Vectorized linear approximations for attacks

on SNOW 3G

1 2

Jing Yang® Thomas Johansson Alexander Maximov

IDept. of Electrical and Information Technology, Lund University
2Ericsson Research, Lund, Sweden

FSE '2020 November, 2020

Outline

@ Motivation
@ The SNOW 3G Cipher

© Linear Cryptanalysis of SNOW 3G
Linear Approximation of FSM
Distinguishing Attack
Correlation Attack

O Conclusions

o / 19]Jf\lll-\/}fzﬁ I]'I%

Outline

@ Motivation

Lu

1/19
/ UNIVERSITY

Confidentiality and Integrity Protection in Cellular Networks

» Three standardized algorithms in LTE: SNOW 3G, AES, ZUC

» 128-bit security level

1/19 UNIVERSITY

Confidentiality and Integrity Protection in Cellular Networks

» Three standardized algorithms in LTE: SNOW 3G, AES, ZUC

» 128-bit security level

» 5G: 256-bit security algorithms

1/19 UNIVERSITY

Confidentiality and Integrity Protection in Cellular Networks

» Three standardized algorithms in LTE: SNOW 3G, AES, ZUC
» 128-bit security level
» 5G: 256-bit security algorithms

» One possible solution: reuse existing algorithms

» Security under the 256-bit key length should be investigated

1/19 UNIVERSITY

Confidentiality and Integrity Protection in Cellular Networks

» Three standardized algorithms in LTE: SNOW 3G, AES, ZUC

» 128-bit security level

» 5G: 256-bit security algorithms
» One possible solution: reuse existing algorithms
» Security under the 256-bit key length should be investigated

» Contribution: give linear cryptanalysis of SNOW 3G

» Distinguishing attack 272
» Correlation attack 2177

1/19 UNIVERSITY

Outline

@ The SNOW 3G Cipher

LUND

2/19 UNIVERSITY

SNOW 3G

» A stream cipher with a linear part and a non-linear part

-
;“ LFSR ;0
RO EEEEEDEEDDE
Tt T
| FSM | ©
| Y z
‘J—V—\ »P } > >
! |
! |
! |
in] |
! |
I
! l
| [—

,,,,,,,,,,,,,,,,,,,,,,,,,,

» Linear part: linear feedback shift register (LFSR)
» Non-linear part: finite state machine (FSM)

Tu

2/19 UNIVERSITY

LFSR in SNOW 3G

Me Me Fan)

< P

A
e [ol [[Jef | [s]s]s]
I | I

» Defined over GF(232), 16 cells x 32 bits / cell = 512 bits

3 / 19]LT‘\ILI-\/}Eﬁ I]'I%

LFSR in SNOW 3G

MNe
o

»D
>
y
—O—4
NY

-1
a
ol [] o] [pb o] | [elsfs]

\ v v

» Defined over GF(232), 16 cells x 32 bits / cell = 512 bits
» Feedback polynomial:

P(z) = az'® + 2" + oa7'2% + 1 € GF(2%%)[2]

> «is a root of a polynomial in GF(2%)[x]

3 / 19 &\E“’}Eﬁ I]'I%

LFSR in SNOW 3G

—>®—'€9

»D

BaOmat
Q

» Defined over GF(232), 16 cells x 32 bits / cell = 512 bits
» Feedback polynomial:

P(z) = az'® + 2" + oa7'2% + 1 € GF(2%%)[2]

> «is a root of a polynomial in GF(2%)[x]
» LFSR update:

s =0 (0<i<14),
sgt;rl) =« lsgl) + s() + ozs((]).

3 / 19 &\E“’}Eﬁ I]'I%

LFSR in SNOW 3G

—>®—'€9

»D

BaOmat
Q

» Defined over GF(232), 16 cells x 32 bits / cell = 512 bits
» Feedback polynomial:

P(z) = az'S + 2™ + a7’ + 1 € GF(2%?)[z]

> «is a root of a polynomial in GF(2%)[x]
» LFSR update:

s =0 (0<i<14),
sgt;rl) =« lsgl) + s() + ozs((]).

ERORNGING)

15,55, 53 used to update FSM and generate keystream .
LUND

3/ 19 UNIVERSITY

FSM in SNOW 3G

515([) Ss(r) s 0)

4 / 19]LT‘\ILI-\/}Eﬁ I]'I%

FSM in SNOW 3G

> Keystream block: () = (R10 @ 5{)) @ R2®) @ sV

4 / 19]Jf\lll-\/}fzﬁ I]'I%

FSM in SNOW 3G

> Keystream block: () = (R10 @ 5{)) @ R2®) @ sV
» FSM update:

R1IHD = R, (R31) @ s
R2U+D = 5 (R1®)
R3tD = 5, (R2M)

» 51,55 are 32-to-32 S-transforms

4 / 19 &\E“’}Eﬁ I]'I%

S-transforms in FSM

vy — oo .

£
[} Ll
=

W3 ——»{ Sbox — r3

5/19]lr\l[lgﬁli |]13

S-transforms in FSM

w—pE—Z] |~
w—plmt— 2] |,
v st 2| [~
W3 —» Shox —>| © rs
» Sy =Ly -Sgr, Sgis the AES S-box
70 T x+1 1 1 Sr(wo)
ri| 1 xr x+1 1 | Sr(wr)
ro | 1 1 x x+1 Sr(ws)
r3 x+1 1 1 x Sr(ws)

LU

D
5/19 UNIVERSITY

S-transforms in FSM

Wo _W To
.
.
> Sbox |— s

» Sy =Ly -Sgr, Sgis the AES S-box

o x x+1 1 1 Sr(wo)
1 1 r z+1 1 Sr(wr)
o 1 1 x x+1| | Sr(ws)
T3 z+1 1 1 x Sr(ws)

v

UWN[ODXIA

ro Y y—+1 1 1 So(wo)
| 1 y y+1 1 | Sq(wr)
ro | 1 1 Y y+1 Sg(wa)
) y+1 1 1 Yy Sq(ws3)

5/19 UNIVERSITY

Outline

© Linear Cryptanalysis of SNOW 3G
Linear Approximation of FSM
Distinguishing Attack
Correlation Attack

6/19

UNIVERSITY

Basics for Linear Cryptanalysis of Stream Ciphers

» Basic Idea: approximate non-linear components as linear
ones, further derive some linear relationships, involving:

Lu

D
6/ 19 UNIVERSITY

Basics for Linear Cryptanalysis of Stream Ciphers

» Basic Idea: approximate non-linear components as linear
ones, further derive some linear relationships, involving:

» LFSR states and keystream symbols= Correlation attacks

Lu

D
6/ 19 UNIVERSITY

Basics for Linear Cryptanalysis of Stream Ciphers

» Basic Idea: approximate non-linear components as linear
ones, further derive some linear relationships, involving:

» LFSR states and keystream symbols= Correlation attacks
» Keystream symbols only = Distinguishing attacks

6 / 19 &\E“’}Eﬁ I]'l%

Basics for Linear Cryptanalysis of Stream Ciphers

» Basic Idea: approximate non-linear components as linear
ones, further derive some linear relationships, involving:

» LFSR states and keystream symbols= Correlation attacks
» Keystream symbols only = Distinguishing attacks

» Linear approximation: z = NF(s) = LF(s) + e [biased noise]

Lu

D
6/ 19 UNIVERSITY

Basics for Linear Cryptanalysis of Stream Ciphers

» Basic Idea: approximate non-linear components as linear
ones, further derive some linear relationships, involving:

» LFSR states and keystream symbols= Correlation attacks
» Keystream symbols only = Distinguishing attacks

» Linear approximation: z = NF(s) = LF(s) + e [biased noise]

» Consider general vectorized linear approximation

6 / 19 &\ILI\/«I’Eﬁ I]'l%

Basics for Linear Cryptanalysis of Stream Ciphers

» Basic Idea: approximate non-linear components as linear
ones, further derive some linear relationships, involving:

» LFSR states and keystream symbols= Correlation attacks
» Keystream symbols only = Distinguishing attacks

» Linear approximation: z = NF(s) = LF(s) + e [biased noise]
» Consider general vectorized linear approximation

» e has distribution D, the SEI (Squared Euclidean Imbalance):

|D|-1

e=[D|- > (D(e) - |é|>2

e=0

Lu

D
6/ 19 UNIVERSITY

Basics for Linear Cryptanalysis of Stream Ciphers

» Basic Idea: approximate non-linear components as linear
ones, further derive some linear relationships, involving:

» LFSR states and keystream symbols= Correlation attacks
» Keystream symbols only = Distinguishing attacks

» Linear approximation: z = NF(s) = LF(s) + e [biased noise]
» Consider general vectorized linear approximation

» e has distribution D, the SEI (Squared Euclidean Imbalance):

|D|-1

e=[D|- > (D(e) - |é|>2

e=0

» Required Samples: n = O(1/¢) to distinguish e from random

Lu

D
6/ 19 UNIVERSITY

Basics for Linear Cryptanalysis of Stream Ciphers

» Basic Idea: approximate non-linear components as linear
ones, further derive some linear relationships, involving:

» LFSR states and keystream symbols= Correlation attacks
» Keystream symbols only = Distinguishing attacks

» Linear approximation: z = NF(s) = LF(s) + e [biased noise]
» Consider general vectorized linear approximation

» e has distribution D, the SEI (Squared Euclidean Imbalance):

|D|-1

e=[D|- > (D(e) - |é|>2

e=0

» Required Samples: n = O(1/¢) to distinguish e from random

Lu

D
6/ 19 UNIVERSITY

Basics for Linear Cryptanalysis of Stream Ciphers

» Basic Idea: approximate non-linear components as linear
ones, further derive some linear relationships, involving:

» LFSR states and keystream symbols= Correlation attacks
» Keystream symbols only = Distinguishing attacks

» Linear approximation: z = NF(s) = LF(s) + e [biased noise]
» Consider general vectorized linear approximation

» e has distribution D, the SEI (Squared Euclidean Imbalance):

|D|-1

e=[D|- > (D(e) - |é|>2

e=0

» Required Samples: n = O(1/¢) to distinguish e from random
» Key Point: to find a good approximation with a large bias

Lu

D
6/ 19 UNIVERSITY

Linear Approximation of FSM in SNOW 3G

Lu

D
7/ 19 UNIVERSITY

Linear Approximation of FSM in SNOW 3G

» Explore linear expression including only s15, s5, s, 2
@(Cgt+i)z(t+i) @ C%ﬂ)g%ﬂ) @ CétJrz')SgtJri) @ C((]tJrz')S((]tJrz’))
i€l

> () c%ﬂ') (t+i) (t+i)

P ,Cs ,c(() are linear masking matrices

7 / 19 &\ILI\/«I’Eﬁ I]'l%

Linear Approximation of FSM in SNOW 3G

» Explore linear expression including only s15, s5, s, 2
@ (Cgt+i) L) o C%ﬂ)g%ﬂ) @ CétJri) SétJri) o C((]tJri) S((]tJri))
el

thi) (b)) (t4i) (t+i . . .
> DD LD D e linear masking matrices

» The SEI of it evaluates the quality of the approximation

» Find good time set I and masking matrices

Lu

D
7/ 19 UNIVERSITY

Linear Approximation of FSM

Consider 3 consecutive keystream blocks to cancel out Ry, Ry, R3

Registers update and recursion at three time instances
R2U+1) = I, - Sp(R1W) R1G-D = g1 . [7H(R2(1)
R3(+YD = L, - So(R2M) R2(t-1) — s*l /._:'(R3<t>)
R1(+D) = R2() By, (R3® & s)

|
—~

T

8 / 19 UNIVERSITY

Linear Approximation of FSM

Consider 3 consecutive keystream blocks to cancel out Ry, Ry, R3

Registers update and recursion at three time instances

R2(t+1) =L- SR(Rl(t)) Rl(tfl) _ S/?l . /rl(Rz(t))
R3tHD) — [, . SQ(R2(t)) Rot=1) — 5'(;1 L, ' (R3®)

R1(+D) = R2() By, (R3® & s)

Keystream symbols at 3 consecutive time instances

257D = (S LT (R2Y B s Y) @ S Ly (R3W) @ G TY
2 = (Rl(t) a! sit;) & R2® @ sét)
L2 = L7 (R2® B (R3YW @ s B s @ Sr(R1P) @ L7l TY

Lfl is the inverse of L1, used as a linear masking matrix

Lu

8 / 19 UNIVERSITY

24-bit Linear Approximation

Build 24-bit symbols: combining the first bytes

L(t=1) (SRHET RO BT @ s @ 551 (L7 TR3M)
2() = Rr2(®)
=1l 1 —
i L(t+1) B0 Ly 1(R2® @ (R3™®) g Sét)) i) SgtS+1)) ® s(t) ® s<t+1)] .
Sample at (t): z(t) 24-bit Noise N2(?)
S @ oD
((le B s) @ S(t)) & HOP NG
SR(Rl(t)) [0,0,0] L 1[3((]“'1 0) &) S(H'l)] [0,0,0]
24-bit Noise N1(*) Contribution from LFSR 5(t)

LUND

9 / 19 UNIVERSITY

24-bit Linear Approximation

Build 24-bit symbols: combining the first bytes

L(t=1) (SRHET RO BT @ s @ 551 (L7 TR3M)
2() = Rr2(®)
—1 1 —
L7100 B0 LT (R2® B (R3™®) @ Sgt)) i) Sgt;l)) ® s(t) ® s<t+1)] 0
Sample at (t): z(t) 24-bit Noise N2(?)
(t 1) ® s (t—1)
((m(t) B s) @ S(t)) - HOP sﬁ)ﬂ
) 1 (1Y t+1
Sl [0,0,0] L7Y(s§ ® {5 [0,0,0]
24-bit Noise N1(*) Contribution from LFSR 5(t)

» 70 =g NO = N10O) g N2O)

LUND

9 / 19 UNIVERSITY

24-bit Linear Approximation

Build 24-bit symbols: combining the first bytes

L(t=1) (SRHET RO BT @ s @ 551 (L7 TR3M)
2() = Rr2(®)
[0,0,0] [0,0,0]

L=t LT (R2® B (R3®) @ s B s{EHD) @ s @ s{EF)]
Sample at (t): z(t) 24-bit Noise N2(?)
(t 1) ®s (t—1)
(R1() Eﬂsm) ® 5 & RUPG)
SR(Rl(t)) 0,0,0] Ly 1[(t+1]> (fo) ® s(t+1)] o
24-bit Noise N1(*) Contribution from LFSR 5(t)

» 70 =g NO = N10O) g N2O)
» N1, N2(®) independent

LUND

9 / 19 UNIVERSITY

24-bit Linear Approximation

Build 24-bit symbols: combining the first bytes

L(t=1) (SRHET RO BT @ s @ 551 (L7 TR3M)
2() = Rr2(®)
[0,0,0] [0,0,0]

L=t LT (R2® B (R3®) @ s B s{EHD) @ s @ s{EF)]
Sample at (t): z(t) 24-bit Noise N2(?)
(t 1) ® s (t—1)
((m(t) Eﬂsm)e;s(t)) & RUPG)
SR(Rl(t)) [0,0,0] Lyt (H—l]) ®s (?) @S(H—l)l 0,0]
24-bit Noise N1(*) Contribution from LFSR 5(t)

b Z0 =g NO = N1 g N2®
» N1®, N2®) independent
(Nl(t)) loop over R1C)[0] 5 [0] in 0(216)

9/19 ULNLI\/IIEIll\g 1113

24-bit Linear Approximation

Build 24-bit symbols: combining the first bytes

Rr2(t)

(z(t(:)l)) ((s};l(Lfle(”)Easgg1))@s§gl>@551(L2—1R3(t>))
. -
oo ALy (RO B @D @B sl @1) o

L71a(+D)

Sample at (t): z(t) 24-bit Noise N2(?)

0 s§D g St
@ ((Rl(t) B sg?) (<) sg?) @ s%? (3} sé)t)
Sr(RLY) o0 \ET' Y @ ol @ sG] [0,0,0]

. . t
24-bit Noise N1(t) Contribution from LFSR S(t)

» 70 =g NO = N10O) g N2O)
» N1, N2(®) independent
> (N1®): loop over R1M[0], 5{2[0] in O(216)
» How about ¢(N2(®))? (4 32-bit variables: R2, R3, s, 515)

9 / 19 &\ILI\/IIEEIB

Bias Computing of ¢(N2()

Split variables / noise expression into smaller fields [ZXM15]*[MJ05] 2
» Compute sub-distributions and combine them

1Zhang B., et al. Fast correlation attacks over extension fields, large-unit... CRYPTO’2015.
Maximov A, et al. Fast computation of large distributions and... ASIACRYPT 2005.

10 / 19 &\E“’}Eﬁ I]'l%

Bias Computing of e(N2®)

Split variables / noise expression into smaller fields [ZXM15]*[MJ05] 2
» Compute sub-distributions and combine them

[BGRRESSE)| [AR 85| [Pk B3 5 i) | | AR B35 sis) |

C3 cZ C]_

» Consider carries between different bytes

1Zhang B., et al. Fast correlation attacks over extension fields, large-unit... CRYPTO’2015.
2Maximov A, et al. Fast computation of large distributions and... ASIACRYPT 2005.

10 / 19 &\ILI\/IIEEIB

Bias Computing of e(N2®)

Split variables / noise expression into smaller fields [ZXM15]*[MJ05] 2
» Compute sub-distributions and combine them

[BGRRESSE)| [AR 85| [Pk B3 5 i) | | AR B35 sis) |

03 cZ C1

» Consider carries between different bytes
» FWHT can be used to speed up

1Zhang B., et al. Fast correlation attacks over extension fields, large-unit... CRYPTO’2015.
2Maximov A, et al. Fast computation of large distributions and... ASIACRYPT 2005.

10 / 19 &\ILI\//lliﬁlB

Bias Computing of e(N2®)

Split variables / noise expression into smaller fields [ZXM15]*[MJ05] 2
» Compute sub-distributions and combine them

[BGRRESSE)| [AR 85| [Pk B3 5 i) | | AR B35 sis) |

6‘3 CZ C1

» Consider carries between different bytes
» FWHT can be used to speed up
» Complexity: O(24033), bias: €(IN2) ~ 2729-391880

1Zhang B., et al. Fast correlation attacks over extension fields, large-unit... CRYPTO’2015.
2Maximov A, et al. Fast computation of large distributions and... ASIACRYPT 2005.

10 / 19 &\ILI\//lliﬁlB

Bias Computing of e(N2®)

Split variables / noise expression into smaller fields [ZXM15]*[MJ05] 2
» Compute sub-distributions and combine them

[BGRRESSE)| [AR 85| [Pk B3 5 i) | | AR B35 sis) |

C3 cZ C]_

» Consider carries between different bytes
» FWHT can be used to speed up
» Complexity: O(24033), bias: €(IN2) ~ 2729-391880

» The total bias: ¢(N) ~ 273737 ¢(4 x N) ~ 2716276,

1Zhang B., et al. Fast correlation attacks over extension fields, large-unit... CRYPTQO’2015.
2Maximov A, et al. Fast computation of large distributions and... ASIACRYPT 2005.

10 / 19 &\ILI\/IIEEIB

Bias Computing of e(N2®)

Split variables / noise expression into smaller fields [ZXM15]*[MJ05] 2
» Compute sub-distributions and combine them

[BGRRESSE)| [AR 85| [Pk B3 5 i) | | AR B35 sis) |

C3 cZ C]_

» Consider carries between different bytes
» FWHT can be used to speed up
» Complexity: O(24033), bias: €(IN2) ~ 2729-391880

» The total bias: ¢(N) ~ 273737 ¢(4 x N) ~ 2716276,

Q: Is the derived bias correct?

1Zhang B., et al. Fast correlation attacks over extension fields, large-unit... CRYPTQO’2015.
2Maximov A, et al. Fast computation of large distributions and... ASIACRYPT 2005.

10 / 19 &\ILI\/IIEEIB

Experimental Verification of the Bias

» Recall: for a distribution Py with bias ¢, O(1/¢) samples are
required to distinguish Px from random

Tu

D
11/19 UNIVERSITY

Experimental Verification of the Bias

» Recall: for a distribution Py with bias ¢, O(1/¢) samples are
required to distinguish Px from random

» Idea: if with O(1/¢) samples, we can distinguish Px from
random, the bias of Px could not be much smaller than e

LUND
11/19 UNIVERSITY

Experimental Verification of the Bias

» Recall: for a distribution Py with bias ¢, O(1/¢) samples are
required to distinguish Px from random

» Idea: if with O(1/¢) samples, we can distinguish Px from
random, the bias of Px could not be much smaller than e

» Tool: hypothesis testing

Hy : Px = Py, the computed noise distribution,
H, : Px = Py, the uniform distribution.

Lu

D
11/19 UNIVERSITY

Experimental Verification of the Bias

Recall: for a distribution Px with bias ¢, O(1/€) samples are
required to distinguish Px from random

Idea: if with O(1/¢€) samples, we can distinguish Py from
random, the bias of Px could not be much smaller than e
Tool: hypothesis testing

{HO : Px = Py, the computed noise distribution,

H, : Px = Py, the uniform distribution.

Decision rule:

PX _ PN, if D(PXHPU) > D(PxHPN),
PU, if D(PXHPU) <D(Px||PN)

» D(z||y): KL divergence (or relative entropy) between z,y

» The closer x,y is, the smaller D(z||y) would be

11/19

Lu

UNIVERSITY

Experimental Verification

» Recall: Z() = 5) ¢ NO®)

LUND
12 / 19 UNIVERSITY

Experimental Verification

» Recall: Z() = 5) ¢ NO®)
> 70 ¢ SsH = N® biased

Tu

D
12 / 19 UNIVERSITY

Experimental Verification

» Recall: Z() = 5) ¢ NO®)
> 70 ¢ SsH = N® biased
» Verify: collect samples Z(®) @ S| verify it follows Py or Py

LUND
12 / 19 UNIVERSITY

Experimental Verification

» Recall: Z() = 5() ¢ NO®)

» 7O a0 = NO biased
» Verify: collect samples Z() @ S®) verify it follows Py or Py
» run 64 SNOW 3G instances up to 2% iterations, build samples

Y asi ™ esi) o]

X® = 7z o) = (Z(t) ® 85755) @ sét))[O]
LT @ 50 @ s @ s5))[0]

5

Tu

D
12 / 19 UNIVERSITY

Experimental Verification

» Recall: Z() = 5() ¢ NO®)

» 7O a0 = NO biased
» Verify: collect samples Z() @ S®) verify it follows Py or Py
» run 64 SNOW 3G instances up to 2% iterations, build samples

Y asi ™ esi) o]
X® = 7z o) = (Z(t) ® 85755) @ sét))[O]
LT @ 50 @ s @ s5))[0]

5

» Build random sequences: lower 24 bits of keystream symbols

Tu

D
12 / 19 UNIVERSITY

Experimental Verification

» Recall: Z() = 5() ¢ NO®)

» 7O a0 = NO biased
Verify: collect samples Z() @ SO, verify it follows Py or Py
run 64 SNOW 3G instances up to 240 iterations, build samples

vy

Y asi ™ esi) o]
X® = 7z o) = (Z(t) ® 85755) @ sét))[O]
LT @ 50 @ s @ s5))[0]

5

v

Build random sequences: lower 24 bits of keystream symbols

» For every sequence, check which distribution it follows

Tu

D
12 / 19 UNIVERSITY

Experimental Verification

Recall: Z®) = 5O ¢ N®)

» 7O a0 = NO biased
Verify: collect samples Z() @ SO, verify it follows Py or Py
run 64 SNOW 3G instances up to 240 iterations, build samples

Y asi ™ esi) o]
X® = 7z o) = (Z(t) ® 85755) @ sét))[O]
LT @ 50 @ s @ s5))[0]

5

Build random sequences: lower 24 bits of keystream symbols
For every sequence, check which distribution it follows

Errors:

» TYPE I: a noise distribution is judged as random
» TYPE Il: a random distribution is judged as biased

12/19

Tu

UNIVERSITY

Results of the Experimental Verification

Error probabilities

0
38 385 39 395 40 405 41 415 42

Length of Samples (log)

Figure. Error probabilities under different lengths of samples

13 / 19 &\ILI;«!Eﬁ I]'l%

Results of the Experimental Verification

Error probabilities

0
38 385 39 395 40 405 41 415 42

Length of Samples (log)
Figure. Error probabilities under different lengths of samples

» Error probabilities decrease with the increase of sample length

13 / 19 &\ILI;}Eﬁ I]'l%

Results of the Experimental Verification

—=-TYPE | Errors
—TYPE Il Errors|

Error probabilities

0
38 385 39 395 40 405 41 415 42

Length of Samples (log)

Figure. Error probabilities under different lengths of samples
» Error probabilities decrease with the increase of sample length
» Length 240: error probabilities < 0.1
Length 241-5: no errors (out of 21 sample sequences)

13 / 19 &\ILI\/«I’Eﬁ I]'l%

Results of the Experimental Verification

o
bl

/7

—=-TYPE | Errors
—TYPE Il Errors|

Error probabilities

°
2
&

0
38 385 39 395 40 405 41 415 42

Length of Samples (log)

Figure. Error probabilities under different lengths of samples
» Error probabilities decrease with the increase of sample length
» Length 240: error probabilities < 0.1
Length 241-5: no errors (out of 21 sample sequences)
» With (8 ~ 16) - (1/e(N)) (e(N) ~ 273737) samples, we could
distinguish the sequences with large success probabilities

Lu

D
13 / 19 UNIVERSITY

Results of the Experimental Verification

o
bl

/7

—=-TYPE | Errors
—TYPE Il Errors|

Error probabilities

°
2
&

0
38 385 39 395 40 405 41 415 42

Length of Samples (log)

Figure. Error probabilities under different lengths of samples
» Error probabilities decrease with the increase of sample length
» Length 240: error probabilities < 0.1
Length 241-5: no errors (out of 21 sample sequences)
» With (8 ~ 16) - (1/e(N)) (e(N) ~ 273737) samples, we could
distinguish the sequences with large success probabilities
» The bias should be correct!

LU

D
13 / 19 UNIVERSITY

Distinguisher Constructions

» Distinguish the keystream sample sequence from random

LU

D
14/ 19 UNIVERSITY

Distinguisher Constructions

» Distinguish the keystream sample sequence from random
» Recall again: Z() @ §t) = N(®)

Tu

D
14/ 19 UNIVERSITY

Distinguisher Constructions

» Distinguish the keystream sample sequence from random
» Recall again: Z() @ §t) = N(®)
» If S® can be canceled, Z(Y) would become biased

» With enough samples, Z(Y) can be distinguished from random

LU

D
14/ 19 UNIVERSITY

Distinguisher Constructions

» Distinguish the keystream sample sequence from random
» Recall again: Z() @ §t) = N(®)
» If S® can be canceled, Z(Y) would become biased

» With enough samples, Z(Y) can be distinguished from random

Q: How to cancel out S()7?

LU

D
14/ 19 UNIVERSITY

Distinguisher Constructions

» Distinguish the keystream sample sequence from random
» Recall again: Z() @ §t) = N(®)
» If S® can be canceled, Z(Y) would become biased

» With enough samples, Z(Y) can be distinguished from random
Q: How to cancel out S()7?
» ldea: find time set I with, usually 3,4 or 5, time instances

Ps =0, @z0=PNO

tel tel tel

Tu

D
14/ 19 UNIVERSITY

Distinguisher Constructions

» Distinguish the keystream sample sequence from random
» Recall again: Z() @ §t) = N(®)
» If S® can be canceled, Z(Y) would become biased

» With enough samples, Z(Y) can be distinguished from random
Q: How to cancel out S()7?
» ldea: find time set I with, usually 3,4 or 5, time instances

Ps =0, @z0=PNO

tel tel tel

» Equivalent to finding a multiple of the generating polynomial
P(x) of weight 3, 4, or 5, with all coefficients being 1

Tu

D
14/ 19 UNIVERSITY

Finalize the Distinguishing Attack

» Find a weight-4 multiple K () using method from [LJ14] 3
» Time and storage complexities O(2!7?)

3L6ndah|, C., & Johansson, T. Improved algorithms for finding low-weight polynomial multiples .w

Fy[z] and some cryptographic applications.DCC 2014. o
LUND
UNIVERSITY

15/19

Finalize the Distinguishing Attack

» Find a weight-4 multiple K () using method from [LJ14] 3
» Time and storage complexities O(2!7?)

» Suppose K(r) = Q(z)P(z) = 2t + 23 + 22 4 2!
> S(tl) o S(t2) ey S(td) o S(t4) =0

3L6ndah|, C., & Johansson, T. Improved algorithms for finding low-weight polynomial multiples i

Fy[z] and some cryptographic applications.DCC 2014. 2
Lu

D
15 / 19 UNIVERSITY

Finalize the Distinguishing Attack

» Find a weight-4 multiple K () using method from [LJ14] 3
» Time and storage complexities O(2!7?)

» Suppose K(r) = Q(z)P(z) = 2t + 23 + 22 4 2!
» S(tl) o S(t2) ey S(td) o S(t4) =0

» Any time shifts ¢ of K (z), 2'K(z), are still weight-4 multiples
» S(t+t1) e S(t+t2) ey S(t+t3) ey S(t+t4) =0

3L6ndah|, C., & Johansson, T. Improved algorithms for finding low-weight polynomial multiples i

Fy[z] and some cryptographic applications.DCC 2014. 2
Lu

D
15 / 19 UNIVERSITY

Finalize the Distinguishing Attack

» Find a weight-4 multiple K () using method from [LJ14] 3
» Time and storage complexities O(2!72)

» Suppose K(r) = Q(z)P(z) = 2t + 23 + 22 4 2!
> S0 @ 82 ¢ §13) @ §(t4) —

» Any time shifts ¢ of K (z), 2'K(z), are still weight-4 multiples
» S(t-i—tl) e S(t+t2) ey S(t+t3) ey S(t+t4) =0

New biased keystream samples, t =0, 1, 2...

X0 = Z(t+1) g Z(0+12) @ Z(+3) gy Z(t+14)

_ N(t—|—t1) D N(t+t2) D N(t+t3) D N(t+t4)

3L6ndah|, C., & Johansson, T. Improved algorithms for finding low-weight polynomial multiples in

Fy[z] and some cryptographic applications.DCC 2014. o
Lu

D
15/19 UNIVERSITY

Finalize the Distinguishing Attack

» Find a weight-4 multiple K () using method from [LJ14] 3
» Time and storage complexities O(2!72)

» Suppose K(r) = Q(z)P(z) = 2t + 23 + 22 4 2!
> S @ 92 ¢ 9(t3) @ §(t4) —

» Any time shifts ¢ of K (z), 2'K(z), are still weight-4 multiples
» S(t-i—tl) e S(t+t2) ey S(t+t3) ey S(t+t4) =0

New biased keystream samples, t =0, 1, 2...

X0 = Z(t+1) g Z(0+12) @ Z(+3) gy Z(t+14)

_ N(t—|—t1) D N(t+t2) D N(t+t3) D N(t+t4)

» Bias: €(X) = €(4 x N) > 27163 (regarded as independent)

> Data complexity O(215%)

3L6ndah|, C., & Johansson, T. Improved algorithms for finding low-weight polynomial multiples in

Fy[z] and some cryptographic applications.DCC 2014. =
Lu

D
15/19 UNIVERSITY

Basics of Correlation Attacks

» Modeled as decoding problems in GF'(2) or GF(2")

LUND
16 / 19 UNIVERSITY

Basics of Correlation Attacks

» Modeled as decoding problems in GF'(2) or GF(2")

LFSR

16 / 19 &\ILI\/«I’Eﬁ I]'l%

Basics of Correlation Attacks

» Modeled as decoding problems in GF'(2) or GF(2")

LFSR

» Information symbol: LFSR initial state

S = (SQ, S1y .00y 85_1)

LUND
16 / 19 UNIVERSITY

Basics of Correlation Attacks

» Modeled as decoding problems in GF'(2) or GF(2")

LFSR

» Information symbol: LFSR initial state

S = (80731,...,85_1)
» Codeword: LFSR output
u= (uO7U1, ~-~7UN—1) = SG,G S GF(2”)IXN

Tu

D
16 / 19 UNIVERSITY

Basics of Correlation Attacks

» Modeled as decoding problems in GF'(2) or GF(2")

LFSR

» Information symbol: LFSR initial state

S = (80731,...,85_1)
» Codeword: LFSR output
u= (uO7U1, ~-~7UN—1) = SG,G S GF(2”)IXN

» Received codeword: keystream samples

Y = (%0, Y1, -, YN—-1), Yi = U; De;

LU

D
16 / 19 UNIVERSITY

Basics of Correlation Attacks

» Modeled as decoding problems in GF'(2) or GF(2")

LFSR

» Information symbol: LFSR initial state

S = (80,81, s Si—1)
» Codeword: LFSR output
u = (ug,uy, .., un—1) =sG,G € GF(2”)1XN
» Received codeword: keystream samples
Y = (40, Y15 YN-1), Yi = u; D ey
» When R =log(2")-1/N < C: can be successfully decoded

Tu

D
16 / 19 UNIVERSITY

Correlation Attacks on SNOW 3G

» Decoding problems are defined over GF'(2) or GF(2")
» 24-bit approximation could not be directly used

LUND
17 / 19 UNIVERSITY

Correlation Attacks on SNOW 3G

» Decoding problems are defined over GF'(2) or GF(2")
» 24-bit approximation could not be directly used

» Instead, we build a new 8-bit approximation by

N'=AN[0]® N[1] ® TN 2]

LUND
17 / 19 UNIVERSITY

Correlation Attacks on SNOW 3G

» Decoding problems are defined over GF'(2) or GF(2")
» 24-bit approximation could not be directly used

» Instead, we build a new 8-bit approximation by
N'=AN[0]® N[1] ® TN 2]

» Best A = 0218,T = 029c: ¢(N') = 2740:97

LUND
17 / 19 UNIVERSITY

Correlation Attacks on SNOW 3G

» Decoding problems are defined over GF'(2) or GF(2")
» 24-bit approximation could not be directly used

» Instead, we build a new 8-bit approximation by
N'=AN[0]® N[1] ® TN 2]

» Best A = 0218,T = 029c: ¢(N') = 2740:97
» The codeword and received codeword symbols:

u=(As§ P @esis) @sy osl) e rLT S @ sl @ s{E])o]
ye = AzV[0] @ 20[0] @ D(LT2HD)[0]

» Recover s according to the y sequence

» Preprocessing: generating parity checks
» Processing: decoding

Tu

D
17 / 19 UNIVERSITY

Finalize the Correlation Attack [ZXM15]*

» Preprocessing: generating parity checks

» Generating parity checks involving fewer LFSR states

> Requires parity checks O(2171:67)

> Time/space complexity O(2176-56)

Zhang B., et al. Fast correlation attacks over extension fields, large-unit linear approximation an‘dj

cryptanalysis of SNOW 2.0. CRYPTQO'2015.

18 / 19 &\ILI\/«I’Eﬁ I]'l%

Finalize the Correlation Attack [ZXM15]*

» Preprocessing: generating parity checks

» Generating parity checks involving fewer LFSR states
> Requires parity checks O(2171:67)

> Time/space complexity O(2176-56)

» Processing: decoding

» Build a distinguisher: would be biased if a guess is correct
» FWT can help to compute the bias

» Decoding complexity 217475 160 bits are recovered

Zhang B., et al. Fast correlation attacks over extension fields, large-unit linear approximation an‘d‘

cryptanalysis of SNOW 2.0. CRYPTQO'2015.

18 / 19 &\E“’}Eﬁ I]'l%

Finalize the Correlation Attack [ZXM15]*

» Preprocessing: generating parity checks

» Generating parity checks involving fewer LFSR states

> Requires parity checks O(2171:67)

> Time/space complexity O(2176-56)

» Processing: decoding

» Build a distinguisher: would be biased if a guess is correct
» FWT can help to compute the bias

» Decoding complexity 217475 160 bits are recovered

» 16-bit correlation attack: same complexity, fewer parity checks

Zhang B., et al. Fast correlation attacks over extension fields, large-unit linear approximation an

cryptanalysis of SNOW 2.0. CRYPTOQO’'2015.

18 / 19 &\E“’}Eﬁ I]'l%

Outline

O Conclusions

19 / 19 &\E“’}Eﬁ I]'I%

Conclusions

» We give linear cryptanalysis of SNOW 3G

LU

D
19 / 19 UNIVERSITY

Conclusions

» We give linear cryptanalysis of SNOW 3G

» 24-bit linear approximation of bias 2737

LU

D
19 / 19 UNIVERSITY

Conclusions

» We give linear cryptanalysis of SNOW 3G

» 24-bit linear approximation of bias 2737

» Verified the bias by collecting a large number of samples

19 / 19 &\E“’}Eﬁ I]'l%

Conclusions

» We give linear cryptanalysis of SNOW 3G
» 24-bit linear approximation of bias 2737

» Verified the bias by collecting a large number of samples

» Distinguishing attack with complexity 2172

15/19 LUND

UNIVERSITY

Conclusions

» We give linear cryptanalysis of SNOW 3G

» 24-bit linear approximation of bias 2737
» Verified the bias by collecting a large number of samples
» Distinguishing attack with complexity 2172

» Correlation attack with complexity 2177

15/19 LUND

UNIVERSITY

Conclusions

» We give linear cryptanalysis of SNOW 3G
» 24-bit linear approximation of bias 2737
» Verified the bias by collecting a large number of samples
» Distinguishing attack with complexity 2172
» Correlation attack with complexity 2177

» If the key length in SNOW 3G would be increased to 256 bits,
there are academic attacks on it

19/19 LUND

UNIVERSITY

Conclusions

» We give linear cryptanalysis of SNOW 3G
» 24-bit linear approximation of bias 2737
» Verified the bias by collecting a large number of samples
» Distinguishing attack with complexity 2172
» Correlation attack with complexity 2177

» If the key length in SNOW 3G would be increased to 256 bits,
there are academic attacks on it

» Not an immediate threat for 5G.

19/19 LUND

UNIVERSITY

Thank you

Thank you for your attention!

19 / 19 &\ILI\/«I’Eﬁ I]'l%

	Motivation
	The SNOW 3G Cipher
	Linear Cryptanalysis of SNOW 3G
	Conclusions

