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Abstract. SNOW 3G is a stream cipher designed in 2006 by ETSI/SAGE, serving
in 3GPP as one of the standard algorithms for data confidentiality and integrity
protection. It is also included in the 4G LTE standard. In this paper we derive
vectorized linear approximations of the finite state machine in SNOW 3G. In particular,
we show one 24-bit approximation with a bias around 2−37 and one byte-oriented
approximation with a bias around 2−40. We then use the approximations to launch
attacks on SNOW 3G. The first approximation is used in a distinguishing attack
resulting in an expected complexity of 2172 and the second one can be used in a
standard fast correlation attack resulting in key recovery in an expected complexity of
2177. If the key length in SNOW 3G would be increased to 256 bits, the results show
that there are then academic attacks on such a version faster than the exhaustive key
search.
Keywords: SNOW 3G · Stream Cipher · 5G Mobile System Security.

1 Introduction
SNOW 3G is a word-oriented stream cipher being used as the core of 3GPP Confidentiality
and Integrity Algorithms UEA2 & UIA2 for UMTS and LTE networks [ETS06a]. It is one
member of the SNOW family with two predecessors SNOW 1.0 [EJ00] and SNOW 2.0
[EJ02]. SNOW 1.0 was submitted to NESSIE project in 2000 by Ekdahl and Johansson
but was refused due to some weakness. In 2002, the improved version SNOW 2.0 was
published and later selected as an ISO standard in 2005. The SNOW ciphers consist of a
linearly updated part through an LFSR (Linear Feedback Shift Register) and a non-linear
part referred to as an FSM (Finite State Machine). They are all based on operations on
32-bit words, making them quite efficient in both software and hardware environments.
SNOW 3G differs from SNOW 2.0 by introducing a third 32-bit register in the FSM and a
second 32-bit S-box application to update that register. This presumably makes SNOW
3G a much harder target in an attack compared to SNOW 2.0.

Just as for other stream ciphers, the class of linear approximation attacks, like distin-
guishing attacks and correlation attacks, is the main threat to the SNOW ciphers. The
basic idea for these attacks is to approximate nonlinear blocks used in the cipher with linear
expressions and then derive a linear relationship between output values from different time
instances. In a distinguishing attack, a cryptanalyst tries to derive some samples from
the keystream and find evidence that such a sample sequence is not behaving like a truly
random sequence using some statistical tools, e.g., hypothesis testing. When the linear
relationship also involves symbols from the LFSR states, some correlation between the
keystream and the LFSR states can be explored to recover the key, which is the foundation
of a correlation attack.
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Several distinguishing attacks and correlation attacks have been proposed on SNOW
1.0 and SNOW 2.0, where the basic idea is to approximate the FSM part. In [CHJ02],
a distinguishing attack on SNOW 1.0 with complexity 2100 was proposed using linear
masking to get a binary approximation with a bias 2−8.3, which became one reason for the
rejection of SNOW 1.0 from the NESSIE project. In order to resist against this attack, the
authors improved the design and proposed SNOW 2.0, which is, however, still vulnerable
to some distinguishing attacks. A distinguishing attack based on a linear masking method
with complexity 2225 and an improved version with complexity 2174 were proposed in
[WBDC03] and [NW06], respectively. In [LLP08] and [ZXM15], correlation attacks on
SNOW 2.0 were proposed with complexities 2204.38 and 2164.15. For SNOW 3G, however,
no significant attack of this type has ever been published.

The cryptographic security of SNOW 3G has been studied in depth. As an algorithm
appearing in a main standard, it has been thoroughly evaluated by the standardization
consortium before its adoption. Some evaluation results can be found in [ETS06b]. There
are several side-channel attacks and fault attacks, targeting specific implementations
of the algorithm, such as the attacks given in [DC09] and [BHNS10]. There are also
attacks targeting the initialization phase on versions of SNOW 3G with reduced number
of initialization rounds [BPSZ10b, BPSZ10a]. At FSE 2006, Nyberg and Wallén [NW06]
examined linear distinguishing attacks on SNOW 2.0, but devoted one section to SNOW
3G. The best linear approximation of the FSM they found had a bias of 2−274 and they
also derived an upper bound on 2−96 for any binary linear approximation. Here the bias
as given in the paper was recalculated, now expressed using Squared Euclidean Imbalance,
as is commonly used for non-binary linear approximations. Note that [NW06] considered
only binary approximations and the key to improvements is to use approximations over
larger alphabets.

In this paper, we give one distinguishing attack and one correlation attack on SNOW
3G by finding efficient linear approximations of the nonlinear part of the FSM. We derive a
24-bit linear approximation1 by masking and truncating three consecutive keystream words
with the bias 2−37.37 and we further derive an 8-bit approximation from the 24-bit one with
the bias 2−40.97. The 24-bit approximation is then employed to launch a distinguishing
attack requiring a keystream length of around 2172. This strongest and largest 24-bit
approximation cannot be used in a correlation attack, but the derived 8-bit approximation,
which is linear over GF (28) can be used to give a correlation attack which has complexity
around 2177. This is to the best of our knowledge the first significant result on attacking
the full SNOW 3G. In particular, if the key length in SNOW 3G would be increased to
256 bits, the results show that there are then academic attacks on such a version faster
than the exhaustive key search.

The rest of this paper is organized as follows. We briefly describe the design and
structure of SNOW 3G in Section 2 and then elaborate on the process of finding linear
approximations of the FSM in Section 3. In Section 4, we give the experimental verification
of the approximations by running the cipher to get a large number of samples. In Section 5,
we give a distinguishing attack and a correlation attack, based on the vectorized linear
approximations derived in Section 3, and in Section 6, we conclude the paper.

2 Description of SNOW 3G
In this section, we give a brief description of the SNOW 3G algorithm. We first note that
a stream cipher like SNOW 3G takes as input a secret key K and a public value known

1The 24-bit noise distribution of the linear approximation is
available at: https://portal.research.lu.se/portal/sv/publications/
vectorized-linear-approximations-for-attacks-on-snow-3g(80dd21a7-5111-4af3-89b2-9a9661c040c2)
.html.

https://portal.research.lu.se/portal/sv/publications/vectorized-linear-approximations-for-attacks-on-snow-3g(80dd21a7-5111-4af3-89b2-9a9661c040c2).html
https://portal.research.lu.se/portal/sv/publications/vectorized-linear-approximations-for-attacks-on-snow-3g(80dd21a7-5111-4af3-89b2-9a9661c040c2).html
https://portal.research.lu.se/portal/sv/publications/vectorized-linear-approximations-for-attacks-on-snow-3g(80dd21a7-5111-4af3-89b2-9a9661c040c2).html
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as the IV (initial vector) value. For each such pair of key and IV, (K, IV ), the algorithm
produces an output sequence, usually called the keystream, denoted z(t), t = 1, 2, . . .. In
SNOW 3G, the key and IV are both 128-bit long and each keystream symbol is a 32-bit
word, so we write z(t) ∈ GF (232), t = 1, 2, . . .. Furthermore, each pair should produce a
unique keystream sequence, and the typical operation of such a stream cipher is to produce
many different keystreams for many different public IV values, while using the same key.

The overall schematic of SNOW 3G algorithm is shown in Figure 1. Just as SNOW
1.0 and SNOW 2.0, it consists of a linear part, the LFSR, and a nonlinear part, the FSM.
The FSM is used to break the linearity of the LFSR contribution. For more details on the
design of SNOW 3G, we refer to the original design document [ETS06a].

s0s2s5s11s15 s1

αα-1

R1 R2 R3S1 S2

z(t)
FSM

Figure 1: The keystream generation phase of the SNOW-3G stream cipher

The LFSR part consists of 16 cells denoted (s0, s1, ..., s15) each containing 32 bits thus
having 512 bits in total. Every value in a cell is considered as an element from GF (232)
and the LFSR sequence is defined by the generating polynomial

P (x) = αx16 + x14 + α−1x5 + 1 ∈ GF (232)[x],

where α is a root of the polynomial x4 + β23x3 + β245x2 + β48x+ β239 ∈ GF (28)[x] and
β is a root of x8 + x7 + x5 + x3 + 1 ∈ GF (2)[x]. If we denote the state at clock t as
(s(t)

0 , s
(t)
1 , ..., s

(t)
15 ), then at the next clock t + 1, s(t)

i is shifted to s(t+1)
i−1 , i.e., s(t)

i = s
(t+1)
i−1 ,

for 1 ≤ i ≤ 15, while s(t+1)
15 is updated by:

s
(t+1)
15 = α−1s

(t)
11 ⊕ s

(t)
2 ⊕ αs

(t)
0 ,

where ⊕ denotes a bitwise XOR operation. Note that α and α−1 are two constants in
GF (232) and the update consequently includes two multiplications in this field.

For the FSM part, it has three internal 32-bit registers R1, R2 and R3, connected by
some linear and nonlinear operations. The FSM takes two words from the LFSR part as
the inputs, s15 and s5, and outputs a 32-bit keystream word by xoring with s0, giving the
following formula for the generation of the keystream:

z(t) = (R1(t) �32 s
(t)
15 )⊕R2(t) ⊕ s(t)

0 .

Here �32 denotes integer addition modulo 232. The registers in the FSM are then updated
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through the following steps:

R2(t+1) = S1(R1(t)),
R3(t+1) = S2(R2(t)),

R1(t+1) = R2(t) �32 (R3(t) ⊕ s(t)
5 ),

where S1, S2 are substitution boxes (S-boxes) composed of four bytewise substitutions
followed by the MixColumn operation of Rijndael. Below we give the details of how they
are constructed by using little-endian style. The 32-bit registers in FSM could be expressed
as four parallel bytes. Let W = (w0, w1, w2, w3) be the input to the substitution boxes
with w0 being the least and w3 the most significant byte. The operations of the two
S-boxes are as follows.

S-Box S1: S1 is a 32-bit to 32-bit mapping operating on four bytes. Bytes are
interpreted as elements of GF(28) defined by the polynomial x8 + x4 + x3 + x+ 1. The
underlaying 8-bit S-box SR(x) is the Rijndael AES SBox [DR13]. In general, S1 is described
by

S1(W ) = L1 · SR(W ),

which can be expressed in more details as follows. Let R = (r0, r1, r2, r3) be the four byte
output through R = S1(W ). Then

r0
r1
r2
r3

 =


x x+ 1 1 1
1 x x+ 1 1
1 1 x x+ 1

x+ 1 1 1 x

 ·

SR(w0)
SR(w1)
SR(w2)
SR(w3)

 . (1)

S-Box S2: S2 is also a 32-bit to 32-bit mapping operating on four bytes. Bytes
are again interpreted as elements of GF(28) but this time defined by the polynomial
y8 +y6 +y5 +y3 +1. The underlaying 8-bit SBox SQ(x) is another 8-to-8 bit S-box derived
from the Dickson polynomials. In general, S2 is described by

S2(W ) = L2 · SQ(W ),

and in more details S2(W ) is:
r0
r1
r2
r3

 =


y y + 1 1 1
1 y y + 1 1
1 1 y y + 1

y + 1 1 1 y

 ·

SQ(w0)
SQ(w1)
SQ(w2)
SQ(w3)

 . (2)

Like other stream ciphers, SNOW 3G has the initialization phase during which the
cipher is clocked without producing output, to fully mix the key and IV into the LFSR
state and the FSM registers. During the initialization phase, the key and the IV, each
consisting of four 32-bit words, are first loaded into the LFSR state and the registers
in the FSM are initialized to be zero. Then the cipher runs 32 times with the output
from the FSM feeding back to the LFSR instead of giving a keystream output. After the
initialization, the cipher enters the keystream mode, with the first output word from the
FSM being discarded and the following FSM outputs form the keystream by xoring with
s0. Since the attacks in this paper only use the keystream mode, we do not give more
details of the initilization mode, but refer to the design document [ETS06a].
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3 Approximations of the FSM
A main class of attacks on stream ciphers are the so-called linear distinguishing attacks
and (fast) correlation attacks. They both build on the idea of approximating some
nonlinear operations as linear ones, thereby introducing some approximation noise. The
most simple form utilizes binary approximations and has a strong connection to linear
cryptanalysis of block ciphers. Recent work in cryptanalysis of stream ciphers have shown
that approximations on larger alphabets can improve the attacks considerably, e.g., in
[ZXM15] the authors used the terminology large-unit linear approximations.

For stream ciphers built around an LFSR, it makes sense to provide approximations
that are linear with respect to some binary algebraic structure, such as GF (2)n or GF (2n).
Since the LFSR part is linearly described in GF (2)n or possibly GF (2n), the main obstacle
is to approximate the FSM. We will return in Section 5 to the case of how to use an
approximation in attacks on the full cipher.

The FSM part in SNOW 3G takes inputs from s
(t)
15 , s

(t)
5 , s

(t)
0 and outputs z(t), with t

varying. It also contains three unknown values in the registers R1, R2 and R3. As such,
they need to be cancelled and a linear approximation of the FSM can thus be described
as a linear expression including only s(t)

15 , s
(t)
5 , s

(t)
0 and z(t) for different t values. Such an

expression is a good approximation if the corresponding expression has a distribution that
is biased. So in general, we are interested in finding an expression of the form⊕

i∈I

(c(t+i)
z z(t+i) ⊕ c(t+i)

15 s
(t+i)
15 ⊕ c(t+i)

5 s
(t+i)
5 ⊕ c(t+i)

0 s
(t+i)
0 ),

for some time set I, where operations are in GF (2)n (or GF (2n)), and c(t+i)
z , c

(t+i)
15 , c

(t+i)
5 ,

c
(t+i)
0 are now m-dimensional matrices and the inputs are considered as column vectors. In
order to determine the quality of an approximation, we consider m-bit random variables
E(t), defined as the above expression, i.e.,

E(t) =
⊕
i∈I

(c(t+i)
z z(t+i) ⊕ c(t+i)

15 s
(t+i)
15 ⊕ c(t+i)

5 s
(t+i)
5 ⊕ c(t+i)

0 s
(t+i)
0 ).

Each such random variable has the same distribution, denoted D. The quality of the
linear approximation is measured by the bias of the distribution, which can be defined in
many ways. Using the SEI (Squared Euclidean Imbalance) as defined in [BJV04], the bias
for the distribution D is computed as

ε(D) = |D| ·
|D|−1∑
x=0

(
D(x)− 1

|D|

)2
.

We note that when the bias is measured in SEI, the number of samples required to
distinguish samples drawn from D from the uniform distribution is in the order of 1/ε(D)
[BJV04], [HG97]. We are now ready to investigate how to find expressions of the above
form with a large bias.

3.1 A 24-bit linear approximation of the FSM
In this first approach, we are targeting an approximation with as large alphabet size as
possible, in order to get a bias as large as possible. The novel parts consist in determining
how to build the approximation and how to efficiently compute the bias when the alphabet
size and the number of involved variables are large.
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Let R̂1, R̂2, R̂3 be the content of the FSM registers at time t. Then consider the
following word-oriented expressions on three consecutive keystream words:

z(t−1) = (S−1
R (L−1

1 R̂2) � s
(t−1)
15 )⊕ S−1

Q (L−1
2 R̂3)⊕ s(t−1)

0 ,

z(t) = (R̂1 � s
(t)
15 )⊕ R̂2⊕ s(t)

0 ,

L−1
1 z(t+1) = L−1

1 (R̂2 � (R̂3⊕ s(t)
5 ) � s

(t+1)
15 )⊕ SR(R̂1)⊕ L−1

1 s
(t+1)
0 .

(3)

Let us introduce the following notation that applies to three byte-oriented 32-bit
vectors: AB

C


[i,j,k]

=

A[i]
B[j]
C[k]

 ,

where i, j, k are corresponding bytes of A,B, and C, respectively. So A[i] denotes the i-th
byte of a 32-bit byte-oriented vector, for i = 0, 1, 2 or 3.

Now we consider a three-byte sampling of the following form: z(t−1)

z(t)

L−1
1 z(t+1)


[0,0,0]︸ ︷︷ ︸

Sampling in time (t)

=

(S−1
R (L−1

1 R̂2) � s
(t−1)
15 )⊕ s(t−1)

15 ⊕ S−1
Q (L−1

2 R̂3)
R̂2

L−1
1 [(R̂2 � (R̂3⊕ s(t)

5 ) � s
(t+1)
15 )⊕ s(t)

5 ⊕ s
(t+1)
15 ]


[0,0,0]︸ ︷︷ ︸

24-bit Noise N2

⊕

 0
(R̂1 � s

(t)
15 )⊕ s(t)

15
SR(R̂1)


[0,0,0]︸ ︷︷ ︸

24-bit Noise N1

⊕

 s
(t−1)
0 ⊕ s(t−1)

15
s

(t)
15 ⊕ s

(t)
0

L−1
1 [s(t+1)

0 ⊕ s(t)
5 ⊕ s

(t+1)
15 ]


[0,0,0]

.

︸ ︷︷ ︸
Contribution from the LFSR

Basically, we want to achieve a linear approximation where the bias is as large as possible
and the choice of multiplying z(t+1) with L−1

1 is chosen to have a really small influence of
the noise related to the register R̂1.

As already indicated in the above formula, our linear approximation is z(t−1)

z(t)

L−1
1 z(t+1)


[0,0,0]

=

 s
(t−1)
0 ⊕ s(t−1)

15
s

(t)
15 ⊕ s

(t)
0

L−1
1 [s(t+1)

0 ⊕ s(t)
5 ⊕ s

(t+1)
15 ]


[0,0,0]

⊕N (t)
tot ,

where N (t)
tot = N1(t) ⊕N2(t) and

N1(t) =

 0
(R̂1 � s

(t)
15 )⊕ s(t)

15
SR(R̂1)


[0,0,0]

,

N2(t) =

(S−1
R (L−1

1 R̂2) � s
(t−1)
15 )⊕ s(t−1)

15 ⊕ S−1
Q (L−1

2 R̂3)
R̂2

L−1
1 [(R̂2 � (R̂3⊕ s(t)

5 ) � s
(t+1)
15 )⊕ s(t)

5 ⊕ s
(t+1)
15 ]


[0,0,0]

,

Since the distributions of N (t)
tot , N1(t), N2(t) are independent of t, we simplify them by

writing Ntot, N1, N2, respectively. Note also that N1 and N2 are independent.
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3.1.1 Computation of the 24-bit noise distributions for N1 and N2

Computing the distribution of N1 is trivial, we simply run over all possible values of R̂1[0]
and s(t)

15 [0], which is of complexity O(216), where the notation O(x) means that the number
of simple operations is c · x for some small constant c.

Computation for N2 is more tricky and below we explain how we do that. We can
rewrite N2 as:

N2 =


(S−1

R ((L−1
1 R̂2)[0]︸ ︷︷ ︸

Linear part A

) � s
(t−1)
15 [0])⊕ s(t−1)

15 [0]⊕ S−1
Q ((L−1

2 R̂3)[0]︸ ︷︷ ︸
Linear part B

)

R̂2[0]
(L−1

1 ((R̂2 � (R̂3⊕ s(t)
5 ) � s

(t+1)
15 )⊕ s(t)

5 ⊕ s
(t+1)
15 ))[0]︸ ︷︷ ︸

Linear part C

 .

The idea behind the computation technique is to compute 256 24-bit distributions of
the triple bytes (A,B,C), conditioned on the value of the byte R̂2[0] ∈ [0, . . . , 255]. Let
us denote those distributions as DR̂2[0](A,B,C). The distribution table of N2 is then
constructed as follows: we initialize the distribution table N2 with all zeroes; then, for
each combination of R̂2[0], s(t−1)

15 [0], A,B,C (in total 240 choices) we do:

Pr{N2 =

(S−1
R (A) � s

(t−1)
15 [0])⊕ s(t−1)

15 [0]⊕ S−1
Q (B)

R̂2[0]
C

}+ = 2−16 ·DR̂2[0](A,B,C),

where 2−16 is the normalization factor since for each (A,B,C) we also loop over R̂2[0] and
s

(t−1)
15 [0] and, thus, there will be 2562 distributions added to the table N2. Also note that

we can actually compute distributions DR̂2[0](A,B,C) one by one for each value of R̂2[0]
and add to the accumulating distribution of N2. This way, we do not need to store all of
them in RAM simultaneously.

3.1.2 Computation of sub-noises DR̂2[0](A, B, C)

What remains is to show how to compute DR̂2[0](A,B,C) for a given (fixed) byte value of
R̂2[0]. The expression for which we want to compute the distribution is as follows:AB

C

 =

 (L−1
1 R̂2)[0]

(L−1
2 R̂3)[0]

(L−1
1 [(R̂2 � (R̂3⊕ s(t)

5 ) � s
(t+1)
15 )⊕ s(t)

5 ⊕ s
(t+1)
15 ])[0]


=


⊕3

i=0eiR̂2[i]⊕3
i=0diR̂3[i]⊕3

i=0ei[(R̂2[i] � (R̂3[i]⊕ s(t)
5 [i]) � s

(t+1)
15 [i] � ci)⊕ s(t)

5 [i]⊕ s(t+1)
15 [i]]

 ,

where the coefficients are 8 × 8 Boolean matrices ei = L−1
1 [0, i] and di = L−1

2 [0, i], for
i = 0, 1, 2, 3. The new variables ci are the input carry values that come from the arithmetical
addition of the previous byte(s), i.e., bytes 0 to i− 1, of the 3 terms: R̂2[i], (R̂3[i]⊕ s(t)

5 [i])
and s(t+1)

15 [i]. Note that the range of these carry values is 0 ≤ ci ≤ 2 and the first one is
c0 = 0.

We will later explain how to deal with carry values ci, but, at the moment, let us
rewrite the above expression in a new form as follows. To simplify upcoming formulae, let
us define:

ti = R̂2[i] � (R̂3[i]⊕ s(t)
5 [i]) � s

(t+1)
15 [i],

ui = s
(t)
5 [i]⊕ s(t+1)

15 [i],
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and then we have AB
C

 =

 ⊕3
i=0eiR̂2[i]⊕3
i=0diR̂3[i]⊕3

i=0ei[(ti � ci)⊕ ui]

 =

=

 e0R̂2[0]
d0R̂3[0]

e0[(t0 � c0)⊕ u0]


→o0︸ ︷︷ ︸

ER̂2[0],k=0,c0=0,o0=0..2(A0,B0,C0)

⊕

 e1R̂2[1]
d1R̂3[1]

e1[(t1 � c1)⊕ u1]


→o1︸ ︷︷ ︸

ER̂2[0],k=1,c1=0..2,o1=0..2(A1,B1,C1)

⊕

 e2R̂2[2]
d2R̂3[2]

e2[(t2 � c2)⊕ u2]


→o2︸ ︷︷ ︸

ER̂2[0],k=2,c2=0..2,o2=0..2(A2,B2,C2)

⊕

 e3R̂2[3]
d3R̂3[3]

e3[(t3 � c3)⊕ u3]


→o3︸ ︷︷ ︸

ER̂2[0],k=3,c3=0..2,o3=0..2(A3,B3,C3)

,

where ci are input carry values, and oi are output carry values related to the sub-expressions
(ti � ci)→ (8-bit resulting value, output carry oi).

Case with 4 parallel 8-bit adders �8. In case we substitute 32-bit full adders �
with 4 parallel 8-bit adders �8, all input and output carry values are all 0 and can be
ignored. In this case, we have that the above distribution of (A,B,C) can be expressed
as a XOR-convolution of 4 independent sub-distributions. This is due to each of the
four sub-distributions are expressed using different byte variables, which are uniformly
distributed and independent on each other.

Case with full 32-bit adders �. In this case the only dependency between the
above 4 sub-distributions are the carry values that propagate from one sub-distribution to
the next sub-distribution.

In order to compute the distribution of DR̂2[0](A,B,C) we will actually compute the
number of combinations of the involved bytes for each resulting triple (A,B,C), then,
in the end, the 24-bit vector of integer values will be normalized to actually get the
distribution with probabilities. I.e., we will use a combinatorial approach in this section.

Let us defineAk

Bk

Ck

 =

 ekR̂2[k]
dkR̂3[k]

ek[(tk � ck)⊕ uk]


→ok

, for k = 0, 1, 2, 3,

and introduce intermediate E-vectors

ER̂2[0], k=0,1,2,3, ck=0,1,2, ok=0,1,2(Ak, Bk, Ck),

each of which is a 24-bit vector, i.e. of size 224 for all choices of the three bytes
(Ak, Bk, Ck), and each cell is an integer value (which can be large). In each index
(Ak, Bk, Ck) the integer value corresponds to the number of combinations of the variables
R̂2[k], R̂3[k], s(t)

5 [k], s(t+1)
15 [k] involved in the 24-bit expression (Ak, Bk, Ck) for the k’s sub-

distribution, k = 0, 1, 2, 3, given the value of the input carry ck, such that the resulting
output carry in the sub-expression tk � ck is ok.

Then, the first 3 E-vectors for k = 0 and o0 = 0, 1, 2,

ER̂2[0], k=0, c0=0, o0=0,1,2(A0, B0, C0),

can be computed by trying all possible byte values of R̂3[0], s(t)
5 [0], s(t+1)

15 [0] in time O(224).
Note that the value R̂2[0] is fixed and the input carry c0 = 0. Thus, the first sub-distribution
is only associated with 3 E-vectors, and we do not need to loop over the values of R̂2[0].
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The next 3× 3 E-vectors for k = 1 and c1, o1 ∈ [0, 1, 2],

ER̂2[0], k=1, c1=0,1,2, o1=0,1,2(A1, B1, C1),

are computed by trying all possible values of c1, R̂2[1], R̂3[1], s(t)
5 [1], s(t+1)

15 [1] in time O(3 ·
232). We continue this way to compute all E-vectors.

The next step is to use E-vectors in order to receive the combined 24-bit vector that
contains the number of combinations resulting for each choice of the (A,B,C) triple.

Example. Let us first give a small example to demonstrate the technique. Assume we
want to compute the 24-bit vector of combinations (A,B,C) when the carry value from
the first sub-distribution to the second sub-distribution is o0 = 2, the next carry value that
propagates to the third sub-distribution is o1 = 0, and the carry value that propagates
to the last sub-distribution is o2 = 1. Then, we should perform a XOR-convolution of
E-vectors that are matching in their input/output carry values, i.e. c0 = 0, c1 = o0 =
2, c2 = o1 = 0, c3 = o2 = 1. For a single choice (A = a,B = b, C = c) we then compute:

EExample(A = a,B = b, C = c) =
∑

o3=0..2

∑
a0..2,b0..2,c0..2∈[0..255]

ER̂2[0],k=0,c0=0,o0=2(a0, b0, c0)

·ER̂2[0],k=1,c1=2,o1=0(a1, b1, c1) · ER̂2[0],k=2,c2=0,o2=1(a2, b2, c2)

·ER̂2[0],k=3,c3=1,o3
(a⊕ a0 ⊕ a1 ⊕ a2, b⊕ b0 ⊕ b1 ⊕ b2, c⊕ c0 ⊕ c1 ⊕ c2),

which implies that in order to compute the whole vector EExample(A,B,C) the complexity
is O(3 · 296), but the time for the above convolution can be reduced down through a series
of XOR-convolutions: 4 forward and 1 inverse FWHTs, 3 point-wise vector multiplications,
and 2 vector summations, i.e. O((5 · 24 + 3 + 2) · 224) = O(125 · 224).

EExample(A,B,C) =ER̂2[0],k=0,c0=0,o0=2(A0, B0, C0)

×ER̂2[0],k=1,c1=2,o1=0(A1, B1, C1)

×ER̂2[0],k=2,c2=0,o2=1(A2, B2, C2)

×
2∑

o3=0
ER̂2[0],k=3,c3=1,o3

(A3, B3, C3),

where × denotes a XOR-convolution over 24-bit E-vectors of integers, and
∑

is a point-
wise arithmetical summation of the vectors. Since the last output carry o3 is truncated in
the 32-bit addition �, we then accumulate all 3 vectors corresponding to the value of o3
into one vector all together, thus, the last output carry is ignored.

Final convolution. The idea is clear – we should try all possible variants of in-
termediate carry propagations, perform a series of XOR-convolutions of E-vectors that
are matching in the input/output carries, and then accumulate the resulting vectors of
combinations into one final vector, ER̂2[0](A,B,C), as follows:

ER̂2[0](A,B,C) =
2∑

v0=0

2∑
v1=0

2∑
v2=0

2∑
v3=0

ER̂2[0], k=0, c0=0, o0=v0
(A0, B0, C0)

×ER̂2[0], k=1, c1=v0, o1=v1
(A1, B1, C1)

×ER̂2[0], k=2, c2=v1, o2=v2
(A2, B2, C2)

×ER̂2[0], k=3, c3=v2, o3=v3
(A3, B3, C3).
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The resulting distribution is then

DR̂2[0](A,B,C) = 2−120 · ER̂2[0](A,B,C),

where 2−120 is the normalization factor, i.e., it reflects the sum of all integer values in the
final vector E, that can be verified by counting the expected total number of combinations:
24 bits of choices for R̂2 (R̂2[0] is given), and 32 bits for each of R̂3, s(t)

5 , s
(t+1)
15 , thus we

should have 224+3·32 = 2120 combinations in total.
Optimizations and speed up. A single XOR-convolution can be done with Fast

Walsh-Hadamard Transform (FWHT) having time complexity O(N logN) where, in our
case, we have N = 224. Also note that FWHT is a linear transformation. So convolution
in the time domain corresponds to point-wise multiplication in the frequency domain; and,
summation in the time domain corresponds to summation in the frequency domain. Thus,
there is no need to switch between the time and frequency domains for mixed summation
and convolution operations, we can do most of the above in the frequency domain without
switching.

We can speed up the computations even further as follows. Note that the E-vectors for
k = 1, 2, 3 do not depend on the value of R̂2[0], thus, we can compute and combine through
convolutions the upper 3 bytes only once, then use the resulting 3 vectors, corresponding
to the input carry c1, for further computations of DR̂2[0](A,B,C) for all values of R̂2[0].

Optimization ideas can be detailed by the following steps:

∀v2 ∈ [0..2] : T3v2(A,B,C) =
2∑

v3=0
ER̂2[0], k=3, c3=v2, o3=v3

(A3, B3, C3)

∀v1 ∈ [0..2] : T2v1(A,B,C) =
2∑

v2=0
T3v2(A,B,C)× ER̂2[0], k=2, c2=v1, o2=v2

(A2, B2, C2)

∀v0 ∈ [0..2] : T1v0(A,B,C) =
2∑

v1=0
T2v1(A,B,C)× ER̂2[0], k=1, c1=v0, o1=v1

(A1, B1, C1)

ER̂2[0](A,B,C) =
2∑

v0=0
T1v0(A,B,C)× ER̂2[0], k=0, c0=0, o0=v0

(A0, B0, C0).

I.e., three vectors of T1 can be precomputed once and be used for all values of R̂2[0].
Recall that in the original Subsubsection 3.1.2, without optimizations, the number of
point-wise vector multiplications is 34 · 3 = 243 and the number of vector summations
is 34 − 1 = 80. With the proposed optimizations, the last step (having T1 vectors being
precomputed) requires only 3 point-wise vector multiplications and 2 vector summations,
as well as the amount of RAM needed is reduced a lot since all the above steps can be
done as soon as intermediate E-vectors are ready. Also note, the 3 vectors of T3 can be
ready “for free” if during the preparation of E-vectors for k = 3 we simply ignore the
output carry o3 by forcing it to be always 0.

Total time complexity for N2. Precomputation of 3 vectors of T1 has time complex-
ity O(3·3·232

to construct 21 E vectors for k = 1, 2, 3+224 ·(24·(3+9+9)FWHTs on 21 E-vectors+18×+
12+)) ≈ O(235.47). In order to compute one DR̂2[0](A,B,C) we therefore need to compute
three E-vectors for k = 0, c0 = 0, o0 = 0, 1, 2, in complexity O(224), and perform 4 24-bit
FWHTs: 3 for ER̂2[0],k=0,c0=0,o0=0,1,2 and 1 inverse FWHT in the end. We also need to make
3 point-wise vector multiplications and 2 vector summations. Thus, the additional time com-
plexity per R̂2[0] value is therefore O(224

to construct E for k = 0 +224 ·(24·4FWHTs +3×+2+)) ≈
O(230.67). Accumulating the above, the total time complexity to compute the distribution
of N2 can be estimated as O(235.47 + 28 · 230.67 + 240) ≈ O(240.53).
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3.1.3 Computation results and bias values

We have implemented the above computation method, computed the distribution for N1
and N2, and then the 24-bit total noise distribution for Ntot = N1⊕N2 for the proposed
approximation. Note that the approximation takes into account the full 32-bit adders
�. We have received the following results regarding the corresponding biases: ε(N1) > 1,
ε(N2) ≈ 2−29.391880, and

ε(Ntot) ≈ 2−37.37, ε(2×Ntot) ≈ 2−80.21, ε(3×Ntot) ≈ 2−121.66, ε(4×Ntot) ≈ 2−162.76.

Here ε(i×Ntot) is the notion for the bias of the resulting distribution when summing i
independent random variables distributed as Ntot using bitwise XOR.

3.2 An 8-bits approximation
As will be clear later, the 24-bit approximation cannot be used in a straight-forward
manner in a fast correlation attack. For such a case, one would need an approximation
that can be completely described over a finite field.

From the 24-bit noise distribution that we computed in the previous subsection, we
can further derive an 8-bit approximation with operations in the Rijndael field GF (28),
with the noise now denoted N ′tot. The approximation has the following form,

Λz(t−1)[0]⊕ z(t)[0]⊕ Γ (L−1
1 z(t+1))[0] = N ′tot

⊕ (Λ(s(t−1)
0 ⊕ s(t−1)

15 )⊕ s(t)
0 ⊕ s

(t)
15 ⊕ ΓL

−1
1 [s(t+1)

0 ⊕ s(t)
5 ⊕ s

(t+1)
15 ])[0], (4)

where Γ,Λ are some nonzero constants in GF (28). For each possible choice of Γ,Λ ∈ GF (28)
we compute the 8-bit distribution of N ′tot directly from the given 24-bit distribution of
Ntot and then we compute the corresponding bias,

N ′tot = ΛNtot[0]⊕Ntot[1]⊕ ΓNtot[2].

Searching through all choices of Γ and Λ would normally imply the computational
complexity O(248), but we can reduce it down to O(∼ 240) by the following technique. In the
loop for Γ , we first precompute the joint 16-bit distribution of (Ntot[0], Ntot[1]⊕ ΓNtot[2])
with complexity O(224), then we loop for Λ and use the precomputed joint distribution to
derive the 8-bit distribution of N ′tot. The best choice for constants appears to be Γ = 0x9c
and Λ = 0x08 (alternatively, Λ = 0x18 also gives the best approximation) and the resulting
bias of N ′tot is:

ε(N ′tot) ≈ 2−40.97, ε(2×N ′tot) ≈ 2−81.94, ε(3×N ′tot) ≈ 2−122.91, ε(4×N ′tot) ≈ 2−163.88.

4 Experimental verification
In this section, we experimentally verify the correctness of the bias derived in the previous
section. The experimental verification can be done by running the cipher and collecting
a large number of samples. For distributions of smaller sizes one can fully verify them
by experimentally determining the exact distribution, i.e., every probability value in the
distribution is correct; while for larger distributions, this might not be computationally
possible. Instead, we can use them in a hypothesis testing and in this way demonstrate
that it can be used in a distinguisher. This will be the case for the 24-bit approximation
from Section 3.

We consider deciding the sample distribution between the uniform distribution and the
noise distribution derived in Section 3 by hypothesis testing. We will follow the hypothesis
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testing approach as formulated in information theory, see [CT12]. It is centered around
the divergence (or relative entropy, or Kullback Leibler distance), denoted D(PX ||PY ),
between two distributions PX and PY over the same alphabet and defined as D(PX ||PY ) =∑

i P (X = i) log P (X=i)
P (Y =i) . The relative entropy is used to measure the distance between

two distributions: the closer the distributions are, the smaller D(PX ||PY ) would be. If the
distributions are the same, D(PX ||PY ) = 0.

Furthermore, if we have a sequence of n sample symbols x = x0, x1, . . . , xn−1 from the
same alphabet A then we can count the number of occurrences of each symbol a ∈ A,
denoted N(a|x) and forming the type (or empirical distribution; or sample distribution)
by assigning P (X = a) = N(a|x)/n.

Let us denote the uniform distribution as PU , the noise distribution derived in Section 3
as PN . Assume we collect n samples x from an unknown distribution PX . Then the
hypothesis testing can be modeled as below with two hypotheses:{

H0 : PX = PN ,

H1 : PX = PU .
(5)

In our case we are considering 24-bit distributions, so |A| = 224 and the sample distribution
is denoted PXn , with n as the length of the sample symbols.

We use the Neyman-Pearson lemma to make the optimum decision for the hypothesis
testing, according to the distances from PXn to PU and PN , respectively. The decision
problem is a maximum-likelihood test and the log-likelihood ratio can be written as

L = nD(PXn ||PU )− nD(PXn ||PN ).

Then we define the decision rule as below

PX =
{
PN , if D(PXn ||PU ) > D(PXn ||PN ),
PU , if D(PXn ||PU ) < D(PXn ||PN ).

(6)

With the hypothesis-testing problem defined above and PN being the 24-bit noise
distribution from the previous section, we build a distinguisher to decide the underlying
sample distribution. We run 64 parallel SNOW 3G instances with random initial states,
each clocking 240 times and collect the targeted samples. At each clock t, we combine
(z(t−1) ⊕ s(t−1)

0 ⊕ s(t−1)
15 )[0], (z(t) ⊕ s(t)

15 ⊕ s
(t)
0 )[0], (L−1

1 [z(t+1) ⊕ s(t+1)
0 ⊕ s(t)

5 ⊕ s
(t+1)
15 ])[0],

which is exactly the xor-sum of the keystream and LFSR part in (3), to make a 24-bit
integer and increase the occurrence of the corresponding entry in the distribution table.
We also collect the least three significant bytes of z(t) and concatenate them into a 24-bit
variable, which is regarded as a comparison sample drawn from a uniform distribution.

After this process, we get the tables of occurrences of all possible 24-bit values and their
corresponding probabilities. Then these sample distributions are tested by the decision
rule given in (6) to get the answer to which distribution they follow, by calculating the
distances to the uniform distribution PU and noise distribution PN , respectively. There
are two types of errors to the correctness of the distinguisher: TYPE I errors, the errors of
guessing a noise distribution as random; and TYPE II errors, the errors of falsely guessing
a uniform distribution as the biased one.

Figure 2 shows the distances of one sample sequence to a uniform distribution and
the noise distribution and their differences under different lengths of samples. We can
see from the first subfigure that with an increase in the length of samples, the distances
to the uniform and noise distribution are both decreasing. This means that the sample
distribution is approaching both the random distribution and the noise distribution, but
it is hard to tell to which one the sample distribution is closest to, just from the first
subfigure. Instead, we can get the answer from the second subfigure, showing the difference
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Figure 2: Distances to the uniform distribution and noise distribution
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Figure 3: Error probabilities under different lengths of samples

of the divergence of the two distances, i.e., D(PX ||PU ) −D(PX ||PN ). We can see that
while fluctuating around 0 in the beginning, the difference becomes stable and positive
after length 239.58, indicating D(PX ||PU ) > D(PX ||PN ) and that the sample distribution
is closer to the noise distribution. The difference at length 240 is 0.5 ∗ 10−11, i.e., around
2−37.54 and we can expect that it will converge to around 2−37.37. This is so because with
the increase in keystream samples, D(PX ||PN ) will converge to 0 and D(PX ||PU ) would
get close to the bias we derived [BJV04].

Figure 3 then shows the TYPE I and II error probabilities for the distinguisher under
different lengths of samples. We run 64 parallel SNOW 3G instances with random initial
states, each clocking 240 times, and record the distribution table of the samples for each
instance. Whenever another 238 samples are collected, we make a hypothesis testing of



262 Vectorized linear approximations for attacks on SNOW 3G

the obtained distribution and record the type I and type II errors. After the collection has
finished, we make larger samples by combining distribution from some different instances,
e.g., samples of length 241 from two 240 instances, and further record the errors under
the hypothesis testing. From the result in Figure 3, we could see that while fluctuating,
the error probabilities are becoming smaller with an increase in the amount of samples,
which indicates that the guesses are becoming more accurate. From length 240, we can
distinguish the samples with large success probabilities, while at the length 241.5, there are
no errors in our 21 sample sequences. The result matches well with the bias obtained in
Section 3 and the conclusion that O(1/ε) samples are needed to distinguish the distribution
from random when the bias is ε.

5 Attacks based on the new vectorized linear approxima-
tions

We are now ready to use our vectorized linear approximations of the FSM to launch attacks.
We recall that the approximation on three bytes we derived in Section 3 is of the form
below,(

z(t−1)[0], z(t)[0], (L−1
1 z(t+1))[0]

)
= (n0, n1, n2)

⊕
(

(s(t−1)
15 ⊕ s(t−1)

0 )[0], (s(t)
15 ⊕ s

(t)
0 )[0], (L−1

1 s
(t)
5 ⊕ L

−1
1 s

(t+1)
15 ⊕ L−1

1 s
(t+1)
0 )[0]

)
, (7)

where (n0, n1, n2) denotes the noise in the 24-bit linear approximation. We have computed
the bias of this noise to be about 2−37 in Section 3 and experimentally verified it in Section 4.
We now consider how to launch a distinguishing attack with this 24-bit approximation in
the next subsection. Fast correlation attacks will be considered in Subsection 5.2.

5.1 A distinguishing attack
In a distinguishing attack we build an algorithm that takes a sequence as input and
determines with a small error probability whether the sequence stems from the considered
keystream generator, or if it is a truly random sequence. A potential application would
be a case when only two messages m,m′ are possible, and from the ciphertext c only, we
would like to determine which message was sent. One then forms a candidate keystream
by computing c⊕m and inputs this to the distinguisher. If the distinguisher finds that
this candidate keystream is likely to have been generated from the keystream generator, it
is likely that the sent message was m.

The basic idea for finding a distinguishing attack in our scenario is to completely
remove the contribution from the LFSR part, leaving only a linear function of known
output symbols as a sample from a noisy distribution. After collecting enough samples,
one can distinguish the considered keystream from a truly random sequence.

Considering the relationship in (7), we would like to cancel the LFSR contribution

S(t) =
(

(s(t−1)
15 ⊕ s(t−1)

0 )[0], (s(t)
15 ⊕ s

(t)
0 )[0], (L−1

1 s
(t)
5 ⊕ L

−1
1 s

(t+1)
15 ⊕ L−1

1 s
(t+1)
0 )[0]

)
.

Since s(j)
i = s

(i+j)
0 and for simplicity, we write s(t)

0 simply as s(t). It is easy to verify the
following theorem.

Theorem 1. If one can find t1, t2, t3 such that s(0) ⊕ s(t1) ⊕ s(t2) ⊕ s(t3) = 0 then

S(t) ⊕ S(t+t1) ⊕ S(t+t2) ⊕ S(t+t3) = (0, 0, 0).
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Proof. Since s(0) ⊕ s(t1) ⊕ s(t2) ⊕ s(t3) = 0, with any time shift the equation would still
hold, i.e., s(t) ⊕ s(t+t1) ⊕ s(t+t2) ⊕ s(t+t3) = 0. For the other terms in S(t), the xor-
sum from the values at 0, t1, t2, t3 would also be 0. Let us take the term s

(t−1)
15 for

example: since s(t−1)
15 = s

(t+14)
0 , then

⊕3
i=0 s

(t+ti−1)
15 =

⊕3
i=0 s

(t+ti+14)
0 = 0. Then we have⊕3

i=0 S
(t+ti) = (0, 0, 0).

Assuming that we have found t1, t2, t3 satisfying Theorem 1, we can create samples
from a biased distribution by computing samples x(t) as

x(t) =
3∑

i=0

(
z(t+ti−1)[0], z(t+ti)[0], (L−1

1 z(t+ti+1))[0]
)
,

where t0 = 0. The samples x(t) are then drawn from a noisy distribution, which is the
distribution of the sum of 4 noise variables like Ntot. This was previously computed to
have a bias of ε(4 × Ntot) = 2−163 and hence it requires in the order of 2163 keystream
symbols to distinguish the samples from a uniform distribution. It should be noted here
that we assume that the noise variables at the four time instances are independent, thus
resulting in the total bias as ε(4×Ntot) = 2−163. The bias is actually larger since there is
a dependence between the LFSR states from the four time instances, due to their sum
being zero. But we have a too high complexity in computing the bias for such a case, so
we regard the noise variables as independent.

The remaining problem here is to examine the computational complexity of finding
t1, t2, t3 satisfying s(0) ⊕ s(t1) ⊕ s(t2) ⊕ s(t3) = 0. The sequence s(t) is generated using the
feedback polynomial P (x) = αx16 + x14 + α−1x5 + 1 ∈ GF (232)[x]. We are thus seeking a
weight 4 multiple K(x) of the feedback polynomial where all coefficients are set to one.
We may first argue about the expected degree q of such a polynomial. Let us consider all
t ≤ q, then we can create

(
q
3
)
different combinations of s(0) ⊕ s(t1) ⊕ s(t2) ⊕ s(t3) expressed

in the initial state. Since there are 2512 possible such combinations, we can expect that we
need to go to a degree such that roughly q3/6 ≈ 2512, resulting in q ≈ 2172.

Finally, we need an efficient way to find a weight 4 multiple. Here we use a slight
generalization of the algorithm proposed by Löndahl and Johansson in [LJ14]. The
algorithm solves the problem with computational complexity of only around 2d, where
d = log q, and similar storage. The algorithm uses the idea of duplicating the desired
multiple to many instances and then finding one of them with very large probability. The
solution to problem associated to the SNOW 3G case can be described as follows:

Assume that K(x) is the weight 4 multiple of the lowest degree and assume that its
degree is around 2d as expected. Algorithm 1 considers and creates all weight 4 multiples
up to degree 2d+b where b is a small integer, but will only find those that include two
monomials xi1 and xi2 such that φ(xi1 + xi2 mod P (x)) = 0, where φ() means the d least
significant bits in the representation of the polynomial.
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Algorithm 1 Finding a multiple of P (x) with weight 4 and all nonzero coefficients one
Input Polynomial P (x), a small integer b
Output A polynomial multiple K(x) = P (x)Q(x) of weight 4 and expected degree 2d

with nonzero coefficients set to be one
1. From P (x), create all residues xi1 mod P (x), for 0 ≤ i1 < 2d+b and put (xi1 mod
P (x), i1) in a list L1. Sort L1 according to the residue value of each entry.
2. Create all residues xi1 + xi2 mod P (x) such that φ(xi1 + xi2 mod P (x)) = 0, for 0 ≤
i1 < i2 < 2d+b and put in a list L2. Here φ() means the d least significant bits. This is done
by merging the sorted list L1 by itself and keeping only residues φ(xi1 +xi2 mod P (x)) = 0.
The list L2 is sorted according to the residue value.
3. In the final step we merge the sorted list L2 with itself to create a list L, keeping only
residues xi1 + xi2 + xi3 + xi4 = 0 mod P (x).

As K(x) is of weight 4, any polynomial xi1K(x) is also of weight 4 and since we
consider all weight 4 multiples up to degree 2d+b we will consider 2d+b − 2d such weight
4 polynomials, i.e. about 2d(2b − 1) duplicates of K(x). As the probability for a single
weight 4 polynomial to have the condition φ(xi1 +xi2 mod P (x)) = 0 can be approximated
to be around 2−d, there will be a large probability that at least one duplicate of xi1K(x)
will survive in Step 2 in Algorithm 1 and will be included in the output. Further details
and experimental verification can be found in [LJ14].

Regarding complexity, we note that the tables are all of size around 2d. Creation of L1
costs roughly 2d and creation of L2 costs about the same as we are only accessing entries
in L1 with the same d least significant bits. For a sufficiently large b, one iteration of
Algorithm 1 (inner loop) succeds with a high probability.

To conclude, we have described a distinguishing attack on SNOW 3G for which we
need a keystream length of around 2172 and similar complexity. It uses a precomputation
step of complexity around 2172 and required memory is of the same size.

5.2 A fast correlation attack
A fast correlation attack is a key recovery attack, which is a much stronger attack than
a distinguishing attack. It tries to recover the key by exploring the correlation between
the keystream and the output of the LFSR states, which always exists for nonlinear
functions[Sie84]. It is commonly modeled as a decoding problem in GF (2)n or GF (2n), with
the observed keystream samples y = (y0, y1, ..., yN−1) being the noisy version of the LFSR
sequence u = (u0, u1, ..., uN−1) through a discrete memoryless channel (DMC) with non-
uniform noise e = (e0, e1, ..., eN−1), i.e., yi = ui + ei for 1 ≤ i ≤ N − 1. It should be noted
here that u and z might not be the exact output from the LFSR and the keystream of the
considered keystream generator, but can be some linear combinations of them. The LFSR
sequence u = (u0, u1, ..., uN−1) is regarded as a codeword generated from the information
words (u0, u1, ..., ul−1), which is the initial state of LFSR by u = (u0, u1, ..., ul−1)G, where
G = (g0,g1, ...,gN−1) with each element gi being a column vector of length l. Then the
correlation attack is converted into decoding an [N, l] linear code with N being the code
length and l the length of the information word. The main problem is to find methods
of efficient decoding as a straight-forward approach of running through all codewords to
find the closest one to the received vector is requiring a huge computational complexity. A
common approach is to find parity checks that can be combined to form parity checks in a
lower-dimensional code, which is then more efficiently decoded.

The correlation attacks always have two stages: a preprocessing stage, during which as
many parity check equations of the [N, l] code as possible are generated and processed;
and an online decoding stage, during which the decoding is executed according to these
generated parity check equations. Research on correlation attacks have been mainly focused
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on these two aspects: finding parity check equations with low weights [Pen96], [CT00],
typically 3, 4 or 5, and exploring more effecient decoding techniques to solve the decoding
process [JJ99b], [JJ99a].

The framework of a fast correlation attack is defined over a finite field. It is usually
the binary case but a larger alphabet is possible as long as the operations are in a finite
field. Our strongest (24-bit) approximation does not fulfill this condition and it cannot
be used in a straight-forward manner. Instead, we rely on the 8-bit approximation from
(4), which is an approximation over GF (28). Below we first give a correlation attack using
the method in [ZXM15] with the byte-based linear approximation in (4). Specifically, the
attack employs the k-tree algorithm in [Wag02] to generate parity check equations during
the preprocessing stage and the Fast Walsh Transform (FWT) technique to accelerate the
decoding process during the decoding stage.

5.2.1 A fast correlation attack based on an approximation in GF (28)

We consider the two sequences,

y(t) = Λz(t−1)[0]⊕ z(t)[0]⊕ Γ (L−1
1 z(t+1))[0]

and
u(t) = (Λ(s(t−1)

0 ⊕ s(t−1)
15 )⊕ s(t)

0 ⊕ s
(t)
15 ⊕ ΓL

−1
1 [s(t+1)

0 ⊕ s(t)
5 ⊕ s

(t+1)
15 ])[0],

both defined in GF (28) and we know from before that y(t) = u(t) + e(t), where e(t) has the
same distribution as N ′tot. Note that u(t) is a sequence defined over GF (28), while the s(t)

sequence is defined over an extension field of GF (28). It can be verified that an LFSR
with state (s0, s1, ..., s15) ∈ GF (232)16 can also be described through a length 64 LFSR
over GF (28) with state (u0, u1, ...u62, u63) ∈ GF (28)64, i.e., u(t) can indeed be described
as the sequence from a length 64 LFSR over GF (28). Below we give the 8-bit correlation
attack based on such an LFSR.

Preprocessing Stage: Generating the Parity Check Equations

Since decoding an [N, l] linear code involves a large complexity when l is large, the
method in [CJS00] can be used to convert the [N, l] code C1 into a simpler one [N ′, l′]
denoted C2 with l′ < l. The key point is to find a k-tuple of column vectors (gi1 ,gi2 , ...,gik

)
from G satisfying gi1 ⊕ gi2 ⊕ ...⊕ gik

= (c0, c1, ..., cl′−1, 0, ..., 0)T , i.e., the xor-sums of the
last l − l′ elements are all zero. Then for such a tuple, the following equation holds, which
is a parity check for u1, ..., ul′ ,

k⊕
j=1

uij
= (u0, u1, ...ul−1)

k⊕
j=1

gij
= c0u0 ⊕ c1u1 ⊕ ...⊕ cl′−1ul′−1.

Correspondingly,

k⊕
j=1

yij
=

k⊕
j=1

(uij
⊕ eij

) = c0u0 ⊕ c1u1 ⊕ ...⊕ cl′−1ul′−1 ⊕
k⊕

j=1
eij
.

If we denote Yi =
⊕k

j=1 yij , Ui =
⊕k

j=1 uij and Ei =
⊕k

j=1 eij , we have Yi =
Ui ⊕ Ei. If we collect N ′ such parity checks, we can construct a new [N ′, l′] code,
with U = (U0, U1, ..., UN ′−1) being the output of a converted LFSR with l′ states and
Y = (Y0, Y1, ..., YN ′−1) being the noisy version of U through a more noisy channel with
noise E = (E0, E1, ..., EN ′−1). Since l′ < l, the decoding complexity is reduced. Then the
remaining work is to solve the decoding problem efficiently, which we will describe in detail
in the processing stage.



266 Vectorized linear approximations for attacks on SNOW 3G

As for the complexity for the preprocessing stage, with the k-tree algorithm in
[Wag02] employed to find such parity check equations, the time/space complexities are
O(k2n(l−l′)/(1+log k)) and the sizes of lists are O(2n(l−l′)/(1+log k)), with n being the size of
the finite field, n = 8 in our case. Note that ρ1+log k such tuples could be found with ρ
times as much work as finding a single solution, i.e., O(ρk2n(l−l′)/(1+log k)) for time and
space and O(ρ2n(l−l′)/(1+log k)) for the size of each list, as long as ρ ≤ 2n(l−l′)/(log k(1+log k).

Processing Stage: Decoding the code

We now move to the process of decoding the [N ′, l′] code, following the method in
[ZXM15] and using the FWT to accelerate the decoding process. The main idea is to
make a distinguisher defined as I(û) = ci0(u′0 ⊕ u0) ⊕ ... ⊕ cil′−1(u′l′−1 ⊕ ul′−1) ⊕ Ei =
Yi ⊕ ci0u

′
0 ⊕ ... ⊕ cil′−1u

′
l′−1 for a guess û = (u′0, u′1, ..., u′l′−1) of the first l′ LFSR states,

where i denotes the i-th tuple. I(û) would be biased for the correct guess since only the
noise term Ei remains.

The next step is to check the balancedness of I(û) for every guessed û to find the
correct key. Firstly, the correlations c(〈a, I〉) of the Boolean function 〈a, I〉, i.e., the
inner product of a and I where a ∈ GF (2)n, is obtained and then the SEI of I(û) can
be derived by ∆(û) =

∑
a∈GF (2m) c

2(〈a, I〉) according to [NH07]. Then we can verify
whether I(û) is biased or not and further recover the key. To get the correlations c(〈a, I〉)
efficiently, the method in [LV04] could be used. Firstly, the vectorial Boolean function
I can be divided into n linearly independent Boolean functions I1, ..., In, each expressed
as Ij = 〈wj , û〉 ⊕ 〈vj , Yi〉 where wj ∈ GF (2)nl′ , vj ∈ GF (2)n are two binary coefficient
vectors. Then FWT can be used to compute the correlation of each Ii. It is stated in
[ZXM15] that the total correlation can be further derived by the Piling-up Lemma. We
refer to [ZXM15] for a more detailed description of this process and we use the complexity
formulas from it.

For SNOW 3G, we use the 8-bit linear approximation which has a bias of ε(N ′tot) ≈
2−40.970689. We can first rewrite the LFSR sequence symbols as linear functions of 64
initial state bytes, with a new and more complex generating polynomial. Then use the
preprocessing stage described before to generate the parity check equations with parameters
l = 64, k = 4. The SEI of k = 4 folded noise variables is ε(4 × N ′tot) ≈ 2−163.88. We
then tested different choices for l′ and found that under l′ = 20 the total complexity
is the lowest. The number of parity check equations mk required in this case is mk =
2171.67. The time/space complexity of preprocessing is ρk2n(l−l′)/(1+log k) = 2176.56 and the
required length of the keystream is 2176.56. With complexity of n(mk + l′n2l′n) + 2n+l′n =
2174.75, 20 · 8 = 160 bits of the LFSR initial states could be recovered. Therefore, the
time/memory/data/pre-computation complexities are all upper bounded by 2176.56.

5.2.2 Potential Correlation Attack using a 16-bit approximation

In Section 3, we got the 24-bit and 8-bit linear approximations with biases 2−37 and
2−41, respectively. We would obviously like to use the 24-bit approximation to launch a
correlation attack. But as explained before, the 24-bit approximation is not defined over a
finite field and cannot be used directly in a fast correlation attack. Now we report some
findings on building a 16-bit approximation by an experimental method based on the 8-bit
approximation derived before. Specifically, we concatenate two consecutive 8-bit symbols
to build one 16-bit symbol, i.e., (y(t), y(t+1)). The theoretical distribution for such a pair
of bytes is too computationally consuming to compute, but since we know the bias for a
single byte we can get an bound on the bias.

We run a large amount of SNOW 3G instances in parallel with random initial states
and collect (y(t), y(t+1)) by (4) at each clock, obtaining 253 16-bit samples in total. We then
record the occurrence of each entry in the distribution table, and got the bias 2−36.8293.
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However, the bias here is not very accurate and more samples are needed for full confidence.
Even so, we could still get a general estimation of the bias. After we collected these samples,
we used the method in Section 4 to distinguish the 16-bit and 8-bit samples between the
uniform distribution and the respective 16-bit and 8-bit distributions we derived.

Table 1 shows the TYPE I errors and probabilities for the two cases under different
lengths of samples. We can see directly from the table that the error probability for
16-bit distinguishing is much smaller than the 8-bit one, indicating the bias of the 16-bit
approximation is larger than the latter. Considering the error probabilities to be 0 for
16-bit and 8-bit distinguishing are after lengths 242 and 246, respectively, we could make a
general estimation that the bias for the 16-bit approximation is around 2−38.

Table 1: Errors and error probabilities (in the brackets) under different lengths of samples
Length 240 241 242 243 244 245 246

Samples 8192 4096 2048 1024 512 256 128
16-bit 626(0.076) 94(0.023) 3(0.001) 0 0 0 0
8-bit 2895(0.353) 1260(0.308) 445(0.217) 148(0.144) 40(0.078) 7(0.027) 0

Now we briefly explain how to use this 16-bit approximation in a correlation attack.
First we point out that any output from the LFSR at clock t, u(t), can be derived from the
initial states (u0, u1, ..., u63) by u(t) =

⊕63
i=0 c

(t)
i ui, where c(t)

i ∈ GF (28). Then we have,

y(t) = u(t) + e(t) =
63⊕

i=0
c

(t)
i ui ⊕ e(t). (8)

At the next clock t + 1, the value in the (i + 1)-th cell is shifted to the i-th cell for
0 ≤ i ≤ 62 and only the 63-rd cell is updated, which can be expressed as

u(t+1) =
62⊕

i=0
c

(t)
i ui+1 ⊕ c(t)

63 u
′
63,

where u′63 is the new value for the 63-rd cell updated by u′63 =
⊕62

i=0 γiui, where γi’s are
the feedback coefficients of the LFSR in GF (28). Then y(t+1) can be expressed as,

y(t+1) = u(t+1) + e(t+1) =
62⊕

i=0
c

(t)
i ui+1 ⊕ c(t)

63

62⊕
i=0

γiui ⊕ e(t+1). (9)

Assume by the k-tree algorithm, we have found a k-tuple combination, say k = 4, with
(t1, t2, t3, t4) which maps the xor-sum of the output to the first l′ 8-bit symbols in the
LFSR, i.e.,

4⊕
j=1

y(tj) =
4⊕

j=1
(

63⊕
i=0

c
(tj)
i ui ⊕ e(tj)) =

l′−1⊕
i=0

ciui ⊕ E,

i.e., c(t1)
i ⊕ c(t2)

i ⊕ c(t3)
i ⊕ c(t4)

i = ci for 0 ≤ i ≤ l′ − 1, while c(t1)
i ⊕ c(t2)

i ⊕ c(t3)
i ⊕ c(t4)

i = 0
for l′ ≤ i ≤ 63, where E =

⊕4
j=1 e

(tj). We aim to build another part of the 16-bit symbol
by getting

⊕4
i=1 y

(ti+1) from (9). We get

4⊕
j=1

y(tj+1) =
4⊕

j=1
(u(tj+1) ⊕ e(tj+1)) =

4⊕
j=1

(
62⊕

i=0
c

(ti)
i ui+1 ⊕ c

(ti)
63

62⊕
i=0

γiui ⊕ e(ti+1)).
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Since c(t1)
i ⊕c(t2)

i ⊕c(t3)
i ⊕c(t4)

i = 0 and c(t1)
63 γi⊕c(t2)

63 γi⊕c(t3)
63 γi⊕c(t4)

63 γi = 0 for l′ ≤ i ≤ 63,
we could get

4⊕
j=1

y(tj+1) =
4⊕

j=1
(
l′−1⊕
i=0

c
(ti)
i ui+1 ⊕ c(ti)

63

l′−1⊕
i=0

γiui ⊕ e(ti+1)).

We can see
⊕4

j=1 y
(tj+1) can be derived from (u0, u1, ...ul′) and we express it as

4⊕
j=1

y(tj+1) =
l′⊕

i=0
c′iui ⊕ E′,

with c′i being some new coefficients and E′ =
⊕4

j=1 e
(ti+1). Then the 16-bit approximation

can be expressed as:

(
4⊕

j=1
y(tj),

4⊕
j=1

y(tj+1)) = (
l′−1⊕
i=0

ciui,

l′⊕
i=0

c′iui)⊕ (E,E′).

Here (E,E′) can be regarded as following the 16-bit distribution we obtained in the
beginning of this subsection. We could see, compared to the 8-bit correlation attack where
the output is mapped to the first l′ states, here the 16-bit symbol is mapped to the first
l′+ 1 states, i.e., one more state is involved. If we find N ′ tuples like this, we could build a
new [N ′, l′ + 1] code with the 16-bit approximation as the noisy channel. Then we proceed
to the decoding stage to recover the l′ + 1 states.

Next, let us check the complexity. For the preprocessing phase, we could still use
the k-tree method to find parity check equations, but through a different DMC with a
smaller noise. Using the method before, we could get the best result in terms of complexity
is now under l′ = 19. Now 2159.72 parity check equations are required with time/space
complexity of 2175.24 and the required length of keystream sample is 2175.24. For the
decoding process, the complexity is 2176.06. From the result, we can find that while the
complexity is still upper bounded by the same order around 2176, the required number of
parity check equations reduces from 2171.67 to 2159.72. These complexity results are based
on only experimental result and are not with full confidence.

6 Conclusion
In this paper, we propose a distinguishing attack and a correlation attack on SNOW 3G
using new linear approximations over larger alphabets. We first derive a 24-bit and an
8-bit linear approximation of the FSM and verify them by an experimental test using
hypothesis testing. Then we used the derived approximations to launch a distinguishing
attack and correlation attack. For the distinguishing attack, we find a weight 4 multiple of
the generating polynomial to cancel out the contribution from the LFSR and distinguish
the corresponding keystream sample sequence with complexity around 2172. For the
correlation attack, we use the 8-bit approximation to recover 160 bits of the initial state
with complexity around 2177. As far as we know, these are the first distinguishing and
correlation attacks on SNOW 3G. If the key length in SNOW 3G would be increased to
256 bits, the results show that there are then academic attacks on such a version faster
than the exhaustive key search.

A possible way to improve the results and achieve a higher bias would be to consider
even larger alphabets in the approximations, but this would require much more complex
simulation tasks to find and verify biases of different choices of approximation. Another
interesting question would be to launch distinguishing attacks which are based directly on
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the weight 4 recurrence relation for the LFSR, which has nonzero coefficients that are not
all one. If so, it would remove the requirement of having a very long keystream and the
attacks could be applied on a large set of short keystreams generated with different IVs.
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