Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

Distinguishing Attack on NORX Permutation

Tao Huang, Hongjun Wu

School of Physical and Mathematical Sciences Nanyang Technological University Singapore

5 March, 2018

FSE 2018, Belgium

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

Outline

Introduction

NORX NORX Permutation Cryptanalysis on NORX Permutation

Distinguishing Attack on NORX64 Permutation

Differential-Linear Attacks Constructing Linear Characteristic Constructing Differential Characteristic The Differential-Linear Distinguisher for NORX64 Permutation Experimental Results for NORX64 Permutation

Distinguishing Attack on NORX32 Permutation

The Differential-Linear Characteristic The Differential-Linear Distinguisher for NORX32 Permutation

Conclusion

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
00 0000 000	0 0000 000000 00 00	00	

NORX

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Authenticated encryption algorithm
- Designed by Aumasson, Jovanovic and Neves
- One of the 15 third-round CAESAR candidates
- Efficient in both software and hardware
- Current version is NORX v3.0
- Five instances (priority from highest to lowest):
 - NORX64-4-1
 - NORX32-4-1
 - NORX64-6-1
 - NORX32-6-1
 - NORX64-4-4 (parallel mode)

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

Overview of NORX

Figure: The layout of NORX construction in version 3.0 (from [AJN16])

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

Overview of NORX

• NORX state words (red indicates the capacity words):

[<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> 3
<i>s</i> 4	<i>S</i> 5	<i>s</i> ₆	<i>s</i> 7
<i>s</i> ₈	<i>S</i> 9	<i>s</i> ₁₀	s_{11}
<i>s</i> ₁₂	<i>s</i> ₁₃	<i>s</i> ₁₄	<i>s</i> ₁₅

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- NORX state size:
 - NORX64: 1024-bit
 - NORX32: 512-bit

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

The NORX Permutation

- F': round function, I = 4 or 6.
- F processes state by
 - 1. Column step (F_{col}) :

 $G(s_0, s_4, s_8, s_{12}), G(s_1, s_5, s_9, s_{13}), G(s_2, s_6, s_{10}, s_{14}), G(s_3, s_7, s_{11}, s_{15}),$

2. Diagonal step (F_{diag}):

 $G(s_0, s_5, s_{10}, s_{15}), G(s_1, s_6, s_{11}, s_{12}), G(s_2, s_7, s_8, s_{13}), G(s_3, s_4, s_9, s_{14}).$

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

The NORX Round Function

Figure: Column step and diagonal step of F (from [AJN16])

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

The G Function

- The function G(a, b, c, d) computes the following 8 operations:

where $\mathtt{H}(x,y) = (x \oplus y) \oplus ((x \land y) \ll 1)$

- Notation: quarter round
 - $F_{col} \rightarrow F_{colH} + F_{colL}$
 - $F_{diag} \rightarrow F_{diagH} + F_{diagL}$

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

Security Bounds for NORX

- NORX is based on monkeyDuplex mode.
- With security proof, the NORX mode of operation achieves security levels of min{2^{b/2}, 2^c, 2^k} assuming an ideal underlying permutation.

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

Previous Cryptanalysis on NORX Permutation

- Aumasson et al. [AJN15] analysed the differential property of the NORX core permutation when differences can **only be introduced in the nonce**.
 - 4 round permutation: 2^{-836} for NORX64 and 2^{-584} for NORX32.
- Das et al. [DMM15] analysed the higher order differential properties of the NORX core permutation.
 - Zero-sum distinguishers for 4-round NORX64 permutation and 3.5-round NORX32 permutation
 - Require **chosen intermediate states**, computing 4-th order differential backward for 2.25 rounds and forward by 1.75 rounds.

・ロト・日本・モート モー うへぐ

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

Previous Cryptanalysis on NORX Permutation

- Chaigneau et al. [CFG⁺17] proposed an attack on the full primitive of NORX v2.0.
 - The attack exploited a structural property that the 4 columns are rotationally identical in NORX permutation.
- Biryukov et al. [BUV17] analysed the NORX core permutation using symmetric truncated differentials.
 - 2.125-round distinguishers for both NORX32 and NORX64

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

Summary of Our Results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A new distinguishing attack on the 4-round NORX permutation with low complexity.
- NORX64 permutation
 - Time complexity: 248.5
 - Memory complexity: negligible
- NORX32 permutation
 - Time complexity: 2^{64.7}
 - Memory complexity: negligible

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

Distinguishing Attack on NORX64 Permutation

Differential-Linear Attacks

- Proposed by Langford and Hellman in 1994
- Query messages with Δ_{in} and analyse the statistics of the XORed differences of Γ_{out}

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 F
000	0	
0000	0000	0
000	000000	
	00	

Constructing Linear Characteristic

- Linear approximation of the G Function
 - Remove the non-linear operation AND
 - Derive the expressions of the input a_0 , b_0 , c_0 and d_0 of the G function, in terms of the output a_2 , b_2 , c_2 and d_2

イロト 不得 トイヨト イヨト

-

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0	00	
0000	0000	0	
000	000000		
	00		
	0		

Linear Approximation of the G

Table: Biases of the linear approximation for i-th bit of G function.

	<i>i</i> = 0	i = 1	i > 1
Bias of <i>a</i> [<i>i</i>]	2^{-1}	0	2^{-5}
Bias of <i>b</i> [<i>i</i>]	2^{-1}	2^{-2}	2^{-2}
Bias of <i>c</i> [<i>i</i>]	2^{-1}	0	2^{-4}
Bias of <i>d</i> [<i>i</i>]	2^{-1}	2^{-2}	2 ⁻²

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX
000	0	
0000	0000	0
000	000000	
	00	

Searching for Linear Characteristic

- Consider Γ_{in} has only 1 active bit.
- Position 0 has the best bias.
 - Only *a*[0], *b*[0], *c*[0], *d*[0] need to be considered.
- When *c*[0] is active, the largest biased can be obtained for 1.25-round NORX64 permutation, which is 2⁻⁸.

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	000	0	
000	000000		
	00		
	0		

An Example of the 1.25-round Linear Characteristic

• Γ_{in}:

0×000000000000000000000000000000000000	0×000000000000000000000000000000000000	0×000000000000000000000000000000000000	0×000000000000000000000000000000000000
0×00000000000000000	0×00000000000000000	0×00000000000000000	0×00000000000000000
0×0000000000000000	0×000000000000000000000000000000000000	0×0000000000000000	0×0000000000000000
0×0000000000000000	0×0000000000000000	0×0000000000000000	0×0000000000000000

Γ_{out}:

0×000000000000000000000000000000000000	0×000000000000000000000000000000000000	0×000000001010000	0×0000000000010101
0×000000000020000	0×00000000000000000	0×0000c0000000002	0×0200404002000000
0×0000202001000001	0×0000000000010001	0×000000000000000000000000000000000000	0×000060000000002
0×000000000000003	0×010001000010001	0×000000101000001	0×000000001000001

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	00000		
	00		
	0		

Constructing Differential Characteristic

- Target to 2.75-round differential characteristic
- Overview of the differential characteristic

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	00000		
	00		
	0		

Differential Characteristic in Phase 1

- Input: 1-bit arbitrary input difference
- Output: difference on bit s₉[0] with largest bias
- Rounds: 1.75-round
- Result:

$$s_{10}[17] \xrightarrow{\mathrm{F}_{diagH} \circ \mathrm{F}_{col} \circ \mathrm{F}_{diag} \circ \mathrm{F}_{col}} s_9[0]$$

• Bias: $-2^{-3.9}$

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	00000		
	00		
	0		

Differential Characteristic in Phase 2

- Propagate the 1-bit difference $s_{10}[17]$ backwards.
- Linear approximation of the H function is used
- Rounds: 0.5-round
- Probability: 2⁻⁵

Table: Input difference in Phase 2.

0×000000100000000	0×000000000000000000000000000000000000	0×000000000000000000000000000000000000	0×000000000000000000000000000000000000
0×00000000000000000	0×0000001000020000	0×0000000000000000	0×0000000000000000
0×00000000000000000	0×0000000000000000	0×000000000020000	0×0000000000000000
0×00000000000000000	0×00000000000000000	0×0000000000000000	0×000000000020000

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

Differential Characteristic in Phase 3

- Propagate input difference in Phase 2 backward.
- Linear approximation of the H function is used
- Rounds: 0.5-round
- Probability: 1

Table: Input difference in Phase 3 (Δ_{in}).

0×000000100000000	0×004000000010000	0×000000100000000	0×000000000020000
0×00000000000000000	0×004000080000000	0×0000001000020000	0×000000000020000
0×000000100000000	0×00000000000000000	0×000000000020000	0×000000000020000
0×000010100000000	0×000000800010000	0×000000000020000	0×00000000000000002

• Derive initial conditions

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0	00	
0000	0000	0	
000	000000		
	00		
	0		

Derive Initial Conditions in Phase 3

- By setting conditions on the initial state, the probability that the linear approximations of H function hold can be 1.
- Example 1: $\mathbf{a_1} = H(\mathbf{a_0}, \mathbf{b_0})$
 - $\Delta a_0 = 0 \times 0000001000000000.$

 - $H(a_0, b_0) = a_0 \oplus b_0$ holds with probability 1 when $b_0[36] = 0$.
- Example 2: $c_1 = H(c_0, d_1)$
 - $\Delta c_0 = 0 \times 0000001000000000.$

 - $\operatorname{H}(c_0, d_1) = c_0 \oplus d_1$ holds with probability 1 if:

$$\begin{split} 1 = & c_0[36] \oplus d_1[36] \\ = & c_0[36] \oplus d_0[44] \oplus a_1[44] \\ = & c_0[36] \oplus d_0[44] \oplus a_0[44] \oplus b_0[44] \oplus (a_0[43] \wedge b_0[43]). \end{split}$$

• Conditions:
$$a_0[43, 44] = 0$$
, $b_0[44] = 0$, $c_0[36] = 0$, $d_0[44] = 1$

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation
000	0	
0000	0000	0
000	00000	
	00	
	0	

Derive Initial Conditions in Phase 3

Table: Conditions on the initial state for NORX64.

	$s_0[43, 44, 62, 63] = 0,$
C.1	$s_4[36, 44, 55, 63] = 0,$
Column 0	$s_8[36, 54, 55] = 0,$
	$s_{12}[44] = 1, \ s_{12}[63] = 0$
	$s_1[15, 16, 34, 35, 42, 43, 54, 61, 62] = 0,$
Calumn 1	$s_5[16, 35, 43, 54, 62] = 0,$
Column 1	$s_{9}[35, 54] = 1, s_{9}[53] = 0,$
	$s_{13}[43, 62] = 0$
	$s_2[0, 1, 16, 17, 19, 20, 24, 25, 43, 44, 55, 56, 57] = 0, s_2[36] = 1,$
Calumn 2	$s_6[1, 12, 17, 20, 25, 36, 44, 56, 57] = 0,$
Column 2	$s_{10}[11, 12, 35] = 0, s_{10}[36] = 1,$
	$s_{14}[1, 20, 25, 44] = 0$
	$s_3[0, 1, 17, 19, 20, 24, 25, 55, 56, 57] = 0,$
Column 3	$s_7[1, 12, 20, 25, 56, 57] = 0, s_7[17] = 1,$
	$s_{11}[11, 12, 16] = 1, s_{11}[17, 57] = 1,$
	$s_{15}[1, 20, 25] = 0$

troduction	Distinguishing
00	0
000	0000
00	000000
	•••

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Differential-Linear Characteristic

Δ_{in}:

0×000000100000000	0×004000000010000	0×000000100000000	0×000000000020000
0×00000000000000000	0×004000080000000	0×0000001000020000	0×000000000020000
0×000000100000000	0×0000000000000000	0×000000000020000	0×000000000020000
0×000010100000000	0×000000800010000	0×000000000020000	0×0000000000000002

Γ_{out}:

0×000000000000000000000000000000000000	0×000000000000000000000000000000000000	0×000000001010000	0×000000000010101
0×000000000020000	0×0000000000000000	0×0000c0000000002	0×0200404002000000
0×0000202001000001	0×000000000010001	0×000000000000000000000000000000000000	0×000060000000002
0×00000000000000003	0×010001000010001	0×000000101000001	0×000000001000001

• Differential-linear bias: $-2^{-22.9}$

troduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation
	0	
000	0000	0
00	000000	
	00	

The Differential-Linear Distinguisher for NORX64 Permutation

- The distinguishing attack procedure:
 - 1. Query $2^{47.5}$ pairs of 1024-bit message with difference Δ_{in} and initial conditions.
 - 2. For each pair of output from the oracle, compute the XORed sum of bits in Γ_{out} .
 - 3. Count the number X that is the number of pairs such that the XORed sum is 0.

- 4. If $X < 2^{46.5} 2^{23.6}$, the oracle is the NORX64 permutation. Otherwise, the oracle is a random permutation.
- Complexity:
 - Time: 248.5
 - Memory: Negligible
- Probability of success: 96%

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	•		

Experimental Results for NORX64 Permutation

- Environment: GPU server with 4 Tesla K-40 GPUs
- Generate 2^{47.49} pairs of random input with the initial condition and difference specified by the differential-linear characteristic

- Time: 63.1 hours
- The bias on the output bits is $-2^{-22.88}$
- Very close to the estimated bias $-2^{22.9}$.

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0	00	
0000	0000	0	
000	000000		
	00		
	0		

Distinguishing Attack on NORX32 Permutation

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0	•0	
0000	0000	0	
000	000000		
	00		
	0		

Distinguishing Attack on NORX32 Permutation

- Similar method can be applied to NORX32 permutation
- Differential-linear characteristic
 - Δ_{in} :

0×00000020	0×00000010	0x0400a020	0×02014020
0×00000020	0×00010030	0x0400a020	0×02010020
0×00200020	0×00110030	0x2020a030	0×00000000
0×20000000	0×11010020	0×20801020	0×00006000

Γ_{out}:

0×00000001	0×00000001	0×00010100	0×00000100
0×00000200	0×00000000	0×00c00002	0×02424000
0×00212001	0×00000101	0×00000001	0×00600002
0×0000003	0×00000101	0×00000001	0×00010001

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Differential-linear bias: $-2^{-31.2}$

Introduction	Distinguishing Attack on NORX64 Permutation
000	0
0000	0000
000	000000
	00
	0

Initial Conditions

Table: Conditions on the initial state for NORX32.

	$s_0[5] = 1, s_0[7, 8, 12, 13, 19, 20, 21, 28, 29] = 0,$
Column 0	$s_4[0, 5, 8, 13, 20, 21, 29] = 0,$
	$s_8[0, 4] = 0, s_8[5, 21] = 1,$
	$s_{12}[8, 13, 29] = 0$
	$s_1[2, \ldots, 8, 11, 12, 13, 16, 18, 19, 20, 21, 23, 24, 27, 28, 29] = 0,$
Calumn 1	$s_5[0, 3, 5, 7, 8, 12, 13, 16, 19, 20, 21, 24, 27, 28] = 0, s_5[4] = 1,$
Column 1	$s_9[0, 3, 15, 26, 27, 30, 31] = 0, s_9[4, 16, 20] = 1,$
	$s_{13}[3, 7, 8, 12, 13, 24, 28, 29] = 0$
	$s_2[3, 4, 5, 7, 8, 11, 12, 13, 15, 16, 19, \dots, 23, 26, 28, 29] = 0, s_2[14] = 1,$
Caluma 2	$s_6[0, 4, 8, 12, 16, 20, 21, 23, 28, 29] = 0, s_6[5, 13, 14, 26] = 1,$
Column 2	$s_{10}[0, 5, 7, 8, 12, 13, 21, 29, 31] = 0, s_{10}[4, 15] = 1,$
	$s_{14}[5, 8, 12, 16, 21, 23] = 0, s_{14}[13, 29] = 1$
	$s_3[0, 1, 5, 7, 8, 13, 14, 16, 19, 20, 21, 25, 28, 29] = 0, s_3[4] = 1,$
Column 3	$s_7[0, 1, 8, 14, 20, 21, 29] = 0, s_7[4, 5, 16, 25] = 1,$
	$s_{11}[0, 5, 24, 25, 31] = 0,$
	$s_{15}[1, 8, 29] = 0$

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Con
000	0		
0000	0000	•	
000	000000		
	00		
	0		

The Differential-Linear Distinguisher for NORX32 Permutation

- The distinguishing attack procedure
 - 1. Query $2^{63.7}$ pairs of 512-bit message with difference Δ_{in} and initial conditions in Table 5.
 - 2. For each pair of output from the oracle, compute the XORed sum of bits in Γ_{out} .
 - 3. Count the number X that is the number of pairs such that the XORed sum is 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 4. If $X < 2^{62.7} 2^{31.7}$, the oracle is the NORX32 permutation. Otherwise, the oracle is a random permutation.
- Complexity:
 - Time: 2^{64.7}
 - Memory: Negligible
- Probability of success: 96%

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		
	-		

Conclusion

- The 4-round NORX permutations used in both NORX64 and NORX32 are not ideal.
 - NORX64 permutation can be distinguished with 2^{48.5} queries which has been experimentally verified.
 - NORX32 permutation can be distinguished with 2^{64.7} queries, which may be considered as semi-practical.
- The distinguishing attacks on the permutations do not directly lead to an attack on NORX authenticated encryption algorithm.
 - Restrictions on the positions where difference can be introduced
 - Output are not fully known
- The complexity of the attacks may be further improved by controlling the initial difference for more rounds.

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

Thank you for your attention!

Introduction	Distinguishing Attack on NORX64 Permutation	Distinguishing Attack on NORX32 Permutation	Conclusion
000	0		
0000	0000	0	
000	000000		
	00		
	0		

