

2,3 .

2. Chunk separation:

• Forward chunk: the computation following #24 - #32 - #0 - #7
• Backward chunk: the computation following #19 - #8

3. Bytes for match: Denote the equivalent sub-key of k2 by uk2, which can be
computed via MC−1(k2):

• Bf = (#7⊕ uk2)[0, 2; 5, 7; 8, 10; 13, 15]
• Bb = #8[0, 2, 3; 4, 5, 7; 8, 9, 10; 13, 14, 15]

Attack procedure

1. Fix constants:

• Cneut
0 : a value for 3-byte impact from neutral bytes in #20 on #19[12, 14, 15];

• Cneut
1 : a value for 3-byte impact from k5[12, 13, 14, 15] on #19[12, 14, 15];

• Cbyte: a value for byte #16[1];
• Ckey: a 27-byte constant value in k4 and k5;
• Cneut

2 : a value for 8-byte impact from neutral bytes in #23 on #24[0, 2, 5, 7, 8,
10, 13, 15].

2. Forward computation: for 28 values of #20[12, 13, 14, 15] s.t. their impact on
#19[12, 14, 15] equals to Cneut

0 , and for 224 out of 232 values of k5[12, 13, 14, 15]
s.t. their impact on #19[12, 14, 15] equals to Cneut

1 :

• Compute the value of #17[1].
• Determine the value of k4[1]: k4[1] = #17[1]⊕ Cbyte.
• Compute all sub-keys from k4 and k5 through the key-schedule.
• Compute the forward chunk from #24 to #32, and from #0 to #7.

339

KS

k2

MC
AEK

Forward

#7

MC

Match

#8

KS

k3

MC
AEK#9

SB

#10

SR

#11

MC

#12

KS

k4

MC
AEK#13

SB

#14

SR

#15

MC

#16

Initial Structure Start

k5

AK
#17

SB

#18

SR

#19

MC

#20

#21

SB

#22

SR

#23

Forward

Initial Structure End

#24

MC

(a) The attack configuration

k3 k4

k4 k5

<<S

(b) Key states

Figure 12: Introducing free bytes in the key to launch an 8-round preimage attack on
AES-192 hashing mode

• Compute Mf from Bf, and store the results in a table Lf.

3. Backward computation. For 232 values of the neutral bytes #23[0, 1, 2, 4, 5, 7, 8, 10,
11, 13, 14, 15] s.t. their impact on bytes #24[0, 2, 5, 7, 8, 10, 13, 15] equals to
Cneut

2 .

• Compute the backward chunk from #19 to #8. The involved subkey bytes
are constant in the backward computation.
• Compute Mb from Bb, and store the results in a table Lb.

4. Matching: follow the same idea of the Attack 1.

Attack complexity The freedom degrees for both of the forward and backward chunk are
32, i.e., d1 = d2 = 32, and the number of bits for matching comes from 32 bits (m = 32).
Thus according to Eq. (1), the time complexity is 296 and the memory complexity is 232.

In summary, in this attack, we introduce neutral bytes from the key and make them
play the role in the second way, i.e., A⊕ Ā = C.

6.3 The 8-Round Attack against AES-192

The main part of the attack is illustrated in Figure 12a. The data path in the internal
state is similar to the attack on AES-256, the freedom for backward chunk remains 2d2=32,
but the neutral bytes for the forward in state #20 is changed to the second column. The
way of introducing neutral bytes in the key is similar to the attack on 7-round AES-128:
we introduce #16[3] as the neutral byte in encryption state and k4[0, 1, 2, 3] as neutral

340

bytes in the key state for the forward chunk, with the following constraints 4{
MC−1((0, 0, 0,#16[3])⊕ k4[0, 1, 2, 3])[0, 1, 2] = Cneut

1
k3[12, 13, 14, 15]⊕ k4[0, 1, 2, 3] = Ckey

1

Besides, all remaining bytes in the 192-bit subkey state (including the whole state of k3
and the first two columns of k4) are fixed as constant. According to the key-schedule of
AES-192, we have k5[4, 5, 6, 7] = k3[12, 13, 14, 15]⊕ constant. In the constraints, the first
equation ensures the impact caused by neutral bytes in the forward chunk on the backward
chunk to be limited to a single byte (is constant in three bytes); the second equation
together with the property of the key-schedule of AES-192 ensure that all the active bytes
of the 192-bit subkey state are determined by predefined constants and the four neutral
bytes without bringing further impact on backward chunk. Combining the neutral byte
#16[3] in encryption state and neutral bytes k4[0, 1, 2, 3] in the key state using the first
linear equation, we obtain d1 = (5− 3) · 8 = 16 bits of freedom for forward chunk.

Note that the number of bits for matching is m = 32 as can be seen in Figure 12a,
which is larger than d1. Thus, in a multi-target scenario, we can use freedom from
the target to further balance the computation cost by the forward chunk and that by
the backward chunk. Applying Eq. 3 to the complexity analysis, we conclude that this
attack requires 2128−min(16+t,32,32) = 2112−min(t,16) computations of 8-round AES and
2min(16+t,32,32) = 216+min(t,16) memory.

In summary, in this attack, we introduce neutral bytes from the key and make them
play a role in the third way, i.e., L(A,A) = A‖C. By introducing neutral bytes from the
key, the impact caused by the forward neutral bytes on the backward chunk is partially
canceled, and at the same time the freedom for the forward chunk is increased, which
enables to extend the attack to more rounds with an improved complexity.

6.4 The 8-Round Attack against Kiasu-BC
Since Kiasu-BC adds the same tweak to the first two rows of internal state for each round, we
can introduce neutral bytes from tweak instead of key values, and the attack configuration
in Figure 10 can be directly adopted with the only modification in the key and the tweak:
the key states are set to be constant values, and the tweak is initialized in such a way that
tk[0] = #17[0]⊕ constant and the left 7 bytes are constant values. This attack follows the
same framework as previous attacks, the degree for the forward chunk is d1 = 8, for the
backward chunk is d2 = 32, and the number of bits for matching is m = 32, the freedom
that lies in the target in multi-target setting can be utilized. Applying Eq. 3, we have
that the time complexity is 2120−min(t,24) and the memory complexity is 28+min(t,24). Note
the tweak values are used here, but not the key values, so both Type-II and Type-III
TBC-to-BC conversions fit the attack setting here. In summary, this attack is enabled by
introducing neutral bytes from the tweak and make them play the role in the second way,
i.e., A⊕ Ā = C, so that extending to one more round is quite straightforward.

7 Discussion
Applying to Other Secure PGV Modes. As mentioned in Sect. 3.3, there are twelve
secure PGV mode-of-operations to build a compression function from a block cipher. We
note that for those modes in which the chaining state is fed into the key-schedule (i.e., PGV
modes in Class 1 and Class 3, refer to Table 2), because of the incompatibility between
key size (192 or 256 bits) and state size (128 bits), AES-192/AES-256 are not applicable.

4Again, to obtain the values of neutral bytes fulfilling the constraints, one can efficiently solve the
linear equations using linear algebra. Please refer to the example codes via https://www.dropbox.com/
sh/c5dm28821f2jmfl/AAC3iGXUtA6crWaLwdS9LC2Ca?dl=0.

341

https://www.dropbox.com/sh/c5dm28821f2jmfl/AAC3iGXUtA6crWaLwdS9LC2Ca?dl=0
https://www.dropbox.com/sh/c5dm28821f2jmfl/AAC3iGXUtA6crWaLwdS9LC2Ca?dl=0

Apart from these incompatible instantiations of PGV modes by AES-192/AES-256, we
conclude that the presented pseudo-preimage attacks are applicable to all the twelve PGV
modes instantiated by AES.

Specifically, when Hi−1 and Mi are of the same size, for our attacks, those PGV modes
are essentially equivalent up to the exchange between Hi−1 and Mi, and/or up to the
XORing of whitening key (the material fed into the key-schedule of the block cipher),
and/or up to replacing either Hi−1 or Mi with Hi−1 ⊕Mi. When applying the presented
attacks, the output of the encryption, denoted by Z, and the input to the key-schedule,
denoted by K, are firstly determined following the same MITM procedure for all PGV
modes. The freedom required to find the correct Z and K are provided by Hi−1 and Mi.
The difference between the attacks on difference PGV modes lies in where the required
freedom comes from. Thus, the equivalence up to the exchange between Hi−1 and Mi is
relatively easy to be understood, considering that for pseudo-preimage attacks, both Hi−1
and Mi are unknown variables that are determined at the end of the attack procedure
such that H(Hi−1,Mi) = T for the given target T . Examples for this case of equivalence
are PGV No.1 ≡ No.5, No.2 ≡ No.6, No.3 ≡ No.7, No.4 ≡ No.8, No.9 ≡ No.10, No.11 ≡
No.12 (refer to Figure 13).

For the equivalence up to the XORing of the whitening key, the explanation is as
follows. Recall that, in AES, the whitening key is the master key and is XORed at the very
beginning of the encryption, and recall that our attacks use the splice-and-cut method.
For PGV modes in which both of the material fed into the key-schedule and the material
fed into the encryption are XORed at the end of the encryption, splicing in our attacks
will result in a cancellation effect on the whitening key at the beginning of the encryption.
However, as can be seen in Figure 7, whether the master key is XORed or is not XORed
at the beginning of the encryption has no essential influence on our attacks. Thus, there is
no essential difference for our attacks applying to those PGV modes. Examples for this
case of equivalence are PGV No.2 ≡ No.3, No.6 ≡ No.7, No.1 ≡ No.4, No.5 ≡ No.8, No.9
≡ No.12, No.10 ≡ No.11 (refer to Figure 13).

At last, it is easy to see that PGV No.1 and No.2 are essentially equivalent up to taking
Hi−1 ⊕Mi as the variable providing the freedom required for finding correct Z, PGV No.1
and No.9 are essentially equivalent up to taking Hi−1 ⊕Mi as the variable providing the
freedom required for finding correct K (refer to Figure 13).

In conclusion, for our attacks, the PGV modes are essentially equivalent and our attacks
are applicable to them all (apart from the above mentioned incompatible instances).

Converting to (Second-) Preimage Attacks Whether or not the presented pseudo-
preimage attacks can be converted to full preimage attacks depends on the padding rule
of the hashing mode. That is because, all our pseudo-preimage attacks require that the
message block can be freely chosen (for providing the freedom required by the input to
key-schedule or by the input to the encryption). When the padding rule imposes special
format to the last message block such that a valid padded message block cannot take
arbitrary value (i.e., the padding rule makes the domain of valid padded block smaller than
that of normal blocks), converting our attacks to full preimage attacks requires additional
computations (repeating the procedure of the pseudo-preimage attack for the last block so
that the recovered block happens to be a valid one, e.g., when using the padding rule in
SHA-3 that reduces the domain by a factor of 2−1, we expected to repeat two times; when
using the Merkel-Damgård strengthening, we may need to repeat many times such that
the overall complexity is higher than that of a brute-force attack).

Nevertheless, all our pseudo-preimage attacks can be converted into second-preimage
attacks, in which the crafted messages reuse the last block of the given message, and the
target is the second to the last chaining value in the processing of the given message. The
complexity analysis on converting pseudo-preimage attack to preimage attack provided in

342

No.1

EMi Hi

Hi−1

Z T

K

Z ⊕
T

→ Z ⊕ T

→ K

No.5

EHi−1 Hi

Mi

Z T

K

Z ⊕
T

→ Z ⊕ T

→ K

No.9

EMi Hi

Hi−1

Z T

K

Z ⊕
T

→ Z ⊕ T

→ K ⊕ Z ⊕ T

No.2

EMi Hi

Hi−1

Z T

K
K

Z ⊕
T

→ Z ⊕ T ⊕K

→ K

No.6

EHi−1 Hi

Mi

Z T

K
K

Z ⊕
T

→ Z ⊕ T ⊕K

→ K

No.10

EHi−1 Hi

Mi

Z T

K

Z ⊕
T

→ Z ⊕ T

→ K ⊕ Z ⊕ T

No.3

EMi Hi

Hi−1

Z T

K
K

Z ⊕
T ⊕
K

→ Z ⊕ T ⊕K

→ K

No.7

EHi−1 Hi

Mi

Z T

K
K

Z ⊕
T ⊕
K

→ Z ⊕ T ⊕K

→ K

No.11

EMi Hi

Hi−1

Z T

K

K⊕
Z ⊕
T

→ K ⊕ Z ⊕ T

→ Z ⊕ T

No.4

EMi Hi

Hi−1

Z T

K
K

Z ⊕
T ⊕
K

→ Z ⊕ T

→ K

No.8

EHi−1 Hi

Mi

Z T

K
K

Z ⊕
T ⊕
K

→ Z ⊕ T

→ K

No.12

EHi−1 Hi

Mi

Z T

K

K⊕
Z ⊕
T

→ K ⊕ Z ⊕ T

→ Z ⊕ T

Figure 13: Equivalence among difference PGV modes for our attacks

Sect. 3.2 applies directly without any modification to the case of converting pseudo-preimage
attack into a second-preimage attack.

8 Conclusion
Under the general framework of meet-in-the-middle preimage attack against AES hashing
modes introduced by Sasaki in 2011 and improved by Wu et al. in 2012, we made two
observations: the key bits are not used, and the neutral bits in the two chunks are not
balanced in Wu et al.’s improvement. In this paper, we introduced neutral bits from the
key, and to avoid dealing with the fast diffusion of the AES key-schedule, neutral bits
from the key are introduced for one chunk only. By carefully choosing the key neutral
bits, we found it was indeed possible while keeping the computation of the other chunk
unaffected. Then the additional degrees of freedom are used in three ways to play two
roles, i.e., to reduce time complexities and to extend the attack to more rounds. As a
result, we improved the MITM preimage attack complexities for 7-round AES hashing
modes under all 3 versions of AES, and extended the attack to 8 rounds under AES-192
and AES-256. The same was applied to Kiasu-BC.

Acknowledgments
We thank Lei Wang for helpful discussions during the early phase of this work. We would
like to thank all the reviewers of ToSC 2019 for their valuable comments and suggestions,
and would like to specially thank Yu Sasaki for willing to be our shepherd. This research is
supported by the National Research Foundation, Prime Minister’s Office, Singapore, under
its Strategic Capability Research Centres Funding Initiative (Grant No. M4062510.J30),
Nanyang Technological University under grant M4082123, and Singapore’s Ministry of
Education under grants M4012049, M4012153, and M4020466. Wenying Zhang is supported
by the National Natural Science Foundation of China (Grant No. 61672330).

343

References
[AES01] Advanced Encryption Standard (AES). National Institute of Standards

and Technology (NIST), FIPS PUB 197, U.S. Department of Commerce,
November 2001.

[AGM+09] Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang.
Preimages for step-reduced SHA-2. In Mitsuru Matsui, editor, Advances
in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Com-
puter Science, pages 578–597, Tokyo, Japan, December 6–10, 2009. Springer,
Heidelberg, Germany.

[AMM09] Jean-Philippe Aumasson, Willi Meier, and Florian Mendel. Preimage attacks
on 3-pass HAVAL and step-reduced MD5. In Roberto Maria Avanzi, Liam
Keliher, and Francesco Sica, editors, SAC 2008: 15th Annual International
Workshop on Selected Areas in Cryptography, volume 5381 of Lecture Notes
in Computer Science, pages 120–135, Sackville, New Brunswick, Canada,
August 14–15, 2009. Springer, Heidelberg, Germany.

[AS09a] Kazumaro Aoki and Yu Sasaki. Meet-in-the-middle preimage attacks against
reduced SHA-0 and SHA-1. In Shai Halevi, editor, Advances in Cryptology –
CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages
70–89, Santa Barbara, CA, USA, August 16–20, 2009. Springer, Heidelberg,
Germany.

[AS09b] Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step
MD5 and more. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica,
editors, SAC 2008: 15th Annual International Workshop on Selected Areas
in Cryptography, volume 5381 of Lecture Notes in Computer Science, pages
103–119, Sackville, New Brunswick, Canada, August 14–15, 2009. Springer,
Heidelberg, Germany.

[AY14a] Riham AlTawy and Amr M. Youssef. Preimage attacks on reduced-round Stri-
bog. In David Pointcheval and Damien Vergnaud, editors, AFRICACRYPT
14: 7th International Conference on Cryptology in Africa, volume 8469 of
Lecture Notes in Computer Science, pages 109–125, Marrakesh, Morocco,
May 28–30, 2014. Springer, Heidelberg, Germany.

[AY14b] Riham AlTawy and Amr M. Youssef. Second Preimage Analysis of Whirlwind.
In Dongdai Lin, Moti Yung, and Jianying Zhou, editors, Information Security
and Cryptology - 10th International Conference, Inscrypt 2014, Beijing, China,
December 13-15, 2014, Revised Selected Papers, volume 8957 of Lecture Notes
in Computer Science, pages 311–328. Springer, 2014.

[BMO17] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward
private searchable encryption from constrained cryptographic primitives. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017: 24th Conference on Computer and Communications
Security, pages 1465–1482, Dallas, TX, USA, October 31 – November 2, 2017.
ACM Press.

[Bos16] Raphael Bost. Σoφoς: Forward secure searchable encryption. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and
Communications Security, pages 1143–1154, Vienna, Austria, October 24–28,
2016. ACM Press.

344

[CL01] Bram Cohen and Ben Laurie. AES-hash. NIST: Modes of Operation for
Symmetric Key Block Ciphers, 2001.

[DH77] Whitfield Diffie and Martin E. Hellman. Special feature exhaustive crypt-
analysis of the NBS data encryption standard. IEEE Computer, 10(6):74–84,
1977.

[EFK15] Thomas Espitau, Pierre-Alain Fouque, and Pierre Karpman. Higher-order
differential meet-in-the-middle preimage attacks on SHA-1 and BLAKE. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in Cryptology
– CRYPTO 2015, Part I, volume 9215 of Lecture Notes in Computer Science,
pages 683–701, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany.

[GLRW10a] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced
meet-in-the-middle preimage attacks: First results on full Tiger, and improved
results on MD4 and SHA-2. In Masayuki Abe, editor, Advances in Cryptology
– ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science,
pages 56–75, Singapore, December 5–9, 2010. Springer, Heidelberg, Germany.

[GLRW10b] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced
meet-in-the-middle preimage attacks: First results on full tiger, and improved
results on MD4 and SHA-2. Cryptology ePrint Archive, Report 2010/016,
2010. http://eprint.iacr.org/2010/016.

[GSY15] Jian Guo, Chunhua Su, and Wun-She Yap. An improved preimage attack
against HAVAL-3. Inf. Process. Lett., 115(2):386–393, 2015.

[HKS10] Deukjo Hong, Bonwook Koo, and Yu Sasaki. Improved preimage attack
for 68-step HAS-160. In Donghoon Lee and Seokhie Hong, editors, ICISC
09: 12th International Conference on Information Security and Cryptology,
volume 5984 of Lecture Notes in Computer Science, pages 332–348, Seoul,
Korea, December 2–4, 2010. Springer, Heidelberg, Germany.

[IP07] Sebastiaan Indesteege and Bart Preneel. Preimages for reduced-round tiger. In
Stefan Lucks, Ahmad-Reza Sadeghi, and Christopher Wolf, editors, Research
in Cryptology, Second Western European Workshop, WEWoRC 2007, Bochum,
Germany, July 4-6, 2007, Revised Selected Papers, volume 4945 of Lecture
Notes in Computer Science, pages 90–99. Springer, 2007.

[ISO10] ISO/IEC. 10118-2:2010 Information technology — Security techniques –
Hash-functions – Part 2: Hash-functions using an n-bit block cipher. 3rd
ed., International Organization for Standardization, Geneve, Switzerland,
October, 2010.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

[JNP14a] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. KIASU v1. Additional
first-round candidates of CAESAR compeition, https://competitions.cr.
yp.to/caesar-submissions.html, 2014.

[JNP14b] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology – ASIACRYPT 2014, Part II, volume 8874
of Lecture Notes in Computer Science, pages 274–288, Kaoshiung, Taiwan,
R.O.C., December 7–11, 2014. Springer, Heidelberg, Germany.

345

http://eprint.iacr.org/2010/016
https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html

[KK12] Simon Knellwolf and Dmitry Khovratovich. New preimage attacks against
reduced SHA-1. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 367–383, Santa Barbara, CA, USA, August 19–23, 2012.
Springer, Heidelberg, Germany.

[KLMR16] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger.
Haraka v2 - Efficient short-input hashing for post-quantum applications.
IACR Transactions on Symmetric Cryptology, 2016(2):1–29, 2016. http:
//tosc.iacr.org/index.php/ToSC/article/view/563.

[Leu08] Gaëtan Leurent. MD4 is not one-way. In Kaisa Nyberg, editor, Fast Software
Encryption – FSE 2008, volume 5086 of Lecture Notes in Computer Sci-
ence, pages 412–428, Lausanne, Switzerland, February 10–13, 2008. Springer,
Heidelberg, Germany.

[LIS12] Ji Li, Takanori Isobe, and Kyoji Shibutani. Converting meet-in-the-middle
preimage attack into pseudo collision attack: Application to SHA-2. In Anne
Canteaut, editor, Fast Software Encryption – FSE 2012, volume 7549 of
Lecture Notes in Computer Science, pages 264–286, Washington, DC, USA,
March 19–21, 2012. Springer, Heidelberg, Germany.

[MvV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. The CRC Press series on discrete mathematics and
its applications. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL
33431-9868, USA, 1997.

[PGV94] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based
on block ciphers: A synthetic approach. In Douglas R. Stinson, editor,
Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in
Computer Science, pages 368–378, Santa Barbara, CA, USA, August 22–26,
1994. Springer, Heidelberg, Germany.

[SA08] Yu Sasaki and Kazumaro Aoki. Preimage attacks on 3, 4, and 5-pass HAVAL.
In Josef Pieprzyk, editor, Advances in Cryptology – ASIACRYPT 2008,
volume 5350 of Lecture Notes in Computer Science, pages 253–271, Melbourne,
Australia, December 7–11, 2008. Springer, Heidelberg, Germany.

[SA09] Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than
exhaustive search. In Antoine Joux, editor, Advances in Cryptology – EU-
ROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
134–152, Cologne, Germany, April 26–30, 2009. Springer, Heidelberg, Ger-
many.

[Sas11] Yu Sasaki. Meet-in-the-middle preimage attacks on AES hashing modes
and an application to Whirlpool. In Antoine Joux, editor, Fast Software
Encryption – FSE 2011, volume 6733 of Lecture Notes in Computer Science,
pages 378–396, Lyngby, Denmark, February 13–16, 2011. Springer, Heidelberg,
Germany.

[WFW+12] Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, and Jian Zou.
(Pseudo) preimage attack on round-reduced Grøstl hash function and others.
In Anne Canteaut, editor, Fast Software Encryption – FSE 2012, volume
7549 of Lecture Notes in Computer Science, pages 127–145, Washington, DC,
USA, March 19–21, 2012. Springer, Heidelberg, Germany.

346

http://tosc.iacr.org/index.php/ToSC/article/view/563
http://tosc.iacr.org/index.php/ToSC/article/view/563

[WS10] Lei Wang and Yu Sasaki. Finding preimages of Tiger up to 23 steps. In
Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryption – FSE 2010,
volume 6147 of Lecture Notes in Computer Science, pages 116–133, Seoul,
Korea, February 7–10, 2010. Springer, Heidelberg, Germany.

[WSK+11] Lei Wang, Yu Sasaki, Wataru Komatsubara, Kazuo Ohta, and Kazuo
Sakiyama. (Second) preimage attacks on step-reduced RIPEMD/RIPEMD-
128 with a new local-collision approach. In Aggelos Kiayias, editor, Topics
in Cryptology – CT-RSA 2011, volume 6558 of Lecture Notes in Computer
Science, pages 197–212, San Francisco, CA, USA, February 14–18, 2011.
Springer, Heidelberg, Germany.

347

	Introduction
	Preliminaries
	Description of AES
	Description of Kiasu-BC

	The MITM Preimage Attack
	Application to Pseudo-Preimage Attacks
	Conversion from Pseudo-Preimages to Preimages
	Converting Block cipher to Compression Function

	Techniques of MITM Attack on AES Hashing Modes
	The 7-Round Attack by Sasaki and Its Improvement by Wu et al.
	Introducing Neutral Bytes in Key

	Reducing the Complexities of 7-Round Attacks
	Improved Attack on 7-Round AES-128 Hashing Mode
	Application to 7-Round AES-192 Hashing Mode
	Application to 7-Round Kiasu-BC Hashing Mode

	Extension to 8-Round Attacks
	Techniques for Attacking 8 Rounds
	The 8-Round Attack against AES-256
	The 8-Round Attack against AES-192
	The 8-Round Attack against Kiasu-BC

	Discussion
	Conclusion

