
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2019, No. 4, pp. 81–118. DOI:10.13154/tosc.v2019.i4.81-118

INT-RUP Secure Lightweight Parallel AE Modes
Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha2, Cuauhtemoc

Mancillas-López3, Mridul Nandi2 and Yu Sasaki1

1 NTT Secure Platform Laboratories, Tokyo, Japan
2 Indian Statistical Institute, Kolkata, India

3 Department of Computer Science, CINVESTAV-IPN, México City, Mexico
avikchkrbrti@gmail.com,nilanjan_isi_jrf@yahoo.com,ashwin.jha1991@gmail.com,

cuauhtemoc.mancillas@cinvestav.mx,mridul.nandi@gmail.com,yu.sasaki.sk@hco.ntt.co.
jp

Abstract. Owing to the growing demand for lightweight cryptographic solutions,
NIST has initiated a standardization process for lightweight cryptographic algorithms.
Specific to authenticated encryption (AE), the NIST draft demands that the scheme
should have one primary member that has key length of 128 bits, and it should be
secure for at least 250 − 1 byte queries and 2112 computations. Popular (lightweight)
modes, such as OCB, OTR, CLOC, SILC, JAMBU, COFB, SAEB, Beetle, SUNDAE etc.,
require at least 128-bit primitives to meet the NIST criteria, as all of them are just
birthday bound secure. Furthermore, most of them are sequential, and they either
use a two pass mode or they do not offer any security when the adversary has access
to unverified plaintext (RUP model). In this paper, we propose two new designs for
lightweight AE modes, called LOCUS and LOTUS, structurally similar to OCB and
OTR, respectively. These modes achieve notably higher AE security bounds with
lighter primitives (only a 64-bit tweakable block cipher). Especially, they satisfy the
NIST requirements: secure as long as the data complexity is less than 264 bytes and
time complexity is less than 2128, even when instantiated with a primitive with 64-bit
block and 128-bit key. Both these modes are fully parallelizable and provide full
integrity security under the RUP model. We use TweGIFT-64[4,16,16,4] (also referred
as TweGIFT-64), a tweakable variant of the GIFT block cipher, to instantiate our
AE modes. TweGIFT-64-LOCUS and TweGIFT-64-LOTUS are significantly light in
hardware implementation. To justify, we provide our FPGA based implementation
results, which demonstrate that TweGIFT-64-LOCUS consumes only 257 slices and
690 LUTs, while TweGIFT-64-LOTUS consumes only 255 slices and 664 LUTs.
Keywords: OCB, OTR, TweGIFT, lightweight, INT-RUP, elastic-tweak

1 Introduction
Lightweight cryptography, that aims towards applications in resource constrained environ-
ments has seen a sudden surge in interest due to the advent of Internet of things (IoT).
Particularly, lightweight authenticated encryption (AE) schemes are of utmost importance
in establishing private and authenticated communication channels in IoT applications.
This importance was addressed by recently concluded CAESAR competition [CAE14]
and the ongoing NIST lightweight cryptography project [MBTM17]. In many of these
designs, the internal state size reduction is the main priority. In this context, permutation-
based schemes [BDPA11, CDNY18] have an advantage over block cipher-based schemes
[CIMN17], as they do not need to store the key. However, to achieve comparable security,
in general, the permutation size has to be almost similar to the block cipher size (key size +
block size). In this work, we mainly focus on (tweakable) block cipher-based AE schemes.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-06-01, Revised: 2019-09-01, Accepted: 2019-11-01, Published: 2020-01-31

https://doi.org/10.13154/tosc.v2019.i4.81-118
mailto:avikchkrbrti@gmail.com, nilanjan_isi_jrf@yahoo.com, ashwin.jha1991@gmail.com, cuauhtemoc.mancillas@cinvestav.mx, mridul.nandi@gmail.com, yu.sasaki.sk@hco.ntt.co.jp
mailto:avikchkrbrti@gmail.com, nilanjan_isi_jrf@yahoo.com, ashwin.jha1991@gmail.com, cuauhtemoc.mancillas@cinvestav.mx, mridul.nandi@gmail.com, yu.sasaki.sk@hco.ntt.co.jp
mailto:avikchkrbrti@gmail.com, nilanjan_isi_jrf@yahoo.com, ashwin.jha1991@gmail.com, cuauhtemoc.mancillas@cinvestav.mx, mridul.nandi@gmail.com, yu.sasaki.sk@hco.ntt.co.jp
http://creativecommons.org/licenses/by/4.0/

82 INT-RUP Secure Lightweight Parallel AE Modes

1.1 The NIST Lightweight Cryptography Standardization Project
The NIST project [MBTM17] has received submissions of lightweight designs for standard-
ization. NIST set the following minimum requirements from the submissions.

• The key size should be at least 128 bits.

• When the key size is 128 (resp. 256) bits, any cryptanalytic attack should need at
least 2112 (resp. 2224) computations in a single key classical setting (i.e, the time
complexity).

• There should be one primary recommendation for the scheme with key size at least
128 bits, nonce size at least 96 bits, tag length at least 64 bits and the total number
of message bytes under a single key at least 250 − 1 (i.e, the data complexity).

In summary, the primary version of the authenticated encryption scheme should have
security up to 250 bytes of data and 2112 computations.

1.2 State of the Art on AE Modes in light of NIST Requirements
Depending on the performance requirements, AE modes can be categorized into two main
structures.
Parallel modes: Parallel AE modes, such as OCB [KR16] and OTR [Min16], are
designed to exploit the parallel computation infrastructure available in many high perfor-
mance computing environments. These designs primarily focus on software efficiency with
a reasonably fast implementation in hardware. Both OCB and OTR are efficient, rate1
1 and parallelizable. However, they require a relatively large state size2 of 3n + κ and
4n + κ bits respectively, where n and κ are the block size and the key size respectively.
Furthermore, they are only birthday bound secure in block size, which means they need
at least 128-bit block cipher in order to satisfy the NIST criteria. This causes possible
unsuitability of these designs in lightweight applications. In addition, they do not provide
any security when the adversary gets access to unverified plaintext, i.e., the so-called
RUP model [FJMV03, ABL+14], which might be relevant in many practical lightweight
applications due to lack of memory buffer. In [ZWH17], Zhang et al. proposed a variant
of OCB, called OCB-IC, which achieves integrity under RUP or INT-RUP security at the
cost of making the construction rate 1/2. In [Nai17], Naito proposed another variant of
OCB, called ΘCB3†, which offers beyond the birthday bound security.
Sequential modes: Sequential AE modes based on block cipher target minimal hardware
implementation cost. Iwata et al. in [IMG+16] proposed two rate 1/2 AE modes CLOC
and SILC to have a low hardware implementation with a state size of (2n+ κ) bits. Later,
Wu et al. in [WH16] proposed a rate 1/2 AE mode JAMBU with even a lower state size of
(1.5n+ κ) bits. In 2017, Chakraborti et al. proposed a combined feedback based AE mode
COFB [CIMN17] that can be implemented with the same state size as JAMBU but can
achieve the optimal rate 1. Recently proposed rate 1/2 AE modes SAEB [NMSS18] and
SUNDAE [BBLT18] further optimizes the state size of (n+ k) bits. We note that most of
these constructions do not have RUP security. However, SUNDAE achieves nonce-misuse
security but SAEB does not.

All the above mentioned AE modes have birthday bound security on the primitive
size. Consequently, in light of NIST security requirements, all the above mentioned modes
require 128-bit block cipher with key size of approx 128-bit. A 128-bit block cipher like AES
might not be well-suited for lightweight implementations. In fact, [BMR+13, BBM15] show
that lightweight implementations (see [MPL+11]) of AES require much higher clock cycles,

1By rate, we mean number of message blocks processed per primitive invocation.
2Here state size means a theoretical estimation of the main registers.

Chakraborti et al. 83

when implemented in a small and serialized core. This is not desirable when throughput
or energy consumption is also a concern in addition to the hardware footprint. On the
other hand, 64-bit block ciphers such as PRESENT [BKL+07], SKINNY [BJK+16] or GIFT
[BPP+17], have ultra lightweight implementation cost with a comparable throughput.
This immediately raises an interesting problem:

(a) Can we design an AE mode with a 64-bit block cipher (and 128-bit key) satisfying
NIST Project’s security requirements?

1.3 Design Goals
With problem (a) in mind, we aim to design an algorithm that satisfies the following
criteria:

• Low State Size: The overall state size of the construction should be as low as possible.

• High Security: The security of the mode should be high (preferably full security in
block size) so that even 64-bit block size provides the required security.

• Integrity Security under RUP (or INT-RUP security): The mode should provide
integrity even in scenarios when unverified plaintexts are released. INT-RUP security
is particularly significant in lightweight applications (smart-cards, RFID tags), where
often the memory buffer is quite limited. In addition, INT-RUP is also useful in
real-time streaming protocols (e.g. SRTP, SRTCP and SSH), where block-wise
encryption/decryption is required and ciphertext/plaintext are released on-the-fly
(though the verification oracle is also available to the attacker in addition to the
unverified decryption oracle) in order to reduce the end-to-end latency.

• Versatility: The mode should also aspire to be flexible in its domain of applications,
covering the spectrum of resource constrained devices.

Both OCB and OTR can achieve low state size and versatility using lighter primitives such
as a 64-bit block cipher. However, as mentioned before, they do not achieve the desired
security level when implemented with a 64-bit block cipher. This leads to another natural
question:

(b) Can we uplift the security level of OCB and OTR by keeping the functionalities as
intact as possible?

In fact a positive answer to (b) leads to a positive answer to (a). In general, this should
result in a highly secure, efficient and significantly lighter design.

1.4 Our Contributions
The contributions of this paper are threefold:

1. LOTUS and LOCUS: We propose two new highly secure and hardware efficient block
cipher based authenticated encryption modes, named LOCUS (Lightweight OCb with
rUp Security) and LOTUS (Lightweight OTr with rUp Security) (see Sect. 3.1). Our
new AE modes have the following features:

(a) High Security. Both LOTUS and LOCUS satisfy DT = O(2n+κ), where D
and T denote the query and time complexities, respectively. Here D < 2n, and
T < 2κ are obvious conditions. We provide rigorous proofs (see Sect. 6) to
obtain the respective security bounds in the ideal cipher model.

84 INT-RUP Secure Lightweight Parallel AE Modes

(b) Lightweight. The improved security ensures that both of these modes are
secure with a 64-bit block cipher and 128-bit key. This essentially makes the
modes lighter. Overall, LOTUS and LOCUS require only 388-bit and 324-bit
states, respectively, which are much less than comparably secure OTR and OCB
modes, i.e. 640-bit and 512-bit, respectively (using a 128-bit block cipher).

(c) Efficient and Fast. Our modes keep the basic features of OCB and OTR
intact. Both are online, single pass and fully parallelizable.

(d) INT-RUP Secure. We show that LOTUS and LOCUS have full 64-bit INT-
RUP security in the ideal cipher model, whereas it is well-known that the
integrity of both OCB and OTR can be trivially broken in the RUP setting. We
remark here that LOTUS and LOCUS do not achieve privacy notion in the RUP
setting, (IND-CPA + PA1) of [ABL+14]. However, they achieve full 64-bit
security in the usual notion of privacy (see Sect. 6).

2. We choose the recently proposed short-tweak tweakable block ciphers TweGIFT-
64[4,16,16,4] [CDJ+19b] having a 64-bit block, a 128-bit key and only a 4-bit tweak
to instantiate both LOTUS and LOCUS. Sometimes we use TweGIFT-64 as a short
hand for TweGIFT-64[4,16,16,4]. As we use the concept of re-keying, we provide a
comprehensive related-key analysis (see Sect. 4.2) of TweGIFT-64.

3. Finally, we implement both LOTUS and LOCUS with TweGIFT-64 as the underlying
block cipher (see Sect. 5). We provide hardware implementation details on FPGA
platform. We observe that our implementations achieve highly competitive result.
LOCUS achieves a very low hardware area of only 257 slices and 690 LUTs, while
LOTUS achieves an even lower hardware area of 255 slices and 664 LUTs. We
also provide a benchmark on FPGA platform with several state of the art schemes
containing lightweight designs.

We would like to point out that the proposed modes are well-suited for protocols that
require both lightweight and high performance implementations e.g, lightweight clients
interacting with high performance servers (e.g, LwM2M protocols [OS19]). Some of the
existing sequential modes like sponges, SAEB are better in terms of area-efficiency, however,
due to the sequential nature of such modes, they cannot utilize the parallel computing
capability in high performance devices. On the contrary, our proposed modes are inherently
parallel and can be implemented in fully pipelined manner keeping a comparable area-
efficient implementation. Moreover, our modes have the lowest implementation area among
all the existing parallel modes with RUP security.

1.5 Design Comparison
Table 1 summarizes a comparative study of our modes with popular lightweight AE modes.
The underlying primitive sizes are chosen appropriately for each of them to satisfy the
minimum security requirements by NIST. Note that in state size, we only count main
registers and provide a theoretical estimation. Actual implementation may add some
additional states required for the control unit and others. However, these additional states
should be small when compared to the main register size. The security proofs for OCB,
OTR, COFB, SAEB, SUNDAE are given in the standard model. Since they are all birthday
bound secure in terms of the block size, they will achieve the same security level even in
ICM.

Chakraborti et al. 85

Table 1: Comparison of various Lightweight AE modes with LOTUS and LOCUS. The
block sizes are chosen such that they satisfy the criteria of NIST. The key size is 128-bit
in all the cases.

Mode State size Primitive Single Pass Parallel Rate Inv-free INT-RUP
OCB 512 128 (BC) X X 1 × ×
OTR 640 128 (BC) X X 1 X ×

OCB-IC 512 128 (TBC) X X 1/2 × X
COFB 320 128 (BC) X × 1 X ×
SAEB 256 128 (BC) X × 1/2 X −

SUNDAE 256 128 (BC) × × 1/2 X ×
LOCUS 324 64 (TBC) X X 1/2 × X
LOTUS 388 64 (TBC) X X 1/2 X X

1.6 Novelty of LOTUS and LOCUS
LOTUS and LOCUS introduce significant optimizations over OTR [Min16] and OCB [KR16]
designs, respectively. Some of the novelties in LOTUS and LOCUS as compared to OTR
and OCB are listed below:

1. LOTUS and LOCUS employ nonce-based key derivation as well as re-keying technique
to ensure higher security with lighter primitives. As mentioned above, this allows for
the use of ultralight 64-bit block ciphers.

2. A subtle change in the tag generation process saves additional n-bit state as compared
to OTR and OCB, where n denotes the block size. So even with similar primitive
size LOTUS and LOCUS would have drastically low hardware footprint as compared
to OTR and OCB.

3. The nonce-based key derivation is also quite lightweight. The nonce-based key is
simply the XOR of current nonce value and the master key. This helps in minimizing
the latency as well as hardware circuitry overhead.

4. The simplicity in design permits simplified and shorter security proofs. We note
that this is true for OTR and OCB as well, though they satisfy a weaker notion of
integrity.

At a very high level, LOCUS can be viewed as an amalgamation of OCB-IC [ZWH17] and
ΘCB3† [Nai17]. However, LOCUS improves over both of these designs on many fronts. In
comparison to ΘCB3† it improves on two fronts. First, ΘCB3† requires a pseudorandom
function call for nonce-dependent key generation, whereas nonce-based key derivation in
LOCUS is much simpler. Second, ΘCB3† security bound contains a DT/2κ term, whereas
LOCUS security bound is DT/2n+κ. The bound for ΘCB3† is clearly not enough for
NIST Project, when κ = 128. Although our technique for obtaining INT-RUP security is
quite similar to OCB-IC, we emphasize that LOCUS achieves full n-bit INT-RUP security,
whereas OCB-IC has just n/2-bit INT-RUP security.

1.7 Security Proof: Ideal Cipher Model vs Standard Model
We use nonce-based re-keying to get beyond the birthday bound security and it is a standard
practice to use ideal cipher model (ICM) in this scenario, as duly mentioned and used in
[BHT18, Men17, BT16] etc. The primary reason for switching from standard related-key
model (SRKM) to ICM is the lossyness of the generic standard-to-ideal reduction. In
SRKM, as shown in [Men17], one can achieve related-key SPRP (RKSPRP) advantage of
roughly DT/2κ, using key recovery attack which is quite loose and will not meet NIST

86 INT-RUP Secure Lightweight Parallel AE Modes

primary version criteria for AE with κ = 128. We emphasize that in many cases, including
ours, this loss is meaningless as this attack on internal block cipher will not work on the
mode due to the secret masking of the input and output of the block cipher (see Sect.
6.5). Although ICM might give an optimistic bound, we think that it captures the possible
attack strategies in a better way as compared to SRKM. It is commonly believed that the
SRKM might be too pessimistic, as noted in [BHT18, Men17, GPR14, BKR98]. It might
be possible that a hybrid notion such as masked RKSPRP [Men17] could avoid such loss.
However, such exposition is out of scope for this work.

2 Preliminaries
For n ∈ N, [n] denotes the set {1, 2, . . . , n} and (n] := [n]∪{0}. For a finite set X , X←$X
denotes the uniform at random sampling of X from X . For n ∈ N, we write {0, 1}+ and
{0, 1}n to denote the set of all non-empty binary strings, and the set of all n-bit binary
strings, respectively. We write φ to denote the empty string, and {0, 1}∗ = {0, 1}+ ∪ {φ}.

For X ∈ {0, 1}∗, |X| denotes the length (number of the bits) of X, where |φ| = 0 by
convention. For any non-empty binary string X, (Xk, . . . , X1) n← x denotes the n-bit block
parsing of X, where |Xi| = n for 1 ≤ i ≤ k − 1, and 1 ≤ |Xk| ≤ n. For A,B ∈ {0, 1}∗ and
|A| = |B|, we write A⊕B to denote the bitwise XOR of A and B.

We sometime use the terms (complete) blocks for n-bit strings, and partial blocks for
m-bit strings, where m < n. Throughout, we use the function ozs, defined by the mapping

∀X ∈
n⋃

m=1
{0, 1}m, X 7→

{
0n−|X|−1‖1‖X if |X| < n,

X otherwise,

as the padding rule to map partial blocks to complete blocks. Note that the mapping is
injective over partial blocks. For any X ∈ {0, 1}+ and 1 ≤ i ≤ |X|, xi denotes the i-th bit
of X. For any binary string X and an integer i ≤ |X|, bXci returns the least significant i
bits of X, i.e. xi · · ·x1. For any integer i 〈i〉n denotes the n-bit unsigned representation of
i.

2.1 Finite Field Arithmetic

The set {0, 1}κ can be viewed as the finite field F2κ consisting of 2κ elements. We
interchangeably think of an element A ∈ F2κ in any of the following ways: (i) as a κ-bit
string aκ−1 . . . a1a0 ∈ {0, 1}κ; (ii) as a polynomial A(x) = aκ−1x

κ−1 + aκ−2x
κ−2 + · · ·+

a1x+ a0 over the field F2; (iii) a non-negative integer a < 2κ; (iv) an abstract element in
the field. Addition in F2κ is just bitwise XOR of two κ-bit strings, and hence denoted by
⊕. P (x) denotes the primitive polynomial used to represent the field F2κ , and α denotes
the primitive element in this representation. The multiplication of A,B ∈ F2κ is defined
as A�B := A(x) ·B(x) (mod P (x)), i.e. polynomial multiplication modulo P (x) in F2.
For κ = 128, we fix the primitive polynomial

P (x) = x128 + x7 + x2 + x+ 1. (1)

Then, α, the primitive element, is 2 ∈ F128. Throughout we use α = 2, and 1 + α = 3, and
“α-multiplication” to denote the operation of field multiplication on some element3 and α.

3The element will be clear from the context.

Chakraborti et al. 87

2.2 Tweakable Block cipher
For n, τ, κ ∈ N, Ẽ-n/τ/κ denotes a tweakable block cipher family Ẽ, parametrized by the
block length n, tweak length τ , and key length κ. For K ∈ {0, 1}κ, T ∈ {0, 1}τ , and
M ∈ {0, 1}n, we use ẼTK(M) := Ẽ(K,T,M) to denote the invocation of the encryption
function of Ẽ on input K, T , and M . The decryption function is analogously defined as
Ẽ−TK (M). In the special case where the tweak set is a singleton, the resulting tweakable
block cipher Ẽ is simply referred as a block cipher E. We fix positive even integers n and κ
to denote the block size and key size, respectively, in bits.

2.3 Authenticated Encryption in the Ideal Cipher Model
An authenticated encryption (AE) is an integrated scheme that provides both privacy of a
plaintextM ∈ {0, 1}∗ and authenticity ofM as well as associated data A ∈ {0, 1}∗. Taking
a nonce N (which is a value unique for each encryption) together with associated data
A and plaintext M , the encryption function of AE, encK , produces a tagged-ciphertext
(C, T) where |C| = |M | and |T | = t. Typically, t is fixed and we assume n = t throughout
the paper. The corresponding decryption function, decK , takes (N,A,C, T) and returns a
decrypted plaintext M when the authentication on (N,A,C, T) is successful, otherwise
returns the atomic error symbol denoted by ⊥.

In this paper we consider a variant of the decryption interface, due to the added
capability of our AE schemes. The decryption interface provides two algorithms, a
decryption function decK that takes (N,A,C) and returns a decrypted plaintext M
irrespective of the authentication result (hence we drop the tag value), and a verification
function verK that takes (N,A,C, T) and returns a decrypted plaintext M only when the
authentication succeeds, otherwise it returns ⊥.

2.4 Security Definitions
A distinguisher A is an algorithm that tries to distinguish between two oracles O0 and
O1 via black box interaction with one of them. At the end of interaction it returns a bit
b ∈ {0, 1}. We write A O = b to denote the output of A at the end of its interaction with
O. In the context of this paper, we will be concerned with computationally unbounded
and deterministic distinguishers A . The distinguishing advantage of A against O0 and
O1 is defined as

∆A [O0;O1] =
∣∣Pr[A O0 = 1]− Pr[A O1 = 1]

∣∣ , (2)
where the probabilities depend on the random coins of O0 and O1.

2.4.1 TSPRP Security in Ideal Cipher Model

Let TPerms({0, 1}τ , {0, 1}n) be the set of all tweakable permutations with τ -bit tweak
and n-bit block. We write Π̃←$ TPerms({0, 1}τ , {0, 1}n) to denote a tweakable ran-
dom permutation. A tweakable block cipher Ẽ is called a tweakable ideal cipher if
ẼK ←$ TPerms({0, 1}τ , {0, 1}n) for all K ∈ {0, 1}κ, i.e., Ẽ behaves as a tweakable random
permutation for all keys. The TSPRP advantage of any distinguisher A against a tweak-
able block cipher P̃ built upon a tweakable ideal cipher Ẽ and instantiated with a key
K←$ {0, 1}κ is defined as

Advtsprp
P̃

(A) := ∆A

[
(P̃[Ẽ]±K , Ẽ

±); (Π̃±, Ẽ±)
]
. (3)

The TSPRP advantage of P̃, is defined as

Advtsprp
P̃

(q, qp) := max
A

Advtsprp
P̃

(A),

88 INT-RUP Secure Lightweight Parallel AE Modes

where the maximum is taken over all distinguisher A bounded by q P̃ queries and qp Ẽ
queries. The TPRP security game is a weaker variant of TSPRP where the distinguisher
is restricted from making any inverse queries to the tweakable block cipher P̃, i.e.

Advtprp
P̃

(A) := ∆A

[
(P̃[Ẽ]K, Ẽ±); (Π̃, Ẽ±)

]
.

It is easy to see that Advtprp
P̃

(q, qp) ≤ Advtsprp
P̃

(q, qp).

2.4.2 Privacy Security in Ideal Cipher Model

Given a distinguisher A , we define the privacy advantage of A against an AE scheme Θ
in the ideal cipher model as

Advpriv
Θ[̃E]

(A) := ∆A [(Θ.encK, Ẽ±); ($e, Ẽ±)], (4)

where $e returns a uniform random string of the same length as the output length of
Θ.encK . The privacy advantage of Θ is defined as

Advpriv
Θ[̃E]

(qe, qp, σe, qp) := max
A

Advpriv
Θ[̃E]

(A),

where the maximum is taken over all distinguishers making qe queries to the encryption
oracle with an aggregate of σe blocks and qp many primitive (ideal cipher) queries.

2.4.3 INT-RUP Security in Ideal Cipher Model

We say that an adversary A forges an AE scheme Θ under RUP in the ideal cipher model
if A is able to compute a tuple (N,A,C, T) satisfying Θ.verK(N,A,C, T) 6= ⊥, without
querying (N,A,M) to Θ.encK and receiving (C, T), i.e. (N,A,C, T) is a non-trivial forgery.
In this case, a forger can make additional qd RUP decryption queries of the form (N,A,C)
with a total of σd blocks to the oracle Θ.decK , with no restriction on nonce repetitions,
and receive the corresponding M . One can also view the forging game in an equivalent
distinguishing game. Under this equivalent setting, the integrity under RUP advantage for
any distinguisher A is defined as

Advint-rup
Θ (A) := ∆A [(Θ.encK,Θ.decK,Θ.verK, Ẽ±); (Θ.encK,Θ.decK,⊥, Ẽ±)], (5)

where ⊥ denotes the degenerate oracle that always returns ⊥ symbol. The integrity under
RUP advantage of Θ is defined as

Advint-rup
Θ (qe, qd, qv, σe, σd, σv, qp) := max

A
Advint-rup

Θ (A),

where the maximum is taken over all distinguishers making qe encryption queries with
an aggregate of σe blocks, qd RUP queries with an aggregate of σd blocks, qv verification
attempts with an aggregate of σv blocks, and qp ideal cipher queries.

Throughout we write a (qe, qd, qv, σe, σd, σv, qp)-distinguisher to represent a distinguisher
that makes qe encryption queries with an aggregate of σe many blocks, qd decryption
queries with an aggregate of σd many blocks, qv verification queries with an aggregate
of σv many blocks, and qp primitive queries. Similarly, we can define distinguisher with
smaller or larger tuple of resources.

2.5 Coefficient-H Technique
We outline the coefficient-H technique developed by Patarin, which serves as a “systematic”
tool to upper bound the distinguishing advantage of any deterministic and computationally

Chakraborti et al. 89

unbounded distinguisher A in distinguishing the real oracle O1 (construction of interest)
from the ideal oracle O0 (idealized version). The collection of all the queries and responses
that A made and received to and from the oracle, is called the transcript of A , denoted
as ω. Sometimes, we allow the oracle to release more internal information to A only after
A completes all its queries and responses, but before it outputs its decision bit.

Let Λ1 and Λ0 denote the transcript random variable induced by the interaction of
A with the real oracle and the ideal oracle respectively. The probability of realizing a
transcript ω in the ideal oracle (i.e., Pr[Λ0 = ω]) is called the ideal interpolation probability.
Similarly, one can define the real interpolation probability. A transcript ω is said to
be attainable with respect to A if the ideal interpolation probability is non-zero (i.e.,
Pr[Λ0 = ω] > 0). We denote the set of all attainable transcripts by Ω. Following these
notations, we state the main result of coefficient-H Technique in Theorem 1. The proof of
this theorem can be found in [Vau03].
Theorem 1. Suppose for some Ωbad ⊆ Ω, which we call the bad set of transcripts, the
following conditions hold:

1. Pr[Λ0 ∈ Ωbad] ≤ ε1,

2. For any good transcript ω ∈ Ω \ Ωbad, we have Pr[Λ1 = ω)] ≥ (1− ε2) · Pr[Λ0 = ω].
Then, we have

∆A [O0;O1] ≤ ε1 + ε2. (6)

3 Specification
In this section, we present the specifications of LOTUS and LOCUS that use a 4-bit short
tweak tweakable block cipher TweGIFT-64 [CDJ+19b]. We give a short description of this
design in Sect. 4.1.

3.1 LOTUS and LOCUS Modes
The encryption algorithm of both LOTUS and LOCUS modes receives an encryption key
K ∈ {0, 1}κ, a nonce N ∈ {0, 1}κ, associated data A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗
as inputs, and returns a ciphertext C ∈ {0, 1}|M |, and a tag T ∈ {0, 1}n. The decryption
algorithm receives a key K ∈ {0, 1}κ, a nonce N ∈ {0, 1}κ, associated data A ∈ {0, 1}∗,
a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}n as inputs, and returns the plaintext
M ∈ {0, 1}|C| corresponding to C, if T authenticates.

Both LOTUS and LOCUS operate on n-bit blocks and use a tweakable block cipher as
the underlying primitive. Both the algorithms share a common initialization and associated
data processing phase. During the initialization phase, the κ-bit nonce N is XORed with
the κ-bit secret key K to generate a κ-bit nonce-dependent encryption key KN . Then, an
n-bit nonce-dependent masking key ∆N is generated using double encrypting a fixed value
(here we have used 0n) with key K and KN successively with TBC.

3.1.1 Associated Data Processing in LOTUS and LOCUS

For associated data processing, we parse the data into n-bit blocks and process them in a
similar way as the hash layer of PMAC [Rog04]. To process associated data block, we first
update the current key value via α-multiplication. Next, we XOR the block with ∆N and
encrypt the value using Ẽ with the fixed tweak value 2 and the updated key KN and finally
accumulate the encrypted output by XORing it to the previous checksum value. If the
final block is partial, we use the tweak value 3 to process the final block. We refer to the
output of the associated data processing as the AD checksum. The complete description of
the associated data processing is depicted in Fig. 1 and formally specified in Algorithm 1.

90 INT-RUP Secure Lightweight Parallel AE Modes

A1

∆N

⊕

Ẽ1
KN ,2

U1

V1

A2

∆N

⊕

Ẽ2
KN ,2

U2

V2

⊕ · · ·

Aa

∆N

⊕

Ẽa
KN ,2/3

Ua

Va

⊕ V⊕

Figure 1: Associated Data Processing for both LOCUS and LOTUS. Here ẼiKN ,2 denotes
invocation of Ẽ with key αi �KN and tweak 0010. For the final associated data block,
the use of ẼaKN ,2/3 indicates invocation of Ẽ with key αa �KN and tweak 0010 or 0011
depending on whether the final block is full or partial.

3.1.2 Description of LOTUS

To process a message in LOTUS, we parse the data into 2n-bit di-blocks and process them
in a similar manner as OTR [Min16]. For each message di-block, we apply a simple variant
of two-round Feistel cipher [LR85]. However, instead of one upper layer encryption and
one lower layer encryption, here we use two successive encryptions in each layer. The
intermediate states in between the encryptions in each layers are used to generate the
checksum (that we call intermediate checksum), which helps in obtaining integrity security
under RUP setting. To process a di-block, the key is first updated by an α-multiplication
and the same key is used in the four tweakable block cipher calls. However, we use 4
different tweaks for the four calls (tweak 4 and 7 in the upper layer, and 5 and 8 in the
lower layer) for the purpose of domain separation. Also, we use four different tweaks
(12 and 14 in the upper layer and 13 and 15 in the lower layer) during the final di-block
processing. The final di-block processing is slightly different and uses the length of the
final di-block. To generate the tag, we apply XEX [Rog04] like transformation on the XOR
of the intermediate checksum, AD checksum, and the final message block. The complete
specification of LOTUS authenticated encryption is given in Algorithm 1. Figure 2 gives a
pictorial description of the encryption process.

3.1.3 Description of LOCUS

To process a message in LOCUS, we parse the data into n-bit blocks and process them in a
similar manner as OCB [RBB03]. For each of the message blocks, we first mask the block,
then encrypt with the tweakable block cipher twice and then again mask to obtain the
corresponding ciphertext block. Similar to LOTUS, the ∆N masking is same along a query
and the intermediate states (Wi in Fig. 3) between the two block cipher calls are XORed
together to generate the intermediate checksum. For the last message block, instead of
applying XEX on the message block, we apply it on the final block message length and
XOR the output with the final message block. This strategy ensures identical processing
for complete or incomplete final blocks. Again, similar to LOTUS, we update the key by
α-multiplication before each block processing, and we use tweaks 4 and 12 in the upper
and lower block cipher calls for non-final blocks, and tweaks 5 and 13 in the upper and
lower block cipher calls for final blocks. The tag is generated identically to that of LOTUS.
The complete specification of LOCUS authenticated encryption is given in Algorithm 2.
The message processing part of the encryption algorithm is depicted in Fig. 3.

Chakraborti et al. 91

M2i−1 M2i

C2i C2i−1

⊕

⊕

⊕

∆N

∆N

⊕
E iKN ,4 E iKN ,7

E iKN ,5 E iKN ,8

W2i−1

W2i

〈`〉 M2c−1

C2c C2c−1

⊕

⊕

⊕

∆N

M2c

∆N

⊕
EcKN ,12 EcKN ,14

EcKN ,13 EcKN ,15

W2c−2

W2c−1

V⊕ ⊕W⊕ ⊕Mm

∆N

Em+1
KN ,6⊕

∆N

⊕ T

Figure 2: Processing of an m block message M and Tag Generation (assuming an odd
number of input blocks) for LOTUS. The upper left part shows the message processing of
an intermediate di-block and the upper right part depicts the message processing of the
final di-block. The lower part shows the tag generation process. c denotes the number
of di-blocks in the message i.e. c = dm/2e − 1. The dotted part in the final di-block is
executed only when the message has even number of blocks. We use the notation ẼiKN ,j to
denote invocation of Ẽ with key αa+i �KN and tweak j, where a denotes the number of
blocks of associated data corresponding to the message. Here W⊕ denotes the intermediate
checksum value and V⊕ denotes the AD checksum value. 〈len〉n is used to denote the n
bit representation of the size of the final di-block in bits.

M1

∆N ⊕

Ẽ1
KN ,4

X1

Ẽ1
KN ,12

W1

∆N ⊕

C1

Mm−1

∆N ⊕

Ẽm−1
KN ,4

Xm−1

Ẽm−1
KN ,12

Wm−1

∆N ⊕

Cm−1

〈M〉

∆N ⊕

Ẽm
KN ,5

Xm

Ẽm
KN ,13

Wm

∆N Mm⊕

Cm

· · ·
V⊕ ⊕W⊕ ⊕Mm

Ẽm+1
KN ,6

⊕ ∆N

T

⊕ ∆N

Figure 3: Processing of an m block message M and tag generation for LOCUS. 〈len〉n is
used to denote the n bit representation of the size of the final block in bits. W⊕ denotes
the intermediate checksum value and V⊕ denotes the AD checksum value. ẼiKN ,j is defined
in a similar manner as in Fig. 2.

92 INT-RUP Secure Lightweight Parallel AE Modes

Algorithm 1 The encryption algorithm of LOTUS.
1: function LOTUS.enc(K,N,A,M)
2: C ← ⊥,W⊕ ← 0, V⊕ ← 0
3: (KN ,∆N)← init(K,N)
4: if |A| 6= 0 then
5: (KN , V⊕)← proc_ad(KN ,∆N , A)
6: if |M | 6= 0 then
7: (KN ,W⊕, C)← proc_pt(KN ,∆N ,M)
8: T ← proc_tg(KN ,∆N , V⊕,W⊕)
9: return (C, T)

10: function init(K,N)
11: Y ← Ẽ0

K(0n)
12: KN ← K ⊕N
13: ∆N ← Ẽ1

KN
(Y)

14: return (KN ,∆N)

15: function proc_ad(KN ,∆N , A)
16: L← KN
17: (A1, . . . , Aa) n← A

18: for i = 1 to a− 1 do
19: X ← Ai ⊕∆N

20: L← L� α
21: V ← Ẽ2

L(X)
22: V⊕ ← V⊕ ⊕ V
23: X ← ozs(Aa)⊕∆N

24: L← L� α
25: if |Aa| = n then
26: V ← Ẽ2

L(X)
27: else
28: V ← Ẽ3

L(X)
29: V⊕ ← V⊕ ⊕ V
30: return (L, V⊕)

1: function proc_pt(KN ,∆N ,M)
2: L← KN
3: (Mm, . . . ,M1) n←M

4: d = dm/2e
5: for i = 1 to d− 1 do
6: j = 2i− 1
7: X1 ←Mj ⊕∆N

8: L← L� α
9: W1 ← Ẽ4

L(X1)
10: Y1 ← Ẽ7

L(W1)
11: X2 ← Y1 ⊕Mj+1

12: W2 ← Ẽ5
L(X2)

13: Y2 ← Ẽ8
L(W2)

14: W⊕ ← W⊕ ⊕W1 ⊕W2
15: Cj ← X2 ⊕∆N

16: Cj+1 ← X1 ⊕ Y2

17: X1 ← 〈|M | − 2(d− 1)n〉n ⊕∆N

18: L← L� α
19: W1 ← Ẽ12

L (X1)
20: Y1 ← Ẽ14

L (W1)
21: X2 ← Y1 ⊕M2d−1
22: C2d−1 ← bX2 ⊕∆Nc|M2d−1|
23: W⊕ ← W⊕ ⊕W1
24: C ← (C1, . . . , C2d−1)
25: if 2d = m then
26: W2 ← Ẽ13

L (X2)
27: W⊕ ← W⊕ ⊕W2

28: Y2 ← Ẽ15
L (W2)

29: C2d ← bX1 ⊕ Y2c|M2d| ⊕M2d
30: C ← C‖C2d

31: W⊕ ← W⊕ ⊕Mm

32: return (L,W⊕, C)

33: function proc_tg(KN ,∆N , V⊕,W⊕)
34: L← KN � α
35: if (d|A|/ne+ d|M |/ne) mod 2 = 0 then
36: X⊕ ← V⊕ ⊕W⊕ ⊕∆N

37: else
38: X⊕ ← V⊕ ⊕W⊕
39: T ← Ẽ6

L(X⊕)⊕∆N

40: return T

Chakraborti et al. 93

Algorithm 2 The encryption algorithm of LOCUS. The subroutines proc_ad and proc_tag
are identical to the one used in LOTUS.

1: function LOCUS.enc(K,N,A,M)
2: C ← ⊥, W⊕ ← 0, V⊕ ← 0
3: (KN ,∆N)← init(K,N)
4: if |A| 6= 0 then
5: (KN , V⊕)← proc_ad(KN ,∆N , A)

6: if |M | 6= 0 then
7: (KN ,W⊕, C)← proc_pt(KN ,∆N ,M)

8: T ← proc_tg(KN ,∆N , V⊕,W⊕)
9: return (C, T)

1: function proc_pt(KN ,∆N ,M)
2: L← KN

3: (M1, . . . ,Mm) n←M

4: for j = 1 to m− 1 do
5: X ←Mj ⊕∆N

6: L← L� α
7: W ← Ẽ4

L(X)
8: W⊕ ← W⊕ ⊕W
9: Y ← Ẽ12

L (W)
10: Cj ← Y ⊕∆N

11: L← L� α
12: X ← 〈|Mm|〉n ⊕∆N

13: W ← Ẽ5
L(X)

14: Y ← Ẽ13
L (W)

15: Cm ← bY ⊕∆Nc|Mm| ⊕Mm

16: W⊕ ← W⊕ ⊕W ⊕Mm

17: C ← (C1, . . . , Cm)
18: return (L,W⊕, C)

3.2 Design Rationale
In this section, we briefly describe the various design choices and rationale for our proposals.
Our primary goal is to design a lightweight AEAD that should be efficient, provides high
performance and performs reasonably well in low-end devices as well. For efficiency,
the AEAD should be one pass. To obtain high performance capability, we aim for
parallelizability. In addition, we demand integrity in the RUP model. This is specially
useful for memory-constrained lightweight applications.

We start with two well-known modes, namely OCB and OTR. Both OCB and OTR
satisfy the first two properties. OCB is online, one-pass and parallelizable. OTR has all
these features plus it offers inverse-freeness, albeit in exchange for a larger state (as it works
on di-blocks). However, both of them are insecure under the RUP model. This motivates
us to design an AE mode which is structurally as simple as OCB and OTR but achieves
RUP security while keeping the primary features, such as efficiency and parallelism.

The new proposals LOTUS and LOCUS replace one block cipher call by two calls. The
rationale behind this modification is the observation that the intermediate state between
the two block cipher invocations can be used to generate a checksum, which is completely
hidden and hence cannot be controlled by the adversary (even if the adversary is allowed
to make RUP queries). This hidden checksum ensures integrity security in RUP model.
The additional block cipher call per message block increases the number of block cipher
calls from ` to 2`+ 1 to process an `-block message. However, this is the minimum number
of non-linear invocations used for any state-of-the-art INT-RUP secure parallel AEAD
mode.

The associated data processing phase is based on a simple variant of the hash layer of
PMAC, and the computation is completely parallel. The associated data processing can be
done in parallel with the plaintext and/or ciphertext processing in order to maximize the
performance in parallel computing environments.

Both OCB and OTR generate the tag using the checksum (simple XORs) of all the
plaintext blocks and the output of the processed associated data. However, two separate
states are required to hold the message checksum and the AD checksum. We obtain
INT-RUP security, by using an intermediate checksum (hidden to the adversary) instead

94 INT-RUP Secure Lightweight Parallel AE Modes

of the plaintext checksum. Moreover, we do not store the intermediate checksum and
AD checksum separately. Rather, we XOR the two checksums, which means that in a
sequential implementations, the intermediate checksum can be computed on top of the
AD checksum. This reduces the overall state size by size of one block.

A notable change in LOTUS and LOCUS is the use of nonce and position dependent
keys. OCB and OTR have only birthday bound security on the block size. This is because
the security is generally lost once the input/output of any two distinct block cipher calls
matches, as the two calls share the same encryption key. In LOTUS and LOCUS, we
overcome the birthday bound barrier by changing the key and tweak pair for each block
cipher call. So even if there is a collision among inputs/outputs, the security remains
intact, as the block cipher keys or tweaks are distinct. In fact, our modes are secure up to
data complexity of 2n, and time complexity of 2κ, and combined data-time complexity up
to 2n+κ. This, in turn, helps us to construct AEAD algorithms with the desired security
level using an ultra-lightweight short tweak tweakable block cipher of size 64 bits.
Remark 1. We remark here that our specification of LOTUS and LOCUS deviates from the
original definitions available in [CDJ+19a]. First, we use distinct tweaks in the ciphertext
generation calls, i.e. 4 tweaks in LOTUS and 2 tweaks in LOCUS. Second, in the tag
generation module, we perform the input masking by ∆N only when the total input length
(sum of associated data and message block length) is even. We have made these small
modifications in the specification to simplify and modularize the proofs along the line of
OCB [Rog04]. The security of the original constructions can be shown, via a dedicated
proof, to be exactly the same. See Sect. 6 for more details.
Remark 2. OCB-IC by Zhang et al. [ZWH17] achieves INT-RUP security using a similar
idea as ours (two calls in ciphertext generation). However, we improve on several fronts.
We reduce the state size by avoiding the additional storage for AD checksum. Further, we
improve the security from n/2-bit to n-bit.4 This helps us in using a lighter primitive as
compared to OCB-IC.

4 Instantiation
4.1 The TweGIFT-64 Tweakable Block Cipher
Here we briefly revisit the short tweak Tweakable block cipher TweGIFT-64, which is a
64-bit tweakable block cipher with 4-bit tweak and 128-bit key. It is identical to TweGIFT-
64[4,16,16,4] [CDJ+19b]. However, for the sake of completeness, we briefly describe the
tweakable block cipher. TweGIFT-64 uses 28 rounds, where each round consists following
operations:
SubCells: TweGIFT-64 employs the same invertible 4-bit S-box as GIFT-64-128 and applies
it to each nibble of the cipher state.
PermBits: TweGIFT-64 also uses the same bit permutation that was used in GIFT-64-128.
The permutation maps bits from bit position i of the cipher state to bit position GP (i),
where

GP (i) = 4bi/16
⌋

+ 16
((

3b(i mod 16)/4c+ (i mod 4)
)

mod 4
)

+ (i mod 4).

AddRoundKey: In this step, a 32-bit round key is extracted from the master key state and
added to the state (at bit positions i and i+ 1 for i = 0, 1, . . . , 15). After that, the master
key state is rotated by some bits. This operation is also identical to that of GIFT.

More precisely, the 128-bit key is loaded to eight 16-bit registers k0, . . . , k7. Let U and
V be two 16-bit registers to be extracted. U‖V are k1‖k0, k3‖k2, k5‖k4 and k7‖k6 for

4The security of OCB-IC does not improve even in ideal cipher model.

Chakraborti et al. 95

round 4i, 4i+ 1, 4i+ 2, and 4i+ 3 for i = 0, 1, . . . , 6, respectively. After U‖V are XORed
to the state, they are updated as follows: U ← U ≫ 2, V ← V ≫ 12.
AddRoundConstant: A single bit “1” and a 6-bit round constant are XORed into the
cipher state at bit position 63, 23, 19, 15, 11, 7 and 3, respectively. The round constants
are generated using the same 6-bit affine LFSR as SKINNY [BJK+16] and GIFT-64-128
[BPP+17].
AddTweak: For tweak processing, we first expand the 4-bit tweak into a 16-bit codeword
using an efficient linear code. Let t0, t1, t2, t3 be 4 bits of the tweak and ts be the sum of
the 4 bits. Then we compute ti+4 = ti ⊕ ts for i = 0, 1, 2, 3 and ti+8 = ti for i = 0, 1 . . . , 7.
Then this expanded codeword t0, . . . , t15 are XORed to the state (at bit position i+ 3 for
i = 0, 1, . . . , 15) at an interval of 4 rounds.

4.2 Security Analysis of TweGIFT-64
4.2.1 Intuition

Without exploiting the tweak, TweGIFT-64 is exactly the same as the original GIFT-64-128,
which has already received several third-party security analysis. This principle can apply
both in the single-key and the related-key settings. To exploit the features that do not
exist for GIFT-64-128 but do for TweGIFT-64, attackers need to exploit the 4-bit tweak
input. However, only with 4 additional bits, what attackers can do is very limited. In
addition, the 4-bit tweak input is further expanded to 16 bits in an uncontrollable way.
Thus, the best attack strategy is to attack the original GIFT-64-128 instead of trying to
exploit the 4-bit tweak input.

One may consider using round keys to cancel the impact of the tweak because both of
round keys and the expanded tweak are XORed to the state. In particular, for differential
cryptanalysis, one may consider canceling the tweak difference by the round-key difference
in the related-key setting. However, AddRoundConstant and AddTweak are designed to
XOR the key bits and tweak bits to different bit positions. Thus, they cannot cancel each
other. In the following, we discuss more details in the case of differential cryptanalysis.

4.2.2 Security against Differential Cryptanalysis

The exact security bound, e.g. the lower bound of the number of active S-boxes and the
upper bound of the differential characteristic probability, can be obtained by using various
tools based on MILP and SAT, however to derive such bounds for the entire construction
with 128-bit key difference is often infeasible.

Here we focus on the feature that the tweak expansion function ensures that the number
of active bits in the expanded tweak is at least 8 when the tweak difference is non-zero.
This implies that differential trails with non-zero tweak difference will have a large number
of active S-boxes around the tweak injection. This motivates us to evaluate the tight
bound of the differential characteristic probability for the 2-round transformation followed
by the tweak injection and another 2-round transformation, which we call “4-round core.”
Let pcore be the maximum differential characteristic probability of the 4-round core. Then,
the probability for the entire construction is upper bounded by (pcore)6 because 28 rounds
of TweGIFT-64 contain six 4-round cores (Fig. 4).

pcore in the single-key setting. As evaluated by [CDJ+19b], pcore can be evaluated by
using the MILP based tool. pcore of the 4-round core is 2−25.6, hence the probability for
the entire construction is upper bounded by 2−25.6×6 = 2−153.6. Because the block size of
TweGIFT-64 is 64 bits, it well resists the differential cryptanalysis.

96 INT-RUP Secure Lightweight Parallel AE Modes

𝑅0 𝑅1 𝑅2 𝑅3

𝑇𝑒

𝑅4 𝑅5 𝑅6 𝑅7

𝑇𝑒

𝑅8 𝑅9 𝑅10 𝑅11

𝑇𝑒

𝑅12 𝑅13 𝑅14 𝑅15

𝑇𝑒

𝑅16 𝑅17 𝑅18 𝑅19

𝑇𝑒

𝑅20 𝑅21 𝑅22 𝑅23

𝑇𝑒

𝑅24 𝑅25 𝑅26 𝑅27

4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒

Figure 4: Six 4-round cores of TweGIFT-64. Te denotes the 16-bit expanded tweak.

Table 2: Differential Trail with pcore = 2−16 in the Related-Key Setting.
Round Mask Differential Mask Key/Tweak Difference Probability

1
Before SC 0000 0000 0000 0000 1After SC 0000 0000 0000 0000

∆key: 0000 0000
Round key 0000 0000 0000 0000

2
Before SC 0000 0000 0000 0000 1After SC 0000 0000 0000 0000

∆key: 0000 0000
Round key 0000 0000 0000 0000

∆expanded tweak: e1e1

3
Before SC 8880 0008 8880 0008 2−16
After SC 3330 0003 3330 0003

∆key: aaa5 aa5a
Round key 0000 0000 0000 0000

4
Before SC 0000 0000 0000 0000 1After SC 0000 0000 0000 0000

∆key: 0000 0000
Round key 0000 0000 0000 0000

pcore in the related-key setting with non-zero tweak difference. We also used the
MILP based tool to derive pcore by allowing the difference in the 128-bit key. Recall
that the round key size is 32 bits, hence all subkey bits in the consecutive 4 rounds are
independent. Under the condition that at least 1 tweak bit is active, it turned out that
activating round keys leads to a higher pcore than the single-key setting. The results show
that pcore in the related-key setting is 2−16, hence the maximum differential characteristic
probability of 28 rounds is upper bounded by 2−16×6 = 2−96. This can also be viewed that
the maximum differential characteristic probability reaches 2−16×4 = 2−64 for 16 rounds
and we have 12 rounds for a margin. One of the best related-key differential trails for the
4-round core is fully specified in Table 2.

We emphasize that the maximum differential probability of 4 rounds of the original
GIFT-64-128 in the related-key setting is 1, namely 4 rounds can be bypassed without
activating any S-box (This occurs when only the 4th round key is active). To attack
TweGIFT-64 by exploiting the tweak is more difficult than to attack GIFT-64-128.

Gap between the lower and upper bounds. One may wonder if the trail in Table 2 is
iterative and thus it immediately leads to the differential trail matching the upper bound
of the characteristic probability, 2−96 for 28 rounds. This is because the input and output
state difference in Table 2 is both 0 (iterative), the expanded 16-bit tweak is iterative,
and the active two 16-bit key registers are always k0 and k1. However, we confirmed that
TweGIFT-64 does not allow such simple iterative characteristics. Indeed, bit-rotation of
the key registers for each round prevents from iterating the same differential propagation
multiple times.

To demonstrate this intuition clearly, we checked the behavior of the differential trail
in the subsequent 4-round core after the type of trails in Table 2. Namely, we first made a
limitation that only the third round is active in the first 4-round core, and then to check
the behavior of the second 4-round core. The results show that when only the third round
in the second 4-round core is active, the highest probability of the two consecutive 4-round
cores is 2−64 (2−32 per 4-round core). This occurs in the following configuration.

Chakraborti et al. 97

• 4 bits of the tweak is all active, which makes ∆Te be 0xffff.

• All 16 S-boxes have differential propagation 0x8 to 0x3 with probability 2−2.

• All 16 bits of k0 and k1 are active, i.e. 0xffff, which cancels the difference of the
S-box output. (The difference 0xffff is invariant for any rotation operation.)

Hence, to the best of our knowledge, the current lower bound of the differential characteristic
probability for 28 rounds with non-zero tweak difference in the related-key setting is
2−32×6 = 2−192.

By not trying to cancel the difference in the second 4-round core, the third round of
the second 4-round core can be bypassed with probability 2−16. Hence starting from the
first round, this will yield a differential characteristic with probability 2−32 up to 9 rounds.
However, since the difference soon diffuses in an uncontrollable way, it is inevitable to
activate more S-boxes for the entire construction with this approach.

Remarks on three 8-round cores. 28 rounds of TweGIFT-64 can also be viewed as
containing three of the 8-round core by ignoring two AddTweak operations between two
8-round cores. We also evaluated the maximum differential characteristic probability of
the 8-round core by using the MILP-based tool, which turned out to be 2−26.7. Hence,
from this evaluation, the probability for the entire construction can be upper bounded
only by 23×−26.7 = 2−80.1.

This observation demonstrates the difficulties of exploiting our tweak injection in
another way. The difficulty of controlling differential trails lies in the heavy weight of the
expanded tweak and thus to count as many tweak injection as possible would be the best
to derive good bounds.

We notice that the maximum differential characteristic probability of 8 rounds of the
original GIFT-64-128 in the related-key setting is 2−8, which contains only 4 active S-boxes.
The tweak expansion of TweGIFT-64 introduces many (at least 8) active S-boxes around the
tweak injection, and this prevents the efficient differential trails available in GIFT-64-128.

Related-key security with zero tweak difference. Because of the difficulty of exploiting
the tweak, zero-tweak difference would be the most natural scenario to attack TweGIFT-64.
As discussed before, the related-key security of TweGIFT-64 without using tweak difference
can be reduced to the related-key security of GIFT-64-128. Indeed, the keys are computed
by a predictable way in the mode and used with a fixed tweak. This implies that related-key
security of TweGIFT-64 matters in the related-key security of the entire construction.

At the time of the publication of GIFT-64-128 [BPP+17], the designers mentioned
that “GIFT aims at single-key security, so we do not claim any related-key security (even
though no attack is known in this model as of today).” On the other hand, several papers
tried to attack GIFT-64-128 in the related-key setting, e.g. related-key boomerang attack
on 23 rounds [LS19] and related-key rectangle attack on 23 rounds [CWZ19] and on 24
rounds [ZDM+19]. Without some innovation of the cryptanalytic technique, 28 rounds of
GIFT-64-128 would resist those approaches in the related-key setting.

Regarding the related-key differential cryptanalysis of GIFT-64-128, one may expect that
the above-mentioned 8-round characteristic with probability 2−8 can be iterated three times
to derive (2−8)3 = 2−24 as the upper bound of the probability for 24 rounds. However this is
only the loose bound, and such high probability characteristic in fact does not exist. To find
high probability differential characteristics, to use automated tools such as SAT or MILP
is a popular approach. In fact GIFT receives a lot of attention with this respect both in the
single-key and related-key settings [ZDY18, ZZDX19, LS19, CWZ19, ZDM+19, JZD19].
In particular, Liu et al. evaluated the lower bound of the number of active S-boxes of
GIFT-64-128 in the related-key setting up to 19 rounds [LS19, Table 4], which shows that

98 INT-RUP Secure Lightweight Parallel AE Modes

A

∆N

Gift-20

mux_In

064

Ai,Mi, Ci, < ℓ >

Ci,Mi, T

b

b

bb b

C
C

b b

b

mxA

064

m
xL

b

tweGIFT

A
C
C

∆N

GIFT-20

mux_In

064

Ai,Mi, Ci, < ℓ >

Ci,Mi, T

mxO

InOdd

b

bbb

b

b

b

mxA

tweGIFT

Figure 5: Hardware Architectures of LOCUS (left) and LOTUS (right)

the number of active S-boxes for r rounds is 2r−11 for r ≥ 11. Moreover, Liu et al. showed
that the probability of the related-key differential characteristic is upper bounded by 2−79

(280 paired queries) for 19 rounds [LS19, Table 5]. Considering that the attacker can
append several rounds on top of the distinguisher, one may want to increase the number of
rounds. The analysis to identify the number of added rounds to provide sufficient security
margin is an open problem.

5 Hardware Implementation
In this section, we provide a brief idea on the FPGA implementations of our designs. All
the hardware implementations are written in VHDL and are implemented on both Virtex
6 xc6vlx760 and Virtex 7 xc7vx415t using Xilin ISE 14.7 and Vivado 2018.3 respectively as
implementation tool. In all the cases the optimization strategy is speed oriented.

5.1 Hardware Architecture
We implement combined encryption-decryption circuits for both the ciphers in a round-
based architecture with 64 bit data path. Both the architectures are more or less similar
with a few differences in the message processing phase. The main modules and the registers
are briefly described below:

Registers. Both the architectures mainly contains four registers. A state register of 64
bits is used to store the encryption state. A key register of 128 bits is used to store the
master secret key. Note that the key schedule of the underlying block cipher is palindromic
and hence it removes the requirement to use a subkey register and only one subkey register
suffices. A 64 bit checksum register is used to store and update the checksum value, and
one ∆ register is used to store the ∆N value. The state register and key register are part
of the module TweGIFT-64.

Chakraborti et al. 99

TweGIFT-64 Module. This module actually describes one round function of the TweGIFT-
64 block cipher (Fig. 7). For LOCUS, we need both forward and inverse block cipher calls.
Each round of a forward call consists of a sequence of S-box, bit-permutation and add
round key operations. The inverse block cipher call performs add round key, inverse bit
permutation and the inverse S-box operations (in the reverse direction). Internally a tweak
value is added to the state register after each of the five consecutive rounds. For LOTUS,
only the forward block cipher call is required. It takes 64 bit input from the state register
computes one round of forward (or inverse in case of LOCUS) operations and then updates
the state and send the output either to the accumulator or again to the TweGIFT-64 round
module or release the output as the final tag (added to ∆N before the tag release).
Accumulator Module. The accumulator module ACC computes the checksum value of
the ECB layer and the last block to compute the tag.
InOdd Module. This module is specific LOTUS and it is used to detect whether the
counter value for the current message block has an odd index. This is required as it
processes two blocks at a time to xor it with the output of TweGIFT-64 to produce the
output.
Finite State Machine. We also report the finite state machine (FSM) that controls the
circuit flow by controlling and updating the internal signals and sending them to the
internal modules. The FSM has a simple structure. The overall hardware architecture for
both the designs is given in Fig. 5. This module is used to control the circuit. It is used
to generate and send signals to the internal modules and the functionalities of the circuit
are described by several states. Fig. 6 describes the state transitions of the finite state
machine (FSM) for the AE designs. The states are described below.

if start = 1

else

else
else

if AD complete = 0

if complete = 0
if reset done = 0

if tag finish = 0

if
reset key = 1
else

else

if msg complete = 0

Start Reset Wait

∆N Process

AD Process

Enc/Dec

Tag Generation

Change Key

Figure 6: Finite State Machine

• Reset: This state resets all the internal variables and signals and prepares the circuit
to start. The control from the Reset state goes to the Wait state.

• Wait: This state indicates that we should now initialize the cipher functionalities. It
actually prepares the circuit to process the nonce. The control next enters into the
state ∆N Process state when the data signal start is set. Otherwise, it enters into
the state Change_Key when the signal reset_key is set.

• ∆N Process: This state initializes the cipher by computing ∆N . When the compu-
tation is done (indicated by the complete signal), it enters into the associated data
processing phase AD_Process. Otherwise, it will remain in the ∆N Process state.

• Change_Key: This state indicates that the key is reset. The control transits to the
state Wait when the reset is done. Otherwise, the control will remain int his state.

100 INT-RUP Secure Lightweight Parallel AE Modes

• AD_Process: This state indicates processing of the associated data. It internally
uses the underlying block cipher, runs it and updates the intermediate checksum.
The completion of this phase it indicated by the AD_complete signal. After the
completion, the state transits to the Enc/Dec state which indicates the start of the
message (or ciphertext) processing. Otherwise, it remains in the same state.

• Enc/Dec: This state indicates the message (or ciphertext) processing phase. It also
invoke the block cipher internally, runs it and updates the checksum. The completion
of this phase is indicated by the msg_complete signal. After the completion, the
control enters into the Tag_Generation state. Otherwise, the control will remain in
this state. Note that, during the decryption for LOCUS, the circuit runs the block
cipher decryption module.

• Tag_Generation: This state indicates that the tag needs to be generated now. The
completion of this state is indicated by the tag_finish signal and the control will go
to the Wait state again. Otherwise, the control will remain in the same state when
the tag_finish signal is not set.

5.2 Implementation of TweGIFT-64
In this section, we first briefly describe our hardware implementation details of the TweGIFT-
64 module. We have implemented TweGIFT-64 using a basic iterative type architecture.
We would like to emphasize that our implementation is round-based and it uses 64-bit
data path, a smaller implementation can be obtained using smaller data paths 4-bit, 8-bit,
16-bit or even serialized implementations.

Table 3 provides the implementation details of TweGIFT-64 on Virtex 6. It is evident
from the results that the difference in the number of LUTs is 119 (caused by the inclusion
of the decryption rounds and the multiplexers to select the input to the state register).
The difference in terms of the number of slices is about 36 such that one slice in Virtex 6
has 4 LUTs and 2 Flip-flops (depends how a design is optimized and placed by the Xilinx
tools).

Table 3: TweGIFT-64 Implemented FPGA Results on Virtex 6
Mode # Slice

Registers # LUTs # Slices Frequency
(MHZ) Gbps Mbps/

LUT
Mbps/
Slice

Enc/dec 273 734 270 425.99 0.94 1.28 3.48
Enc 275 333 134 540.56 1.19 3.57 8.88

Table 4: TweGIFT-64 Implemented FPGA Results on Virtex 7
Platform # Slice

Registers # LUTs # Slices Frequency
(MHZ) Gbps Mbps/

LUT
Mbps/
Slice

Enc/dec 273 730 265 441.71 0.97 1.32 3.66
Enc 275 329 134 554.32 1.22 3.71 9.10

Detailed descriptions can be found in Appendix B.1.

5.3 Implementation of LOCUS and LOTUS
The hardware implementations of LOCUS and LOTUS use a round-based iterative TweGIFT-
64 core as a main building block. Our designs are implemented optimizing the speed as
the ones in the CAESAR benchmark. The inherent parallel characteristics of LOCUS
and LOTUS allow the implementers to explore various other options such as pipeline or
unrolling architectures. However, we do not use such optimizations here to ensure fair

Chakraborti et al. 101

comparison. The detailed implementation results are depicted in Table 5. The areas are
provided in terms of the number of slice registers, slice LUTs and the number of occupied
slices. Note that, we use less than 1% of the FPGA in our implementations: 0.18/0.24
(LOCUS/ LOTUS) in Virtex 6, 0.33/0.45 (LOCUS/ LOTUS) in Virtex 7. This is due to the
fact that both the devices are high-end, and hence the available resources are huge.

Table 5: LOCUS and LOTUS (combined enc/dec circuit) Implemented FPGA Results.
Platform Scheme # Slice

Registers # LUTs # Slices Frequency
(MHZ)

Throughput
(Gbps)

Mbps/
LUT

Mbps/
Slice

Virtex 6 LOCUS 437 1146 418 348.67 0.39 0.34 0.94
Virtex 7 LOCUS 430 1154 439 392.20 0.44 0.38 1.00
Virtex 6 LOCUS-e 427 698 250 368.34 0.41 0.59 1.65
Virtex 7 LOCUS-e 424 704 272 406.84 0.46 0.65 1.68
Virtex 6 LOTUS 571 868 317 351.25 0.39 0.45 1.24
Virtex 7 LOTUS 565 865 317 424.45 0.48 0.55 1.50
Virtex 6 LOTUS-e 564 801 251 380.84 0.43 0.53 1.70
Virtex 7 LOTUS-e 564 800 249 414.42 0.47 0.58 1.87
Virtex 6 LOTUS-d 566 804 245 379.83 0.43 0.53 1.74
Virtex 7 LOTUS-d 563 791 254 418.91 0.47 0.59 1.85

5.4 Benchmarking LOCUS and LOTUS
In this section, we provide a benchmark of hardware implementation results for both
LOCUS and LOTUS with the ATHENa listed results in [ATHb, ATHa] on both Virtex 6
and 7.

5.4.1 Benchmarking Methodology

We would like to point out that our implementation architecture is simply round-based
with a 64-bit datapath. The implementation does not follow any optimization (e.g, 4-
bit serialized implementation). Our main motivation is to provide a rough benchmark
of our basic round-based implementation with the same for the other designs. Most
of the implementation results (actually almost all) we use are round-based and taken
from [ATHb, ATHa]. The results for COFB and Beetle are also round-based and taken
from [CIMN17, CDNY18]. We clearly state that, we ignore the overheads to support
the GMU API (COFB and Beetle have also been implemented without GMU API) and
mention that supporting this API will add some overheads to the current figures of LOTUS
and LOCUS. Nevertheless, we believe the current results of our designs suggest that low
area hardware implementations are possible compared to other AE modes shown in the
comparison tables, even if we add API overheads.
We also point out that it is basically a little hard to compare LOTUS and LOCUS using
GIFT-64/128 with other 128-bit block cipher based or non block-cipher based AE schemes,
because of the primitive differences and the types of security guarantees. For an instance,
ACORN does not have any provable security result and has been analyzed with several
cryptanalysis [DRA16, SWB+16, SBD+16, LLMH16]. DEOXYS, Joltik and JAMBU-
SIMON employ lightweight (tweakable) blockciphers that allow different implementation
size from GIFT-64/128. Sponge based AE schemes (Beetle , ASCON, Ketje, NORX, and
PRIMATES-HANUMAN) use a public permutation with a large state size (greater than or
equal to 256-bits) and avoid key scheduling circuit and have the provable security relying
on the random permutation model.

A detailed comparison can be found below in Table 6 and 7. Note that, the hardware
areas for SUNDAE [BBLT18] is given in GEs (ASIC platform). Hence, we do not include
these results in the table. The comparison table shows that our implementation results
are highly competitive. Among non-AES based constructions, LOCUS and LOTUS have

102 INT-RUP Secure Lightweight Parallel AE Modes

Table 6: Comparison on Virtex 6 [ATHb]. Here BC denotes block cipher, SC denotes
Streamcipher, (T)BC denotes (Tweakable) block cipher and BC-RF denotes the block
cipher’s round function,‘-’ means that the data is not available.

Scheme Underlying
Primitive # LUTs # Slices Gbps Mbps/

LUT
Mbps/
Slice

LOCUS BC (non AES) 1146 418 0.39 0.34 0.94
LOTUS BC (non AES) 868 317 0.39 0.45 1.24

CLOC-TWINE [IMG+16] BC (non-AES) 1689 532 0.343 0.203 0.645
SILC-LED [IMG+16] BC (non-AES) 1685 579 0.245 0.145 0.422

SILC-PRESENT [IMG+16] BC (non-AES) 1514 548 0.407 0.269 0.743
JAMBU-SIMON [WH16] BC (non-AES) 1222 453 0.363 0.297 0.801

AES-OTR [Min16] BC 5102 1385 2.741 0.537 1.979
AES-OCB [KR16] BC 4249 1348 3.122 0.735 2.316
AES-OCB [KR16] BC 4249 1348 1.56 0.37 1.16
AES-GCM [Dwo11] BC 3175 1053 3.239 1.020 3.076

AES-COPA [ABL+15] BC 7754 2358 2.500 0.322 1.060
CLOC-AES [IMG+16] BC 3145 891 2.996 0.488 1.724

ELmD [DN15] BC 4302 1584 3.168 0.736 2.091
JAMBU-AES [WH16] BC 1836 652 1.999 1.089 3.067
SILC-AES [IMG+16] BC 3066 921 4.040 1.318 4.387

COFB-AES [CIMN17, CIMN17] BC 1075 442 2.850 2.240 6.450
AEGIS [WP16] BC-RF 7592 2028 70.927 9.342 34.974

DEOXYS [JNP16] TBC 3143 951 2.793 0.889 2.937
Beetle[Light+] [CDNY18] Sponge 616 252 1.879 3.050 7.369
Beetle[Secure+] [CDNY18] Sponge 998 434 2.520 2.525 5.806
ASCON-128 [DEMS16] Sponge 1271 413 3.172 2.496 7.680
Ketje-Jr [BJDAK16] Sponge 1236 412 2.832 2.292 6.875

NORX [AJN16] Sponge 2964 1016 11.029 3.721 10.855
PRIMATES-HANUMAN [ABB+16] Sponge 1012 390 0.964 0.953 2.472

ACORN [Wu16] SC 455 135 3.112 6.840 23.052
TriviA-ck [CCHN15, CCHN18, CN15] SC 2118 687 15.374 7.259 22.378

a better throughput/area metric. Moreover, our modes outperform AES-based parallel
designs due to the smaller 64-bit TweGIFT block cipher.

6 Security Analysis of LOCUS and LOTUS
Before delving into the security proofs, we give an alternative formulation for LOCUS and
LOTUS based on a tweakable block cipher. This formulation extends Rogaway’s XEX
[Rog04] based abstraction of OCB.

6.1 Θ-LOC and Θ-LOT
Let T = {0, 1}κ × {2, 3, . . . , 15} × [2n] and Π̃←$ TPerms(T , {0, 1}n). We define two
new authenticated encryption schemes Θ-LOT[Π̃] and Θ-LOC[Π̃] in Algorithms 3 and 4,
respectively.

Notice that the modified algorithms are implicitly keyed due to the tweakable random
permutation Π̃.

Let Ẽ be a tweakable ideal cipher over key space {0, 1}κ, tweak space (15], and block
space {0, 1}n. Now, we define P̃ as a tweakable block cipher over key space {0, 1}κ, tweak
space T , and block space {0, 1}n, by the following mapping:
∀(K,N, d, i,X) ∈ {0, 1}κ × T × {0, 1}n,

P̃N,d,iK (X) := ẼdLi(X ⊕∆N)⊕∆N . (7)

where Li = 2i(K ⊕N) and ∆N = Ẽ1
K⊕N (Ẽ0

K(0)).
This definition, though artificial in nature, serves its purpose well. Notably, we can now

view LOTUS and LOCUS as instantiations of Θ-LOT and Θ-LOC, namely, Θ-LOT[P̃[Ẽ]]

Chakraborti et al. 103

Algorithm 3 The encryption algorithm of Θ-LOT[Π̃].

1: function Θ-LOT[Π̃].enc(N,A,M)
2: C ← ⊥,W⊕ ← 0, V⊕ ← 0
3: d|A|/ne = a

4: d|M |/ne = m

5: if a 6= 0 then
6: V⊕ ← proc_ad(A)
7: if m 6= 0 then
8: (W⊕, C)← proc_pt(M)
9: T ← proc_tg(V⊕,W⊕)

10: return (C, T)

11: function proc_ad(A)
12: (A1, . . . , Aa) n← A

13: for i = 1 to a− 1 do
14: Vi ← Π̃(N,2,i)(Ai)
15: V⊕ ← V⊕ ⊕ Vi
16: if |Aa = n| then
17: Va ← Π̃(N,2,a)(ozs(Aa))
18: else
19: Va ← Π̃(N,3,a)(ozs(Aa))
20: V⊕ ← V⊕ ⊕ Va
21: return V⊕

1: function proc_pt(M)
2: (M1, . . . ,Mm) n←M

3: d = dm/2e
4: for i = 1 to d− 1 do
5: j = 2i− 1
6: Wj ← Π̃(N,4,a+i)(Mj)
7: Cj ← Π̃(N,7,a+i)(Wj)⊕Mj+1

8: Wj+1 ← Π̃(N,5,a+i)(Cj)
9: Cj+1 ← Π̃(N,8,a+i)(Wj+1)⊕Mj

10: W⊕ ← W⊕ ⊕W1 ⊕W2

11: X ← 〈|M | − 2(d− 1)n〉n
12: W2d−1 ← Π̃N,12,a+d(X)
13: Y ← Π̃N,14,a+d(X)⊕M2d−1
14: C2d−1 ← bY c|M2d−1|
15: W⊕ ← W⊕ ⊕W2d−1
16: C ← (C1, . . . , C2d−1)
17: if 2d = m then
18: W2d ← Π̃(N,13,a+d)(Y)
19: W⊕ ← W⊕ ⊕W2d

20: Y ← bΠ̃(N,15,a+d)(W2d)⊕Xc|M2d|
21: C2d ← Y ⊕M2d
22: C ← C‖C2d

23: W⊕ ← W⊕ ⊕Mm

24: return (W⊕, C)

25: function proc_tg(V⊕,W⊕)
26: X⊕ ← V⊕ ⊕W⊕
27: T ← Π̃N,6,a+m(X⊕)
28: return T

Algorithm 4 The encryption algorithm of Θ-LOC[Π̃]. The subroutine proc_ad and
proc_tg are identical to the one used in Θ-LOT[Π̃].

1: function Θ-LOC[Π̃].enc(N,A,M)
2: C ← ⊥, W⊕ ← 0, V⊕ ← 0
3: if |A| 6= 0 then
4: V⊕ ← proc_ad(A)

5: if |M | 6= 0 then
6: (W⊕, C)← proc_pt(M)

7: T ← proc_tg(V⊕,W⊕, |A|+ |M |)
8: return (C, T)

1: function proc_pt(M)
2: (M1, . . . ,Mm) n←M

3: for j = 1 to m− 1 do
4: Wj ← Π̃(N,4,j)(Mj)
5: W⊕ ← W⊕ ⊕Wj

6: Cj ← Π̃(N,12,j)(Wj)

7: X ← 〈|Mm|〉n
8: Wm ← Π̃(N,5,j)(X)
9: W⊕ ← W⊕ ⊕Wm ⊕Mm

10: Y ← Π̃(N,13,j)(Wm)
11: Cm ← bY c|Mm| ⊕Mm

12: C ← (C1, . . . , Cm)
13: return (W⊕, C)

104 INT-RUP Secure Lightweight Parallel AE Modes

Table 7: Comparison on Virtex 7 [ATHb].
Scheme # LUTs # Slices Gbps Mbps/

LUT
Mbps/
Slice

LOCUS 1154 439 0.44 0.38 1.00
LOTUS 865 317 0.48 0.55 1.50

CLOC-TWINE 1552 439 0.432 0.278 0.984
SILC-AES 3040 910 4.365 1.436 4.796
SILC-LED 1682 524 0.267 0.159 0.510

SILC-PRESENT 1514 484 0.479 0.316 0.990
JAMBU-SIMON 1200 419 0.368 0.307 0.878

AES-OTR 4263 1204 3.187 0.748 2.647
OCB 4269 1228 3.608 0.845 2.889

AES-COPA 7795 2221 2.770 0.355 1.247
AES-GCM 3478 949 3.837 1.103 4.043
CLOC-AES 3552 1087 3.252 0.478 1.561

ELmD 4490 1306 4.025 0.896 3.082
JAMBU-AES 1595 457 1.824 1.144 3.991
COFB-AES 1456 555 2.820 2.220 5.080

SAEB [NMSS18] 348 − − − −
AEGIS 7504 1983 94.208 12.554 47.508

DEOXYS 3234 954 1.472 0.455 2.981
Beetle[Light+] 608 312 2.095 3.445 6.715

Beetle[Secure+] 1101 512 2.993 2.718 5.846
ASCON-128 1373 401 3.852 2.806 9.606

Ketje-Jr 1567 518 4.080 2.604 7.876
NORX 2881 857 10.328 3.585 12.051

PRIMATES-HANUMAN 1148 370 1.072 0.934 2.897
ACORN 499 155 3.437 6.888 22.174
TriviA-ck 2221 684 14.852 6.687 21.713

and Θ-LOC[P̃[Ẽ]], respectively. We argue the security of LOCUS and LOTUS under this
modified view.

We remark here that the small modifications in the specification of LOTUS and LOCUS
(see section 3) are introduced precisely to exploit this modularity. As we see later in
this section, these changes make the proof modular and much easier to understand. The
security of the original construction as given in the NIST submission [CDJ+19a] is exactly
the same, though requires a more dedicated and notationally complex proof.

6.2 Privacy and Integrity Security of LOCUS
Recall that LOCUS[Ẽ] is equivalent to Θ-LOC[P̃[Ẽ]]. As a result it is sufficient to bound
the privacy and integrity-under-RUP advantage of Θ-LOC[P̃[Ẽ]]. The main technical result
on the security of Θ-LOC[P̃[Ẽ]] is given in Theorem 2.

Theorem 2. For σe + σd + σv ≤ 2n−1, qp ≤ 2κ−1, and σ = σe + σd + σv, we have

1. For all (qe, σe, qp)-distinguisher D ,

Advpriv
Θ-LOC[̃P[̃E]]

(D) ≤ 6qp(qe + σe)
2n+κ + q2

e + 3σ2
e

2n+κ + qp + qe + σe
2κ . (8)

2. For all (qe, qv, σe, σd, σv, qp)-distinguisher F ,

Advint-rup
Θ-LOC[̃P[̃E]]

(F) ≤ 6qp(q + σ)
2n+κ + q2 + 3σ2

2n+κ + qp + q + σ

2κ + 4qv
2n , (9)

where q = qe + qd + qv and σ = σe + σd + σv.

Chakraborti et al. 105

Proof. As a first step, we replace (P̃[Ẽ], Ẽ) with (Π̃, Ẽ) using a standard hybrid argument
that incurs a cost of Advtprp

P̃[̃E]
(σe + qe, qp) and Advtsprp

P̃[̃E]
(σ + q, qp) in case of privacy and

integrity-under-RUP, respectively. The TSPRP advantage of P̃[Ẽ] is upper bounded in
Lemma 1.

By a slight abuse of notation we reuse D as the distinguisher that tries to distinguish
P0 := (Θ-LOC[Π̃].enc, Ẽ±) and P1 := ($e, Ẽ±). Similarly, F denotes the distinguisher that
tries to distinguish R0 := (Θ-LOC[Π̃].enc,Θ-LOC[Π̃].dec,Θ-LOC[Π̃].ver, Ẽ±) and R1 :=
(Θ-LOC[Π̃].enc,Θ-LOC[Π̃].dec,⊥, Ẽ±). The rest of the proof is sub-divided into two parts
corresponding to Eq. (8) and Eq. (9).

Proof of privacy: We have

∆D [P0;P1] =
∣∣∣Pr[D (Θ-LOC[Π̃].enc,̃E±) = 1]− Pr[D ($e ,̃E±) = 1]

∣∣∣
=
∣∣∣Pr[DΘ-LOC[Π̃].enc = 1]− Pr[D$e = 1]

∣∣∣ . (10)

The second equality follows from the fact that access to Ẽ± does not help D , as Θ-LOC[Π̃].enc
and $e are independent of Ẽ, whence the oracle can be dropped. We claim that the R.H.S.
of Eq. (10) is 0. This can be argued based on two simple facts.

First, the output distribution of Π̃ is identical to a uniform random function, if Π̃ is
always evaluated over distinct tweak values. This is independent of block cipher inputs as
well as the actual tweak values. More formally, for all tweak values x ∈ T , the mapping
Π̃(x, ?) is identical to Γ(x) where Γ denotes a uniform random function from T to {0, 1}n.

Second, in Θ-LOC[Π̃].enc, for nonce-respecting queries, Π̃ is called exactly once for each
tweak value. Hence the output distribution of Θ-LOC[Π̃].enc is identical to $e. The result
follows by substituting the upper bound for Advtsprp

P̃[̃E]
from Lemma 1.

Proof of integrity-under-RUP: Let O0 := (Θ-LOC[Π̃].enc,Θ-LOC[Π̃].dec,⊥) and O1 :=
(Θ-LOC[Π̃].enc,Θ-LOC[Π̃].dec,Θ-LOC[Π̃].ver). Using a similar line of argument as in the
case of Eq. (10), we have

∆F [R0;R1] =
∣∣Pr[FO0 = 1]− Pr[FO1 = 1]

∣∣ . (11)

Let [q] denote the query indices, and [q]e, [q]d, and [q]v denote the subset of encryption,
decryption, and verification query indices, respectively, i.e., |[q]x| = qx for x ∈ {e, d, v}.
All the encryption query variables (including the internal ones) are defined analogous to
Algorithm 3 and Algorithm 4. The variables arising in decryption and verification queries
are defined identically, but topped with tilde and bar, respectively.

Let Ω denote the set of attainable transcripts in the ideal world. For any tran-
script ω ∈ Ω, we segregate the encryption, decryption, and verification query tuples
into ωe, ωd, and ωv, i.e. ωe = (N i, Ai,M i, Ci, T i)i∈[q]e , ωd = (Ñ i, Ai, C̃i, M̃ i)i∈[q]d ,
ωv = (N̄ ,Āi, C̄i, T̄ i,⊥i)i∈[q]v , and ω = {ωe, ωd, ωv}.

We take all attainable transcripts to be good, i.e., Ωbad = ∅. For a good transcript
ω, it is obvious that Pr[Λe1 = ωe,Λd1 = ωd] = Pr[Λe0 = ωe,Λd0 = ωd]. Thus, the ratio of
interpolation probabilities is given by

Pr[Λ1 = ω]
Pr[Λ0 = ω] = Pr[Λv1 = ωv|Λe1 = ωe,Λd1 = ωd]

≥ 1− Pr[Λv1 6= ωv|Λe1 = ωe,Λd1 = ωd],

where we use the fact that Pr[Λv0 = ωv|Λe0 = ωe,Λd0 = ωd] = 1. For i ∈ [q]v, let Forgei
denote the event (N̄i, Āi, C̄i, T̄i, λ̄i) 6= (N i, Ai, Ci, T i,⊥)

∣∣ Λe1 = ωe,Λd1 = ωd, where λ̄i

106 INT-RUP Secure Lightweight Parallel AE Modes

denotes the output of the verification interface for the i-th verification query in the real
oracle. Apart from λ̄i, all other variables are adversarial inputs, and hence must match.
Then, we have

Pr[Λv1 6= ωv|Λe1 = ωe,Λd1 = ωd] ≤
∑
i∈[q]v

Pr[Forgei].

We fix a verification query index i and follow the following two cases.

1. N̄i 6= Nj for all j ∈ [q]e. This means that in the real world, the tweakable random
permutation Π̃ was never called for tweak input (N̄i, 6, ·), whence the tag matches
with at most 2−n probability.

2. N̄i = Nj for some j ∈ [q]e. If T̄i 6= Tj , then the forgery succeeds with at most
1/(2n − 1) probability, as this is equivalent of guessing the output of a uniform
random permutation when one input-output pair is already known. Suppose T̄i = Tj .
Then, we must have X̄i⊕ = Xj⊕. Also, (Āi, C̄i) 6= (Aj ,Cj), otherwise the queries are
duplicate.
We can have two cases, depending upon whether Āj = Ai or not. We discuss the
Āi = Aj , and the other case can be similarly bounded. Since Āi = Aj , there must
be at least one ciphertext block index, say k, in [max{|C̄i|, |Cj |}] such that C̄ik 6= Cjk.
Now, we have two cases based on |C̄i| and |Cj |.

a. |C̄i| 6= |Cj |, say |C̄i| > |Cj |. Then, we choose k = ¯̀
i. In this case, we condition

on the values of W̄i and Wj as well as V̄i and Vj , except W̄i
¯̀
i
. Then, the

probability that X̄i⊕ = Xj⊕ is bounded by at most 1/(2n − qd − 1) < 2/2n
(assuming qd + 1 < 2n−1) due to the randomness of W̄i

¯̀
i
.

b. |C̄ik| = |C
j
k|. Suppose, the two ciphertexts differ only at the last block. Then it is

easy to see that the probability of X̄i⊕ = Xj⊕ is 0. This happens by design. Instead,
suppose there exist k < `j , such that C̄ik 6= Cjk. Then, the probability of X̄i⊕ = Xj⊕
is bounded by 1/(2n − qd − 1) ≤ 2/2n (assuming qd + 1 < 2n−1), using a similar
line of argument as in the preceding case.

Cases 2a and 2b are mutually exclusive, which in combination with the Āi 6= Aj case,
upper bounds the probability in case 2 by 4/2n.

Cases 1 and 2 are mutually exclusive, whence we can bound Pr[Forgei] ≤ 4/2n. The result
follows from Theorem 1.

6.3 Privacy and Integrity Security of LOTUS
The main technical result on the security of LOTUS is given in Theorem 3.

Theorem 3. For σe + σd + σv ≤ 2n−1, qp ≤ 2κ−1, and σ = σe + σd + σv, we have

1. For all (qe, σe, qp)-distinguisher D ,

Advpriv
Θ-LOT[̃P[̃E]]

(D) ≤ 6qp(qe + σe)
2n+κ + q2

e + 3σ2
e

2n+κ + qp + qe + σe
2κ . (12)

2. For all (qe, qv, σe, σd, σv, qp)-distinguisher F ,

Advint-rup
Θ-LOT[̃P[̃E]]

(F) ≤ 6qp(q + σ)
2n+κ + q2 + 3σ2

2n+κ + qp + q + σ

2κ + 4qv
2n , (13)

where q = qe + qd + qv and σ = σe + σd + σv.

Chakraborti et al. 107

Proof. The privacy advantage is bounded to Advtsprp
P̃[̃E]

(σe + qe, qp) using exactly the same
argument as in case of Θ-LOC. The integrity-under-RUP advantage is bounded to
Advtsprp

P̃[̃E]
(σ + q, qp) + 4qv/2n using similar arguments as in case of Θ-LOT. We skip

a formal proof for economical reasons.

6.4 Security of P̃
The main technical result on the security of P̃, as defined in section 6.1, is given in Lemma
1.

Lemma 1. For any (qe, qd, qp)-adversary B, we have

Advtsprp
P̃[̃E]

(B) ≤ qp + q

2κ + 6qpq
2n+κ + q2

2n+κ ,

where q = qe + qd.

Proof. We employ the coefficient-H technique to bound the distinguishing advantage of B
in distinguishing the real oracle (P̃±, Ẽ±) from the ideal oracle (Π̃±, Ẽ±). Let [q] denote
the set of all construction query indices, and [q]e, and [q]d denote the subset of encryption,
and decryption, respectively, query indices, i.e., |[q]x| = qx for x ∈ {e, d}.

For the i-th construction query, we define the following notations:

• Ti := (Ni, di,mi): the i-th tweak value; Mi: the i-th message; Ci: the i-th ciphertext.

• Ki
N = K ⊕Ni; Li := 2miKi

N ; ∆i
N := Ẽ1

Ki
N

(∆0), where ∆0 = Ẽ0
K(0).

• Xi = Mi ⊕∆i
N ; Yi = Ci ⊕∆i

N .

The i-th primitive query variables are defined analogously, but topped with a hat to
differentiate them from their construction counterpart. So, the i-th primitive query is
of the form (L̂i, X̂i, Ŷi), where L̂i, X̂i, and Ŷi denote the key, input and output of the
primitive.

We consider an extended version of the oracles, in which they release the internal
secrets, once the query-response phase is over. The real oracle releases the secret key
K, and the ∆i

N values for all i ∈ [q]. This uniquely defines all the intermediate variables
arising in the construction queries.

The ideal oracle first samples a dummy key K uniformly at random. Let S = {i ∈ [q] :
@j < i,Ni = Nj}. The ideal oracle samples ∆i

N uniformly at random for all i ∈ S, and
sets ∆j

N = ∆i
N if Nj = Ni for all j ∈ [q] and i ∈ S. All other internal variables are defined

according to their relationship in the real world.
Let Ω denote the set of attainable transcripts in the ideal world. For any transcript

ω ∈ Ω, we segregate the construction and primitive query tuples into ωc, and ωp, i.e.
ωc = (Ni, di,mi,Mi, Ci, Xi, Yi,∆i

N ,K
i
N , Li)i∈[q], ωp = (L̂i, d̂i, X̂i, Ŷi)i∈[q]p .

Bad Transcript Analysis: We say that an attainable transcript is bad, if one of the
following conditions hold:

C0 : ∃i ∈ [q]p such that K = L̂i.

C1 : ∃i ∈ [q] such that K = Ni.

C2 : ∃i ∈ [q], j ∈ [q]p such that (L̂j , d̂j , Ẑj) = (Ki
N , 1, Zi), where (Ẑj , Zi) ∈

{(X̂j ,∆0), (Ŷj ,∆i
N)}.

C3 : ∃i 6= j ∈ [q] such that (Li, di, Zi) = (Lj , dj , Zj), where Z ∈ {X,Y }.

108 INT-RUP Secure Lightweight Parallel AE Modes

C4 : ∃i ∈ [q], j ∈ [q]p such that (Li, di, Zi) = (L̂j , d̂j , Ẑj), where Z ∈ {X,Y }.

C5 : ∃i ∈ [q] such that |{j ∈ [q]p : (L̂j , d̂j) = (Li, di)}| ≥ 2n−1.

Let bad denote the event that Λ0 satisfies one of the Ci for i ∈ (5]. Then, we have

Pr[Λ0 ∈ Ωbad] = Pr[bad] = Pr
[5⋃
i=0

Ci

]
. (14)

It is easy to see that the probabilities Pr[C0] and Pr[C1] are bounded by at most qp2−κ, and
q2−κ, respectively, since K is chosen uniformly at random. Now, we bound the probabilities
of C2, C3|¬C1, C4, and C5.
1. Bounding Pr[C2]: In the ideal world, KiN, ∆0, and ∆i

N are all uniform and independent
of each other. Further, there are two choices for (Ẑj ,Zi) and qqp choices for i and j. So
the probability of this event can be bounded by at most qqp21−n−κ.
2. Bounding Pr[C3|¬C1]: This event bounds the probability of internal key and input/output
collision. Now we may have two cases:

(a) Ni = Nj . In this case, we must have mi = mj , otherwise Li = 2miKiN 6= 2mjKiN = Lj .
Now Xi = Xj implies that Mi = Mj and Xi = Xj implies that Ci = Cj , both of which
imply duplicate query. So the probability is zero in this case.

(b) Ni 6= Nj . In this case, we have two equations 2miKiN = 2mjKjN and Zi = Zj in two
independent random variables (K, and ∆i

N) which gives a probability of 2−n−κ. Further,
there are 2 choices for Z and

(
q
2
)
choices for i and j. Thus, we have Pr[C3|¬C1] ≤

q22−n−κ.

3. Bounding Pr[C4]: This event is similar to 2.(b) above, and the probability can be
bounded by at most qqp21−n−κ using the randomness of K and ∆i

N.
4. Bounding Pr[C5]: This event is mainly useful in avoiding the case when the adversary
accidentally exhausts the entire codebook for some construction query key Li. Let K̂
denote the set of all indices i ∈ [qp] such that |{j ∈ [qp] : j > i, L̂j = L̂i}| ≥ 2n−1. Then
|K̂| ≤ qp/2n−1. Since K is uniformly distributed, we have

Pr[C5] = Pr[Li ∈ K̂] ≤ 2qpq
2n+κ .

On combining all bounds, we get

Pr[bad] ≤ qp + q

2κ + 6qpq
2n+κ + q2

2n+κ .

Good Transcript Analysis: Fix any good transcript ω. Let (T ′1, . . . , T ′r) denote the
distinct tweaks present in (T1, . . . , Tq). Let (c1, . . . , cr) be a tuple of positive integers
with ci = |{j ∈ [q] : Tj = T ′i}|. Clearly,

∑
j cj = q since the transcript is good (i.e.

(Ti, Xi) = (Tj , Xj) ⇐⇒ (Ti, Yi) = (Tj , Yj)). Now, in the ideal world we have

Pr[Λ0 = ω] = Pr[Λp0 = ωp,Λc0 = ωc]

= Pr[Λp0 = ωp] · 1
2κ2n(q+1)∏r

i=1(2n)ci
(15)

Let ((L′1, d′1), . . . , (L′s, d′s)) denote the distinct keys and short tweak tuples present in
((L1, d1), . . . , (Lq, dq)). Let (a1, . . . , as) and (b1, . . . , bs) be tuples of positive integers such

Chakraborti et al. 109

that ai = |{j ∈ [q] : (Lj , dj) = (L′i, d′i)}| and bi = |{j ∈ [q]p : (L̂j , d̂j) = (L′i, d′i)}|. Clearly,∑s
i=1 ai = q, and bi < 2n−1 for all i ∈ [s], since the transcript is good. Then, we have

Pr[Λ1 = ω] = Pr[Λp1 = ωp] · Pr[Λc1 = ωc|Λp1 = ωp]

= Pr[Λp0 = ωp] · 1
2κ2n(q+1)∏s

i=1(2n − bi)ai
(16)

On dividing Eq. (16) by (15), and doing some simple algebraic simplifications, we get

Pr[Λ1 = ω]
Pr[Λ0 = ω] ≥ 1.

The result follows from the coefficient-H technique.

6.5 Some Remarks on Generic Cryptanalysis on LOCUS and LOTUS
Here we summarize some generic ways of attacking LOCUS. Similar strategies work for
LOTUS as well. First of all it is clear from the proof of lemma 1 that privacy directly
depends on the security of P̃[Ẽ]. Below, we enumerate some of the important attack
strategies against P̃[Ẽ]:

1. Guessing master key by making primitive queries: One can exhaustively search for
the master key which requires qp = O(2κ) and q = O(1). This strategy is handled in
event C0.

2. Guessing the nonce-based internal key and input mask: This requires a correct guess
of K⊕N and Ẽ0

K(0), which requires qpq = O(2n+κ). This strategy is handled in event
C2.

3. Colliding the internal key and input of two distinct P̃ queries: Clearly, this requires
q = O(2n+κ

2), as both key and input should collide. We remark that similar
event requires just q = O(2n/2) queries in XEX based constructions. For instance,
Ferguson’s forgery attack [Fer02] creates a collision on the internal input in O(2n/2)
queries. However, the same attack does not succeed against LOCUS, as just internal
input collision is not enough. This strategy is handled in event C3.

In INT-RUP attacks the adversary can either try to exploit the above mentioned attacks,
or it can try to guess the tag or try to collide the internal checksum values. All these
cases are handled in the proof of Theorem 2. Note that the access to unverified plaintext
gives no extra advantage to the adversary, as the plaintext is not used in the checksum
computation.

We also remark that the recent attacks on OCB2 by Inoue et al. [IIMP19] is also
not applicable against LOCUS. Basically, their attack exploits a flaw in the last block
processing of OCB2. Both LOCUS and LOTUS are devoid of such flaws.

Acknowledgments
The authors would like to thank Dr. Nicky Mouha for his insightful comments and
suggestions in preparing the final draft. We would also like to thank all the anonymous
reviewers of ToSC 2019 for their valuable comments. Nilanjan Datta, Ashwin Jha and
Mridul Nandi are supported by the project “Study and Analysis of IoT Security” under
Government of India at R.C.Bose Centre for Cryptology and Security, Indian Statistical
Institute, Kolkata.

110 INT-RUP Secure Lightweight Parallel AE Modes

References
[ABB+16] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel,

Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs
v1.02. Submission to CAESAR, 2016. https://competitions.cr.yp.to/
round2/primatesv102.pdf.

[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,
and Kan Yasuda. How to securely release unverified plaintext in authenti-
cated encryption. In Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, pages 105–125, 2014.

[ABL+15] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. AES-COPA v.2. Submission to CAESAR, 2015.
https://competitions.cr.yp.to/round2/aescopav2.pdf.

[AJN16] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v3.0.
Submission to CAESAR, 2016. https://competitions.cr.yp.to/round3/
norxv30.pdf.

[ATHa] ATHENa: Automated Tool for Hardware Evaluation. https://
cryptography.gmu.edu/athena.

[ATHb] Authenticated Encryption FPGA Ranking. https://cryptography.gmu.
edu/athenadb/fpga_auth_cipher/rankings_view.

[BBLT18] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser.
Sundae: Small universal deterministic authenticated encryption for the inter-
net of things. IACR Transactions on Symmetric Cryptology, 2018(3):1–35,
Sep. 2018.

[BBM15] Subhadeep Banik, Andrey Bogdanov, and Kazuhiko Minematsu. Low-Area
Hardware Implementations of CLOC, SILC and AES-OTR, 2015. DIAC 2015.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the sponge: Single-pass authenticated encryption and other applications.
In Selected Areas in Cryptography - 18th International Workshop, SAC 2011.
Revised Selected Papers, pages 320–337, 2011.

[BHT18] Priyanka Bose, Viet Tung Hoang, and Stefano Tessaro. Revisiting AES-GCM-
SIV: multi-user security, faster key derivation, and better bounds. In Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel,
April 29 - May 3, 2018 Proceedings, Part I, pages 468–499, 2018.

[BJDAK16] Guido Bertoni, Michaël Peeters Joan Daemen, Gilles Van Assche, and
Ronny Van Keer. Ketje v2. Submission to CAESAR, 2016. https:
//competitions.cr.yp.to/round3/ketjev2.pdf.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In Ad-
vances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
II, pages 123–153, 2016.

https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/aescopav2.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://cryptography.gmu.edu/athena
https://cryptography.gmu.edu/athena
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf

Chakraborti et al. 111

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES 2007, pages 450–
466, 2007.

[BKR98] Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-rackoff backwards:
Increasing security by making block ciphers non-invertible. In Advances in
Cryptology - EUROCRYPT ’98, International Conference on the Theory and
Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4,
1998, Proceeding, pages 266–280, 1998.

[BMR+13] Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vincent Rijmen, and
Elmar Tischhauser. ALE: AES-Based Lightweight Authenticated Encryption.
In FSE 2013, pages 447–466, 2013.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reaching
the limit of lightweight encryption. In Cryptographic Hardware and Embed-
ded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, pages 321–345, 2017.

[BT16] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated
encryption: AES-GCM in TLS 1.3. In Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part I, pages 247–276, 2016.

[CAE14] CAESAR: Competition for Authenticated Encryption: Security, Applicability,
and Robustness, 2014. http://competitions.cr.yp.to/caesar.html.

[CCHN15] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul
Nandi. Trivia: A fast and secure authenticated encryption scheme. In CHES
2015, pages 330–353, 2015.

[CCHN18] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul
Nandi. Trivia and utrivia: two fast and secure authenticated encryption
schemes. J. Cryptographic Engineering, 8(1):29–48, 2018.

[CDJ+19a] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancilias-López,
Mridul Nandi, and Yu Sasaki. LOTUS-AEAD and LOCUS-AEAD. Submission
to NIST LwC Standardization Process (Round 1), 2019.

[CDJ+19b] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López,
Mridul Nandi, and Yu Sasaki. Elastic-tweak: A framework for short tweak
tweakable block cipher. IACR Cryptology ePrint Archive, 2019:440, 2019.

[CDNY18] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
family of lightweight and secure authenticated encryption ciphers. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018.

[CIMN17] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In CHES
2017, pages 277–298, 2017.

[CN15] Avik Chakraborti and Mridul Nandi. TriviA-ck-v2. Submission to CAESAR,
2015. https://competitions.cr.yp.to/round2/triviackv2.pdf.

http://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/round2/triviackv2.pdf

112 INT-RUP Secure Lightweight Parallel AE Modes

[CWZ19] Lele Chen, Gaoli Wang, and GuoYan Zhang. MILP-based Related-Key
Rectangle Attack and Its Application to GIFT, Khudra, MIBS. The Computer
Journal, 10 2019. bxz076.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to CAESAR, 2016. https://competitions.cr.yp.
to/round3/asconv12.pdf.

[DN15] Nilanjan Datta and Mridul Nandi. Proposal of ELmD v2.1. Submission to
CAESAR, 2015. https://competitions.cr.yp.to/round2/elmdv21.pdf.

[DRA16] Prakash Dey, Raghvendra Singh Rohit, and Avishek Adhikari. Full key
recovery of ACORN with a single fault. J. Inf. Sec. Appl., 29:57–64, 2016.

[Dwo11] Morris Dworkin. Recommendation for block cipher modes of opera-
tion: Galois/counter mode (GCM) and GMAC, NIST Special Publica-
tion 800-38D, 2011. csrc.nist.gov/publications/nistpubs/800-38D/
SP-800-38D.pdf.

[Fer02] Niels Ferguson. Collision attacks on ocb, 2002. Online: https://web.cs.
ucdavis.edu/~rogaway/ocb/fe02.pdf.

[FJMV03] Pierre-Alain Fouque, Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette.
Authenticated on-line encryption. In Selected Areas in Cryptography, 10th
Annual International Workshop, SAC 2003, Ottawa, Canada, August 14-15,
2003, Revised Papers, pages 145–159, 2003.

[GPR14] Peter Gazi, Krzysztof Pietrzak, and Michal Rybár. The exact prf-security
of NMAC and HMAC. In Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, pages 113–130, 2014.

[IIMP19] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram Poettering.
Cryptanalysis of OCB2: attacks on authenticity and confidentiality. In
Advances in Cryptology - CRYPTO 2019, Proceedings, Part I, pages 3–31,
2019.

[IMG+16] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita
Kobayashi. CLOC and SILC. Submission to CAESAR, 2016. https://
competitions.cr.yp.to/round3/clocsilcv3.pdf.

[JNP16] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Deoxys v1.41. Submission
to CAESAR, 2016. https://competitions.cr.yp.to/round3/deoxysv141.
pdf.

[JZD19] Fulei Ji, Wentao Zhang, and Tianyou Ding. Improving matsui’s search
algorithm for the best differential/linear trails and its applications for des,
DESL and GIFT. IACR Cryptology ePrint Archive, 2019:1190, 2019.

[KR16] Ted Krovetz and Phillip Rogaway. OCB(v1.1). Submission to CAESAR, 2016.
https://competitions.cr.yp.to/round3/ocbv11.pdf.

[LLMH16] Frédéric Lafitte, Liran Lerman, Olivier Markowitch, and Dirk Van Heule. SAT-
based cryptanalysis of ACORN. IACR Cryptology ePrint Archive, 2016:521,
2016.

https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round2/elmdv21.pdf
csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://web.cs.ucdavis.edu/~rogaway/ocb/fe02.pdf
https://web.cs.ucdavis.edu/~rogaway/ocb/fe02.pdf
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf

Chakraborti et al. 113

[LR85] Michael Luby and Charles Rackoff. How to construct pseudo-random permu-
tations from pseudo-random functions (abstract). In Advances in Cryptology
- CRYPTO ’85, Santa Barbara, California, USA, August 18-22, 1985, Pro-
ceedings, page 447, 1985.

[LS19] Yunwen Liu and Yu Sasaki. Related-key boomerang attacks on GIFT with
automated trail search including BCT effect. In ACISP 2019, pages 555–572,
2019.

[MBTM17] Kerry A. McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky Mouha.
Report on Lightweight Cryptography, 2017. http://nvlpubs.nist.gov/
nistpubs/ir/2017/NIST.IR.8114.pdf.

[Men17] Bart Mennink. Insuperability of the standard versus ideal model gap for
tweakable blockcipher security. In Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part II, pages 708–732, 2017.

[Min16] Kazuhiko Minematsu. AES-OTR v3.1. Submission to CAESAR, 2016. https:
//competitions.cr.yp.to/round3/aesotrv31.pdf.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the Limits: A Very Compact and a Threshold Implementation of
AES. In EUROCRYPT 2011, pages 69–88, 2011.

[Nai17] Yusuke Naito. Tweakable blockciphers for efficient authenticated encryptions
with beyond the birthday-bound security. IACR Trans. Symmetric Cryptol.,
2017(2):1–26, 2017.

[NMSS18] Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki. SAEB:
A lightweight blockcipher-based AEAD mode of operation. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(2):192–217, 2018.

[OS19] OMA-SpecWorks. Lightweight-M2M, 2019. https://www.omaspecworks.
org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/.

[RBB03] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode
of operation for efficient authenticated encryption. ACM Trans. Inf. Syst.
Secur., 6(3):365–403, 2003.

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refine-
ments to modes OCB and PMAC. In Advances in Cryptology - ASIACRYPT
2004, 10th International Conference on the Theory and Application of Cryp-
tology and Information Security, Jeju Island, Korea, December 5-9, 2004,
Proceedings, pages 16–31, 2004.

[SBD+16] Md. Iftekhar Salam, Harry Bartlett, Ed Dawson, Josef Pieprzyk, Leonie
Simpson, and Kenneth Koon-Ho Wong. Investigating cube attacks on the
authenticated encryption stream cipher ACORN. In ATIS 2016, pages 15–26,
2016.

[SWB+16] Md. Iftekhar Salam, Kenneth Koon-Ho Wong, Harry Bartlett, Leonie Ruth
Simpson, Ed Dawson, and Josef Pieprzyk. Finding state collisions in the
authenticated encryption stream cipher ACORN. In Proceedings of the Aus-
tralasian Computer Science Week Multiconference, page 36, 2016.

[Vau03] Serge Vaudenay. Decorrelation: A Theory for Block Cipher Security. J.
Cryptology, 16(4):249–286, 2003.

http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/

114 INT-RUP Secure Lightweight Parallel AE Modes

[WH16] Hongjun Wu and Tao Huang. The JAMBU Lightweight Authentica-
tion Encryption Mode (v2.1). Submission to CAESAR, 2016. https:
//competitions.cr.yp.to/round3/jambuv21.pdf.

[WP16] Hongjun Wu and Bart Preneel. AEGIS : A Fast Authenticated Encryption
Algorithm (v1.1). Submission to CAESAR, 2016. https://competitions.
cr.yp.to/round3/aegisv11.pdf.

[Wu16] Hongjun Wu. ACORN: A Lightweight Authenticated Cipher (v3). Submission
to CAESAR, 2016. https://competitions.cr.yp.to/round3/acornv3.
pdf.

[ZDM+19] Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang.
Generalized related-key rectangle attacks on block ciphers with linear key
schedule. IACR Cryptology ePrint Archive, 2019:714, 2019.

[ZDY18] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. Milp-based differential attack
on round-reduced gift. Cryptology ePrint Archive, Report 2018/390, 2018.
https://eprint.iacr.org/2018/390.

[ZWH17] Ping Zhang, Peng Wang, and Honggang Hu. The INT-RUP Security of OCB
with Intermediate (Parity) Checksum. IACR Cryptology ePrint Archive, 2017.
https://eprint.iacr.org/2016/1059.pdf.

[ZZDX19] Chunning Zhou, Wentao Zhang, Tianyou Ding, and Zejun Xiang. Improving
the milp-based security evaluation algorithms against differential cryptanaly-
sis using divide-and-conquer approach. Cryptology ePrint Archive, Report
2019/019, 2019. https://eprint.iacr.org/2019/019.

A Verified Decryption Algorithm
A.1 Verified Decryption Algorithm for LOCUS
The verified decryption algorithm for LOCUS is given in Algorithm 5.

A.2 Verified Decryption Algorithm for LOTUS
The verified decryption algorithm for LOTUS is given in Algorithm 6.

B Hardware Implementation
B.1 Hardware Implementation of TweGIFT-64
We first briefly describe our round based hardware implementation details of TweGIFT-64.
The architecture described in Fig. 7 follows a simple base implementation. S-boxes are
implemented as LUTs, as we follow the round based strategy, 16 S-boxes are implemented
in one clock cycle. The bit-wise permutation is just in routing process. the round key
addition (denoted by Addrk) selects 32 bits from the 128 bit key register and are added
to the state along with the round constants. The three transformations explained above
are implemented in a combinatorial fashion and the only synchronous component in the
datapath is the state register. muxIn selects the input Pt (input data block) when a new
encryption or decryption starts (in the first round) or is feedbacked from the state register
for the rest of the 27 rounds. The key generation uses an 128 bit shift register. Round
constants are computed using a small 6 bit shift register. Both the procedures follow the

https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://eprint.iacr.org/2018/390
https://eprint.iacr.org/2016/1059.pdf
https://eprint.iacr.org/2019/019

Chakraborti et al. 115

Algorithm 5 The verified decryption algorithm of LOCUS. The subroutines proc_ad and
proc_tag are given in the encryption algorithm.

1: function LOCUS-AEAD_Ẽ.dec(K,N,A,C, T)
2: M ← ⊥, W⊕ ← 0, V⊕ ← 0
3: (KN ,∆N)← init(K,N)
4: if |A| 6= 0 then
5: (KN , V⊕)← proc_ad(KN ,∆N , A)

6: if |M | 6= 0 then
7: (KN ,W⊕,M)← proc_ct(KN ,∆N , C)

8: T ′ ← proc_tg(KN ,∆N , V⊕,W⊕)
9: if T ′ = T then

10: return M

11: else
12: return ⊥

1: function proc_ct(KN ,∆N , A, C, T)
2: L← KN

3: (C1, . . . , Cm) n← C

4: for j = 1 to m− 1 do
5: Y ← Cj ⊕∆N

6: L← L� α
7: W ← Ẽ−1

L,12(Y)
8: W⊕ ←W⊕ ⊕W
9: X ← Ẽ−1

L,4(W)
10: Mj ← X ⊕∆N

11: L← L� α
12: X ← 〈|Cm|〉n ⊕∆N

13: W ← ẼL,5(X)
14: Y ← ẼL,13(W)
15: Mm ← chop(Y ⊕∆N , |Cm|)⊕ Cm

16: W⊕ ←W⊕ ⊕W ⊕Mm

17: M ← (M1, . . . ,Mm)
18: return (L,W⊕,M)

original specification of the GIFT-64-128 block cipher. As the key schedule operations
contains only bit shifts and circular rotations, it is easy to get the round key K28 from
original key K1 and vice-versa using the permutations showed in Table 8 and 9 respectively.
Note that, depending on the context, we use "block cipher" to denote "tweakable block
cipher".

The control flow is generated by a small finite state machine with three states: BC_Reset,
BC_Wait, BC_Encrypt. BC_Reset initializes the key register with the key through the
key port and then goes to BC_Wait until the start signal in activated. The BC_Encrypt
state executes the block cipher rounds and after executing all the 28 rounds it returns to
BC_Wait.

We optimize our TweGIFT-64 implementation to encrypt bulk information in the ECB
mode. If the signal start is set to 1, an additional clock cycle for the initialization phase
can be avoided. In addition, when the encryption of the actual state is performed, the
input can be taken directly from the feedback using the multiplexer muxIn. These two
optimizations allow us to save 1 clock cycle for each of the processed blocks.

For a single chip implementation, the multiplexer muxSt selects the input to be send
the state register from a decryption or an encryption round. For the encryption only
module, all the decryption rounds and the multiplexer muxSt are removed from the
architecture and the encryption round is then connected directly to the state register.

B.2 Component Wise Area Calculation for lightweight LOCUS and
LOTUS

Both the architectures of lightweight LOCUS and LOTUS function use several modules.
Here, we provide a brief discussion about the distribution of the hardware footprints among
the individual modules such as the main module, control unit module, block cipher round
module, and the logic (means additional register, multiplexers, etc) components. The
area utilization by the modules have been measured on Virtex 6. The distributions of the

116 INT-RUP Secure Lightweight Parallel AE Modes

Algorithm 6 The verified decryption algorithm of LOTUS.

1: function LOTUS-AEAD_Ẽ.dec(K,N,A,C, T)
2: M ← ⊥, W⊕ ← 0, V⊕ ← 0
3: (KN ,∆N)← init(K,N)
4: if |A| 6= 0 then
5: (KN , V⊕)← proc_ad(KN ,∆N , A)
6: if |M | 6= 0 then
7: (KN ,W⊕,M)← proc_ct(KN ,∆N , C)
8: T ′ ← proc_tg(KN ,∆N , V⊕,W⊕)
9: if T ′ = T then

10: return M

11: else
12: return ⊥

1: function proc_ct(KN ,∆N , C)
2: L← KN

3: (C1, . . . , Cm) n← C

4: d = dm/2e
5: for i = 1 to d− 1 do
6: j = 2i
7: L← L� α
8: X1 ← Cj ⊕∆N

9: W1 ← ẼL,8(X1)
10: Y1 ← ẼL,5(W1)
11: X2 ← Cj+1 ⊕ Y1
12: W2 ← ẼL,4(X2)
13: Y2 ← ẼL,7(W2)
14: W⊕ ←W⊕ ⊕W1 ⊕W2
15: Mj ← X2 ⊕∆N

16: Mj+1 ← Y2 ⊕X1

17: X1 ← 〈|C| − 2(d− 1)n〉n ⊕∆N

18: L← L� α
19: W1 ← ẼL,12(X1)
20: Y1 ← ẼL,14(W1)
21: M2d−2 ← chop(Y1⊕∆N , |C2d−2|)⊕C2d−2
22: X2 ← Y1 ⊕M2d−2
23: W⊕ ←W⊕ ⊕W1
24: M ← (M1, . . . ,M2d−1)
25: if 2d = m then
26: W2 ← ẼL,13(X2)
27: W⊕ ←W⊕ ⊕W2
28: Y2 ← ẼL,15(W2)
29: M2d ← chop(X1 ⊕ Y2, |C2d|)⊕ C2d

30: M ←M‖M2d

31: W⊕ ←W⊕ ⊕Mm

32: return (L,W⊕,M)

Chakraborti et al. 117

Table 8: Permutation to get K1 from K28
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
44 45 46 47 32 33 34 35 36 37 38 39 40 41 42 43
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
50 51 52 53 54 55 56 57 58 59 60 61 62 63 48 49
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
76 77 78 79 64 65 66 67 68 69 70 71 72 73 74 75
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
82 83 84 85 86 87 88 89 90 91 92 93 94 95 80 81
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
108 109 110 111 96 97 98 99 100 101 102 103 104 105 106 107
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
114 115 116 117 118 119 120 121 122 123 124 125 126 127 112 113
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
20 21 22 23 24 25 26 27 28 29 30 31 16 17 18 19

Table 9: Permutation to get original K28 from K1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

104 105 106 107 108 109 110 111 96 97 98 99 100 101 102 103
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
124 125 126 127 112 113 114 115 116 117 118 119 120 121 122 123
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
30 31 16 17 18 19 20 21 22 23 24 25 26 27 28 29
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
36 37 38 39 40 41 42 43 44 45 46 47 32 33 34 35
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
62 63 48 49 50 51 52 53 54 55 56 57 58 59 60 61
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
68 69 70 71 72 73 74 75 76 77 78 79 64 65 66 67
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
94 95 80 81 82 83 84 85 86 87 88 89 90 91 92 93

areas are presented in terms of the number of LUTs for both LOCUS and LOTUS. We
observe that, the majority of the hardware area have been consumed by the underlying
block cipher. The distributions are described in Fig. 8 below.

In this section, we provide the hardware implementation details of both LOCUS and
LOTUS with the underlying block cipher TweGIFT-64. In several applications, cipher
implementations with small size are desirable. We primarily target these applications
and implement the cipher with small hardware area. It is easy to see that both our
designs share the same structure for the associated data processing, while they differ in the
message processing phase.Both LOCUS and LOTUS have simple structure: they consist
of a block cipher and a few basic operations (such as bitwise XORs, multiplexers and
one accumulator). We would like to point out that, majority of the hardware areas are
dominated by the TweGIFT-64 module. We describe the hardware architectures as well as
provide our hardware implementation results on both Virtex 6 and 7.

We provide a brief analysis on clock cycles per byte (cpb). This is a theoretical way
to estimate the speed of the architecture. We would like to note that both the designs
shares the same values for cpb and we provide a joint analysis here. We consider round
based architecture with 64 bit datapath. To process an associated data of a blocks and
a message of m blocks, we need 29a+ 57m clock cycles. We use one TweGIFT-64 call to
process one associated data block and two TweGIFT-64 calls to process one message block.
Our block cipher is optimized to process a bulk data, and the reset is required only to
indicate that the stream processing starts. We observe that the cpb values for different
a and m are constant as there is no initialization overhead and the overhead for the tag
generation (constant small number of clock cycles) are negligible for long messages. Our

118 INT-RUP Secure Lightweight Parallel AE Modes

addrk

invbit P

invSboxaddrk

bit P

Sbox

state register

key
register

muxIn

muxSt

Pt

Ct

Key

key
schedule Tweak

064

m
uxT

Figure 7: Architecture of TweGIFT-64 Implementation

Control

logic

35.25%

tweGIFT54.10%

10.65%

Control

logic

53.11%

 16.95%

29.94%

tweGIFT

Figure 8: Distribution of Components by #LUTs for LOCUS (left) and LOTUS (right)

design accept 64 bit or 8 byte data blocks and the cpb is (29a + 57m)/8m. Assuming
a = m, we have a constant value of cpb that equals to 60/8 = 10.75.

	Introduction
	The NIST Lightweight Cryptography Standardization Project
	State of the Art on AE Modes in light of NIST Requirements
	Design Goals
	Our Contributions
	Design Comparison
	Novelty of LOTUS and LOCUS
	Security Proof: Ideal Cipher Model vs Standard Model

	Preliminaries
	Finite Field Arithmetic
	Tweakable Block cipher
	Authenticated Encryption in the Ideal Cipher Model
	Security Definitions
	Coefficient-H Technique

	Specification
	LOTUS and LOCUS Modes
	Design Rationale

	Instantiation
	The TweGIFT-64 Tweakable Block Cipher
	Security Analysis of TweGIFT-64

	Hardware Implementation
	Hardware Architecture
	Implementation of TweGIFT-64
	Implementation of LOCUS and LOTUS
	Benchmarking LOCUS and LOTUS

	Security Analysis of LOCUS and LOTUS
	 -LOC and -LOT
	Privacy and Integrity Security of LOCUS
	Privacy and Integrity Security of LOTUS
	Security of P"0365P
	Some Remarks on Generic Cryptanalysis on LOCUS and LOTUS

	Verified Decryption Algorithm
	Verified Decryption Algorithm for LOCUS
	Verified Decryption Algorithm for LOTUS

	Hardware Implementation
	Hardware Implementation of TweGIFT-64
	Component Wise Area Calculation for lightweight LOCUS and LOTUS

