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Abstract. In this paper, a new method for evaluating the integral property, truncated
and impossible differentials for substitution-permutation network (SPN) block ciphers
is proposed. The main assumption is an explicit description/expression of the internal
state words in terms of the plaintext (ciphertext) words. By counting the number of
times these words occur in the internal state expression, we can evaluate the resistance
of a given block cipher to integral and impossible/truncated differential attacks more
accurately than previous methods. More precisely, we explore the cryptographic
consequences of uneven frequency of occurrences of plaintext (ciphertext) words
appearing in the algebraic expression of the internal state words. This approach
gives a new family of distinguishers employing different concepts such as the integral
property, impossible/truncated differentials and the so-called zero-sum property.
We then provide algorithms to determine the maximum number of rounds of such
new types of distinguishers for SPN block ciphers. The potential and efficiency of
this relatively simple method is confirmed through applications. For instance, in
the case of SKINNY block cipher, several 10-round integral distinguishers, all of
the 11-round impossible differentials, and a 7-round truncated differential could be
determined. For the last case, using a single pair of plaintexts differing in three words
so that (a = b = c) 6= (a′ = b′ = c′), we are able to distinguish 7-round SKINNY
from random permutations. More importantly, exploiting our distinguishers, we give
the first practical attack on 11-round SKINNY-128-128 in the single-key setting (a
theoretical attack reaches 16 rounds). Finally, using the same ideas, we provide a
concise explanation on the existing distinguishers for round-reduced AES.
Keywords: SKINNY competition · Integral cryptanalysis · Impossible differential
analysis · Truncated differential attack · Zero-Sum distinguisher

1 Introduction
Along with the development of internet of things, some new symmetric-key cryptographic
schemes such as encryption algorithms, hash functions, authentication schemes and pseudo-
random number generators have been proposed. The security evaluation of these schemes,
against some well understood cryptanalytic techniques such as differential and linear
cryptanalysis, impossible and truncated differentials, is an important task. The ability
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of newly proposed designs to resist these cryptanalytic methods should go through an
accurate and in-depth security evaluation.

Integral cryptanalysis was originally proposed by Lars Knudsen [KW02] as a dedicated
attack against the Square block cipher, and is commonly known as the Square attack.
The main idea of this method is to prepare a set of plaintexts having the property that
a certain portion of plaintext can attain all the possible values in the set whereas the
remaining part of any plaintext is fixed to a constant value. The properties of the multiset
of internal state values after encrypting several rounds are then analyzed. For example,
a particular attack might use 256 different chosen plaintexts such that a single byte is
variable and the remaining bytes are kept fixed. Such a set necessarily has a property that
its elements add up (bitwise modulo two addition) to the all-zero vector. On the other
hand, XORing the corresponding set of ciphertexts might provide a useful information
about the cipher in question.

Impossible differential cryptanalysis was proposed independently by Biham, Biryukov
Shamir [BBS99], and Knudsen [Knu98]. It exploits a (truncated) differential characteristic
of probability exactly 0 and thus acts as a distinguisher. Then, such a distinguisher can
be turned into a key-recovery attack by prepending and/or appending additional rounds,
which are usually referred to as the analysis rounds. The keys involved in the analysis
rounds which lead to the impossible differential are wrong keys and thus can be excluded
from the key space.

In cryptography, higher-order differential cryptanalysis [Lai94] is a generalization
of differential cryptanalysis, an attack used against block ciphers. While in standard
differential cryptanalysis the difference between only two texts is used, higher-order
differential cryptanalysis studies the propagation of a set of differences between a larger set
of texts. The zero-sum property (structure) is a generalization of higher-order differentials.
Namely, for a given function F , a zero-sum is a set of inputs which sum to zero, and whose
images by F also sum to zero [KR07, BC10].

The related work. Commonly, when cryptanalysis of block ciphers is considered, the
first step is to construct distinguishers of certain kind that cover as many rounds as
possible. In this context, the most relevant security parameter is an exact estimate on the
number of rounds for which different kind of distinguishers can be specified. Nevertheless,
these estimates are usually cipher specific and the concept of provable security (thus being
unable to find distinguishers covering more than some fixed number of rounds) for a given
cipher is hard to establish. A certain progress in this direction has been made by Sun
et al. [SLG+16] who derived some theoretical upper bounds on the number of rounds for
which impossible differentials (alternatively zero-correlation linear hulls as a dual structure)
may possibly exist. In particular, it was shown that there are no impossible differentials of
AES covering more than r = 5 rounds when the properties of substitution boxes are not
taken into account. This has been done by associating the so-called primitive index with
the linear layers of SPN structures and showing that the length of impossible differentials
of an SPN structure is upper bounded by the primitive index of the linear layers. This,
however, does not exclude the existence of distinguishers that cover a larger number of
rounds when the cipher specific S-boxes are taken into account.

Due to the fact that applications of our proposed methods (for the purpose of an
efficient specification of distinguishers) mostly relate the SKINNY cipher, we briefly recall
the main cryptanalytic advances of it. SKINNY [BJK+16] is a recently designed lightweight
tweakable block cipher. In [LGS17], Liu, Ghosh, and Song investigated truncated related-
tweakey differential trails of SKINNY and searched for the longest impossible and rectangle
distinguishers, under the assumption of having only one active word in the input and the
output. Then, Ankele et al. outlined a related-tweakey impossible differential attack on
21 rounds of SKINNY-64/128 and two attacks on 22 and 23 rounds of SKINNY-64/128
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under the assumption that 48 bits of the tweakey are public[ABC+17]. In a related-key
attack model, it is possible to cancel data differences with corresponding key differences
over many rounds of SKINNY. As a consequence, in this model one can deduce differential
characteristics with higher probability and therefore more rounds can be covered compared
to the single key attack. However, due to a very strong assumption that the attacker can
ask the encryption box to modify the unknown key in a predictable manner, this scenario
is less realistic than the single-key attack model.

In order to motivate extensive public scrutiny of the cipher, the SKINNY designers
launched several one-year competitions, for the details of these competitions see [SKI18].
In brief, the designers assigned the following goal: recover the secret key from a given
encryption of a known book with 220 randomly selected plaintext and ciphertext pairs. The
suggested SKINNY instances are 4- to 20-round reduced variants of SKINNY-64-128 and
SKINNY-128-128. So far, the maximum number of attacked rounds for SKINNY-64-128 is
12 [DL18], whereas for SKINNY-128-128 the number of rounds is 10 [Udo18].

Our Contributions. The main research motivation of this paper comes from the work
of Sun et al [SLG+16] and the 2018-2019 SKINNY Cryptanalysis Competition. We
introduce a rather simple but novel approach for checking the resistance of a cipher against
distinguishers of different kind such as impossible and truncated differentials and certain
integral ones. The core idea of our approach is a useful representation of the round function
as a multi-variate polynomial of F2b , where b denotes the size of S-boxes. Then, counting
the number of occurrences of the variable corresponding to a specific input word in each
output word will provide us with a precious information related to plausible distinguishers.
More precisely:

- If the considered variable does not appear in the polynomial corresponding to an output
word of the round function, then it means that this output word does not depend on it.
This information is useful when building probability 1 truncated trails and impossible
differentials.

- The first round in which this particular variable appears in all output words is the maxi-
mum number of rounds propagating in the forward direction for an integral distinguisher.

- This framework can also be used to identify order 2 differentials that can be cancelled
out in some words.

This paper concentrates on the provable security of block ciphers against integral
and impossible differential cryptanalysis as well as cryptanalysis based on zero-sum
distinguishers. Our main approach, based on counting the occurrences in a multi-variate
model, gives a simple and intuitive description of SPN-based block ciphers when the concept
of provable security against the most important cryptanalytic techniques is considered.
The main achievement of this technique is the possibility of determining the properties of
round functions by measuring the statistics of the above mentioned occurrences. (integral,
impossible differential and truncated differential cryptanalysis) on the algebraic structure
of the cipher. The algebraic structure of a given cipher, considered as a multi-variate
polynomial describing the internal state, is used to evaluate its security against the above
attacks.

Finally, notice that our method conceptually improves (and extends) upon the work
of Sun et al. in [SLG+16] because the counting process in our case takes the number of
occurrences into account and not only whether a certain word appears at the output or
not. Our main results and the previous works are listed in Table 1.
Organization. The rest of the paper is organized as follows. In Section 2, we introduce
some basic notation and give a brief description of AES and SKINNY block ciphers. In
Section 2.4 we introduce the algebraic representation of SPN block ciphers and give a
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Table 1: Summary of the Attacks on SKINNY

Target Algorithm Attack Model Rounds Time Complexity Source
SKINNY-64-128 Single-Key 12 251.95 [DL18]
SKINNY-128-128 Single-Key 10 248 [Udo18]
SKINNY-64-64 Related-Tweakey I D 19 263.03 [LGS17]

SKINNY-128-128 Related-Tweakey I D 19 2124.60 [LGS17]
SKINNY-64-128 Related-Tweakey I D 23 2125.91 [LGS17]
SKINNY-128-256 Related-Tweakey I D 23 2251.47 [LGS17]
SKINNY-64-128 Related-Key I D 21 286 [ABC+17]
SKINNY-64-128 Related-Key I D †22,23 271.6, 279 [ABC+17]
SKINNY-128-128 Single-Key 16 2112 Ours

†: Attacks under the assumption that 48 bits of the tweakey are public. I D = Impossible
Differential

motivation for its use. An algorithm for finding integral distinguishers is given in Section 3,
along with its application to SKINNY and AES. Impossible differentials and algorithm for
determining the zero-sum distinguishers are treated in Section 4. The linear combinations
of the words of intermediate state on the input words is studied in Section 5, we analyze
the dependence between linear combination of the output words of intermediate stage
and the input words. A cryptanalysis of the reduced-round SKINNY-128-128 cipher, in
a single-key model, is elaborated in Section 6. Some concluding remarks are given in
Section 7.

2 Preliminaries
The substitution permutation network (SPN) structure is widely used in constructing
cryptographic primitives. It iterates some SP-type round functions to achieve Shannon’s
concepts of confusion and diffusion. More specifically, the SP-type function f : F b×n

2 →
F b×n

2 used in this paper is defined as follows: assume the input x is divided into n words x =
(x0, · · · , xn−1), where each xi is of length b in bits (considered as a word here). Applying
the nonlinear transformation Si to xi, we denote y = (S0(x0), · · · , Sn−1(xn−1)) ∈ F b×n

2 .
Finally, one applies a linear transformation P to y, so that P (y) is considered as the output
of f . Both SKINNY and the Advanced Encryption Standard (AES) block ciphers use
the design principles of iterating SP-type function several times (each iteration is called a
round).

We denote by mij the (i, j) entry of the matrix M . For example m00 is the entry
corresponding to the first row and first column, thus for convenience the indices start from
0. Other notation used throughout this article is given below.

2.1 Notations
The following notations are used throughout the rest of the paper:
-Xi: The output of the round i.
-Xi[j]: The j-th word of Xi, where 0 ≤ j < 16.
-pi: The i-th word of plaintext, where 0 ≤ i < 16, used in the encryption.
-P \ {pi}: All the bytes of plaintext, except the i-th, where 0 ≤ i < 16.
-ci: The i-th word of ciphertext, where 0 ≤ i < 16, used in the decryption.
-kj : The j-th word of the master key.
-Ki: The key of the i-th round.
-RCi: The round constant for the i-th round.
-A = [j0, j1, · · · , js−1]: an ordered set of integers such that j0 < j1 < · · · < js−1.
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-S: S-box.
-V : The inverse of S-box.
-b: The number of input bits of S-box.

Consider a set of plaintexts, i.e., a set of 2b plaintexts which are equal in 15 words
except for the one in the position j for a certain 0 ≤ j < 16. We call this set a δ-set.

A word is called balanced if XOR-ing its 2b values, obtained by encrypting the δ-set, is
zero.

2.2 The AES Block Cipher
The Advanced Encryption Standard(AES) is an iterated block cipher which encrypts
128-bit plaintext into 128-bit ciphertext. AES only uses sixteen identical S-boxes in each
round, each S-box corresponding to the inverse function over F28 . The round function
consists of four basic transformations given below (treating the internal state as 4 × 4
(state) matrix whose entries are bytes):

- SB is a nonlinear substitution that applies the same S-box to each byte of the internal
state.

- SR is a cyclic rotation of the i-th row of the state matrix by i bytes to the left, for
i = 0, 1, 2, 3.

- MC is a multiplication of each column with a Maximum Distance Separable (MDS)
matrix over F28 .

- AK denotes XOR-ing the state matrix with the round key.

The use of an MDS matrix essentially guarantees that the sum of active bytes in the input
and output of the MixColumns operation is at least 5, unless all bytes are non-active. The
MDS matrices used in MC operation are shown below, both encryption and decryption
direction are given. Note that X[j] is the input value and Y [j] is the updated value. The
numbers e, b, d, 9 are the hexadecimal representations of finite field elements.

Y [0]
Y [1]
Y [2]
Y [3]

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2




X[0]
X[1]
X[2]
X[3]

 ,


X[0]
X[1]
X[2]
X[3]

 =


e b d 9
9 e b d
d 9 e b
b d 9 e




Y [0]
Y [1]
Y [2]
Y [3]


Since we do not investigate the key-recovery attacks, please refer to [DR02] for the details
related to the key schedule.

2.3 The SKINNY Block Cipher
SKINNY [BJK+16] is a family of lightweight block ciphers proposed at Crypto 2016. It
adopts the SPN structure just like AES. Several papers have been published that analyse
SKINNY after it published. Some of the attacks such as [LGS17, ABC+17, SMB18] are
in the related tweakey model, whereas in the single-tweakey model commonly impossible
differentials are employed [TAY17].

SKINNY has a variable block size of 64, 128 bits where both the plaintext and the
intermediate state are described by matrices of size 4× 4 containing words. Each round of
SKINNY is composed of four operations applied to the internal state in the order specified
below:

1. SubByte: Apply the S-box of SKINNY to each nibble.
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2. AddConstants and AddRoundKey(AK): XOR the state with constant and subkey.

3. ShiftRow: Shift the i-th row by i nibbles to the right, i = 0, 1, 2, 3.

4. MixColumn: Multiply each column by a constant 4× 4 matrix MSkinny over the field
F 4

2 and F 8
2 , respectively (depending on the block length being 64 or 128), where

MSkinny =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 ,M−1
Skinny =


0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

 .

In all the cases, the words are numbered row-wise, one round of SKINNY is shown in
Figure 1.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

SC AC

ART

»> 1
»> 2
»> 3

ShiftRows MixColumns

Figure 1: SKINNY Round Function.

Since XORing with constants does not influence the integral property, impossible differ-
ential and zero-sum property, we do not consider AddConstants (AC) and AddRoundKey
(AK) in our analysis. For more details about SKINNY the reader can refer to [BJK+16].

2.4 The Algebraic Representation of SPN Ciphers

In this section, we will present an explicit formula for each word of the ciphertext being
represented using the plaintext. We borrow some ideas from [SLG+16], thus representing
the dependence of the output on the input by a binary matrix. If the input Xi to the i-th
round function is viewed as a column vector (Xi[0], · · · , Xi[n− 1])T , then the output Xi+1
can also be viewed as a column vector (Xi+1[0], · · · , Xi+1[n − 1])T . The latter can be
computed as Xi+1 = MS(Xi) = M(S0(Xi[0]), · · · , Sn−1(Xi[n− 1]))T , where M denotes
the matrix of the linear transformation P .

Considering SKINNY as an example, the output words of the first round (being inputs
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of the second round) can be represented using the plaintext words as follows:

X1[0] = S(p0) + k0 + S(p10) + S(p13)
X1[1] = S(p1) + k1 + S(p11) + S(p14)
X1[2] = S(p2) + k2 + S(p8) + 2 + S(p15)
X1[3] = S(p3) + k3 + S(p9) + S(p12)
X1[4] = S(p0) + k0
X1[5] = S(p1) + k1
X1[6] = S(p2) + k2
X1[7] = S(p3) + k3
X1[8] = S(p7) + k7 + S(p10)
X1[9] = S(p4) + k4 + S(p11)
X1[10] = S(p5) + k5 + S(p8) + 2
X1[11] = S(p6) + k6 + S(p9)
X1[12] = S(p0) + k0 + S(p10)
X1[13] = S(p1) + k1 + S(p11)
X1[14] = S(p2) + k2 + S(p8) + 2
X1[15] = S(p3) + k3 + S(p9)

(1)

Let MSK be the matrix representation of the composition of the ShiftRow and MixColumn
operations. Its precise description is given in Appendix A. Then,

(X1[0], X1[1], · · · , X1[n− 1]) = MSK(S(p0), S(p1), · · · , S(pn−1)) +K0 +RC0.

(X2[0], X2[1], · · · , X2[n− 1]) = MSK(S(X1[0]), S(X1[1]), · · · , S(X1[n− 1])) +K1 +RC1.

Since one can represent the words of the subsequent round (say i + 1) in terms of the
previous round i recursively, then it is possible to deduce an algebraic representations
of SKINNY reduced to r rounds, so that output internal state is expressed in terms of
plaintexts words and round subkeys. For example, the detailed expression of X7[8] (thus
SKINNY reduced to 7 rounds) in terms of the plaintext words can be found in Appendix B.
Where “2” is the round constant, “+2” means bitwise modulo addition with the constant
0x02. Specifying these algebraic expressions allows us to study and explore many properties
of a given cipher which certainly offers some benefits in the cryptanalysis.

In [SLG+16], the authors proposed the use of the so-called characteristic matrix of
the linear layer of a given block cipher. ForM = (mij) ∈ Fn×n

2b , denote by Z the integer ring.
The characteristic matrix of the round function is then defined as M∗ = (mij∗) ∈ Zn×n,
where m∗ij = 0 if mij = 0 and m∗ij = 1 otherwise. A matrixM ∈ Zn×n is non-negative if all
elements of M are non-negative, and positive if all elements of M are positive. Therefore,
the characteristic matrix is always non-negative.

Since SKINNY utilizes a binary matrix, the characteristic matrix M∗ for SKINNY
round function is equal to its linear transformation matrix M . According to the definition
of characteristic matrix, mi,j = 0 means that the i-th word of the output in the first round
is independent of the j-th word of input. Generally, the characteristic matrix of r-round
encryption is (M∗)r = (hij), where hij denotes the frequency that pi appears in the j-th
word of the output after r rounds of encryption. Then, hij = 0 means that the i-th output
byte of the r-round SPN cipher is independent of the j-th input byte, whereas hij = 1
indicates that pi appears once in Xr[j]. Notice that when S is a permutation and other
words of the plaintext are fixed, then Xr[j] is a permutation on pi.

Nevertheless, we want to remark that the matrix representation in [SLG+16] is not
always compatible with our method. This is mainly based on the fact that the matrix-based
approach only extracts and deals with a binary information, thus measuring whether words
appears or not. As a consequence, more sophisticated distinguishers taking into account
the exact (multiple) number of occurrences cannot be deduced from the matrix-based
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approach but can be derived using Equation (1). For example, in the expression of X7[8]
in Appendix B, a closer inspection reveals that p12 and p13 occurs respectively 3 and 6
times. Later in Section 3.3, we will show that utilizing the expressions in Equation (1) one
can identify that X7[8] is balanced when p12, p13 traverse over F2b × F2b , b = 4 or 8. On
the other hand, the matrix-based approach will wrongly identify it as an unbalanced one!

3 Algorithm Approach for Integral Distinguishers
In this section we propose an algorithmic approach for building integral distinguisher based
on some simple observations. In particular, we derive an upper bound on the number of
rounds which can be covered by this method.

3.1 The Integral Distinguisher
Let renc be the minimum integer identifying that after renc rounds encryption, the algebraic
expression of any output word includes (depends on) the information of every word of the
plaintext (full diffusion). On the other hand, at the end of renc − 1 or even less encryption
round, there is at least one output word which does not depend on all the plaintext words.
Similarly, let rdec be the minimum integer so that decrypting rdec rounds the algebraic
representation of each word of the output becomes dependent on all the ciphertext words.

Claim. The integral distinguisher can cover at most renc + rdec rounds.

Let state0, state1, · · · , state4 denote the outputs of several rounds of the encryp-
tion/decryption process. More precisely, state2 is decrypted to state0, and encrypted to
state4. Figure 2 visualizes the diffusion of an active byte in forward (encryption) and
backward (decryption) computation.

rdec − 1

renc

state0

state1

state2

state3

state4

Figure 2: Building an integral distinguisher

Suppose now that qj is an active word in

state2 = (q0, q1, · · · , qn−1),

which is highlighted in red in Figure 2. On one hand, the word qj diffuses gradually in the
encryption process, after rj

enc rounds encryption, it appears in the expression of each word
of the output. Suppose it appears once in the expression of the words of the state4 whose
coordinates are in A = {j0, j1, · · · , js−1}.

On the other hand, suppose we decrypt state2. Denote the state after rj
dec−1 rounds of

decryption by state0, which implies the existence of at least one word of state0 independent
of qj . Notice that qj is contained in all output words after rj

dec rounds decryption. Suppose
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that the i0−th, i1-th, · · · , it−1−th, t < n words of state0 depend on qj . When the
plaintext words pi0 , pi1 , · · · , pit−1 goes through (F2b)t, then after rj

enc + rj
dec− 1 encryption

rounds the words of the ciphertext with coordinates {j0, j1, · · · , js−1} sum to zero. Such a
distinguisher has the data complexity of 2bt.

Now we investigate whether the forward rj
enc-round distinguisher can be extended

one more round by propagating the active word in the forward direction and taking
into account the linear transformation. Now we want to determine whether there is
Xrj

enc+1[i] =
∑n−1

k=0 mikSk(Xrj
enc

[k]) such that qj occurs once in each Xrj
enc

[k], for any
mik 6= 0 . Where mik is the entry in the i-th row and the k-th column of the linear
transformation matrix. If so, every Xrj

enc+1[k],mik 6= 0 is balanced when qj goes through
F2b and the other words of Xi are fixed to a constant value. This is because each
Sk(Xrenc

[k]) is a permutation on qj .
For each 0 ≤ j < n, we get the corresponding number

rj
enc + 1 + rj

dec − 1 = rj
enc + rj

dec, (2)

and the longest integral distinguisher may cover max{r0
enc + r0

dec, r
1
enc + r1

dec, · · · , rn−1
enc +

rn−1
dec } rounds.

Note that rj
enc ≤ renc, r

j
dec ≤ rdec, which proves our claim. We summarize the above

discussion as follows.

Theorem 1. For an SPN cipher, let renc, rdec be the minimum number rounds needed
to achieve full diffusion for encryption and decryption, respectively. Then the integral
distinguisher can cover up to renc + rdec.

We now further analyze whether two input words pi 6= pk (i 6= k) occur once in two
output words Xrenc [s], Xrenc [t], s 6= t, which consequently leads to an integral property at
the end of round renc + 1.

Definition 1. A function π(x, y) = (ϕ1(x, y), · · · , ϕn(x, y)) from (F2b)2 to F2b is said to
have order-2 squared property on a set Ω1 × Ω2 if

∑
x∈Ω1,y∈Ω2

π(x, y) = 0.

If there is an Xrenc+1[j] formed as

Xrenc+1[j] = S1((f(P \ {pi}) + pi) + krenc+1,j + S2((g(P \ {pk}) + pk),

where pi appears once in the first S-box and pk appears once in the second S-box, then the
active words pi and pk lead to an integral property at the end of round renc + 1. In fact,
when Xi takes all the possible values in the i-th and k-th words while the remaining n− 2
words are kept fixed, then the j-th word of the output after (renc + 1) rounds encryption
sums to zero. Generally, we have the following theorem.

Theorem 2. Let S1(x) and S2(x) be permutations on F2b . Then S1(x+f(y))+S2(y+g(x)),
for x, y ∈ F2b , has order-2 squared property on (F2b)2.

Proof. Since S1(x) is a permutation on F2b , for every fixed y ∈ F2b the sum of
∑

x∈F2b
S1(x+

f(y)) is always zero. The same is true for
∑

y∈F2b
S2(y + g(x)). So∑

(x,y)∈F2b×F2b

(S1(x+ f(y)) + S2(y + g(x)))

=
2b−1∑
y=0

2b−1∑
x=0

S1(x+ f(y)) +
2b−1∑
x=0

2b−1∑
y=0

S2(y + g(x)) = 0 + 0,

which proves the theorem.
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3.2 A Generic Algorithm for Integral Distinguishers
In this subsection, we propose a generic algorithm for finding the longest integral dis-
tinguisher, cf. Algorithm 1. Step 2 to Step 3 of this algorithm aim to find words of X0
appearing only once in the output words for the largest number of encryption rounds
possible, which are then saved in a pool Ω. Step 4 and 5 search for the words in Ω not
occurring in the output for as many decryption rounds as possible. The steps 8 - 10 check
whether the distinguisher can be extended by one more round in the encryption direction.

Algorithm 1 Finding an integral distinguisher of maximum length
Input: The representation of one round of encryption X1[j] =

∑n−1
k=0 ajkSk(pk) and one

round decryption Y1[j] =
∑n−1

k=0 bjkS
−1
k (ck)

Output: A set of integral distinguishers Γ
1: Set Γ to be an empty set
2: Encrypt X0 by Xi+1[j] =

∑n−1
k=0 ajkSk(Xi[k]) iteratively for i = 0, 1, . . . till every word

of X0 is contained in the expression of all the words of the internal state, and there
exists some X0[i] which appears exactly once in the expression of some word of the
internal state.

3: Denote the number of iterated times in the step above by rA
enc, and put those words

which occur only once after rA
enc rounds of encryption in a pool Ω = {X0[i0], · · · , X0[it]}.

4: Decrypt ciphertext Y0 and calculate the algebraic representation of the internal states
by Yi+1[j] =

∑n−1
k=0 bjkS

−1
k (Yi[k]), iteratively for i = 0, 1, . . . till every word of Y0

appears in the expression of all the word of the internal states, and there exists some
Y0[i] which appears exactly once in the expression of some word of the internal state.
We denote the number of iterated times here by rA

dec.
5: Check whether there is some word Z among Ω = {X0[i0], · · · , X0[it]} which does not

appear in some word of YrA
dec
−1 — the internal state after rA

dec−1 rounds of decryption.
If such word cannot be found, let rA

dec = rA
dec − 1 and repeat this step. Once found,

record all fulfilling words Z in a set Λ.
6: Denote those words of XrA

enc
, in the expression of which some element Z from Λ occurs

exactly once, as XrA
enc

[Z0], · · · , XrA
enc

[Zk].
7: Encrypt XrA

enc
one more round to get XrA

enc+1.
8: while There is a word of X1+rA

enc
whose one round representation only includes the

words among XrA
enc

[Z0], · · · , XrA
enc

[Zk] do
return rA

enc + rA
dec

9: end while
10: return rA

enc + rA
dec − 1

3.3 The Integral Property for SKINNY
In the case of SKINNY cipher, for the encryption direction, each of p12, p13, p14, p15 occurs
once in the expression of some words among the last 12 words of the output of round six.
Moreover, we have X7[8] = S(X6[7]) + k7 + S(X6[10]). In the algebraic representation of
X6[7], p12 occurs once and p13 occurs five times, in algebraic representation of X6[10], p12
appears twice and p13 appears once, respectively. This observation ensures that S(X6[7])
is a permutation on p12 when the other fifteen words are kept fixed. Also, S(X6[10]) is a
permutation on p13, when the remaining fifteen words are fixed. Thus, we get a 7-round
integral property for all versions of SKINNY which we state now formally.

Theorem 3. For all versions of block cipher family SKINNY, when p12, p13 goes through
F2b × F2b , b = 4 or 8, and the remaining words of the plaintext are fixed, the sum of X7[8]
over these plaintexts is zero.
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The correctness of Theorem 3 can be confirmed from the detailed expression of X7[8]
in Appendix B. Figure 3 depicts the 7-round SKINNY integral distinguisher.

The frequency of plaintext words occurring in X7[8] are listed in Table 2. The words
occurring fewer times in the expression of an output word than the others may lead to
integral property.

Table 2: The frequency of plaintext bytes occur in X7[8]

p0 p1 p2 p3 p4 p5 p6 p7

12 10 8 6 4 7 7 5
p8 p9 p10 p11 p12 p13 p14 p15

13 11 13 11 3 6 4 4

The 7-round distinguisher can be easily explained in the following way. Suppose that
the input space X is composed of vectors taking all possible 22b, (b = 4 or 8) values on the
twelfth and thirteenth words while the other 14 words take constants. In this case |X|
= 28 or 216 for SKINNY-64 and SKINNY-128 correspondingly, and X is a subspace of
(F b

2 )16. After seven rounds of encryption, the XOR sum of the eighth output byte is zero
with probability 1.

The integral property can be extended by 3 rounds in backward direction by activating
15 words. In the decryption direction, c12, c13 do not occur in the algebraic representation
of the 14-th word of the output after three rounds of decryption, but after four rounds
of decryption at least one of them occur in the expression of each word of the output.
Consequently, 10-round integral distinguishers can be constructed. That is, by fixing the
14-th word while letting the remaining part of the plaintext goes through (F28)15, the 8-th
word sums to zero after 10 encryption rounds.

Decryption

Encryption

3r

7r

forward backward balanced active constant

Figure 3: 10-Round integral distinguisher for SKINNY

Integral property comparison: our approach vs division property. One can
also investigate the integral property by using the division property. In this context we
want to emphasize that in [ZR19] the authors showed that for SKINNY-64, 10 rounds is
the upper bound when searching for integral distinguishers based on division property.
This analysis has been conducted taking into account the exact properties of both linear
and nonlinear layer. In difference, we get a 10-round distinguisher by using simple algebraic
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structure. Notice also that a major disadvantage of distinguishers based on the division
property is that the time complexity for finding these (using CPLEX, SAT and STP
solvers) grows super exponentially in the number of rounds.

3.4 The Integral Property of AES
Let us mark the states of each operation of AES round function by increasing subscripts.
Then each round consists of four states. There is a basic integral distinguisher on the
3-round AES (see Figure 4 state ]5 to state ]16). Consider the expression of state ]12 in
terms of state ]5 (bytewise). It can be verified that in the encryption of two AES rounds,
each byte in state ]5 occurs exactly once in the expression of every byte of state ]12. That
is each byte in state ]12 depends on all the bytes of state ]5.

Letting the first byte of state ]5 to take on each of the 256 possible values exactly once
while keeping the remaining 15 bytes fixed, then every byte of state ]12 is a permutation
on the first byte of state ]5. The same property applies to the bytes in state ]15. When
the input of a permutation on F28 ranges through all possible values so does its output as
well. Since any word in state ]16 is a linear combination of bytes in state ]15, then the
XOR of its 256 values during the encryption of a δ set is zero. That is, when any byte of
state ]5 takes on all possible values (the other bytes being fixed) then each byte of the
output of 3-round AES is balanced. Now we add one round on the top of the 3-round

#1 #2 #3 #4

SB SR MC
A
A
A
A

A
A
A
A

A
A
A
A

A

#5 #6 #7 #8

SB SR MC
start
point

A A A A
A
A
A

#9 #10 #11 #12

SB SR MC
A
A
A
A

A
A
A
A

A

A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

#13 #14 #15 #16

SB SR MC
A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

B
B
B
B

B
B
B
B

B
B
B
B

B
B
B
B

A active B balanced constant

Figure 4: 4-Round integral distinguisher for AES

integral distinguisher. Denote by ∆ a set corresponding to state ]5 with the variable first
and the remaining 15 bytes being fixed. When we decrypt the state ]5 backward for one
round, given ∆, it is possible to prove that the XOR-sum of state ]1 over ∆ is always
equal to 0. Since in this decryption direction ∆ only occurs once in the expression of each
byte of state ]1 in the diagonal, it implies that each byte in the diagonal of state ]1 is
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a permutation on ∆. On the other hand, when the four bytes in the diagonal of state
]5 goes through (F28)4, there are 224 structures with the (0, 0) entry varying through all
possibilities and the other 15 are held constants.

For any constant Y [0], c1, c2, c3 ∈ F28 , the equation
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 =


X[0]
X[1]
X[2]
X[3]

 =


Y [0]
c1
c2
c3


has exactly one solution, because M is invertible. Then, letting Y0 goes through F28 ,
M(X0, X1, X2, X3)T = (∗, c1, c2, c3)T has 256 solutions which describe the structure of
state ]4. When (c1, c2, c3) goes through (F28)3, we get 224 structures of state ]4. For each of
these structures, state ]16 sums to zero. Thus, we have a four-round integral distinguisher
using four active bytes in the diagonal with the remaining bytes fixed indicating that every
byte of the output of round 4 sums to zero. Figure 4 depicts the 4-round AES integral
distinguisher.

Furthermore, let the 4 bytes in the diagonal of the state ]1 takes all possible values
from (F28)4 and the other 12 bytes be constants, then the output of 1-round AES can be
divided into 224 structures of ∆. Therefore, the sum of each byte of the output of the
fourth round is 0.

We can conclude that AES has no integral property of more than 4 rounds unless the
details of the S-boxes are taken into account, because we can not extend the distinguisher
in Figure 4 neither in the forward nor in the backward direction.

4 Impossible and Zero-Sum Differentials
In this section, we analyze impossible and second-order differentials within the framework
of our algebraic representation. We also give an application of our methods to block ciphers
SKINNY and AES.

To describe the search for impossible differentials we depict this process in Figure 5.
The analysis starts from the encryption direction. Let X = state0, X[i] be the i-th word
of X. We first calculate the algebraic representation of the encryption operation. For
each X[i], we record the round number ri

enc that X[i] occurs in all words of Xri
enc

but not
occurring in at least one word of Xri

enc−1. Let us denote state2 = Xri
enc

.
Similarly, the algebraic representation of decryption operation is calculated. Let

Y = state4, Y [j] be the j-th word of Y .
From the encryption point of view, the active byte X[i] is fully diffused to all the words

of state2, but from the decryption perspective, there is at least one word in state2 which is
independent of the active byte Y [j]. Therefore, having the input differential at the i-th
word and the output difference at the j-th word can not hold simultaneously. Consequently,
we get an impossible differential distinguisher covering ri

enc + rj
dec − 1 rounds. This is

commonly named as the miss in the middle technique.
For any 0 ≤ i, j < n−1, we can get the corresponding ri

enc + rj
dec−1 so that impossible

differential distinguisher covering most rounds is computed as max{ri
enc + rj

dec − 1, 0 ≤
i, j < n− 1}.

4.1 Applications to AES and SKINNY
For AES, in the encryption direction, one active byte achieves full diffusion after 2 rounds.
On the other hand, considering the decryption process, one active byte propagates to four
bytes after one round AES decryption and it propagates to all 16 bytes after 2 decryption
rounds. Thus, there is a three-round impossible differential with two encryption and one
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ri
enc

rj
dec

state0 X[i]

state1

state2

state2

state3

state4 Y [j]

Contradiction!

forward backward

Figure 5: Building impossible differential distinguisher

decryption round. Similar to many other attacks on AES, if we require that the last
round is without MixColumns, the impossible differential distinguisher can be extended to
4-round AES when the fourth round has an unique active byte. The impossible differential
distinguisher is depicted in Figure 6.

SR MC AK

SR MC AK S

S

S

SR

Contradiction

AK

AKMCSR

Figure 6: 4-Round Impossible Distinguisher for AES

For SKINNY, we found that only Y [8], Y [9], Y [10], Y [11] do not appear in the expression
of one word among the last 8 bytes of the intermediate state after five decryption rounds.
On the other hand, X[12], X[13], X[14], X[15] appear once in the expression of the last 8
words after six encryption rounds. Hence, we can pick up any such pair (in total having 16



Wenying Zhang �, Meichun Cao, Jian Guo and Enes Pasalic 185

possibility of combining X[i] and Y [j]) contradicting in any of the last eight words of the
intermediary state to construct impossible differential characteristic reaching 11 rounds in
total.

4.2 Algorithm for Determining the Zero-Sum Differential
In the known-plaintext scenario, differential attacks are not applicable in general. Indeed,
this technique depends on particular differential trails and observing such a difference in a
pool of random plaintexts is very improbable. For example, in order that a specific n-bit
difference is observed with high probability, it is required that the data pool has size close
to 2 n

2 . Even more data is needed for higher-order differential cryptanalysis, and the same
is true when the differential is probabilistic. However, a zero-sum differential has much
higher chance to be observed. This probability is even higher if the random plaintext
blocks have low entropy, for example, if the plaintext is a text taken from a book [Udo18].
So it is interesting to study the mathematical principles of zero-sum distinguisher via the
algebraic expression of the internal states.

Similarly to what has been done for the integral property, we shall calculate the
expression of the internal states as functions of the plaintext words (p0, p1, · · · , p15) in the
encryption direction for r−enc rounds. We are in particular interested in those pi, pj , i 6= j,
such that pi does not occur in the expression of Xr−

enc
[s] whereas pj does not occur in the

expression of Xr−
enc

[t], where 0 ≤ s 6= t < n − 1. But on the other hand, all the words
occur in the expression of any word of Xr−

enc+1.
Assume that the expression of one word of round r−enc + 1 is of the form

Xr−
enc+1[u] = F (P ) = F1(P \ {pi}) + F2(P \ {pj}), i 6= j,

where F is a function from (F2b)n to F2b and F1, F2 are functions from (F2b)n−1 to F2b .
Then the cipher has an r−enc + 1-round zero-sum distinguisher.

Assume that pi, pj can take on four possible values (a, b), (a, c), (d, b), (d, c) whereas the
remaining n−2 words are constants. Such a set of plaintexts is denoted by P \{pi, pj} while
specifying pi = a, pj = b is denoted by (P \ {pi, pj}a, b) (similarly for other prespecified pi

and pj). Defining

F1(pj = x) , F1(p0, · · · , pi−1, pi, pi+1, · · · , pj−1, x, pj+1, · · · , pn−1)
F2(pi = y) , F2(p0, · · · , pi−1, y, pi+1, pj−1, pj , pj+1, · · · , pn−1),

one can compute

F (P \ {pi, pj}a, b) + F (P \ {pi, pj}a, c) + F (P \ {pi, pj}d, b) + F (P \ {pi, pj}d, c)
= F1(pj = b) + F2(pi = a) + F1(pj = c) + F2(pi = a)
+ F1(pj = b) + F2(pi = d) + F1(pj = c) + F2(pi = d) = 0.

That is to say, the cipher has the zero-sum property extending to r−enc + 1 rounds. The
cipher can be distinguished by a quadruple of plaintexts with two words of them formed
as (a, b), (a, c), (d, b), (d, c) and the other words being constant.

To achieve the r−enc +1 round zero-sum, the attacker only needs quadruples of plaintexts
that differ in at most two (active) bytes and that sum to zero. These quadruples are then
encrypted using random keys which after r−enc + 1 rounds ensures that the word in some
predefined positions sums to zero over the four encryptions.

For SKINNY, after five encryption rounds, p14 does not occur in X5[7] and p13 does
not occur in X5[10], and furthermore we have X6[8] = S(X5[7]) + S(X5[10]). So∑

P\{p13,p14}=constant,(p13,p14)∈{(a,b),(a,c),(d,b),(d,c)}

X6[8] = 0,
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giving the zero-sum property of the 8-th word after 6 encryption rounds.
Remark 1. In [Udo18], the zero-sum property of SKINNY has been deduced through
experiments. More precisely, by encrypting some quadruples with random keys the authors
of [Udo18] observed that after exactly 6 encryption rounds, the 8-th word has the zero-sum
property. Furthermore, by utilizing the 6-round truncated differential a key-recovery attack
on 10 rounds SKINNY-128-128 can be mounted running in time complexity 248 (guessing
6 bytes of master key in an experiment) with insignificant data complexity requiring only
9 quadruples of chosen plaintexts.

5 Using Occurrences of Linear Combinations
In the previous sections, we investigated the properties of a given cipher using the number
of occurrences of an input word in the expression of the output word (considering both
encryption and decryption direction). In contrast to this approach, we now measure the
number of occurrences of input words in the linear combination of the output words.
A motivation for this concept is that there may exist input words that influence the
algebraic expressions of any ciphertext word, but the same word may not occur in a linear
combination of the algebraic expressions of the ciphertext words. Thus, certain linear
combinations of the ciphertext words may be independent of some input words.

In the case of SKINNY, all its versions achieve full diffusion (forward or backwards)
after 6 rounds, but the XOR sum of the third and the fifteen word of the output after six
encryption rounds is independent of p15. In fact,{

X6[3] = S(X5[3]) + S(X5[9]) + S(X5[12]) + k15
X6[15] = S(X5[3]) + S(X5[9]) + k12,

(3)

which gives X6[3] + X6[15] = S(X5[12]) + k12 + k15. Since p15 does not occur in the
expression of X5[12], it is independent of X6[3] + X6[15]. This is a strong truncated
differential, requiring a single plaintext/ciphertext pair for distinguishing SKINNY from
other block ciphers. In [DL18], Derbez and Lallemand used it to mount a key recovery
attack on 12-round SKINNY- 64-128.

Now we extend the distinguisher one more round in the backward direction. Suppose
that we vary X1[15] while keeping X1[0], · · · , X1[14] fixed. From Equation (1), we have
X1[7] = S(p3) + k3 and X1[15] = S(p3) + k3 + S(p9), and we need X1[7] be an fixed
constant and X1[15] be active, which implies p3 a constant and p9 a variable. Note that
X1[3] = S(p3) + k3 + S(p9) + S(p12), in order to fix X1[3] to be a constant, S(p12) (and
hence p12) must be a variable dependent on p9. To sum up, there are three words of X1
which depend on p6, p9, p12, X1[3] = S(p3) + k3 + S(p9) + S(p12)

X1[11] = S(p6) + k2 + S(p9)
X1[15] = S(p3) + k3 + S(p9).

(4)

So we can let p6, p9, p12 be varied while keeping S(p6) + S(p9), S(p9) + S(p12) fixed.
That is, for different plaintexts (p0, p1, · · · , p15) and (p′0, p′1, · · · , p′15), we assume pi = p′i
for all i ∈ {0, 1, . . . , 15} \ {6, 9, 12} and S(p6) + S(p9) = S(p′6) + S(p′9), S(p9) + S(p12) =
S(p′9) + S(p′12), which implies that the bytes of X1 and X ′1 are equal except for the fifth
byte.

Hence, we have the following result which is a strong truncated differential with one
pair of plaintexts and ciphertexts for seven rounds SKINNY.

Theorem 4. Suppose that two different plaintexts (p0, p1, · · · , p15) and (p′0, p′1, · · · , p′15)
are selected so that pi = p′i for all i ∈ {0, 1, . . . , 15} \ {6, 9, 12}, for which additionally
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S(p6) + S(p9) = S(p′6) + S(p′9) and S(p9) + S(p12) = S(p′9) + S(p′12). Then the 3rd and
15-th word of X7 + X ′7 are equal. Especially, we can let p6 = p9 = p12 6= p′6 = p′9 = p′12
and the other words of P and P ′ be equal.

Finally, it is worth to mention that, in this paper, we only focus on the linear layer
instead of the details of Sboxes, therefore the numbers of rounds of the distinguishers
covered by the integeral property, impossible differential, truncated differential, and zero-
sum property are the same, for SKINNY-64 and SKINNY-128.

6 Attacks on SKINNY-128-128 in Single-Key Model
In this section we propose several practical attacks in a single-key model on the SKINNY-
128-128 variant. This is done by using our 7-round integral distinguisher and then
appending a few more rounds (as much as possible) that can be efficiently handled. We
first briefly describe a practical attack on SKINNY-128-128 reduced to 11 rounds, and
then investigate the possibility of extending the number of rounds successively.

6.1 Attacking SKINNY-128-128 Reduced to 11 Rounds
Recall that for our 7-round integral distinguisher on SKINNY given in Section 3.3, when
p12, p13 go through F28 × F28 while keeping the other words of plaintext fixed, the word
with coordinate 8 (denoted by X7[8]) sums to zero after 7 encryption rounds. Now we
append 4 rounds at the bottom of this integral distinguisher and achieve 11-round attack
on SKINNY.

More precisely, for 11-round SKINNY 128-128, let (c0, c1, · · · , c15) ∈ (F28)16 denote the
ciphertext and (k0, k1, · · · , k15) ∈ (F28)16 denote the master key. Decrypt the ciphertext
at the intermediate stage of round seven, which gives the following algebraic representation
of X7[8] as a function of the ciphertext words:

X7[8] = V (V (V (V (c5 + c9 + c13 + k3 + 1) + V (c6 + c14 + 2) + V (c3 + c15) + k10)+

V (V (c6 + c10 + c14 + k1) + V (c0 + c12)) + V (V (c6 + k5) + V (c1 + c13)) + k1)

+ V (V (V (c6 + C10 + c14 + k1) + k12) + V (V (c4 + k6 + E) + V (c3 + C15))) + 2). (5)

Note that X7[8] only depends on 6 key bytes k1, k3, k5, k6, k10, k12. These 6 bytes of the key
can be found by exhaustive search. The process of verification consists of a computation
of X7[8] from ciphertexts using the equation (5) and verifying that the sum is equal to
zero. In this case, the distinguisher can be seen as an 8-bit sieve.

Having a collection of 216 plaintext/ciphertext pairs, one can recover 8 bits of the
involved 48-bit key. Repeating this 6 times will filter out all wrong key guesses, i.e., with
6 ∗ 216 pairs of data, the 48-bit key can be recovered uniquely. For other 80 key bits
unknown, it can be done with a shifted version (X7[9] is balanced when p13, p14 traverse
over F28 × F28 and so on) of the current distinguisher, but with exhaustive searches of less
than 6-bytes. So the time complexity is 248 and the data complexity is 6 ∗ 216.

6.2 Extending the Number of Rounds for SKINNY-128-128
Note that adding more encryption rounds at the bottom of the 7-round distinguisher
slightly increases the data complexity, which is a multiple of 216, the similar amount as that
for 11-round SKINNY-128-128. Concretely, on one hand, for 12-round SKINNY-128-128,
the decryption of the ciphertext backs to the end of round seven, there are 8 bytes of master
key involved in the expression of X7[8]. On the other hand, for 13-round SKINNY-128-128,
there are 14 bytes of master key involved in the expression of X7[8]. Consequently, the
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time complexity of these attacks are 264 and 2112, respectively. The data complexity of
12-round and 13-round attack are 8× 216 and 14× 216, respectively.

Applying the same approach to SKINNY-128-128 reduced to 14 rounds, shows that all
the 16 bytes of the master key are involved in the algebraic representation of X7[8] and an
efficient attack is no more possible. Table 3 summarizes these key bytes appear in the 8-th,
9-th,10-th,11-th words of round 7 represented by the ciphertext words, when decrypting
from the ciphertext to round 7. The number of rounds that the decryption starting from
varying from 11 to 13.

Table 3: Key bytes involved in X7[8], X7[9], X7[10], X7[11] in the decryption direction

Round State word Guessed Key Bytes

11

X7[8] k1; k3; k5; k6; k10; k12

X7[9] k0; k1; k4; k7; k11; k13

X7[10] k2; k5; k6; k7; k8; k9

X7[11] k0; k2; k3; k4; k14; k15

12

X7[8] key\{k0; k2; k4; k7; k8; k14}
X7[9] key\{k2; k3; k5; k6; k9}
X7[10] key\{k0; k1; k3; k4; k8; k12; k15}
X7[11] key\{k1; k5; k6; k7; k10; k11}

13

X7[8] key\{k8, k14}
X7[9] key\{k9}
X7[10] key\{k12, k15}
X7[11] key\{k10, k11}

Although we can not attack more than 14 rounds just by adding some rounds at the
bottom of 7-round integral distinguisher, we can add one to three rounds at the top of
the distinguisher and attack 14-round to 16-round SKINNY-128-128. Next, we present an
attack on 16-round Skinny-128-128 by adding three rounds before the 7-round integral
distinguisher.

6.3 A Theoretical Attack on 16-Round SKINNY-128-128
For 16-round SKINNY-128-128, based on the preceding 13-round attack, we add three more
rounds at the top and add 6 rounds at the bottom of the 7-round integral distinguisher,
thus considering in total 16 rounds.

Going in the backward direction, from X3 to the plaintext, one can verify that all
bytes of the plaintext except for the 14-th byte depend on X3[12] or X3[13]. So when
p0, · · · , p13, p15 goes through (F28)15 and p14 is fixed to any constant value, there are 2112

such structures where each structure leads to X3[12], X3[13] being active and the other
bytes being constants.

To calculate X10[8] using the ciphertext bytes all of the ki apart from k1 and k4 are
needed. These facts give rise to the following attack that can be mounted against 16-round
SKINNY-128-128.

1. Encrypt 2120 plaintexts with the 14th byte being fixed to a constant value and all
the remaining bytes being active for 16 rounds.

2. Guess the key bytes {k0, . . . , k15} \ {k1, k4} and decrypt the ciphertext to get X10.
3. Sum X10 up and check whether the sum is zero.
The data and time complexity of this attack are 14× 2120 and 2112, respectively.
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7 Conclusions
An application of our method to SKINNY gives many 10-round integral distinguishers,
all of the 11-round impossible differentials and a strong 7-round truncated differential
which can be efficiently used to distinguish 7-round SKINNY from random permutations.
Moreover, key recovery attacks on 11- to 16-round SKINNY-128-128 in a single-key model
are presented. The attacks are chosen plaintext-ciphertext attacks and are in the single-key
model. To the best of our knowledge a key recovery attack on 16 rounds of SKINNY-128-128
is currently the largest number of rounds cryptanalyzed in the single-key model.
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A The SKINNY linear transformation matrix

MSK =



1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0



.

B The expression of X7[8]
S(S(S(S(S(S(S(p3) +k3 +S(p9) +S(p12)) +k13 +S(S(p4) +k4 +S(p11)) +S(S(p0) +k0 +
S(p10))) +k5 +S(S(S(p0) +k0) +k10 +S(S(p6) +k6 +S(p9))) +S(S(S(p0) +k0 +S(p10) +
S(p13))+k9 +S(S(p5)+k5 +S(p8)+2)))+k14 +S(S(S(S(p0)+k0 +S(p10)+S(p13))+k9)+
k2 +S(S(S(p2)+k2)+k12 +S(S(p4)+k4+S(p11))))+S(S(S(S(p0)+k0 +S(p10)+S(p13))+
k9 + S(S(p5) + k5 + S(p8) + 2) + S(S(p1) + k1 + S(p11))) + k1 + S(S(S(p1) + k1) + k14 +
S(S(p7)+k7 +S(p10))+2)))+k6 +S(S(S(S(S(p0)+k0 +S(p10)+S(p13))+k9 +S(S(p5)+
k5 +S(p8)+2)+S(S(p1)+k1 +S(p11)))+k1)+k8 +S(S(S(S(p2)+k2 +S(p8)+2+S(p15))+
k8)+k4 +S(S(S(p0)+k0)+k10 +S(S(p6)+k6 +S(p9)))))+S(S(S(S(S(p0)+k0 +S(p10)+
S(p13)) +k9 +S(S(p5) +k5 +S(p8) + 2) +S(S(p1) +k1 +S(p11))) +k1 +S(S(S(p1) +k1) +
k14 +S(S(p7)+k7 +S(p10))+2)+S(S(S(p1)+k1 +S(p11)+S(p14))+k15 +S(S(p6)+k6 +
S(p9)))) + k15 +S(S(S(S(p1) + k1 +S(p11) +S(p14)) + k15) + k6 +S(S(S(p3) + k3) + k11 +
S(S(p5)+k5 +S(p8)+2))+2)))+k12)+k6 +S(S(S(S(S(S(S(p1)+k1 +S(p11)+S(p14))+
k15+S(S(p6)+k6+S(p9))+S(S(p2)+k2+S(p8)+2))+k7+S(S(S(p2)+k2)+k12+S(S(p4)+
k4 +S(p11))) +S(S(S(p2) + k2 +S(p8) + 2 +S(p15)) + k8 +S(S(p7) + k7 +S(p10)) + 2)) +
k11 +S(S(S(S(p2)+k2 +S(p8)+2+S(p15))+k8)+k4 +S(S(S(p0)+k0)+k10 +S(S(p6)+
k6 +S(p9)))) +S(S(S(S(p2) + k2 +S(p8) + 2 +S(p15)) + k8 +S(S(p7) + k7 +S(p10)) + 2 +
S(S(p3)+k3 +S(p9)))+k0 +S(S(S(p3)+k3)+k11 +S(S(p5)+k5 +S(p8)+2))+2))+k3)+
k10 +S(S(S(S(S(S(p3)+k3 +S(p9)+S(p12))+k13 +S(S(p4)+k4 +S(p11))+S(S(p0)+k0 +
S(p10))) +k5 +S(S(S(p0) +k0) +k10 +S(S(p6) +k6 +S(p9))) +S(S(S(p0) +k0 +S(p10) +
S(p13)) + k9 + S(S(p5) + k5 + S(p8) + 2))) + k14) + k5 + S(S(S(S(S(p1) + k1 + S(p11) +
S(p14))+k15 +S(S(p6)+k6 +S(p9))+S(S(p2)+k2 +S(p8)+2))+k7)+k12 +S(S(S(S(p3)+
k3+S(p9)+S(p12))+k13)+k3+S(S(S(p1)+k1)+k14+S(S(p7)+k7+S(p10))+2))+2))+2)
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