
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2018, No. 1, pp. 57–73. DOI:10.13154/tosc.v2018.i1.57-73

Distinguishing Attack on NORX Permutation
Tao Huang and Hongjun Wu

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore,
Singapore

huangtao@ntu.edu.sg,wuhj@ntu.edu.sg

Abstract. NORX is a permutation-based authentication scheme which is currently
a third-round candidate of the ongoing CAESAR competition. The security bound
of NORX is derived from the sponge construction applied to an ideal underlying
permutation. In this paper, we show that the NORX core permutation is non-ideal
with a new distinguishing attack. More specifically, we can distinguish NORX64 per-
mutation with 248.5 queries and distinguish NORX32 permutation with 264.7 queries
using carefully crafted differential-linear attacks. We have experimentally verified
the distinguishing attack on NORX64 permutation. Although the distinguishing
attacks reveal the weakness of the NORX permutation, it does not directly threat
the security of the NORX authenticated encryption scheme.
Keywords: NORX · Distinguishing Attack · Differential-Linear Cryptanalysis

1 Introduction
Confidentiality and integrity are two main security notions of symmetric-key cryptography.
Authenticated encryption (AE) or extended authenticated encryption with associated
data (AEAD) schemes are widely used to achieve both confidentiality and integrity. The
ongoing Competition for Authenticated Encryption: Security, Applicability, and Robustness
(CAESAR) [CAE13] is a competition on designing authenticated encryption schemes which
are better than current widely-used AE scheme AES-GCM. There are 57 algorithms
submitted to the first round of this competition in 2013. In August 2016, 15 algorithms
have been selected in the third round.

NORX [AJN16] is an authenticated cipher designed by Aumasson, Jovanovic and
Neves. It was submitted to the CAESAR competition, and has been selected as 1 of the 15
third-round candidates. NORX is designed for efficient implementations in both software
and hardware. It is an application of the monkeyDuplex construction [BDPA12, BDPA11]
which uses a permutation as the underlying primitive to achieve authenticated encryption.
The core permutation of NORX has a ChaCha-like round function which replaces the
modular addition in ChaCha with AND, XOR and SHIFT operations. NORX supports
both 32-bit word size and 64-bit word size, which are denoted as NORX32 and NORX64
respectively.

NORX has three versions so far. NORX v1.0 [AJN14] is the version in the initial
submission to the CAESAR competition. NORX v2.0 [AJN15b] is the tweaked version
in the second-round competition which mainly increases the rate of NORX v1.0. NORX
v3.0 [AJN16] is the latest version submitted for the third-round competition with a number
of tweaks to enhance its security in initialisation and finalisation.

Related work. Since the publication of NORX, there have been quite a few analyses on
its security.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2017-11-23, Accepted: 2018-01-23, Published: 2018-03-01

https://doi.org/10.13154/tosc.v2018.i1.57-73
mailto:huangtao@ntu.edu.sg,wuhj@ntu.edu.sg
http://creativecommons.org/licenses/by/4.0/

58 Distinguishing Attack on NORX Permutation

The initial security analysis by the designers showed that high probability differentials
can not be used to attack the NORX AEAD scheme. Meanwhile, the algebraic cryptanalysis
and rotational cryptanalysis are difficult to be used to attack NORX.

Aumasson et al. [AJN15a] analysed the differential property of the NORX core permu-
tation when differences can only be introduced in the nonce during initialisation. In that
case, they provided upper bounds for the differential probabilities of 1 round NORX64
and NORX32 permutations, which are 2−53 and 2−60 respectively. They also studied the
4-round case, in which the differential probabilities are 2−584 (for NORX32) and 2−836

(for NORX64).
Das et al. [DMM15] analysed the higher order differential properties of the NORX

core permutation. They constructed probabilistic zero-sum distinguishers for 4-round
NORX64 permutation and 3.5-round NORX32 permutation. The 4-round distinguisher was
constructed by choosing intermediate states, computing 4-th order differential backward
for 2.25 rounds and forward by 1.75 rounds.

Bagheri et al. [BHJ+16] presented state/key recovery attacks for both NORX32 and
NORX64 when the round number is reduced to 2 (out of 4). Their attacks exploit the
slow diffusion of the G−1 function and make use of the internal differential in the parallel
mode of NORX. They also presented a practical 2-round differential-linear distinguisher
for NORX64 in the parallel mode.

Chaigneau et al. [CFG+17] proposed an attack on the full primitive of NORX v2.0.
The attack exploited a structural property that the 4 columns are rotationally identical in
NORX permutation. The security of NORX v2.0 was reduced to 66 bits for NORX32 and
130 bits for NORX64. This attack does not work for NORX v3.0 since the secret key is
XORed with the state before finalisation.

Recently, Biryukov et al. [BUV17] analysed the NORX core permutation using a new
type of truncated differentials called symmetric truncated differentials, which resulted in
2.125 rounds distinguishers for both NORX32 and NORX64.

The previous analyses on NORX permutation can be categorised into two types. The
first type is the structural distinguisher, which exploits the weakness that the same
operations are applied to each column of the state in NORX round function. This
type of distinguisher works for any number of rounds, but can be tweaked by adding
non-symmetric operation in the round function. The second type is the non-structural
distinguisher. Although Das et al. [DMM15] presented a full-round higher order differential
distinguisher for NORX64, it has to use the intermediate state and compute partial rounds
backwards and forwards. A more realistic assumption is that the adversary can make
queries to an oracle which is either a random permutation or a NORX permutation.
Then he needs to decide whether the oracle is a random permutation or not. Under this
assumption, the attack proposed in [DMM15] only works for 2-round NORX64 permutation
in the forward direction. The recent analysis by Biryukov et al. [BUV17] reached 2.125
rounds. Hence, there is still no known distinguisher for the full NORX core permutation
without using the structural property.

Our contribution. In this paper, we present our cryptanalysis against NORX64 per-
mutation and NORX32 permutation. We show that the full NORX64 permutation can
be distinguished with 248.5 queries and the full NORX32 permutation can be distin-
guished with 264.7 queries using carefully crafted differential-linear characteristics. We
have experimentally verified the distinguishing attack on NORX64 permutation.

Unlike the results proposed in [CFG+17], the distinguishing attacks presented in our
paper are not structural but use differential-linear characteristics. Hence, our analysis
demonstrates a second time that the NORX permutations do not meet the security
assumption for the underlying permutation of the monkeyDuplex construction.

To the best of our knowledge, this is the first non-structural distinguisher for NORX32

Tao Huang and Hongjun Wu 59

permutation. If we consider the permutation as a whole, it is also the first non-structural
distinguisher for NORX64 permutation.

Outline. The rest of this paper is structured as follows. The specification of NORX
is given in Section 2. Section 3 describes a differential-linear distinguishing attack on
NORX64 permutation. Section 4 presents the distinguishing attack on NORX32. Section
5 concludes the paper.

2 Preliminaries
2.1 Notation
In this paper, we mostly follow the notations used in the NORX specification [AJN16].
The list of notations is given below.

w NORX word size, either 32-bit or 64-bit string.
S The state of NORX.
si The i-th word of NORX state.
si[j] The j-th bit of si. Negative j refers to (j mod w)-th bit.
K The secret key.

x� n Left-shift of bitstring x by n bits.
x≫ n Right-rotation of bitstring x by n bits.
∧ Bitwise AND.
⊕ Bitwise XOR.

Note that little-endian is used in NORX.

2.2 Specification of NORX
NORX [AJN16] is an authenticated cipher based on the monkeyDuplex construction [BDPA12].
Five instances are specified in the latest version NORX v3.0. The first four instances use
the standard mode while the last instance uses the parallel mode. In the four standard
instances, the first two instances use 4-round permutation and the other two instances use
6-round permutation. We will focus on the first two instances in this paper. The instance
with 32-bit word size, or 512-bit state size, is denoted by NORX32. The instance with
64-bit word size, or 1024-bit state size, is denoted by NORX64. A layout of standard
NORX construction is represented in Fig. 1.

Figure 1: The layout of NORX construction (from [AJN16]). Fl denotes an l-round
permutation of NORX.

The NORX state S consists of 16 words s0, . . . , s15. Each word is w bits. The 16 state
words are arranged in a 4× 4 matrix:

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

60 Distinguishing Attack on NORX Permutation

The 12 words s0, . . . , s11 are the rate words in the sponge construction and the 4 words
s12, . . . , s15 are the capacity words in the sponge construction. The rate words are XORed
with the message block in each iteration of the permutation. A domain separation constant
is XORed with the capacity.

In this paper, we are only interested in analysing the NORX core permutation. Thus,
we omit the details of the NORX AEAD mode. More details of the NORX specification
can be found in [AJN16].

We use F to denote the NORX round function. The core permutation of NORX has
4 or 6 rounds depending on the variants of parameters. In this paper, we will study the
4-round permutation, F4, which is the primary recommendation by the designers. The
round function F includes the application of a function called G to each column of the
state followed by applying it to each diagonal of the state. Hence F(s0, . . . , s15) consists of
column steps as follows:

G(s0, s4, s8, s12), G(s1, s5, s9, s13), G(s2, s6, s10, s14), G(s3, s7, s11, s15),

followed by the following diagonal steps:

G(s0, s5, s10, s15), G(s1, s6, s11, s12), G(s2, s7, s8, s13), G(s3, s4, s9, s14).

The function G(a, b, c, d) computes the following 8 operations:

1. a← H(a, b), 2. d← (a⊕ d) ≫ r0, 3. c← H(c, d), 4. b← (b⊕ c) ≫ r1,

5. a← H(a, b), 6. d← (a⊕ d) ≫ r2, 7. c← H(c, d), 8. b← (b⊕ c) ≫ r3,

where H(x, y) = (x⊕y)⊕
(
(x∧y)� 1

)
. The rotation offsets (r0, r1, r2, r3) are (8, 11, 16, 31)

for NORX32 and (8, 19, 40, 63) for NORX64. The G function is depicted in Figure 2.

Figure 2: The G circuit (from [AJN16]).

In our analysis, we will use fractional number of rounds. We divide one round of NORX
into two half rounds, the column half round Fcol and the diagonal half round Fdiag. Note
that the words (a, b, c, d) in the G function are updated twice. Thus, we can further divide
the Fcol and Fdiag into four quarter rounds, each quarter round updates the word (a, b, c, d)
once. The quarter rounds are denoted by FcolH , FcolL, FdiagH and FdiagL in sequence.

2.3 Distinguishing Attack
In this paper, the distinguishing attack is defined with a random oracle model. Suppose
that PRand is a random n-bit permutation and PNORX is the n-bit NORX permutation,
where n is 512 or 1024. An adversary makes q queries to an oracle either a PRand or
PNORX and receive an n-bit output for each query. The goal of the adversary is to correctly
identify whether the oracle is a random oracle or a NORX permutation.

Tao Huang and Hongjun Wu 61

3 Distinguishing Attack on NORX64 Permutation
In this section, we describe the distinguishing attack on NORX64 permutation. We start
with a review of the differential-linear attack. Then, we will construct a differential-linear
distinguisher step by step.

3.1 Differential-Linear Attack

The differential-linear cryptanalysis was proposed by Langford and Hellman in 1994 [LH94].
The idea of differential-linear attack is to treat the cipher as a cascade of two parts. The
first part has a differential characteristic ∆in → ∆out, and the second part has a linear
characteristic Γin → Γout. The adversary queries messages with ∆in and analyse the
statistics of the XORed differences of Γout. When the XORed differences have a significant
bias from 0.5, the adversary can distinguish the cipher from a random permutation. In
[Lu12], Lu studied the implicit assumptions made in [LH94] and [BDK02] and gave a
theorem to compute the probability for the differential-linear distinguisher.

Let p̂ be the probability that the input of the linear mask has no XORed difference
after the differential step while ε be the linear characteristic bias for the linear step. The
theorem says that the probability that the XORed difference of the output linear mask
to be 0 is 1

2 + 2(2p̂ − 1)ε2. In [BLN14], Blondeau et al. further developed a method on
computing the bias which only relies on the independence of the two parts of the cipher.

Note that the NORX core permutation is a key-less permutation. Thus, the independent
assumption does not hold in general. We will use the p̂ and ε to estimate the biases first.
Then we experimentally verify and correct the estimated biases.

3.2 Constructing Linear Characteristic

Linear characteristic needs to be properly constructed to launch a differential-linear attack.
We describe a linear characteristic using an input linear mask and an output linear mask.
The bias of the linear characteristic is determined by the bias of the XORed sum of bits
involved in the input linear mask and output linear mask.

3.2.1 Linear Approximation of the G Function

To construct a linear characteristic with large bias, we first analyse the G function in the
permutation F. We will use a method similar to the one used in the analysis of ChaCha
by [CM16]. First, we re-write the G function with the indexes of states. See Figure 3 for
the graphic description of the linear approximation.

a1 ← H(a0, b0) d1 ← (a1 ⊕ d0) ≫ r0 c1 ← H(c0, d1) b1 ← (b0 ⊕ c1) ≫ r1 (1)
a2 ← H(a1, b1) d2 ← (a2 ⊕ d1) ≫ r2 c2 ← H(c1, d2) b2 ← (b1 ⊕ c2) ≫ r3. (2)

Then, we derive the expressions of the input a0, b0, c0 and d0 of the G function,
in terms of the output a2, b2, c2 and d2. Recall that function H(x, y) is defined as
H(x, y) = (x ⊕ y) ⊕ ((x ∧ y) � 1). If we replace the function H(a, b) with the linear
approximation x⊕ y, the bias will be 2−2 for each bit except for the least significant bit
(LSB) which has bias 2−1. Thus, we can express any bit in the input of G as the linear
combination of bits in the output of G with some bias. Let γx,y[i] = x[i− 1] ∧ y[i− 1] for
i > 0 and γx,y[0] = 0, we write the i-th bit of a0 as:

62 Distinguishing Attack on NORX Permutation

Figure 3: Linear approximation of the G function.

a0[i] =a1[i]⊕ b0[i]⊕ γa0,b0 [i]
=(a2[i]⊕ b1[i]⊕ γa1,b1 [i])⊕ (b1[i− r1]⊕ c1[i])⊕ γa0,b0 [i]
=a2[i]⊕ (b2[i− r3]⊕ c2[i])⊕ γa1,b1 [i]⊕ (b2[i− r1 − r3]⊕ c2[i− r1])⊕ (c2[i]⊕ d2[i]
⊕ γc1,d2 [i])⊕ γa0,b0 [i]

=a2[i]⊕ b2[i− r3]⊕ b2[i− r1 − r3]⊕ c2[i− r1]⊕ d2[i]⊕ γa0,b0 [i]⊕ γa1,b1 [i]⊕ γc1,d2 [i].

Similarly, we can obtain the expressions for the i-th bit of b0, c0 and d0 in terms of a2, b2,
c2, d2 and γ:

b0[i] =b2[i− r1 − r3]⊕ c2[i]⊕ c2[i− r1]⊕ d2[i]⊕ γc1,d2 [i],
c0[i] =a2[i]⊕ c2[i]⊕ d2[i]⊕ d2[i− r2]⊕ γc0,d1 [i]⊕ γc1,d2 [i],
d0[i] =a2[i]⊕ a2[i− r0]⊕ b2[i− r3]⊕ c2[i]⊕ d2[i− r0 − r3]⊕ γa1,b1 [i].

From the above expressions, it is easy to observe that the LSB (i = 0) of a0, b0, c0 and
d0 can be expressed as linear combination of a2, b2, c2 and d2. In this case, the G function
is linear on those bits.

When i > 0, the expressions for the i-th bit of a0, b0, c0 and d0 are non-linear. We
will estimate the biases using the linear approximations without the γ terms for those
cases. Assuming that the input bits are uniformly and independently random, the bias of
γx,y = x[i − 1] ∧ y[i − 1] = 0 is 2−2. Thus, b0[i] and d0[i] can be linearly approximated
with bias 2−2 since only one γ term is involved in their expressions.

The biases of the linear approximations of a0[i] and c0[i] for i > 0 are more complicated
to estimate. Since more than one terms of γ are involved in the expressions, it might be
natural to consider applying the Piling-up Lemma [Mat93]. However, when we take a close
look at the expressions, it turns out that the γa0,b0 and γa1,b1 are not independent, which
violates the assumption of Piling-up Lemma. To see this, we compare the expression of
γa0,b0 [i] and γa1,b1 [i]:

γa0,b0 [i] =a0[i− 1] ∧ b0[i− 1]
γa1,b1 [i] =a1[i− 1] ∧ b1[i− 1]

=(a0[i− 1]⊕ b0[i− 1]⊕ γa0,b0 [i− 1]) ∧ b1[i− 1].

It is clear that the bits a0[i− 1] and b0[i− 1] affect both γa0,b0 and γa1,b1 . Therefore, to
accurately estimate the biases of the linear approximations of a0[i] and c0[i], we need to
compute the probabilities.

First, we compute the bias for the linear approximation of a0[i] when i > 0. Let event
A be γa0,b0 = 0, event B be γa1,b1 = 0. There are two cases:

Tao Huang and Hongjun Wu 63

Case i = 1. In this case, γa0,b0 [i−1] = 0. We write the probability of γa0,b0 [i]⊕γa1,b1 [i] =
0 as :

Pr[γa0,b0 [i]⊕ γa1,b1 [i] = 0] = Pr[AB] + Pr[ĀB̄]. (3)

Then we have

Pr[AB] =Pr[(a0[i− 1] = 0) ∧ (b0[i− 1] = 0)] + Pr[(a0[i− 1] = 0) ∧ (b0[i− 1] = 1)
∧ (b1[i− 1] = 1)] + Pr[(a0[i− 1] = 1) ∧ (b0[i− 1] = 0) ∧ (b1[i− 1] = 1)]

=1
2 ·

1
2 + 1

2 ·
1
2 ·

1
2 + 1

2 ·
1
2 ·

1
2

=1
2 .

Since event Ā implies that both a0[i− 1] and b0[i− 1] are 1, we have a1[i− 1] = a0[i−
1]⊕ b0[i− 1] = 0. Then event B must occur, which implies Pr[ĀB̄] = 0. Therefore,

Pr[γa0,b0 [i]⊕ γa1,b1 [i] = 0] = Pr[AB] = 1
2 .

Now we can see that the bias of γa0,b0 [i]⊕ γa1,b1 [i] is 0. Since γc1,d2 [i] is independent of
γa0,b0 [i]⊕ γa1,b1 [i], the bias of γa0,b0 [i]⊕ γa1,b1 [i]⊕ γc1,d2 [i] is also 0, which shows the linear
approximation for a0[i] is unbiased when i = 1. Hence, we should avoid using bit a0[1] in
the input linear mask of the G function.

Case i > 1. In this case, we can still use Equation (3), but Pr[AB] and Pr[ĀB̄] are
different. We have

Pr[AB] =Pr[(a0[i− 1] = 0) ∧ (b0[i− 1] = 0) ∧ (γa0,b0 [i− 2] = 0)]
+ Pr[(a0[i− 1] = 1) ∧ (b0[i− 1] = 0) ∧ (γa0,b0 [i− 2] = 1)]
+ Pr[(a0[i− 1] = 0) ∧ (b0[i− 1] = 1) ∧ (γa0,b0 [i− 2] = 1)]
+ Pr[(a0[i− 1] = 0) ∧ (b0[i− 1] = 0) ∧ (γa0,b0 [i− 2] = 1) ∧ (b1[i− 1] = 1)]
+ Pr[(a0[i− 1] = 0) ∧ (b0[i− 1] = 1) ∧ (γa0,b0 [i− 2] = 0) ∧ (b1[i− 1] = 1)]
+ Pr[(a0[i− 1] = 1) ∧ (b0[i− 1] = 0) ∧ (γa0,b0 [i− 2] = 0) ∧ (b1[i− 1] = 1)]

= 3
16 + 1

16 + 1
16 + 1

32 + 3
32 + 3

32
=17

32
Pr[ĀB̄] =Pr[(a0[i− 1] = 1) ∧ (b0[i− 1] = 1) ∧ (γa0,b0 [i− 2] = 1) ∧ (b1[i− 1] = 1)]

= 1
32

Therefore,
Pr[γa0,b0 [i]⊕ γa1,b1 [i] = 0] = Pr[AB] + Pr[ĀB̄] = 9

16 .

Then, the bias of γa0,b0⊕γa1,b1 is | 9
16 −

1
2 | = 2−4. The bias of (γa0,b0 [i]⊕γa1,b1 [i])⊕γc1,d2 [i]

can be derived from the Piling-up Lemma, which is 2 · 2−4 · 2−2 = 2−5.
Similarly, we can find the bias of the linear approximation for c[i], which is 0 for i = 1

and 2−4 for i > 1. The biases of the linear approximation for 1 bit of G are summarised in
Table 1.

With the knowledge of the linear approximation for each bit of the G function, the
general linear approximation for G function can be derived. For a G function with input a0,
b0, c0 and d0, we use Algorithm 1 to compute the linear approximation as well as the bias.

64 Distinguishing Attack on NORX Permutation

Table 1: Biases of the linear approximation for i-th bit of G function.

i = 0 i = 1 i > 1
Bias of a[i] 2−1 0 2−5

Bias of b[i] 2−1 2−2 2−2

Bias of c[i] 2−1 0 2−4

Bias of d[i] 2−1 2−2 2−2

Here we briefly explain how Algorithm 1 works. At a high level, it can be seen as the
linear propagation of input masks to output masks. For instance, line 1 deals with the
linearly approximated function a1 ← a0⊕ b0. Equivalently, a0 ← a1⊕ b0. Thus, any active
bit in a0 will propagate to both words a1 and b0. That is the reason we have a1 ← a0 and
b0 ← a0 ⊕ b0. Line 2 to line 8 can be explained in a similar manner. Lines 13 to 17 count
the number of active bits in the input, which will be used to estimate the bias. Note that
the bias computation is under the assumption that the linear approximations of the input
bits are mutually independent.

Algorithm 1: Linear approximation of G function.
Input : a0, b0, c0, d0 and word size w
Output : a2, b2, c2, d2 and bias ε

1: a1 ← a0; b0 ← a0 ⊕ b0
2: a1 ← d0 ⊕ a1; d1 ← d0 ≫ r0
3: c1 ← c0; d1 ← c0 ⊕ d1
4: c1 ← b0 ⊕ c1; b1 ← b0 ≫ r1
5: a2 ← a1; b1 ← a1 ⊕ b1
6: a2 ← d1 ⊕ a2; d2 ← d1 ≫ r2
7: c2 ← c1; d2 ← c1 ⊕ d2
8: c2 ← b1 ⊕ c2; b2 ← b1 ≫ r3
9: cnta = 0; cntb = 0; cntc = 0; cntd = 0;

10: if a0[1] = 1 or c0[1] = 1 then
11: ε← 0
12: else
13: for i = 1, 2, . . . , w − 1 do
14: cnta ← cnta + a0[i]
15: cntb ← cntb + b0[i]
16: cntc ← cntc + c0[i]
17: cntd ← cntd + d0[i]
18: end for
19: ε← (−4) · cnta + (−1) · cntb + (−3) · cntc + (−1) · cntd − 1
20: end if

3.2.2 Searching for Linear Characteristic

Since the linear approximations of the G function are known, we are ready to search for
linear characteristics of NORX64.

We consider the case that the input of the linear characteristic has only 1 active bit.
To reduce the search space, we consider the position of active bit. It is clear that bit 0
is the best choice from the analysis of the G function in Section 3.2.1. Because of the
structural property of NORX permutation, we can only search the active bit in one of
the four G functions applied to input state, which reduces the search space to only 4
bits, namely a[0], b[0], c[0] and d[0] of the G function. For example, if the G function is

Tao Huang and Hongjun Wu 65

applied to the column of state, we only need to consider the bits s0[0], s4[0], s8[0], s12[0].
Here we decompose each round of NORX64 permutation F into two steps: the column
step Fcol and the diagonal step Fdiag. Starting from 1 round of NORX64 permutation,
Fdiag ◦Fcol, we compute the output masks and the corresponding biases for different rounds
(incremental by half-round) by applying Algorithm 1. After 1.5 rounds, the biases for
linear characteristics corresponding to a[0] and d[0] are 0. After 2 rounds, all the biases
are vanished. The biases of the linear characteristics with 1 active bit in the input are
shown in Table 2.

Table 2: Biases of the linear characteristics with 1 active bit in the input.

a[0] b[0] c[0] d[0]
Fdiag ◦ Fcol 2−6 2−5 2−2 2−7

Fdiag ◦ Fcol ◦ Fdiag 0 2−29 2−27 0
Fdiag ◦ Fcol ◦ Fdiag ◦ Fcol 0 0 0 0

Although the linear approximation of 1-round NORX64 permutation is significantly
biased, the biases of 1.5-round NORX64 permutation are too small to be used in practical
attacks. Thus, we further divide the round function NORX64 into 4 quarter rounds: FcolH ,
FcolL, FdiagH , and FdiagL. Now we can analyse 1.25-round NORX permutation, which
is Fdiag ◦ Fcol ◦ FdiagL. After studying different choices of the input bits, we find that
when the input bit is a bit in ’c’ of the G(a, b, c, d), or a bit in state {s8, s9, s10, s11}, the
largest biased can be obtained for 1.25-round NORX64 permutation, which is 2−8. For
example, input bit s9[0] and output bits indicated in Table 3 form a linear characteristic
for 1.25-round NORX64 permutation.

Table 3: Output bits of the linear characteristic with input s9[0].

0x0000000000000001 0x0000000000000001 0x0000000001010000 0x0000000000010101
0x0000000000020000 0x0000000000000000 0x0000c00000000002 0x0200404002000000
0x0000202001000001 0x0000000000010001 0x0000000000000001 0x0000600000000002
0x0000000000000003 0x0100010000010001 0x0000000101000001 0x0000000001000001

3.3 Constructing Differential Characteristic
In Section 3.2.2, a 1.25-round linear characteristic has been constructed. Now we construct
a differential characteristic based on the linear characteristic. In a differential-linear attack,
we are interested in finding a differential characteristic such that the probability that the
XORed sum of difference in the bit(s) of the input linear characteristic has large bias.
Since NORX permutation has 4 rounds, we need to construct a 2.75-round differential
characteristic to attack the full permutation. If we consider the difference propagation
from the beginning, it is difficult to control the difference after 2.75 rounds.

In our analysis on NORX64 permutation, we will construct the differential characteristic
from the backward direction, so as to fit the linear characteristic. We divide the differential
characteristic into three phases. Phase 1 is to propagate 1-bit difference to the 1-bit
input linear mask. Phase 2 is to propagate the 1-bit difference backward probabilistically.
Phase 3 is to propagate the input difference of Phase 2 backward to the input difference
deterministically with initial conditions.

3.3.1 Differential Characteristic in Phase 1

In the 1.25-round linear characteristic which has been discussed in Section 3.2.2, bit s9[0] is
the input and bits in Table 3 are the output. Our goal is to find a differential characteristic

66 Distinguishing Attack on NORX Permutation

with only 1 bit input difference such that the bit s9[0] in the output difference has the
largest bias.

Because this phase has truncated difference in the output, we choose to experimentally
search for the best differential characteristic. When 1-bit difference is considered, there are
1024 possible choices for NORX64 permutation. We generate 220 pairs of random input
states with 1-bit difference on the position of each state bit. Then, compute certain number
of rounds of the NORX64 permutation. Note that in order to connect with the linear
characteristic, the last operation should be 0.25 round FdiagH . By gradually increasing the
number of rounds, eventually we obtain a good differential characteristic:

s10[17] FdiagH ◦Fcol◦Fdiag◦Fcol−−−−−−−−−−−−−−→ s9[0]

with biased probability 1
2 − 2−3.9 for 1.75-round NORX64 permutation, FdiagH ◦ Fcol ◦

Fdiag ◦ Fcol.

3.3.2 Differential Characteristic in Phase 2

Then we propagate the 1-bit difference s10[17] obtained in Phase 1 backwards. We simplify
the non-linear operation H(a, b) = (a⊕ b)⊕ ((a ∧ b)� 1) as linear operation a⊕ b. Thus,
the NORX64 round function becomes linear and easy to invert. Here we only need to
invert propagate 0.5 round, Fdiag. The input difference is given in Table 4.

Table 4: Input difference in Phase 2.

0x0000001000000000 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000001000020000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 0x0000000000020000 0x0000000000000000
0x0000000000000000 0x0000000000000000 0x0000000000000000 0x0000000000020000

Note that the probability for the linear approximation is 0.5 for each active bit except
for the LSB in H function. By counting the active bits involved in the H function, the
probability for the 0.5 round differential characteristic is 2−5.

3.3.3 Differential Characteristic in Phase 3

After the Phase 1 and Phase 2, we only need to deal with the last 0.5 round of NORX64
permutation which is Fcol. Similar to Phase 2, we use linear approximation of H function
to derive the differential characteristic for this 0.5 round. However, the probability of the
differential characteristic in this phase is not probabilistic. By setting conditions on the
initial state, the probability that the linear approximations of H function hold can be 1.

First, we derive the initial difference by propagating the input difference obtained in
Phase 2 backwards. The resulting input difference in Phase 3 is shown in Table 5.

Table 5: Input difference in Phase 3.

0x0000001000000000 0x0040000000010000 0x0000001000000000 0x0000000000020000
0x0000000000000000 0x0040000800000000 0x0000001000020000 0x0000000000020000
0x0000001000000000 0x0000000000000000 0x0000000000020000 0x0000000000020000
0x0000101000000000 0x0000000800010000 0x0000000000020000 0x0000000000000002

Then, we derive the initial conditions for Fcol. Since the computations of the 4 columns
are independent, we can derive the conditions for each column.

For Column 0, which is the left most column, we denote the operation as G(a0, b0, c0, d0).
In this case, (a0, b0, c0, d0) = (s0, s4, s8, s12). We use the notations of intermediate states,

Tao Huang and Hongjun Wu 67

(a1, b1, c1, d1) and (a2, b2, c2, d2) as defined in Equation (1) and Equation (2). Now we
analyse the 4 applications of non-linear function H in G.

1. a1 = H(a0, b0). The difference on a0 is 0x0000001000000000 and the difference on b0
is 0. The linear approximation H(a0, b0) = a0 ⊕ b0 holds with probability 1 if the following
conditions holds:

0 = b0[36].

Thus, we set a condition b0[36] = 0, or s4[36] = 0, to make sure the above condition holds.

2. c1 = H(c0, d1). The difference on c0 is 0x0000001000000000 and the difference on d1
is 0x0000001000000000. The linear approximation H(c0, d1) = c0⊕d1 holds with probability
1 if the following conditions holds:

1 =c0[36]⊕ d1[36]
=c0[36]⊕ d0[44]⊕ a1[44]
=c0[36]⊕ d0[44]⊕ a0[44]⊕ b0[44]⊕ (a0[43] ∧ b0[43]).

We set conditions a0[43, 44] = 0, b0[44] = 0, c0[36] = 0, and d0[44] = 1 to make sure the
above condition holds.

3. a2 = H(a1, b1). The difference on a1 is 0x1000000000 and the difference on b1 is
0. The linear approximation H(a1, b1) = a1 ⊕ b1 holds with probability 1 if the following
conditions holds:

0 =b1[36]
=b0[55]⊕ c1[55]
=b0[55]⊕ c0[55]⊕ d1[55]⊕ (c0[54] ∧ d1[54])
=b0[55]⊕ c0[55]⊕ d0[63]⊕ a1[63]⊕ (c0[54] ∧ d1[54])
=b0[55]⊕ c0[55]⊕ d0[63]⊕ a0[63]⊕ b0[63]⊕ (a0[62] ∧ b0[62])⊕ (c0[54] ∧ d1[54]).

We set conditions a0[62, 63] = 0, b0[55, 63] = 0, c0[54, 55] = 0, and d0[63] = 0 to make sure
the above condition holds.

4. c2 = H(c1, d2). Since both c1 and d2 have no active bit, the linear approximation
holds with probability 1.

Thus, we have derived all the conditions for Column 0. Other conditions can be derived
in an analogous manner. Note that the situation can be more complicated when some
bit in the initial state are involved in more than one conditions. In that case, we need
to take care of all conditions to avoid contradiction on those bits. We summarise all the
conditions on the initial state in Table 6. We have experimentally verified that with the
initial conditions, the differential characteristic in Phase 3 holds with probability 1.

3.4 The Differential-Linear Distinguisher for NORX64 Permutation
After constructed both differential characteristic and linear characteristic, we are ready to
combine them to form a differential-linear distinguisher for NORX64 permutation.

Let ∆in be the difference given in Table 5 and Γout be the bits specified in the output
linear mask in Table 3. The differential-linear characteristic is specified by ∆in and Γout.
Then we estimate the differential-linear bias.

68 Distinguishing Attack on NORX Permutation

Table 6: Conditions on the initial state for NORX64.

Column 0

s0[43, 44, 62, 63] = 0,
s4[36, 44, 55, 63] = 0,
s8[36, 54, 55] = 0,
s12[44] = 1, s12[63] = 0

Column 1

s1[15, 16, 34, 35, 42, 43, 54, 61, 62] = 0,
s5[16, 35, 43, 54, 62] = 0,
s9[35, 54] = 1, s9[53] = 0,
s13[43, 62] = 0

Column 2

s2[0, 1, 16, 17, 19, 20, 24, 25, 43, 44, 55, 56, 57] = 0, s2[36] = 1,
s6[1, 12, 17, 20, 25, 36, 44, 56, 57] = 0,
s10[11, 12, 35] = 0, s10[36] = 1,
s14[1, 20, 25, 44] = 0

Column 3

s3[0, 1, 17, 19, 20, 24, 25, 55, 56, 57] = 0,
s7[1, 12, 20, 25, 56, 57] = 0, s7[17] = 1,
s11[11, 12, 16] = 1, s11[17, 57] = 1,
s15[1, 20, 25] = 0

Let p0 = 2−5 be the differential probability in Phase 2, and p1 = 1/2− 2−3.9 be the
differential probability in Phase 1. We assume that when the difference at the beginning
of Phase 1 is other than the bit s10[17], the probability that the bit s9[0] has difference is
unbiased with probability 1

2 . Thus the estimated differential probability p̂ for (∆in → ∆out)
is p0p1+(1−p0)· 12 = 1

2 +p0(p1− 1
2) = 1

2 +2−5(1
2−2−3.9− 1

2) = 1
2 +2−5 ·(−2−3.9) = 1

2−2−8.9.
Let Γin be the bit s9[0] and Γout be the bits given in Table 3, the bias ε of the linear
approximation Γin → Γout is 2−8. Hence, the differential-linear bias is given by 2(2p̂−1)ε2,
which is −2−22.9.

The distinguishing attack can be performed in the following procedure.

1. Query 247.5 pairs of 1024-bit message with difference ∆in and initial conditions in
Table 6.

2. For each pair of output from the oracle, compute the XORed sum of bits in Γout.

3. Count the number X that is the number of pairs such that the XORed sum is 0.

4. If X < 246.5 − 223.6, the oracle is the NORX64 permutation. Otherwise, the oracle is
a random permutation.

Now we compute the success probability of the above distinguishing attack. When
the oracle is the NORX64 permutation, the random variable X can be approximated by
a normal distribution X ∼ N(247.5p,

√
247.5p(1− p)), where p = 1

2 − 2−22.9. When the
oracle is a random permutation, the random variable X can be approximated by a normal
distribution X ∼ N(247.5/2,

√
247.5/4). Thus, the probability that X < 246.5 − 223.6 is

larger than 96% when the oracle is the NORX64 permutation. The probability that
X > 246.5 − 223.6 is larger than 96% when the oracle is a random permutation.

3.5 Experimental Results
Since the complexity of the distinguishing attack on NORX64 permutation is relatively
low, we can experimentally perform the distinguishing attack, which verifies the estimated
differential-linear bias and the complexity of the attack.

We generate 247.49 pairs of random input with the initial condition and difference
specified by the differential-linear characteristic in Section 3.4. It takes 63.1 hours on a

Tao Huang and Hongjun Wu 69

GPU server with 4 Tesla K-40 GPUs to count the sum of XORed output linear mask.
The bias on the output bits is −2−22.88, which is very close to the estimated −222.9. This
clearly distinguishes the NORX64 permutation from a random permutation since the
probability that a random permutation has such bias is only 3%.

4 Distinguishing Attack on NORX32 Permutation
In this section, we will study the NORX32 permutation. It turns out a similar differential-
linear distinguishing attack can be applied to NORX32 permutation. Like the previous,
section, we will start with constructing the linear characteristic and then construct the
differential characteristic backward to form a differential-linear characteristic for NORX32
permutation.

4.1 Constructing Linear Characteristic
The construction of linear characteristic is almost the same as NORX64, except different
word size and rotation constants are used in this case. Thus, we still choose the input
linear mask Γin to be the bit s9[0]. Then, the output linear mask Γout after 1.25 rounds is
obtained by the linear approximation for each round function. The output linear mask is
shown in Table 7.

Table 7: Output bits of the linear characteristic with input s9[0].

0x00000001 0x00000001 0x00010100 0x00000100
0x00000200 0x00000000 0x00c00002 0x02424000
0x00212001 0x00000101 0x00000001 0x00600002
0x00000003 0x00000101 0x00000001 0x00010001

The estimated bias for the above linear approximation is 2−15 which is the same as for
NORX64.

4.2 Constructing Differential Characteristic
To construct the differential characteristic for NORX32 permutation, we will use the 3
phases method in Section 3.3. However, as the differential propagation in NORX32 is
different from NORX64, we need to adjust the number of rounds in Phase 1 and Phase 2.

4.2.1 Differential Characteristic in Phase 1

To find the differential characteristic in Phase 1, we search the biased probabilities that
1-bit input difference propagate to s9[0] for different number of rounds. Unlike the Phase 1
differential characteristic in NORX64, we can only find highly biased probability differential
for 1.5 rounds. This 1.5 rounds differential characteristic is given by:

s11[5] FdiagH ◦Fcol◦Fdiag◦FcolL−−−−−−−−−−−−−−−→ s9[0]

with probability 1
2 − 2−4.2.

4.2.2 Differential Characteristic in Phase 2

In Phase 2, we propagate the difference s11[5] backward for 0.75 round, FcolH ◦ Fdial. The
resulting difference is given in Table 8.

The differential probability in this phase is 2−13.

70 Distinguishing Attack on NORX Permutation

Table 8: Input difference in Phase 2.

0x00000000 0x00010000 0x00008010 0x00000020
0x00000000 0x00000000 0x00010020 0x00008000
0x00000000 0x00000020 0x00000000 0x00000020
0x00000020 0x00000010 0x00002020 0x00000000

4.2.3 Differential Characteristic in Phase 3

In this phase, we first derive the input difference in the initial state by inverting the
input difference in Phase 2 for another 0.5 round, Fcol. The resulting difference is given in
Table 9.

Table 9: Input difference in Phase 2.

0x00000020 0x00000010 0x0400a020 0x02014020
0x00000020 0x00010030 0x0400a020 0x02010020
0x00200020 0x00110030 0x2020a030 0x00000000
0x20000000 0x11010020 0x20801020 0x00006000

Although the number of active involved in the non-linear function is much higher than
the NORX64 case, we are still able to derive a set of conditions on the initial state to
ensure the Phase 1 has differential probability 1. The conditions are listed in Table 10.

Table 10: Conditions on the initial state for NORX32.

Column 0

s0[5] = 1, s0[7, 8, 12, 13, 19, 20, 21, 28, 29] = 0,
s4[0, 5, 8, 13, 20, 21, 29] = 0,
s8[0, 4] = 0, s8[5, 21] = 1,
s12[8, 13, 29] = 0

Column 1

s1[2, . . . , 8, 11, 12, 13, 16, 18, 19, 20, 21, 23, 24, 27, 28, 29] = 0,
s5[0, 3, 5, 7, 8, 12, 13, 16, 19, 20, 21, 24, 27, 28] = 0, s5[4] = 1,
s9[0, 3, 15, 26, 27, 30, 31] = 0, s9[4, 16, 20] = 1,
s13[3, 7, 8, 12, 13, 24, 28, 29] = 0

Column 2

s2[3, 4, 5, 7, 8, 11, 12, 13, 15, 16, 19, . . . , 23, 26, 28, 29] = 0, s2[14] = 1,
s6[0, 4, 8, 12, 16, 20, 21, 23, 28, 29] = 0, s6[5, 13, 14, 26] = 1,
s10[0, 5, 7, 8, 12, 13, 21, 29, 31] = 0, s10[4, 15] = 1,
s14[5, 8, 12, 16, 21, 23] = 0, s14[13, 29] = 1

Column 3

s3[0, 1, 5, 7, 8, 13, 14, 16, 19, 20, 21, 25, 28, 29] = 0, s3[4] = 1,
s7[0, 1, 8, 14, 20, 21, 29] = 0, s7[4, 5, 16, 25] = 1,
s11[0, 5, 24, 25, 31] = 0,
s15[1, 8, 29] = 0

4.3 The Differential-Linear Distinguisher for NORX32 Permutation
Now we can construct a differential-linear distinguisher for NORX32 permutation.

Let ∆in be the difference given in Table 9 and Γout be the bits specified in the output
linear mask in Table 7. The differential-linear characteristic is specified by ∆in and Γout.
Then we estimate the differential-linear bias.

The estimated differential probability p̂ for (∆in → ∆out) is 1
2 + 2−13 · (−2−4.2) =

1
2 − 2−17.2. Let Γin be the bit s9[0] and Γout be the bits given in Table 7, the bias ε of

Tao Huang and Hongjun Wu 71

the linear approximation Γin → Γout is 2−8. Hence, the differential-linear bias is given by
2(2p̂− 1)ε2, which is −2−31.2.

The distinguishing attack can be performed in the following procedure.

1. Query 263.7 pairs of 512-bit message with difference ∆in and initial conditions in
Table 10.

2. For each pair of output from the oracle, compute the XORed sum of bits in Γout.

3. Count the number X that is the number of pairs such that the XORed sum is 0.

4. If X < 262.7 − 231.7, the oracle is the NORX32 permutation. Otherwise, the oracle is
a random permutation.

Now we compute the success probability of the above distinguishing attack. When
the oracle is the NORX32 permutation, the random variable X can be approximated by
a normal distribution X ∼ N(263.7p,

√
263.7p(1− p)), where p = 1

2 − 2−31.2. When the
oracle is a random permutation, the random variable X can be approximated by a normal
distribution X ∼ N(263.7/2,

√
263.7/4). Thus, the probability that X < 262.7 − 231.7 is

larger than 96% when the oracle is the NORX32 permutation. The probability that
X > 262.7 − 231.7 is larger than 96% when the oracle is a random permutation.

5 Conclusion
The distinguishing attacks on the NORX core permutation require chosen bits in every
word of the input NORX state and known bits in 15 (out of 16) words of the output
NORX state. In NORX AEAD scheme, the input state of the permutation is not fully
controlled by the attacker. In the initialisation, only the nonce, 4 (out of 16) words, can
be controlled. In the message processing, only the rate part, 12 (out of 16) words can
be controlled. Thus, the distinguishing attacks on the permutation do not lead to a real
attack on NORX authenticated encryption scheme.

The security proof of NORX is based on the NORX-mode of operation with ideal
underlying permutation. We study the security of the NORX core permutation for
both NORX32 and NORX64 using the differential-linear cryptanalysis. It turns out
that the NORX64 permutation can be distinguished with 248.5 queries which has been
experimentally verified by us. The NORX32 permutation can be distinguished with 264.7

queries, which may be considered as semi-practical. We hope that the observations in this
paper will be useful for the designers and researchers who are interested in analysing the
security of NORX.

For future work, it is possible to improve the attacks in this paper by carefully selecting
initial conditions to control the difference propagation for more rounds.

Acknowledgment
We would like to thank the anonymous reviewers for their helpful comments.

References
[AJN14] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX V1,

2014. http://competitions.cr.yp.to/round1/norxv1.pdf.

[AJN15a] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. Analysis of
NORX: investigating differential and rotational properties. In Diego F. Aranha

http://competitions.cr.yp.to/round1/norxv1.pdf

72 Distinguishing Attack on NORX Permutation

and Alfred Menezes, editors, LATINCRYPT 2014, volume 8895 of LNCS, pages
306–324. Springer, 2015.

[AJN15b] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX V2.0,
2015. http://competitions.cr.yp.to/round2/norxv20.pdf.

[AJN16] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX V3.0,
2016. http://competitions.cr.yp.to/round3/norxv30.pdf.

[BDK02] Eli Biham, Orr Dunkelman, and Nathan Keller. Enhancing differential-linear
cryptanalysis. In Advances in Cryptology - ASIACRYPT 2002, 8th International
Conference on the Theory and Application of Cryptology and Information
Security, Queenstown, New Zealand, December 1-5, 2002, Proceedings, pages
254–266, 2002.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the sponge: Single-pass authenticated encryption and other applications.
In Selected Areas in Cryptography - 18th International Workshop, SAC 2011,
Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers, pages
320–337, 2011.

[BDPA12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based encryption, authentication and authenticated encryption.
Directions in Authenticated Ciphers, 2012.

[BHJ+16] Nasour Bagheri, Tao Huang, Keting Jia, Florian Mendel, and Yu Sasaki. Crypt-
analysis of reduced NORX. In Fast Software Encryption - 23rd International
Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers, pages 554–574, 2016.

[BLN14] Céline Blondeau, Gregor Leander, and Kaisa Nyberg. Differential-linear crypt-
analysis revisited. In Fast Software Encryption - 21st International Workshop,
FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers, pages
411–430, 2014.

[BUV17] Alex Biryukov, Aleksei Udovenko, and Vesselin Velichkov. Analysis of the
NORX core permutation. IACR Cryptology ePrint Archive, 2017:34, 2017.

[CAE13] CAESAR: Competition for Authenticated Encryption: Security, Applicabil-
ity,and Robustness, 2013. http://competitions.cr.yp.to/caesar.html.

[CFG+17] Colin Chaigneau, Thomas Fuhr, Henri Gilbert, Jérémy Jean, and Jean-René
Reinhard. Cryptanalysis of NORX v2.0. IACR Trans. Symmetric Cryptol.,
2017(1):156–174, 2017.

[CM16] Arka Rai Choudhuri and Subhamoy Maitra. Significantly Improved Multi-bit
Differentials for Reduced Round Salsa and ChaCha. IACR Trans. Symmetric
Cryptol., 2016(2):261–287, 2016.

[DMM15] Sourav Das, Subhamoy Maitra, and Willi Meier. Higher order differential
analysis of NORX. IACR Cryptology ePrint Archive, 2015:186, 2015.

[LH94] Susan K. Langford and Martin E. Hellman. Differential-linear cryptanalysis. In
Advances in Cryptology - CRYPTO ’94, 14th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 21-25, 1994, Proceedings,
pages 17–25, 1994.

http://competitions.cr.yp.to/round2/norxv20.pdf
http://competitions.cr.yp.to/round3/norxv30.pdf
http://competitions.cr.yp.to/caesar.html

Tao Huang and Hongjun Wu 73

[Lu12] Jiqiang Lu. A methodology for differential-linear cryptanalysis and its applica-
tions - (extended abstract). In Fast Software Encryption - 19th International
Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised
Selected Papers, pages 69–89, 2012.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of
of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings,
pages 386–397, 1993.

	Introduction
	Preliminaries
	Notation
	Specification of NORX
	Distinguishing Attack

	Distinguishing Attack on NORX64 Permutation
	Differential-Linear Attack
	Constructing Linear Characteristic
	Constructing Differential Characteristic
	The Differential-Linear Distinguisher for NORX64 Permutation
	Experimental Results

	Distinguishing Attack on NORX32 Permutation
	Constructing Linear Characteristic
	Constructing Differential Characteristic
	The Differential-Linear Distinguisher for NORX32 Permutation

	Conclusion

