TACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2019, No. 4, pp. 272-289. DOI:10.13154 /tosc.v2019.i4.272-289

Weak Keys in the Rekeying Paradigm:
Application to COMET and mixFeed

Mustafa Khairallah

School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore, Singapore
mustafam001@e.ntu.edu.sg

Abstract. In this paper, we study a group of AEAD schemes that use rekeying as
a technique to increase efficiency by reducing the state size of the algorithm. We
provide a unified model to study the behavior of the keys used in these schemes,
called Rekey-and-Chain (RaC). This model helps understand the design of several
AEAD schemes. We show generic attacks on these schemes based on the existence of
certain types of weak keys. We also show that the borderline between multi-key and
single-key analyses of these schemes is not solid and the analysis can be performed
independent of the master key, leading sometimes to practical attacks in the multi-key
setting. More importantly, the multi-key analysis can be applied in the single key
setting, since each message is encrypted with a different key. Consequently, we show
gaps in the security analysis of COMET and mixFeed in the single key setting, which
led the designers to provide overly optimistic security claims. In the case of COMET,
full key recovery can be performed with 24 online queries and 2% offline queries in
the single-key setting, or 246 online queries per user and 2%* offline queries in the
multi-key setting with ~ 0.5 million users. In the case of mixFeed, we enhance the
forgery adversarial advantage in the single-key setting with a factor of 267 compared
to what the designers claim. More importantly, our result is just a lower bound of
this advantage, since we show that the gap in the analysis of mixFeed depends on
properties of the AES Key Schedule that are not well understood and require more
cryptanalytic efforts to find a more tight advantage. After reporting these findings,
the designers updated their security analyses and accommodated the proposed attacks.

Keywords: weak keys - authenticated encryption - comet - mixfeed - nist - forgery -
AEAD

1 Introduction

Lightweight Symmetric Key Cryptography has been a growing research area in the past
10 years or more, with applications varying from block cipher design to authenticated
encryption or hash functions and much more. This has lead the National Institute of
Standards and Technology (NIST) to release a call for proposals for a new lightweight
cryptography standard [nisl8], to be used in applications such as Internet-of-Things
(IoT) and Sensor Networks. Authenticated Encryption with Associated Data (AEAD)
is one of the most important requirements of symmetric key cryptography (SKE) in
these environments, since it is usually cheaper than having independent solutions for
the authentication and encryption requirements of the system. Most of the lightweight
AEAD designs fall into one of three families: (Tweakable) Block-Cipher Based schemes,
Permutation-Based schemes and Stream-Cipher Based schemes, with the last two families
sometimes overlapping.

Licensed under Creative Commons License CC-BY 4.0. [D)sr |
Received: 2019-09-01, Accepted: 2019-11-01, Published: 2020-01-31


https://doi.org/10.13154/tosc.v2019.i4.272-289
mailto:mustafam001@e.ntu.edu.sg
http://creativecommons.org/licenses/by/4.0/

Mustafa Khairallah 273

Table 1: Some lightweight AEAD designs and the techniques used in them.

Mode Chaining | Rekeying | Masking | Assumption
Romulus-N1 [IKMP19¢c, IKMP19a] v - - TPRP
COFB [CIMN17, BCIT19] v - v PRP
HyENA [CDJN19] v - v PRP
Remus-N1 [IKMP19b, IKMP19a v v - ICM
Remus-N2 [IKMP19b, IKMP19a v v v ICM
COMET-128 [GJN19a] v v - ICM
mixFeed [CN19a] v v - ICM

One of the main challenges facing the designers of AEAD schemes is reducing the
state size of the algorithm. The state size translates either into memory limitations for
software implementations or hardware area for ASIC/FPGA implementations. Most of
the time the state size is the main contributor to how small the implementation of an
algorithm can be. For example, the low area implementation of the SKINNY Lightweight
Block Cipher [BJKT16] with 128-bit block and 128-bit key is only ~ 23% smaller that
the corresponding round-based implementation. In order to design AEAD schemes based
on block ciphers that have limited state size while meeting certain security goals, two
techniques have recently become popular. The first one is chaining, where the input to a
block cipher is a linear combination of the previous output of the block cipher and the
current input block. This ensures that the input to a block cipher depends on the previous
block cipher calls and not just the current input block. The second technique is Rekeying,
where at the beginning of the encryption process, a random value is generated based on
the master key, and this value is later used as during the block cipher calls, generally as a
tweaked key. In addition to helping reduce the state size, rekeying is also useful against
physical attacks, such as Side Channel and Fault Attacks, by limiting the exposure/usage
of the master key. Another technique that is similar to Rekeying, is masking, where a
random value is initially generated based on the master key and a unique nonce, then it is
used in a construction on top of the block cipher to increase the randomness.

While the latter two techniques are relatively similar, a fundamental difference is that
rekeying usually requires stronger assumptions about the underlying Block Cipher as the
security of the mode can only be proven in the Ideal-Cipher Model (ICM) as opposed to
the (Tweakable) Pseudo-Random Permutation Model ((T)PRP). Table 1 shows some of
the current AEAD designs and which of these three techniques they use. The comparison
is limited to (online) rate-1 modes that are secure in the nonce respecting model and
use chaining, i.e. modes that use almost a single block cipher call per input block and
are secure in the nonce respecting model. Table 1 does not serve as an exhaustive list.
The modes in Table 1 represent around 25% of the block-cipher based submissions to the
NIST lightweight cryptography standardization process and and 10% of the overall designs.
Moreover, they can be considered as part of the state-of-the-art of this field. Hence, the
security analyses and claims made by the designers have to be carefully assessed and
scrutinized by the community in order to have to understand them and have a higher trust
of their security.

Contributions In this paper, we study the problem of Weak Keys in Rekeying/Masking-
Based schemes. We give a framework to model and analyze weak keys in chained block-
cipher based modes. We show that, especially for authenticity, the distinction between the
single-key and multi-key settings can be blurred and the existence of weak keys can lead
to security degradation if they are not handled properly.

We apply this framework to five round 1 AEAD Candidates for the NIST Lightweight
Cryptography Process: GIFT-COFB, HyENA, COMET, Remus and mixFeed. We show that
there are gaps in the initial analyses provided by the designers of COMET and mixFeed



274 Weak Keys in the Rekeying Paradigm: Application to COMET and mixFeed

65 | B
)
- 60
®
0
2
. 955 |
4
Q
2
2
= 50 |
3
)
(]
i
= 45 |- | .
5 :
z |
g l
g 40 ‘ 8
3 l
< I
A a5 | b — Per-user data required for key recovery h
| | — NIST’s requirement for data limits for a single user [nis18§]
| — Designers’ claim in the single user case [GJN19b]
[t | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4

Number of users -10°
Figure 1: Bit security degradation vs. the number of users for COMET-128

in round 1, leading to overly optimistic claims. Our attacks still fall outside the security
requirements in the call for submissions of the NIST and hence does not threaten the
security within these limits. However, the results are worrisome in the multi-key setting,
where many users are using the scheme and can be targeted by the same attacker, which
is a realistic model in scenarios such as IoT and ubiquitous computing. For example, in
this model, we show that the master key of at least one of the users of COMET-128 can be
recovered with only O(2%4 /1) online queries per user and 2%° offline queries by targeting
users. This means that if only ~ 0.5 million users adopt this algorithm, the schemes is
vulnerable to a key recovery attack on one of the users, even if all the users respect the
data limits required by the NIST, as shown in Figure 1. To put it differently, the NIST
requires designs to be secure as long as the data complexity is < 25 bytes and the time
complexity is < 22, For COMET, in order to operate within these bounds, the number of
users must not exceed ~ 0.5 million users, with key recovery possible as soon as this limit
is reached. The number of expected vulnerable keys also grows with the number of users,
with a factor of 2719, i.e. e.g. ~ 4 million users respecting the data limit of 2°0 bytes, it
is expected that 8 users are vulnerable. While it is expected that security drops when
increasing the number of users, we believe the data limits on each individual users should
not drop, as a user does not know if he is being targeted by a single-user or multi-user
adversary. Besides, this security drop is not true or similar for all schemes, as proven by
Luykx et al. in [LMP17], and 0.5 million users is a very small security margin.

Besides, we show that in the case of mixFeed there is a lack of understanding of the
underlying primitive that will require extra assumptions in order to prove the security
of the scheme even with bit security as low as 50. To the best of our knowledge, our
results represent the first cryptanalytic result for COMET and the first result for mixFeed



Mustafa Khairallah 275

in the nonce-respecting model. The designers of mixFeed initially conjectured that the
design provides integrity nonce-misuse resistance up to a data complexity of 232, which
was disproven by an attack provided by Khairallah [Khal9], requiring a single repetition
of the nonce and a negligible amount of data. In the case of COMET, we give two potential
fixes, one with higher performance/area cost, yet more secure, and one with virtually no
additional cost and acceptable security.

Note We have communicated our results in the single-key setting to the designers of
COMET and mixFeed early on, and in both cases they have verified our analysis. In the
case of mixFeed, the designers proposed adding a extra assumption in order to prove
the security [CN19b]. In the case of COMET the designers proposed an updated proof
that captures our attack [GJN19b], arguing that while the attack needs to be taken into
consideration, it does not change their claims. While we believe a fair reading of the
specification does not lead to the conclusion that our attack breaches the data bounds
of the scheme, we understand that sometimes authors intend to say something that gets
misunderstood by the reader and sometimes writing is prone to mistakes. Our goal is
not to show whether the data complexity claims are valid or not, but to show the gaps
in the analysis provided by the authors, in order to have better understanding of the
proposals. Hence, we only focus on the security bounds provided by the designers and not
the simplified complexity tables.

2 Background and Motivation

2.1 Weak Key Analysis of Authenticated Encryption

Weak keys are defined as keys that behave in a non-expected manner compared to how
the encryption algorithm is intended and detecting whether a secret key belongs to the set
of weak keys is easy [HP08]. For example, if an algorithm requires that every call to the
primitive used in that algorithm uses a different key, but for some keys the key is fixed for
all primitive calls, that is an unexpected behavior. In many cases (as the cases we target
in this article), this behavior is detectable with one verification query, since if the weak
key occurs, it immediately leads to forgery. Usually, the security bounds are calculated on
average over the whole key space, which limits the vulnerability of the weak keys in the
single key setting.

Whether the weak keys are exploitable or not is a different problem. An example of a
case where the weak keys were exploitable in the AEAD forgery context is the attack on
POET by Abdelraheem et al. [ABT14].

2.2 Multi-Key Analysis

In [LMP17], Luykx et al. showed that the effect of analyzing the security of a symmetric
key primitive in the multi-key setting can lead to drastic security degradation when the
same primitive is used by a huge number of users using different keys. They gave a formula
for the adversarial advantage gain against a scheme that has weak keys when used by many
users at the same time. If the probability that any key is a weak key is p, the probability
that all the p keys (where p is the number of users) are not weak is given by

(1-p)* (1)

and the probability that at least one of them is weak is given by

1—(1-p) (2)



276 Weak Keys in the Rekeying Paradigm: Application to COMET and mixFeed

This probability increases almost linearly when p is small and approaches 1 when
> p~t. For example, if p = 2732, the advantage is 0.98 at p = 234, 0.63 at p = 232,
0.39 at u = 231, 2716 at iy = 216 and 273! at u = 2. In [BT16], Bellare and Tackmann
analyzed GCM with respect to multi-key security degradation, establishing security bounds
with a factor u, showing that the success probability of the adversary can be bounded by
“Q%Lz, where o is the overall number of resources available to the adversary. This bound is
troublesome since it shows that a multi-key adversary may be able to pay less resources per
key compared to a single-key adversary. Specifically, if such bound was tight, the per-key
cost would decrease with a factor of z~3/? in the multi-key setting. Fortunately, Luykx et
al. [LMP17] showed that this bound is not tight and that the multi-key security of GCM
does not depend on p once the underlying cipher is replaced with a uniformly distributed
random permutation. More importantly, they provided a sufficient and provable/falsifiable
condition for which a scheme would enjoy no security degradation in the multi-key setting.
Hence, it is only natural that we need to study new schemes against this condition and
show which schemes are insecure in the multi-key setting.

NIST candidates for the new lightweight cryptography standard has been required so
far to be secure only in the single key setting [nis18]. Usually, considering only the single
key setting reduces the vulnerabilities related to weak keys compared to the multi-key
setting [LMP17]. However, the multi-key analysis is relevant to our paper in two ways:

1. Modes such as COMET, mixFeed, COFB, HyENA and Remus use rekeying as a
technique even in the single key setting. Hence, we show that the single key
cryptanalysis depends on the multi-key setting.

2. Even if it is not required for the standardization process, understanding and analyzing
new schemes in different models that capture realistic world views is a crucial task,
given the drastic impact that these new schemes will have if they are actually adopted
by the industry.

3 COFB-like Schemes

The COmbined FeedBack mode (COFB) [CIMN17] is a popular lightweight block-cipher
based AEAD mode that was proposed by Chakraborti et al. at CHES 2017. It is the
basis of the GIFT-COFB NIST candidate [BCIT19] and several other proposals have tried
to address the shortcomings of COFB by proposing closely related, yet different designs,
such as: Romulus [IKMP19c¢], Remus [IKMP19b], HyENA [CDJN19], COMET [GJN19a]
and mixFeed [CN19a]. As part of the security proof of COFB, the authors introduced the
idealized COFB (iCOFB) mode, and most of the examples we mentioned earlier can be
viewed as different instantiations of (iCOFB), with some changes to the linear function
p. While it may be intriguing to use the same representation of iCOFB to analyze these
modes, it is not the most adequate representation to capture our analysis. Instead, we
propose a new representation, which we call Rekey-and-Chain (RaC).

Notation F is a block cipher with key K, E is a tweakable block cipher with tweakey
Z. N is the nonce which must be used only once. K is the master key. Z is the message
tweakey. IV is the initial value after rekeying. A, M, C are the associated data, message
and ciphertext strings, respectively. The underlying cipher has block size n, key size k.
Perm is a permutation defined over the tweakey space. i.e. F5. p is an invertible linear
transformation over 2n bits. For simplicity, we consider only the case where A, M, C consist
of full blocks, i.e. their size is a multiple of n, so that we can neglect the domain separation
control logic, padding and length extension attacks which are irrelevant to our analysis. T
is the authentication tag. 5;, S, are the input and output states of the underlying cipher,



Mustafa Khairallah 277

K A
Z ——>Z
N KDF Absorb
1V >V

M]2] M([m]
N Pern(Z) Perm’(Z) Pern”(Z)
% X ¥
el o) B ] B -~} 2 (]
n
C[1] C[2] C[m]

Figure 2: The RaC representation of COFB-like modes

respectively. KDF is the key derivation function, which is what distinguishes modes that
follow the RaC representation. An RaC algorithm consists of three phases

1. (Z,1V) =KDF(N, K)
2. (Z,1IV) =Absorb(A, Z,IV)
3. (C,T) =Enc(M, Z,1V))

which are elaborated in Figure 2. Since it is straightforward to see how each of the
modes discussed in the paper is an instantiation of RaC, we will not go into the details of
these instantiations, unless such information is necessary for our analysis. In order for the
attacks in this paper to work, RaC must satisfy the following properties:

1. Given A, Absorb is invertible in terms of Z and I'V.

2. p is linear and invertible.

3.1 Generic Attacks against RaC

Similar to any AEAD scheme, the schemes based on RaC are vulnerable to a wide range of
generic attacks that can apply to any AEAD scheme. In order to provide a reference point
for the reader to compare our attacks to these generic attacks, we provide a non-exhaustive
list of examples in Table 2.

3.2 Forgery attacks against RaC

If 7 is a fixed-point of Perm, RaC is vulnerable to forgery attacks. For example, assume
that M consists of two blocks. The adversary can apply the following attack:

1. Ask for the encryption of M.

2. Calculate the internal state values for S;, S, at different points in the execution.

3. Find a ciphertext block C, and a plaintext block M, such that (S;[1],C,) =
p(S,[0], M). This is very easy due to the properties of p.



278 Weak Keys in the Rekeying Paradigm: Application to COMET and mixFeed

Table 2: Some generic attacks against RaC. H(z) is the information theoretic entropy of
x. We assume that Z and IV are uniformly random. In practice the birthday attack costs
may be different if this assumption is not valid.

Attack Complexity
Master Key Guessing O(21KT)
Tag Guessing (’)(2|T|)
State Guessing (’)(QH(Z)+H(IV))

State Matching (Birthday Attacks) O(QW

H(Z)FTHUIV)
2

Encryption-Decryption Collision O(2
Online-Offline Collision O(2

)
)

H(Z)+H{IV)
2

4. Use the same tag from the encryption query with the ciphertext C, to build a
verification query.

If Z is not a fixed-point, but a member of a short cycle of period [, then the attack is
modified to

1. Ask for the encryption of M of length 21.
2. Calculate the internal state values for 5;, S, at different points in the execution.

3. Find a ciphertext block C, and a plaintext block M, such that (S;[i],Cy) =
p(S,[0], M). This is very easy due to the properties of p.

4. Use the same tag from the encryption query with the ciphertext Cx = C,|C[l +
1|Cl +2]| - - - |C[21 — 1] to build a verification query.

Another possible forgery attack is

1. Ask for the encryption of M of length [ + 1.
2. Calculate the internal state values for 5;, S, at different points in the execution.

3. Find a ciphertext block C, and a plaintext block M, such that (S;[0],C,) =
p(So[l], M;). This is very easy due to the properties of p.

4. Use the same tag from the encryption query with the ciphertext Cx = C[0]|C[1]]-- - |C[l—
1]|C.|C[1]|C[2]] - - - |C!] to build a verification query.

However, since Z is secret, it is not straightforward. Let p; be the probability that
a key Z picked uniformally at random is a member of a cycle of period [, then the
attacks described above have a success probability of p; and data complexity 2! blocks
for an adversary who assumes Z is a member of such cycle. In order to have a success
probability close to 1, the adversary requires roughly a number of encryption/decryption
queries ¢ = pl_l, and data complexity of 2¢l blocks. A very important observation is
that this attack does not depend on K, N, A or IV. Hence, an adversary targeting u
users simultaneously can rearrange his resources, spending only qr = % queries per key,
expecting to achieve at least 1 successful forgery. The adversarial advantages of these
attacks are ¢p; in the single-key setting and ugp; in the multi-key setting. Alternatively,
the number of blocks required for these attacks is roughly ¢ = 2¢l and the advantages are
% and £3Pt for the single- and multi-key settings, respectively.

In order for a scheme to be immune to this attack, the designer needs to make sure
that 2—5 is smaller than the complexities of the generic attacks in Table 2, or at least small
enough to fall within the targeted security level for every possible value of [.




Mustafa Khairallah 279

3.3 Analysis of COFB, HyENA and Remus

COFB and HyENA are very similar, with the main difference is in the p function. However,
in both cases they satisfies our requirements. Hence, the same analysis can be applied to
both modes. In this case, the outputs of the KDF are Z = K|L and IV = L|R, where L
and R are n/2-bit random variables, K is the k-bit master key, where k = k — n/2, and
:|- represents the concatenation of two binary strings. Perm(K|L) = K|« - L, where « is
a primitive element of GF(2"/2). If L = 0, the attack we described can apply. In other
words, Perm has 2* fixed-points and the probability of Z being one of them is 2="/2. In
the single key setting, this leads to an attack with complexity roughly 2"/2. However, the
designers of COFB and HyENA do not claim security beyond 27/2-19(") online queries
with negligible number of offline queries, which means that this attack does not pose a
threat against them. In the multi-key setting, the attack is more problematic, since it
only requires # data complexity per key. In scenarios where the number of keys used
is relatively high, e.g. 224, these modes offer only 40-bit security against forgery over all
keys, i.e. with 240 queries per key, one of the users can be vulnerable to forgery. As we
will describe later, these results are very similar to the results against COMET. However,
a characteristic difference is that this only applies to forgery in the case of COFB and
HyENA, while all the security of COMET breaks down, as we will see later.

In the case of Remus-N1, the initial value of Z is an n-bit random value, while
Perm(Z) = 2 - Z over GF(2"). Hence, there is only one possible fixed point at Z = 0
with probability 27". The attack complexity in the single-key setting is roughly 2", with
advantage 7. This attack is matching to one of the bounds given by the designers in the
single key setting. Moreover, the designers of Remus-N1 claim only n/2 bit security. In
the multi-key setting, the situation is better than COFB and HyENA, where even with p
users, the scheme will still be immune to this attack as long as p < 27/2.

Last but not least, in the case of Remus-N2, the initial value of Z = L|V is a 2n-bit
random value, while Perm(Z = L|V) = 2- L|2-V over GF(2"). In this case, there are three
classes of weak keys:

1. L =0,V # 0: In this case, the scheme can be reduced to an Even-Mansour-like
cipher with key V. If this construction is secure then the security should be the same
as Remus-N1, i.e. the scheme would still enjoy n/2-bit security. Since this event
happens with probability 27", then an attack based on this class of weak keys is
much more costly than the claimed n-bit security.

2. L #0,V =0: The scheme is reduced to Remus-N1. Since this event happens with
probability 277, then an attack based on this class of weak keys is much more costly
than the claimed n-bit security.

3. L =0,V = 0: If this happens the forgery is successful with probability 1. However,
the probability of such weak key is only 2727, which means that after 2" online
queries, the success probability of forgery is 27".

Similar to Remus-N1, the security degradation of Remus-N2 with regards to our attack
is too slow to pose any practical threat. However, aside from the weak key analysis, it is
clear that for Remus will have at least one bound on the form of £ ;l"zq‘f due to Online-Offline
matching, since Z is random, where ¢, is the number of online query blocks and ¢y is the
number of offline query blocks, using the folklore result mentioned by Luykx et al. [LMP17].
An open question is to prove multi-key security bounds for Romulus, which can also be
modeled using RaC without any weak keys at all, i.e. has potential to satisfy the condition

from Luykx et al. [LMP17].




280 Weak Keys in the Rekeying Paradigm: Application to COMET and mixFeed

4 Application to COMET-128

4.1 Brief Description of COMET-128

COMET-128 [GJN19a] is a block cipher based AEAD algorithm submitted to the NIST
Standardization Process for Lightweight Cryptography. It can be described using RaC
with the initial value of Z = L|R is a random n-bit value and IV = K. During the third
phase of RaC, Perm(Z) = 2 - L|R over GF(2%/2). We show that for every pair (N|A, K)
there are 2/2 weak keys, with probability 27%/2 that the KDF outputs one of these keys.
The existence of these weak keys and the applicability of the multi-key analysis leads to a
set of interesting results:

1. After one query of length at least 32 bytes, forgery is successful with adversarial
advantage 2764,

2. With 293 online queries of 32 bytes each, forgery is successful with adversarial
advantage ~ 271

3. With 264 online queries of 32 bytes each, forgery is successful with adversarial
advantage approaching ~ 1.

4. If the forgery is successful, the master key is identified easily with high probability
with 2%° offline queries.

4.2 Existence of Weak Keys

The specification of COMET-128 does not include any discussion on the weak key analysis.
COMET-128 is an instance of RaC, where the master key is used as an IV, and the session
key Z = L|R is used as the block cipher key. If the value of L = 0%, then Z is constant
over all the blocks. Since this event is defined over 64 bits of Z, which is chosen uniformally
at random using the KDF (a permutation over GF(212)), there are 26 weak values of Z for
each stage of the algorithm and the probability that Z at a certain stage is weak is equal
to 221% = 2764, Since COMET-128 applies the KDF with a different N for every different
message and since the KDF is a permutation, given p online queries, we get p messages

encrypted with p different values Z;.

4.3 Existential Forgery Attack with Weak Keys

Given we have established how the weak keys behave and their probability, we describe
how to forge a ciphertext once a weak key has been sampled by the KDF. Let M be the
known message encrypted with a weak key 094|R, where |M| > 256. Let M; and M,
be the first two message blocks after parsing M, with C7 and Cs as the corresponding
ciphertext blocks. Since the attacker knows M and C, he can retrieve the internal state
values S7 and Ss, where S is the state before the absorption of M; and S is the state
after the absorption of Msy. Hence, we have

S, = Shuffle (M, @ C}) (3)

and

So = My P Shufﬂefl(Mg (§5) 02) (4)

The attacker wants to find M, and C,, such that

S, = Shuffle™ (M, @ C,) (5)



Mustafa Khairallah 281

and

Sy = M, @ Shuffle ' (M, @ C,) (6)

which is a simple well-defined linear system of equations defined over 256 Boolean
variables and easily solvable. The attacker removes C; and C5 from the ciphertext, and
inserts C';, in the location of C7, while shifting the rest of the ciphertext 16 bytes backwards
and reducing the ciphertext size by 16, leading to a successful forgery. This attack has
been verified by modifying the reference implementation of COMET-128 to use some weak
keys Z;. The overall complexity of the attack is 264 online queries, 0 offline queries and
succeeds with probability close to 1.

4.4 Key Recovery Attack

The previous existential forgery attack can be used as a filter to discover the occurrence of
a weak key. Once the forgery succeeds, we know that Z during the message encryption
phase of the algorithm has one of the weak key values, which are 26 values. The attacker
can then choose a message that has been previously encrypted with a weak key, and
reverse the algorithm with each of these values. Since the master key K is used as an
IV in COMET-128, this will lead to 264 possible key candidates. For each of these key
candidates, the attacker can apply KDF(V, K) and verify whether the KDF generates the
corresponding Z. Since the probability that Ex(N) = Z is 27128 we expect to be able to
uniquely identify the master key at this point, which completely breaks the system. The
complexity is 2%° offline block cipher queries. This attack is given in details in Figure 3,
where COMETE and COMETD represent online queries to the encryption and decryption
oracles, respectively, forge(C) represents the forgery attack in Section 4.3, Zyeax is the
set of weak keys of COMET with empty AD and AESE /AESDk are the offline primitive

queries for AES encryption and decryption, respectively. & represents random sampling
without replacement, in order to respect the nonce model, so N and M are never repeated.
L represents failed decryption. The first loop of the algorithm (lines 2-8) requires at most
5 blocks of storage, or 80 bytes, and is expected to run 2%¢ times, with 26° data complexity.
The second loop (lines 10-18) runs exactly 254 times, with two primitive calls for each
iteration, and requires 80 bytes of storage, in addition to the successful key candidates.
Due to the properties of AES as a secure block cipher, it is expected that only 1 candidate
is successful.

4.5 Summary of Results

The designers claim that the permute function has a period of 264 and hence the only way
for the key to repeat is to encrypt more than 264 blocks. We have shown that this is not
correct, since there are 264 keys with period 1 and consequently this is another way for
the key to repeat, and it is easily detectable with a single verification query. The designers
also base their security analysis on a set of generic attacks on the scheme. We interpret
them as suggested by the designers in section 5.1.4 of [GJN19a]. When substituting in
the bounds they give for the values of n = the block size and k = the key size, we get the
results in Table 3 for integrity and Table 4 for privacy. Our weak key analysis shows has
significantly lower complexity in all cases.

4.6 Attacks in the Multi-Key Setting

Combining the previous two attacks with the multi-key analysis shows a security concern
about the design of COMET-128. While this flaw does not violate the 64-bit security
and NIST requirements in the single key setting, in practice it can lead to drastic results.



282 Weak Keys in the Rekeying Paradigm: Application to COMET and mixFeed

M, +—1
while M, =1 do
M E 0,112
N & 0,13
(C,T) + COMETE(M, N)
Cy + forge(C)
M, <+ COMETD(C,,T, N)
endwhile
i=0
10 for Z € Zyeax do
11 S« Shuffle (M, & C,)
12 IV < AESD,(S)
13 Y « AESE;y(N)
14 ifY=Zdo
15 K, < IV
16 t=1+1
17 endif
18 endfor
19 return {K;[0 < j < i}

0O Ui W N

Nel

Figure 3: Full key recovery attack in the single-key setting

Table 3: Integrity Claims Made by the Designers of COMET-128 vs. Our Attack: D, is
the number of encryption queries, D,, is the number of verification queries and T is the
number of offline primitive queries

Method D, D, T

Tag Guessing [GJN19a] - | 2! -

Decryption-Encryption Matching [GJN19a] | 2121 | 2128 -
Decryption-Offline Matching 1 [GJN19a] - o121 1 9l28
Decryption-Offline Matching 2 [GJN19a] - [ 205 ] 21225

Weak Key Analysis [Ours] 205 | 2064 -

Similar to COFB and HyENA, given p users, the per-user forgery security is reduced to
64 — log(u) bits. For example, given 4 million users, forgery is successful against at least 1
user with close to 1 probability given 240 queries per user. Once the forgery succeeded
against at least 1 user, the corresponding key can be recovered using 2% offline encryptions.
Recovering as many as one master key using 24° queries per user and 2% offline encryptions
cannot be considered impractical and can lead to practical attacks, as it is well within the
practical limits set by the NIST for each individual user and the attacker can still use this
key 259 — 240 times to impersonate the fallen user or to eavesdrop on the communications.
This attack is given in details in Figure 4. The notation is the same as Figure 3, except
U is the id of the fallen user, S, is the set of targeted users such that p = |S,| and
COMETE, /COMETD,, are online queries for a specific user u. The offline resources are

the same as the single key attack, while the online queries per user are O(%)

4.7 Simple Fix

We propose two potential simple fixes that have the potential of eliminating the problems
we discussed:

1. Eliminate the weak keys completely by replacing the doubling with an arithmetic



Mustafa Khairallah 283

Table 4: Privacy Claims Made by the Designers of COMET-128 vs. Our Attack: D, is
the number of encryption queries, D,, is the number of verification queries and T is the
number of offline primitive queries

Method D, | D, T
Online-Online Matching [GJN19a] | 265 | - [ 2191
Online-Offline Matching [GJN19a] | 265 [ - | 2183

Key Guessing [GJN19a] 1 - | 2=
Weak Key Analysis [Ours] 205 [ 264 | 265
1 M, + 1L
2 while M, =1 do
3 foru € S, do
4 if M, =1 do
5 M & {0,132
6 N & qo,137
7 (C,T) + COMETE, (M, N)
8 C,, + forge(C)
9 M, + COMETD,(C,, T, N)
10 if M, #1 then U < u
11 endif
12 endfor
13 endwhile
14 =0

15 for Z € Zyeax do

16 S« Shuffle (M, & C,)
17 IV < AESD(S)

18 Y « AESE[y(N)

19 fY=Zdo

20 K, + IV

21 1=1+1

22 endif

23  endfor

24 return (U, {K;|0 < j < 1i})

Figure 4: Full key recovery attack in the multi-key setting

counter. However, arithmetic counters are more costly in hardware implementations.
A 64-bit arithmetic counter can be very slow.

2. Use doubling over a larger field, e.g. GF(2'2®), in order to reduce the number and
probability of weak keys.

5 Application to mixFeed

5.1 Brief Description of mixFeed

mixFeed [CN19a] is an AES-based AEAD algorithm submitted to round 2 of the NIST
Lightweight Cryptography Standardization Process. It uses a hybrid feedback structure,
where half the input to the block cipher comes directly from the plaintext, while the
other half is generated from the previous block cipher call and the plaintext in a CBC-like
manner. The initial session key is generated using a KDF that depends on the master key



284 Weak Keys in the Rekeying Paradigm: Application to COMET and mixFeed

c

Sm
Ly, @ IS

Figure 5: Part of the Encryption Phase of mixFeed

K and the nonce N, then each block key is the output of applying a permutation P to the
previous block key. The permutation P is defined as 11 rounds of the AES key Scheduling
Algorithm [DR13]. The encryption part is shown in Figure 5. It was shown in a previous
attack [Khal9] that given a known plaintext/ciphertext pair, the attacker can force the
input to the block cipher to a certain value during the forgery challenge, so we consider this
part of the analysis as a given and we do not include it in this article. Forcing the input
to the block cipher is not enough to lead to an attack and is applicable to many block
cipher based schemes. The question is whether the attacker can get enough information
about the session key to increase the adversarial advantage.

5.2 Weak Key Analysis of mixFeed

The designers of mixFeed discuss the multi-key analysis in a brief statement in the specifi-
cation. However, they do not mention the weak-key analysis. At first, it is not obvious
why the weak key analysis is relevant to mixFeed. However, when we study how the mode
operates, it is quite similar to modes like COMET, except that the key update function
between blocks is not a multiplication by constant over a finite field, but it is the key
schedule permutation of AES itself. In other words, every block cipher call takes as a key
K; = P(K;_1), where K;_1 is the key used in the previous block and P is the permutation
that applies 11 rounds of the AES key schedule. As explained in Section 3.2, different types
of forgery succeed if the key is repeated, i.e. if the permutation cycle used to update the
key is smaller than the message length. If the permutation is well designed, e.g. maximal
length LFSR or arithmetic counter, the probability of this event should be very low. Also,
if the permutation is an ideal permutation picked uniformally at random, it should have n
cycles whose lengths follow a Poisson distribution.

The AES key schedule permutation is not designed to be an ideal permutation and it
should not be used as one. It can be described as a permutation over four 32-bit words,
which consists of 11 rounds. The rounds differ only in the round constant. We define the
permutation f. over a 32 bit word as the feedback function in round c as:

W — SubWord(W >»> 8) 4+ rcon(c) (7)

where W > r represents bitwise right rotation of W by r bits and rcon(c) is defined
as 2% |0%* such that x is defined over GF(2®). Given this permutation, a single round of
the AES key schedule can be defined as

Wo, W1, Wo, W3 — Wo® fo, W1 WD fo, Wo W1 DWoD fo, WsEWo W1 W f, (8)

where f,. is applied to W3 and eight unrolled rounds can be defined as in Table 5.

In fact, there is an iterative structure over 4 rounds, where we can write the value of
any key word after 4 rounds in terms of the initial value of this word and a certain set
of feedback functions. If a key is a fixed point over R rounds, where R is a multiple of 4,
then the involved feedback functions must add up to 0. If the feedback function is ideal,
we expect this to happen with probability 2732 for each word and 27'2% in total, but of



Mustafa Khairallah 285

Table 5: 8 round unrolling of the AES key schedule

Round 0 WO W1 W2 W3

Round 1 Wo @ fo Wi e Wy d fo Woee Wy eWod fo Wy Wy d W1 & Wy fo
Round 2 Wo® fo® f1 W@ fi Wo @ Wo @ fo ® f1 Wz @ W1 @ [
Round 3 Wod fod f1e fo Wy Wy fo® fo Wos W1 & f1 6 fo W3 d We @ fo
Round 4 | Wo @ fo@ 1@ 2D f3 Wi® f1d fs Wa® fo® f3 W5 ® f3

Round 8 Wo @ EB;U fi Wi @ @f:() foxivt | Wo® fo® fs® fo & fr Ws @ f3® fr

course, this is not the case. It is trivial to see that there is only 1 value which is a fixed
point after 4 rounds, and in general the conditions for a fixed point after R rounds are

R/4-1
@ f3+4i =0 (9)
i=0

R/4—1
D forai=0 (10)
i=0
R/4—1
@ J144: =0 (11)
i=0
R/4—1
@ Jai=0 (12)
i=0
(13)

For example, fixed points over 8 rounds must satisfy
fs@ fr =0 (14)
f2& fo=0 (15)
H®f; =0 (16)
Jfo® fa=0 (17)

(18)

The last condition can be written as fo(W3) @ f4(W3 @ f3) = 0. Since fo and f, differ
only in the constant value, we can rewrite the condition as

SubWord(W >> 8) & SubWord(W >> 8P A) =4 (19)

where A = f3 and 0 = rcon(4) @ rcon(0). Clearly, this a non-linear equation. What
is interesting, is that this equation is defined over the Sbox of AES and can be divided
into three equations on the form Sbox(x) @ Sbox(x ® y) = 0 and one equation of the form
Sbox(x) & Sbox(x & y) = a. For the first three equations, y = 0 since the AES Sbox is
bijective, while for the last one y has 127 possible values that can be retrieved from the
Difference Distribution Table of the AES Sbox. Hence, we reduce the possibilities of f3 to
127 values. Then,

[s(Wo @ W3 @ fa) © fr(Wo @ W3 @ fa® f5) = fa(Wa @ W3 @ f2) ® fr(Wa @ W3) =0 (20)

Hence, similar arguments can be made about f; and similarly f; and fy. By such
argument, one expects roughly about 227 fixed points for the reduced-round AES key



286 Weak Keys in the Rekeying Paradigm: Application to COMET and mixFeed

Table 6: Representatives of 20 Cycles of length= 1133759136 for the AES Key Schedule 11
Round Permutation Used in mixFeed

000102030405060708090a0b0c0d0e0f
00020406080a0c0e10121416181alcle
0004080c1014181¢c2024282c3034383c
00081018202830384048505860687078
00102030405060708090a0b0c0d0e0£0
101112131415161718191alblcldlelf
20222426282a2c2e30323436383a3c3e
4044484c5054585c6064686c7074787c
80889098a0a8b0b8c0c8d0d8e0e8£0£8
303132333435363738393a3b3c3d3e3f
707172737475767778797a7b7c7d7e7t
000306090c0£1215181b1e2124272a2d
00050a0£14191e23282d32373c41464b
00070e151c232a31383£464d545b6269
000d1a2734414e5b6875828£9ca9b6c3
00152a3f54697e93a8bdd2e7fc11263b
00172e455c738aalb8cfe6£d142b4259
00183048607890a8c0d8£00820385068
001c3854708ca8c4e0£c1834506c88a4
001£3e5d7c9bbad9£81736557493b2d1

schedule of 8 rounds. One can go analyzing more rounds. While this problem is interesting
on its own regard, it is not the scope of our result and we leave it to future work. We just
mention the analysis to show that the AES Key Schedule is far from an ideal permutation
and also because the cycle length we have found is a multiple of 4.

We have run a simple cycle finding script using brute force and found at least 20 cycles
of length 1133759136 ~ 23998 out of 33 seeds we have tried. We give a representative
of each of those cycles in Table 6, in case the reader want to verify the results. We will
also make our simple script available online. It is not clear to us why this number is
special. However, this means that there are at least 234 weak keys which allow forgery
of messages of length 23098 4 1 blocks into messages of length 231-0% + 1. Finding each
of these cycles takes around 1 hour on a single-core personal computer using brute force,
hence we do not know how many cycles are there of these structure or of different length.
We found a large set of values that do not belong to cycles of that length or smaller. Our
findings are good enough to show that the security bounds claimed by the designers of
mixFeed are not true and it shows a gap in their analysis. The designers claim that the
adversarial advantage is 2‘{% However, as we explained in the analysis of COMET-128,
by applying multi-key-weak-key analysis, we see that the advantage increases drastically.
According to the designers, after encrypting a message of 23098 11 blocks and decrypting a
message of length 231:9% 4+ 1 blocks, the adversarial advantage should be 2716092 However,
the weak key analysis show that forgery is successful with probability at least 279359,
After encrypting 21892 such messages, with overall online complexity of 2°0 blocks, the
adversarial advantage is 277468,

While this result does not make mixFeed insecure, it shows a huge gap in the security
analysis of mixFeed and calls for further cryptanalytic efforts if mixFeed is to be used in
the real world. As mentioned earlier, our result is just a lower bound found by brute
forcing some key values. For example, there is a big question mark on the special cycle
length we found, which may potentially be related to more cycles, further increasing the
advantage. Since we cannot do a full characterization of the AES Key Schedule Permutation



Mustafa Khairallah 287

to find all the cycles and given that the experiments show that a certain cycle length is
highly probable, we rely on the statistical result we found to conclude that a cycle length
of 1133759136 has high probability. None of these results are conclusive. Nevertheless,
without proper understanding of the underlying permutation, and given our experimental
results which show a huge gap between the security claims and reality, it is hard to argue
for the security of mixFeed. Similar to COMET, COFB, HyENA and Remus, the forgery
attack against mixFeed is vulnerable to multi-key security degradation. It is worth noting
that, unlike in the case of COMET, the weak key analysis does not lead to the master key
recovery, since mixFeed does not use the master key during the main part of the encryption.

5.3 Summary of Results

The designers of mixFeed make a security claimed in their round 1 submission that the

adversarial advantage is bounded by 2!392 . We believe a better characterization would have

been max(%, 217;8 , 515 ), Where D is the total number of encrypted/decrypted blocks,
T is the total number of offline primitive calls, and ¢ is the total number of encryption
queries, since the designers should have included key guessing and tag guessing attacks. We
have shown that the integrity bound for the adversarial advantage cannot be lower than
277 at (¢, D,T) = (21892250 1), a lot higher than any of the three bounds mentioned

before, with the results making it very unconvincing that this is a tight lower bound.

6 Conclusion

We have applied our analysis to two AEAD modes: COMET-128 and mixFeed, showing
gaps in their security analysis. In the case of COMET-128, the whole security of the system
breaks when the number of queries approaches the bound of 264, Moreover, by targeting
a small number of users simultaneously, one of the user keys can be retrieved with low
per-user complexity. This is specific to COMET-128 and not a generic attack on similar
modes as it uses a permutation with short cycles and many fixed points and uses the
master key as part of the plaintext input (as the I'V to be exact). We also propose two
simple fixes. In the case of mixFeed, we enhanced the adversarial advantage by a huge
factor compared to the designers claim, where with only 2'8:92 guesses he has at least an
advantage of 277468 The attack in this case does not contradict the claims made by the
designers but it shows a gap in their analysis that needs to be addressed. We do not see
how can this be fixed for mixFeed, since the choice of P is inherit in the mode design and
even if instantiated with a different cipher, we expect the security degradation to be even
more drastic, as AES has a strong key scheduling permutation compared to other ciphers.
However, whether it can be further enhanced is inconclusive. In the multi-key setting, we
showed limitations of COFB, Remus and HyENA and a weakness of COMET-128. Part of
the future work is to derive tight bounds for RaC-based modes in the multi-key setting.

Acknowledgments

I would like to thank the anonymous reviewers of ToSC for their constructive comments.
I would like to thank Thomas Peyrin, Tetsu Iwata and Kazuhiko Minematsu on many
fruitful discussions on topics related to this analysis, including weak keys, birthday bound
security and the AES Key Scheduling. I would like to thank Mridul Nandi, Shay Gueron,
Ashwin Jha and Bishwajit Chakraborty for reading and discussing the early version of this
article.



288

Weak Keys in the Rekeying Paradigm: Application to COMET and mixFeed

References

[ABT14]

[BCI*+19]

[BJK16]

[BT16]

[CDIN19]

[CIMN17]

[CN19a]

[CN19b)

[DR13]

[GIN19a]

[GIN19b)]

Mohamed Ahmed Abdelraheem, Andrey Bogdanov, and Elmar Tischhauser.
Weak-Key Analysis of POET. TACR Cryptology ePrint Archive, 2014:226,
2014. https://eprint.iacr.org/2014/226.pdf.

Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu,
Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo.
GIFT-COFB. NIST Lightweight Cryptography Project, 2019. https://csrc.
nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates.

Christof Beierle, Jérémy Jean, Stefan Ko6lbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Annual International Cryptology Conference, pages 123-153. Springer, 2016.
https://link.springer.com/chapter/10.1007/978-3-662-53008-5_5.

Mihir Bellare and Bjorn Tackmann. The multi-user security of authenticated
encryption: AES-GCM in TLS 1.3. In Annual International Cryptology
Conference, pages 247-276. Springer, 2016. https://link.springer.com/
chapter/10.1007/978-3-662-53018-4_10.

Avik Chakraborti, Nilanjan Datta, Ashwin Jha, and Mridul Nandi. HyENA.
NIST Lightweight Cryptography Project, 2019. https://csrc.nist.gov/
Projects/Lightweight-Cryptography/Round-1-Candidates.

Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In
International Conference on Cryptographic Hardware and Embedded Systems,
pages 277-298. Springer, 2017. https://link.springer.com/chapter/10.
1007/978-3-319-66787-4_14.

Bishwajit Chakraborty and Mridul Nandi. mixFeed. NIST Lightweight
Cryptography Project, 2019. https://csrc.nist.gov/Projects/
Lightweight-Cryptography/Round-1-Candidates.

Bishwajit Chakraborty and Mridul Nandi. Security Proof of mixFeed. NIST
Lightweight Cryptography Workshop, 2019. https://csrc.nist.gov/CSRC/
media/Events/lightweight-cryptography-workshop-2019/documents/
papers/security-proof-of-mixfeed-1wc2019.pdf.

Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

Shay Gueron, Ashwin Jha, and Mridul Nandi. COMET: COunter Mode
Encryption with authentication Tag. NIST Lightweight Cryptography Project,
2019. https://csrc.nist.gov/Projects/Lightweight-Cryptography/
Round-1-Candidates.

Shay Gueron, Ashwin Jha, and Mridul Nandi. On the Security of
COMET Authenticated Encryption Scheme. NIST Lightweight Cryp-
tography Workshop, 2019. https://csrc.nist.gov/CSRC/media/
Events/lightweight-cryptography-workshop-2019/documents/papers/
on-sthe-security-of-comet-1wc2019.pdf.


https://eprint.iacr.org/2014/226.pdf
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://link.springer.com/chapter/10.1007/978-3-662-53008-5_5
https://link.springer.com/chapter/10.1007/978-3-662-53018-4_10
https://link.springer.com/chapter/10.1007/978-3-662-53018-4_10
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://link.springer.com/chapter/10.1007/978-3-319-66787-4_14
https://link.springer.com/chapter/10.1007/978-3-319-66787-4_14
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/security-proof-of-mixfeed-lwc2019.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/security-proof-of-mixfeed-lwc2019.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/security-proof-of-mixfeed-lwc2019.pdf
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/on-sthe-security-of-comet-lwc2019.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/on-sthe-security-of-comet-lwc2019.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/on-sthe-security-of-comet-lwc2019.pdf

Mustafa Khairallah 289

[HPOS]

[IKMP19a]

[IKMP19b)

[IKMP19¢]

[Khal9]

[LMP17]

[nis18]

Helena Handschuh and Bart Preneel. Key-recovery attacks on universal
hash function based MAC algorithms. In Annual International Cryptology
Conference, pages 144-161. Springer, 2008. https://link.springer.com/
chapter/10.1007/978-3-540-85174-5_9

Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the titans: The romulus and remus families of lightweight aead
algorithms. Cryptology ePrint Archive, Report 2019/992, 2019. https:
//eprint.iacr.org/2019/992.

Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
REMUS. NIST Lightweight Cryptography Project, 2019. https://csrc.
nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates.

Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Romulus. NIST Lightweight Cryptography Project, 2019. https://csrc.
nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates.

Mustafa Khairallah. Forgery Attack on mixFeed in the Nonce-Misuse Scenario.
IACR Cryptology ePrint Archive, 2019:457, 2019. https://eprint.iacr.
org/2019/457 . pdf.

Atul Luykx, Bart Mennink, and Kenneth G Paterson. Analyzing multi-key
security degradation. In International Conference on the Theory and Applica-
tion of Cryptology and Information Security, pages 575—605. Springer, 2017.
https://link.springer.com/chapter/10.1007/978-3-319-70697-9_20.

Submission Requirements and Evaluation Criteria for the Lightweight
Cryptography Standardization Process, 2018. https://csrc.nist.
gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements—-august2018.pdf.


https://link.springer.com/chapter/10.1007/978-3-540-85174-5_9
https://link.springer.com/chapter/10.1007/978-3-540-85174-5_9
https://eprint.iacr.org/2019/992
https://eprint.iacr.org/2019/992
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://eprint.iacr.org/2019/457.pdf
https://eprint.iacr.org/2019/457.pdf
https://link.springer.com/chapter/10.1007/978-3-319-70697-9_20
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

	Introduction
	Background and Motivation
	Weak Key Analysis of Authenticated Encryption
	Multi-Key Analysis

	COFB-like Schemes
	Generic Attacks against RaC
	Forgery attacks against RaC
	Analysis of COFB, HyENA and Remus

	Application to COMET-128
	Brief Description of COMET-128
	Existence of Weak Keys
	Existential Forgery Attack with Weak Keys
	Key Recovery Attack
	Summary of Results
	Attacks in the Multi-Key Setting
	Simple Fix

	Application to mixFeed
	Brief Description of mixFeed
	Weak Key Analysis of mixFeed
	Summary of Results

	Conclusion

