

Vectorized linear approximations for attacks on SNOW 3G

 $\underline{\mathsf{Jing}\ \mathsf{Yang}^1} \quad \mathsf{Thomas}\ \mathsf{Johansson}^1 \quad \mathsf{Alexander}\ \mathsf{Maximov}^2$

 $^1\mathrm{Dept.}$ of Electrical and Information Technology, Lund University $^2\mathrm{Ericsson}$ Research, Lund, Sweden

FSE '2020 November, 2020

Outline

1 Motivation

- 2 The SNOW 3G Cipher
- **3** Linear Cryptanalysis of SNOW 3G

Linear Approximation of FSM Distinguishing Attack Correlation Attack

4 Conclusions

Outline

1 Motivation

- 2 The SNOW 3G Cipher
- 3 Linear Cryptanalysis of SNOW 3G Linear Approximation of FSM Distinguishing Attack Correlation Attack

4 Conclusions

► Three standardized algorithms in LTE: SNOW 3G, AES, ZUC

► 128-bit security level

► Three standardized algorithms in LTE: SNOW 3G, AES, ZUC

- ▶ 128-bit security level
- ► 5G: 256-bit security algorithms

► Three standardized algorithms in LTE: SNOW 3G, AES, ZUC

- ▶ 128-bit security level
- ► 5G: 256-bit security algorithms
- One possible solution: reuse existing algorithms
 - Security under the 256-bit key length should be investigated

► Three standardized algorithms in LTE: SNOW 3G, AES, ZUC

- ▶ 128-bit security level
- ► 5G: 256-bit security algorithms
- One possible solution: reuse existing algorithms
 - Security under the 256-bit key length should be investigated
- ► Contribution: give linear cryptanalysis of SNOW 3G
 - Distinguishing attack 2^{172}
 - ► Correlation attack 2¹⁷⁷

Outline

1 Motivation

2 The SNOW 3G Cipher

3 Linear Cryptanalysis of SNOW 3G Linear Approximation of FSM Distinguishing Attack Correlation Attack

4 Conclusions

SNOW 3G

► A stream cipher with a linear part and a non-linear part

Linear part: linear feedback shift register (LFSR)

► Non-linear part: finite state machine (FSM)

▶ Defined over $GF(2^{32})$, 16 cells × 32 bits / cell = 512 bits

- ▶ Defined over $GF(2^{32})$, 16 cells × 32 bits / cell = 512 bits
- Feedback polynomial:

$$P(x) = \alpha x^{16} + x^{14} + \alpha^{-1} x^5 + 1 \in GF(2^{32})[x]$$

• α is a root of a polynomial in $GF(2^8)[x]$

- ▶ Defined over $GF(2^{32})$, 16 cells × 32 bits / cell = 512 bits
- Feedback polynomial:

$$P(x) = \alpha x^{16} + x^{14} + \alpha^{-1} x^5 + 1 \in GF(2^{32})[x]$$

α is a root of a polynomial in GF(2⁸)[x]
 LFSR update:

$$\begin{split} s_i^{(t+1)} &= s_{i+1}^{(t)} \quad (0 \leq i \leq 14), \\ s_{15}^{(t+1)} &= \alpha^{-1} s_{11}^{(t)} + s_2^{(t)} + \alpha s_0^{(t)}. \end{split}$$

- ▶ Defined over $GF(2^{32})$, 16 cells × 32 bits / cell = 512 bits
- Feedback polynomial:

$$P(x) = \alpha x^{16} + x^{14} + \alpha^{-1} x^5 + 1 \in GF(2^{32})[x]$$

α is a root of a polynomial in GF(2⁸)[x]
 LFSR update:

$$\begin{split} s_i^{(t+1)} &= s_{i+1}^{(t)} \quad (0 \leq i \leq 14), \\ s_{15}^{(t+1)} &= \alpha^{-1} s_{11}^{(t)} + s_2^{(t)} + \alpha s_0^{(t)}. \end{split}$$
 $\blacktriangleright \ s_{15}^{(t)}, s_5^{(t)}, s_0^{(t)} \text{ used to update FSM and generate keystream} \end{split}$

FSM in SNOW 3G

FSM in SNOW 3G

▶ Keystream block: $z^{(t)} = (R1^{(t)} \boxplus s^{(t)}_{15}) \oplus R2^{(t)} \oplus s^{(t)}_0$

FSM in SNOW 3G

- ▶ Keystream block: $z^{(t)} = (R1^{(t)} \boxplus s_{15}^{(t)}) \oplus R2^{(t)} \oplus s_0^{(t)}$
- ► FSM update:

$$R1^{(t+1)} = R2^{(t)} \boxplus_{32} (R3^{(t)} \oplus s_5^{(t)})$$
$$R2^{(t+1)} = S_1(R1^{(t)})$$
$$R3^{(t+1)} = S_2(R2^{(t)})$$

S-transforms in FSM

$\operatorname{S-transforms}$ in FSM

$\operatorname{S-transforms}$ in FSM

► $S_1 = L_1 \cdot S_R$, S_R is the AES S-box $\begin{pmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} x & x+1 & 1 & 1 \\ 1 & x & x+1 & 1 \\ 1 & 1 & x & x+1 \\ x+1 & 1 & 1 & x \end{pmatrix} \cdot \begin{pmatrix} S_R(w_0) \\ S_R(w_1) \\ S_R(w_2) \\ S_R(w_3) \end{pmatrix}$

▶ $S_2 = L_2 \cdot S_Q$, S_Q is derived from the Dickson polynomials

$$\begin{pmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} y & y+1 & 1 & 1 \\ 1 & y & y+1 & 1 \\ 1 & 1 & y & y+1 \\ y+1 & 1 & 1 & y \end{pmatrix} \cdot \begin{pmatrix} S_Q(w_0) \\ S_Q(w_1) \\ S_Q(w_2) \\ S_Q(w_3) \end{pmatrix}$$

Outline

1 Motivation

2 The SNOW 3G Cipher

Linear Cryptanalysis of SNOW 3G

Linear Approximation of FSM Distinguishing Attack Correlation Attack

4 Conclusions

Basic Idea: approximate non-linear components as linear ones, further derive some linear relationships, involving:

- Basic Idea: approximate non-linear components as linear ones, further derive some linear relationships, involving:
 - LFSR states and keystream symbols \Rightarrow Correlation attacks

- Basic Idea: approximate non-linear components as linear ones, further derive some linear relationships, involving:
 - LFSR states and keystream symbols \Rightarrow Correlation attacks
 - ► Keystream symbols only ⇒ Distinguishing attacks

- Basic Idea: approximate non-linear components as linear ones, further derive some linear relationships, involving:
 - LFSR states and keystream symbols \Rightarrow Correlation attacks
 - ► Keystream symbols only ⇒ Distinguishing attacks
- Linear approximation: z = NF(s) = LF(s) + e [biased noise]

- Basic Idea: approximate non-linear components as linear ones, further derive some linear relationships, involving:
 - LFSR states and keystream symbols \Rightarrow Correlation attacks
 - ► Keystream symbols only ⇒ Distinguishing attacks
- Linear approximation: z = NF(s) = LF(s) + e [biased noise]
 - Consider general vectorized linear approximation

- Basic Idea: approximate non-linear components as linear ones, further derive some linear relationships, involving:
 - LFSR states and keystream symbols \Rightarrow Correlation attacks
 - ► Keystream symbols only ⇒ Distinguishing attacks
- Linear approximation: z = NF(s) = LF(s) + e [biased noise]
 - Consider general vectorized linear approximation
 - e has distribution *D*, the SEI (Squared Euclidean Imbalance):

$$\epsilon = |D| \cdot \sum_{e=0}^{|D|-1} \left(D(e) - \frac{1}{|D|} \right)^2$$

- Basic Idea: approximate non-linear components as linear ones, further derive some linear relationships, involving:
 - LFSR states and keystream symbols \Rightarrow Correlation attacks
 - ► Keystream symbols only ⇒ Distinguishing attacks
- Linear approximation: z = NF(s) = LF(s) + e [biased noise]
 - Consider general vectorized linear approximation
 - e has distribution D, the SEI (Squared Euclidean Imbalance):

$$\epsilon = |D| \cdot \sum_{e=0}^{|D|-1} \left(D(e) - \frac{1}{|D|} \right)^2$$

• Required Samples: $n = O(1/\epsilon)$ to distinguish e from random

- Basic Idea: approximate non-linear components as linear ones, further derive some linear relationships, involving:
 - LFSR states and keystream symbols \Rightarrow Correlation attacks
 - ► Keystream symbols only ⇒ Distinguishing attacks
- Linear approximation: z = NF(s) = LF(s) + e [biased noise]
 - Consider general vectorized linear approximation
 - e has distribution D, the SEI (Squared Euclidean Imbalance):

$$\epsilon = |D| \cdot \sum_{e=0}^{|D|-1} \left(D(e) - \frac{1}{|D|} \right)^2$$

• Required Samples: $n = O(1/\epsilon)$ to distinguish e from random

- Basic Idea: approximate non-linear components as linear ones, further derive some linear relationships, involving:
 - LFSR states and keystream symbols \Rightarrow Correlation attacks
 - ► Keystream symbols only ⇒ Distinguishing attacks
- Linear approximation: z = NF(s) = LF(s) + e [biased noise]
 - Consider general vectorized linear approximation
 - e has distribution D, the SEI (Squared Euclidean Imbalance):

$$\epsilon = |D| \cdot \sum_{e=0}^{|D|-1} \left(D(e) - \frac{1}{|D|} \right)^2$$

▶ Required Samples: n = O(1/ε) to distinguish e from random
 ▶ Key Point: to find a good approximation with a large bias

Linear Approximation of FSM in SNOW 3G

Linear Approximation of FSM in SNOW 3G

• Explore linear expression including only s_{15}, s_5, s_0, z

 $\bigoplus_{i \in I} (c_z^{(t+i)} z^{(t+i)} \oplus c_{15}^{(t+i)} s_{15}^{(t+i)} \oplus c_5^{(t+i)} s_5^{(t+i)} \oplus c_0^{(t+i)} s_0^{(t+i)})$

 $\blacktriangleright \ c_z^{(t+i)}, c_{15}^{(t+i)}, c_5^{(t+i)}, c_0^{(t+i)}$ are linear masking matrices

Linear Approximation of FSM in SNOW 3G

• Explore linear expression including only s_{15}, s_5, s_0, z

 $\bigoplus_{i \in I} (c_z^{(t+i)} z^{(t+i)} \oplus c_{15}^{(t+i)} s_{15}^{(t+i)} \oplus c_5^{(t+i)} s_5^{(t+i)} \oplus c_0^{(t+i)} s_0^{(t+i)})$

 $\blacktriangleright \ c_z^{(t+i)}, c_{15}^{(t+i)}, c_5^{(t+i)}, c_0^{(t+i)}$ are linear masking matrices

The SEI of it evaluates the quality of the approximation

► Find good time set *I* and masking matrices

Consider 3 consecutive keystream blocks to cancel out R_1, R_2, R_3

 $\begin{array}{l} \text{Registers update and recursion at three time instances} \\ R2^{(t+1)} = L_1 \cdot S_R(R1^{(t)}) \\ R3^{(t+1)} = L_2 \cdot S_Q(R2^{(t)}) \\ R1^{(t+1)} = R2^{(t)} \boxplus_{32} (R3^{(t)} \oplus s_5^{(t)}) \end{array} \begin{array}{l} R1^{(t-1)} = S_R^{-1} \cdot L_1^{-1}(R2^{(t)}) \\ R2^{(t-1)} = S_Q^{-1} \cdot L_2^{-1}(R3^{(t)}) \\ R2^{(t-1)} = S_Q^{-1} \cdot L_2^{-1}(R3^{(t)}) \end{array}$

Consider 3 consecutive keystream blocks to cancel out R_1, R_2, R_3

 $\begin{array}{ll} \mbox{Registers update and recursion at three time instances} \\ R2^{(t+1)} = L_1 \cdot S_R(R1^{(t)}) & R1^{(t-1)} = S_R^{-1} \cdot L_1^{-1}(R2^{(t)}) \\ R3^{(t+1)} = L_2 \cdot S_Q(R2^{(t)}) & R2^{(t-1)} = S_Q^{-1} \cdot L_2^{-1}(R3^{(t)}) \\ R1^{(t+1)} = R2^{(t)} \boxplus_{32} (R3^{(t)} \oplus s_5^{(t)}) \end{array}$

Keystream symbols at 3 consecutive time instances

$$z^{(t-1)} = (S_R^{-1}L_1^{-1}(R2^{(t)}) \boxplus s_{15}^{(t-1)}) \oplus S_Q^{-1}L_2^{-1}(R3^{(t)}) \oplus s_0^{(t-1)}$$

$$z^{(t)} = (R1^{(t)} \boxplus s_{15}^{(t)}) \oplus R2^{(t)} \oplus s_0^{(t)}$$

$$L_1^{-1}z^{(t+1)} = L_1^{-1}(R2^{(t)} \boxplus (R3^{(t)} \oplus s_5^{(t)}) \boxplus s_{15}^{(t+1)}) \oplus S_R(R1^{(t)}) \oplus L_1^{-1}s_0^{(t+1)}$$

 L_1^{-1} is the inverse of L_1 , used as a linear masking matrix

24-bit Linear Approximation

Build 24-bit symbols: combining the first bytes

24-bit Linear Approximation

Build 24-bit symbols: combining the first bytes

• $Z^{(t)} = S^{(t)}$, $N^{(t)} = N1^{(t)} \oplus N2^{(t)}$

24-bit Linear Approximation

Build 24-bit symbols: combining the first bytes

- $Z^{(t)} = S^{(t)}, \quad N^{(t)} = N1^{(t)} \oplus N2^{(t)}$
- ▶ $N1^{(t)}, N2^{(t)}$ independent

24-bit Linear Approximation

Build 24-bit symbols: combining the first bytes

- $Z^{(t)} = S^{(t)}, \quad N^{(t)} = N1^{(t)} \oplus N2^{(t)}$
- ▶ $N1^{(t)}, N2^{(t)}$ independent

•
$$\epsilon(N1^{(t)})$$
: loop over $R1^{(t)}[0], s_{15}^{(t)}[0]$ in $O(2^{16})$

24-bit Linear Approximation

Build 24-bit symbols: combining the first bytes

- $Z^{(t)} = S^{(t)}, \quad N^{(t)} = N1^{(t)} \oplus N2^{(t)}$
- ▶ $N1^{(t)}, N2^{(t)}$ independent
 - $\blacktriangleright \ \epsilon(N1^{(t)}):$ loop over $R1^{(t)}[0], s_{15}^{(t)}[0]$ in $O(2^{16})$
 - How about $\epsilon(N2^{(t)})$? (4 32-bit variables: $R2, R3, s_5, s_{15}$)

Split variables / noise expression into smaller fields [ZXM15] $^1 [\rm MJ05]$ 2

Compute sub-distributions and combine them

Split variables / noise expression into smaller fields $[{\sf ZXM15}]^1 [{\sf MJ05}]\ ^2$

Compute sub-distributions and combine them

Consider carries between different bytes

Split variables / noise expression into smaller fields $[{\sf ZXM15}]^1 [{\sf MJ05}]\ ^2$

Compute sub-distributions and combine them

- Consider carries between different bytes
- ► FWHT can be used to speed up

Split variables / noise expression into smaller fields [ZXM15] $^1 [\rm MJ05]$ 2

Compute sub-distributions and combine them

- Consider carries between different bytes
- ► FWHT can be used to speed up
- Complexity: $O(2^{40.53})$, bias: $\epsilon(N2) \approx 2^{-29.391880}$

¹Zhang B., et al. Fast correlation attacks over extension fields, large-unit...CRYPTO'2015. ²Maximov A, et al. Fast computation of large distributions and... ASIACRYPT 2005.

Split variables / noise expression into smaller fields [ZXM15] $^1 [\rm MJ05]$ 2

Compute sub-distributions and combine them

- Consider carries between different bytes
- ► FWHT can be used to speed up
- Complexity: $O(2^{40.53})$, bias: $\epsilon(N2) \approx 2^{-29.391880}$

• The total bias: $\epsilon(N) \approx 2^{-37.37}$, $\epsilon(4 \times N) \approx 2^{-162.76}$.

Split variables / noise expression into smaller fields $[{\sf ZXM15}]^1 [{\sf MJ05}]\ ^2$

Compute sub-distributions and combine them

- Consider carries between different bytes
- ► FWHT can be used to speed up
- Complexity: $O(2^{40.53})$, bias: $\epsilon(N2) \approx 2^{-29.391880}$

• The total bias: $\epsilon(N) \approx 2^{-37.37}$, $\epsilon(4 \times N) \approx 2^{-162.76}$.

Q: Is the derived bias correct?

► Recall: for a distribution P_X with bias ϵ , $O(1/\epsilon)$ samples are required to distinguish P_X from random

- ► Recall: for a distribution P_X with bias ϵ , $O(1/\epsilon)$ samples are required to distinguish P_X from random
- ▶ Idea: if with $O(1/\epsilon)$ samples, we can distinguish P_X from random, the bias of P_X could not be much smaller than ϵ

- ► **Recall**: for a distribution P_X with bias ϵ , $O(1/\epsilon)$ samples are required to distinguish P_X from random
- ▶ Idea: if with $O(1/\epsilon)$ samples, we can distinguish P_X from random, the bias of P_X could not be much smaller than ϵ
- ► Tool: hypothesis testing

 $\begin{cases} H_0: P_X = P_N, & \text{the computed noise distribution,} \\ H_1: P_X = P_U, & \text{the uniform distribution.} \end{cases}$

- ► **Recall**: for a distribution P_X with bias ϵ , $O(1/\epsilon)$ samples are required to distinguish P_X from random
- ▶ Idea: if with $O(1/\epsilon)$ samples, we can distinguish P_X from random, the bias of P_X could not be much smaller than ϵ
- ► Tool: hypothesis testing

 $\begin{cases} H_0: P_X = P_N, & \text{the computed noise distribution,} \\ H_1: P_X = P_U, & \text{the uniform distribution.} \end{cases}$

Decision rule:

$$P_X = \begin{cases} P_N, & \text{if } D(P_X || P_U) > D(P_X || P_N), \\ P_U, & \text{if } D(P_X || P_U) < D(P_X || P_N). \end{cases}$$

• D(x||y): KL divergence (or relative entropy) between x, y

• The closer x, y is, the smaller D(x||y) would be

• Recall:
$$Z^{(t)} = S^{(t)} \oplus N^{(t)}$$

• Recall: $Z^{(t)} = S^{(t)} \oplus N^{(t)}$

► $Z^{(t)} \oplus S^{(t)} = N^{(t)}$, biased

• Recall:
$$Z^{(t)} = S^{(t)} \oplus N^{(t)}$$

 $\blacktriangleright \ Z^{(t)} \oplus S^{(t)} = N^{(t)}, \quad \text{biased}$

• Verify: collect samples $Z^{(t)} \oplus S^{(t)}$, verify it follows P_N or P_U

• Recall:
$$Z^{(t)} = S^{(t)} \oplus N^{(t)}$$

 $\blacktriangleright \ Z^{(t)} \oplus S^{(t)} = N^{(t)}, \quad \text{biased}$

- Verify: collect samples $Z^{(t)} \oplus S^{(t)}$, verify it follows P_N or P_U
- run 64 SNOW 3G instances up to 2^{40} iterations, build samples

$$X^{(t)} = Z^{(t)} \oplus S^{(t)} = \begin{pmatrix} (z^{(t-1)} \oplus s_0^{(t-1)} \oplus s_{15}^{(t-1)})[0] \\ (z^{(t)} \oplus s_{15}^{(t)} \oplus s_0^{(t)})[0] \\ (L_1^{-1}[z^{(t+1)} \oplus s_0^{(t+1)} \oplus s_5^{(t)} \oplus s_{15}^{(t+1)}])[0] \end{pmatrix}$$

• Recall:
$$Z^{(t)} = S^{(t)} \oplus N^{(t)}$$

► $Z^{(t)} \oplus S^{(t)} = N^{(t)}$, biased

- Verify: collect samples $Z^{(t)} \oplus S^{(t)}$, verify it follows P_N or P_U
- ▶ run 64 SNOW 3G instances up to 2^{40} iterations, build samples

$$X^{(t)} = Z^{(t)} \oplus S^{(t)} = \begin{pmatrix} (z^{(t-1)} \oplus s_0^{(t-1)} \oplus s_{15}^{(t-1)})[0] \\ (z^{(t)} \oplus s_{15}^{(t)} \oplus s_0^{(t)})[0] \\ (L_1^{-1}[z^{(t+1)} \oplus s_0^{(t+1)} \oplus s_5^{(t)} \oplus s_{15}^{(t+1)}])[0] \end{pmatrix}$$

▶ Build random sequences: lower 24 bits of keystream symbols

• Recall:
$$Z^{(t)} = S^{(t)} \oplus N^{(t)}$$

• $Z^{(t)} \oplus S^{(t)} = N^{(t)}$, biased

- Verify: collect samples $Z^{(t)} \oplus S^{(t)}$, verify it follows P_N or P_U
- ▶ run 64 SNOW 3G instances up to 2^{40} iterations, build samples

$$X^{(t)} = Z^{(t)} \oplus S^{(t)} = \begin{pmatrix} (z^{(t-1)} \oplus s_0^{(t-1)} \oplus s_{15}^{(t-1)})[0] \\ (z^{(t)} \oplus s_{15}^{(t)} \oplus s_0^{(t)})[0] \\ (L_1^{-1}[z^{(t+1)} \oplus s_0^{(t+1)} \oplus s_5^{(t)} \oplus s_{15}^{(t+1)}])[0] \end{pmatrix}$$

Build random sequences: lower 24 bits of keystream symbols
For every sequence, check which distribution it follows

• Recall:
$$Z^{(t)} = S^{(t)} \oplus N^{(t)}$$

• $Z^{(t)} \oplus S^{(t)} = N^{(t)}$, biased

- Verify: collect samples $Z^{(t)} \oplus S^{(t)}$, verify it follows P_N or P_U
- ▶ run 64 SNOW 3G instances up to 2^{40} iterations, build samples

$$X^{(t)} = Z^{(t)} \oplus S^{(t)} = \begin{pmatrix} (z^{(t-1)} \oplus s_0^{(t-1)} \oplus s_{15}^{(t-1)})[0] \\ (z^{(t)} \oplus s_{15}^{(t)} \oplus s_0^{(t)})[0] \\ (L_1^{-1}[z^{(t+1)} \oplus s_0^{(t+1)} \oplus s_5^{(t)} \oplus s_{15}^{(t+1)}])[0] \end{pmatrix}$$

- Build random sequences: lower 24 bits of keystream symbols
- ► For every sequence, check which distribution it follows
- Errors:
 - TYPE I: a noise distribution is judged as random
 - TYPE II: a random distribution is judged as biased

Figure. Error probabilities under different lengths of samples

Figure. Error probabilities under different lengths of samples

► Error probabilities decrease with the increase of sample length

Figure. Error probabilities under different lengths of samples

 Error probabilities decrease with the increase of sample length
 Length 2⁴⁰: error probabilities < 0.1 Length 2^{41.5}: no errors (out of 21 sample sequences)

Figure. Error probabilities under different lengths of samples

- $\blacktriangleright\,$ Error probabilities decrease with the increase of sample length
- ► Length 2⁴⁰: error probabilities < 0.1 Length 2^{41.5}: no errors (out of 21 sample sequences)
- ▶ With $(8 \sim 16) \cdot (1/\epsilon(N))$ ($\epsilon(N) \approx 2^{-37.37}$) samples, we could distinguish the sequences with large success probabilities

Figure. Error probabilities under different lengths of samples

- \blacktriangleright Error probabilities decrease with the increase of sample length
- ► Length 2⁴⁰: error probabilities < 0.1 Length 2^{41.5}: no errors (out of 21 sample sequences)
- ▶ With $(8 \sim 16) \cdot (1/\epsilon(N))$ $(\epsilon(N) \approx 2^{-37.37})$ samples, we could distinguish the sequences with large success probabilities
- ► The bias should be correct!

Distinguish the keystream sample sequence from random

- ► Distinguish the keystream sample sequence from random
- Recall again: $Z^{(t)} \oplus S^{(t)} = N^{(t)}$

- ► Distinguish the keystream sample sequence from random
- ▶ Recall again: $Z^{(t)} \oplus S^{(t)} = N^{(t)}$
 - $\blacktriangleright~$ If $S^{(t)}$ can be canceled, $Z^{(t)}$ would become biased
 - \blacktriangleright With enough samples, $Z^{(t)}$ can be distinguished from random

- Distinguish the keystream sample sequence from random
- Recall again: $Z^{(t)} \oplus S^{(t)} = N^{(t)}$
 - $\blacktriangleright~$ If $S^{(t)}$ can be canceled, $Z^{(t)}$ would become biased
 - \blacktriangleright With enough samples, $Z^{(t)}$ can be distinguished from random
- Q: How to cancel out $S^{(t)}$?

- Distinguish the keystream sample sequence from random
- Recall again: $Z^{(t)} \oplus S^{(t)} = N^{(t)}$
 - $\blacktriangleright~$ If $S^{(t)}$ can be canceled, $Z^{(t)}$ would become biased
 - \blacktriangleright With enough samples, $Z^{(t)}$ can be distinguished from random
- Q: How to cancel out $S^{(t)}$?
 - Idea: find time set I with, usually 3,4 or 5, time instances

$$\bigoplus_{t \in I} S^{(t)} = 0, \qquad \bigoplus_{t \in I} Z^{(t)} = \bigoplus_{t \in I} N^{(t)}$$

- Distinguish the keystream sample sequence from random
- Recall again: $Z^{(t)} \oplus S^{(t)} = N^{(t)}$
 - $\blacktriangleright~$ If $S^{(t)}$ can be canceled, $Z^{(t)}$ would become biased
 - \blacktriangleright With enough samples, $Z^{(t)}$ can be distinguished from random
- Q: How to cancel out $S^{(t)}$?
 - ▶ Idea: find time set *I* with, usually 3,4 or 5, time instances

$$\bigoplus_{t \in I} S^{(t)} = 0, \qquad \bigoplus_{t \in I} Z^{(t)} = \bigoplus_{t \in I} N^{(t)}$$

• Equivalent to finding a multiple of the generating polynomial P(x) of weight 3, 4, or 5, with all coefficients being 1

▶ Find a weight-4 multiple K(x) using method from [LJ14] ³
 ▶ Time and storage complexities O(2¹⁷²)

³Löndahl, C., & Johansson, T. Improved algorithms for finding low-weight polynomial multiples in $\mathbb{F}_{2}[x]$ and some cryptographic applications.DCC 2014.

▶ Find a weight-4 multiple K(x) using method from [LJ14] ³
 ▶ Time and storage complexities O(2¹⁷²)

• Suppose
$$K(x) = Q(x)P(x) = x^{t4} + x^{t3} + x^{t2} + x^{t1}$$

$$\blacktriangleright S^{(t1)} \oplus S^{(t2)} \oplus S^{(t3)} \oplus S^{(t4)} = 0$$

³Löndahl, C., & Johansson, T. Improved algorithms for finding low-weight polynomial multiples in $\mathbb{F}_2[x]$ and some cryptographic applications.DCC 2014.

▶ Find a weight-4 multiple K(x) using method from [LJ14] ³
 ▶ Time and storage complexities O(2¹⁷²)

• Suppose
$$K(x) = Q(x)P(x) = x^{t4} + x^{t3} + x^{t2} + x^{t1}$$

•
$$S^{(t1)} \oplus S^{(t2)} \oplus S^{(t3)} \oplus S^{(t4)} = 0$$

• Any time shifts t of K(x), $x^t K(x)$, are still weight-4 multiples

$$\blacktriangleright S^{(t+t1)} \oplus S^{(t+t2)} \oplus S^{(t+t3)} \oplus S^{(t+t4)} = 0$$

³Löndahl, C., & Johansson, T. Improved algorithms for finding low-weight polynomial multiples in $\mathbb{F}_{2}[x]$ and some cryptographic applications.DCC 2014.

▶ Find a weight-4 multiple K(x) using method from [LJ14] ³
 ▶ Time and storage complexities O(2¹⁷²)

• Suppose
$$K(x) = Q(x)P(x) = x^{t4} + x^{t3} + x^{t2} + x^{t1}$$

•
$$S^{(t1)} \oplus S^{(t2)} \oplus S^{(t3)} \oplus S^{(t4)} = 0$$

• Any time shifts t of K(x), $x^t K(x)$, are still weight-4 multiples

$$\blacktriangleright S^{(t+t1)} \oplus S^{(t+t2)} \oplus S^{(t+t3)} \oplus S^{(t+t4)} = 0$$

New biased keystream samples, t = 0, 1, 2...

$$X^{(t)} = Z^{(t+t1)} \oplus Z^{(t+t2)} \oplus Z^{(t+t3)} \oplus Z^{(t+t4)}$$

= $N^{(t+t1)} \oplus N^{(t+t2)} \oplus N^{(t+t3)} \oplus N^{(t+t4)}$

 3 Löndahl, C., & Johansson, T. Improved algorithms for finding low-weight polynomial multiples in $\mathbb{F}_2[x]$ and some cryptographic applications.DCC 2014.

▶ Find a weight-4 multiple K(x) using method from [LJ14] ³
 ▶ Time and storage complexities O(2¹⁷²)

• Suppose
$$K(x) = Q(x)P(x) = x^{t4} + x^{t3} + x^{t2} + x^{t1}$$

•
$$S^{(t1)} \oplus S^{(t2)} \oplus S^{(t3)} \oplus S^{(t4)} = 0$$

• Any time shifts t of K(x), $x^t K(x)$, are still weight-4 multiples

$$\blacktriangleright S^{(t+t1)} \oplus S^{(t+t2)} \oplus S^{(t+t3)} \oplus S^{(t+t4)} = 0$$

New biased keystream samples, t = 0, 1, 2...

$$X^{(t)} = Z^{(t+t1)} \oplus Z^{(t+t2)} \oplus Z^{(t+t3)} \oplus Z^{(t+t4)}$$

= $N^{(t+t1)} \oplus N^{(t+t2)} \oplus N^{(t+t3)} \oplus N^{(t+t4)}$

 \blacktriangleright Bias: $\epsilon(X) = \epsilon(4 \times N) > 2^{-163}$ (regarded as independent)

► Data complexity *O*(2¹⁶³)

 3 Löndahl, C., & Johansson, T. Improved algorithms for finding low-weight polynomial multiples in $\mathbb{F}_2[x]$ and some cryptographic applications.DCC 2014.
• Modeled as decoding problems in GF(2) or $GF(2^n)$

• Modeled as decoding problems in GF(2) or $GF(2^n)$

• Modeled as decoding problems in GF(2) or $GF(2^n)$

► Information symbol: LFSR initial state

$$\mathbf{s}=(s_0,s_1,...,s_{l-1})$$

• Modeled as decoding problems in GF(2) or $GF(2^n)$

► Information symbol: LFSR initial state

$$\mathbf{s}=(s_0,s_1,...,s_{l-1})$$

Codeword: LFSR output

$$\mathbf{u} = (u_0, u_1, \dots, u_{N-1}) = \mathbf{sG}, \mathbf{G} \in GF(2^n)^{l \times N}$$

• Modeled as decoding problems in GF(2) or $GF(2^n)$

► Information symbol: LFSR initial state

$$\mathbf{s} = (s_0, s_1, ..., s_{l-1})$$

Codeword: LFSR output

$$\mathbf{u} = (u_0, u_1, \dots, u_{N-1}) = \mathbf{sG}, \mathbf{G} \in GF(2^n)^{l \times N}$$

Received codeword: keystream samples

$$y = (y_0, y_1, ..., y_{N-1}), \quad y_i = u_i \oplus e_i$$

• Modeled as decoding problems in GF(2) or $GF(2^n)$

► Information symbol: LFSR initial state

$$\mathbf{s}=(s_0,s_1,...,s_{l-1})$$

$$\mathbf{u} = (u_0, u_1, \dots, u_{N-1}) = \mathbf{sG}, \mathbf{G} \in GF(2^n)^{l \times N}$$

Received codeword: keystream samples

$$\mathbf{y} = (y_0, y_1, \dots, y_{N-1}), \qquad y_i = u_i \oplus e_i$$

▶ When $R = \log(2^n) \cdot l/N < C$: can be successfully decoded

- \blacktriangleright Decoding problems are defined over GF(2) or $GF(2^n)$
 - ► 24-bit approximation could not be directly used

- Decoding problems are defined over GF(2) or GF(2ⁿ)
 24-bit approximation could not be directly used
- ► Instead, we build a new 8-bit approximation by

 $N' = \Lambda N[0] \oplus N[1] \oplus \Gamma N[2]$

Decoding problems are defined over GF(2) or GF(2ⁿ)
 24-bit approximation could not be directly used
 Instead, we build a new 8-bit approximation by

 $N' = \Lambda N[0] \oplus N[1] \oplus \Gamma N[2]$

• Best
$$\Lambda = 0x18, \Gamma = 0x9c$$
: $\epsilon(N') = 2^{-40.97}$

- Decoding problems are defined over GF(2) or GF(2ⁿ)
 24-bit approximation could not be directly used
- ▶ Instead, we build a new 8-bit approximation by

$$N' = \Lambda N[0] \oplus N[1] \oplus \Gamma N[2]$$

- Best $\Lambda = 0x18, \Gamma = 0x9c$: $\epsilon(N') = 2^{-40.97}$
- The codeword and received codeword symbols:

 $\begin{aligned} u_t &= (\Lambda(s_0^{(t-1)} \oplus s_{15}^{(t-1)}) \oplus s_0^{(t)} \oplus s_{15}^{(t)} \oplus \Gamma L_1^{-1}[s_0^{(t+1)} \oplus s_5^{(t)} \oplus s_{15}^{(t+1)}])[0] \\ y_t &= \Lambda z^{(t-1)}[0] \oplus z^{(t)}[0] \oplus \Gamma (L_1^{-1} z^{(t+1)})[0] \end{aligned}$

- Recover \mathbf{s} according to the y sequence
 - Preprocessing: generating parity checks
 - Processing: decoding

- Preprocessing: generating parity checks
 - Generating parity checks involving fewer LFSR states
 - Requires parity checks $O(2^{171.67})$
 - Time/space complexity $O(2^{176.56})$

⁴Zhang B., et al. Fast correlation attacks over extension fields, large-unit linear approximation and cryptanalysis of SNOW 2.0. CRYPTO'2015.

Preprocessing: generating parity checks

- Generating parity checks involving fewer LFSR states
- Requires parity checks $O(2^{171.67})$
- Time/space complexity $O(2^{176.56})$
- Processing: decoding
 - Build a distinguisher: would be biased if a guess is correct
 - ► FWT can help to compute the bias
 - Decoding complexity $2^{174.75}$, 160 bits are recovered

⁴Zhang B., et al. Fast correlation attacks over extension fields, large-unit linear approximation and cryptanalysis of SNOW 2.0. CRYPTO'2015.

Preprocessing: generating parity checks

- Generating parity checks involving fewer LFSR states
- Requires parity checks $O(2^{171.67})$
- Time/space complexity $O(2^{176.56})$
- Processing: decoding
 - Build a distinguisher: would be biased if a guess is correct
 - ► FWT can help to compute the bias
 - Decoding complexity $2^{174.75}$, 160 bits are recovered
- ▶ 16-bit correlation attack: same complexity, fewer parity checks

⁴Zhang B., et al. Fast correlation attacks over extension fields, large-unit linear approximation and cryptanalysis of SNOW 2.0. CRYPTO'2015.

Outline

1 Motivation

- 2 The SNOW 3G Cipher
- 3 Linear Cryptanalysis of SNOW 3G Linear Approximation of FSM Distinguishing Attack Correlation Attack

4 Conclusions

Conclusions

• 24-bit linear approximation of bias 2^{-37}

- 24-bit linear approximation of bias 2^{-37}
- Verified the bias by collecting a large number of samples

- 24-bit linear approximation of bias 2^{-37}
- Verified the bias by collecting a large number of samples
- Distinguishing attack with complexity 2^{172}

- 24-bit linear approximation of bias 2^{-37}
- Verified the bias by collecting a large number of samples
- Distinguishing attack with complexity 2^{172}
- Correlation attack with complexity 2^{177}

- 24-bit linear approximation of bias 2^{-37}
- Verified the bias by collecting a large number of samples
- Distinguishing attack with complexity 2^{172}
- Correlation attack with complexity 2^{177}
- If the key length in SNOW 3G would be increased to 256 bits, there are academic attacks on it

- 24-bit linear approximation of bias 2^{-37}
- Verified the bias by collecting a large number of samples
- Distinguishing attack with complexity 2^{172}
- Correlation attack with complexity 2^{177}
- If the key length in SNOW 3G would be increased to 256 bits, there are academic attacks on it
- ► Not an immediate threat for 5G.

Thank you for your attention!

