Key-Recovery Attacks on Full Kravatte

Colin Chaigneau¹, Thomas Fuhr², Henri Gilbert^{1,2}, Jian Guo³, Jérémy Jean², Jean-René Reinhard², Ling Song^{3,4}

¹Université de Versailles, Saint-Quentin-en-Yvelines, France ²Agence nationale de la sécurité des systèmes d'information, France ³Nanyang Technological University, Singapore ⁴Institute of Information Engineering, Chinese Academy of Sciences, China

FSE 2018 - March 5, 2018

Farfalle and Kravatte

Farfalle constuction [BDH+]

- Parallelizable permutation-based PRF of variable input and output length
- Can be used
 - Directly as a MAC, a stream cipher, a KDF
 - Through a mode: as a AEAD, a block cipher of variable block length

Kravatte: Keccak based instantiation

- Several versions
 - ePrint, published on IACR ePrint in July 2017 [2016/1188]
 - **ECC**, outlined at ECC 2017 in November 2017
 - FSE, patched version presented this morning

Security claim

256 bits when $|\text{input} + \text{output blocks}| < 2^{137}$

Kravatte in a nutshell

Reminder: the Keccak-p round function

source of the state, θ , ρ , π , χ figures: https://keccak.team/figures.html

Outline of our key-recovery attacks

One attack abusing a property of the compression phase

Higher order differential attack (HO)

Two attacks on the expansion phase of Kravatte

- Meet-in-the-middle algebraic attack (MITM)
- Linear recurrence attack (LR)

Attack	version	Т	D	М
НО	ePrint	2112	274	2 ⁶²
MITM	ePrint	2 ¹¹⁵	2 ²⁸	2 ⁷⁶
LR	ePrint	2 ⁶⁵	2 ⁵¹	2 ⁵¹
LR	ECC	2 ¹³⁴	2 ⁸⁸	2 ⁸⁸

Higher order differential attack

Main observation

Building an affine space of accumulator values

• Denote by S the following structure of 2^m *m*-block plaintexts $\mathcal{S} = \{M_0^0, M_0^1\} \times \{M_1^0, M_1^1\} \times \ldots \times \{M_{m-1}^0, M_{m-1}^1\}.$ • Acc(S) is an affine subspace of $\{0, 1\}^b$ • if $m \ll b$, dim(Acc(S)) = m with overwhelming probability $I^0 \leftarrow kin$ $M_0 \in \{M_0^0, M_0^1\} \longrightarrow$ $L^1 \leftarrow kin$ $M_1 \in \{M_1^0, M_1^1\}$ - $X = \operatorname{Acc}(M)$ М $L^{m-1} \leftarrow kin$ $M_{m-1} \in \{M_{m-1}^0, M_{m-1}^1\} \longrightarrow \bigoplus^{\flat}$

Key-Recovery Attacks on Full Kravatte

HO distinguisher

- [Lai94] Summing a function over an affine space of dim. m ≈ differentiating m times
- If m > deg F_i, the derivative is 0
- Equation satisfied by (Y_i(M))_{M∈S} independently of kⁱⁿ

$$m > 2^r \Rightarrow \sum_{X \in Acc(S)} F_i(X) = \sum_{M \in S} Y_i(M) = 0$$

HO attacks

Last $\epsilon\text{-round}$ attacks

- Express Y_i(M) as a function of kout, and Z_i(M)
- For one structure, combine using the HO distinguisher to get equations in kout
- Consider outputs long enough to collect enough equations to solve for kout

$$\sum_{M\in\mathcal{S}}$$
Keccak- $p^{-\epsilon}(\mathbf{kout}\oplus Z_i(M))=0$

HO attack with one final round ($\epsilon = 1$)

Attacking Kravatte-ePrint by local exaustive search

- F has 4 + 4 1 = 7 Keccak-p rounds, deg F = 128
- Using a 129-block structure, we can set up an HO distinguisher
- Note: the linear part of the last round can be ignored
- The system can be solved row-by-row, by exhaustive search
- Each block of equation provides a 5-bit condition on each row of kout
- With *n* = 2, most **kout** rows are determined

$$T = D = 2^{129}(129 + 2) \approx 2^{136}$$

Experimental verification

Attack tested on a round reduced version of Kravatte

J.-R. Reinhard

HO attack with two final rounds ($\epsilon = 2$)

Attacking Kravatte-ePrint by linearization

- F has 4 + 4 2 = 6 Keccak-p rounds, deg F = 64
- Using a 65-block structure, we can set up an HO distinguisher

$$\sum_{M \in S} \operatorname{Keccak} p^{-2}(\operatorname{\mathbf{kout}} \oplus Z_i(M)) = 0$$

• Linearization by considering every monomial in kout as a fresh variable

III. By combination through a degree 3 function, every bit is a LC of $N_2 = \binom{N_1}{1} + \binom{N_1}{2} + \binom{N_1}{3} \approx 2^{36.5}$ monomials $\ll \binom{1600}{9} \approx 2^{77}$ $\tilde{Y}_i \xleftarrow{l} \chi^{-1} \xleftarrow{l} \ell^{-1} \xleftarrow{l} \ell^$

Key-Recovery Attacks on Full Kravatte

HO attack with two final rounds ($\epsilon = 2$)

Attacking Kravatte-ePrint by linearization

- F has 4 + 4 2 = 6 Keccak-p rounds, deg F = 64
- Using a 65-block structure, we can set up an HO distinguisher

$$\sum_{i \in S} \operatorname{Keccak}_{p^{-2}}(\operatorname{kout} \oplus Z_i(M)) = 0$$

Linearization by considering every monomial in **kout** as a fresh variable

• Complexity:
$$T = 2^{138}, D = 2^{90}$$

III. By combination through a degree 3 function, every bit is a LC of $N_2 = \binom{N_1}{1} + \binom{N_1}{2} + \binom{N_1}{3} \approx 2^{36.5}$ monomials $\ll \binom{1600}{9} \approx 2^{77}$ $\hat{Y}_i \xleftarrow{l} \chi^{-1} \xleftarrow{l} \ell^{-1} \xleftarrow{l} \ell^{-1} \xleftarrow{l} (\pi \circ \rho)^{-1} \xleftarrow{l} \chi^{-1} \xleftarrow{l} \ell^{-1} \xleftarrow{l} \chi^{-1}$ II. Linear diffusion breaks locality: every bit is a LC of up to N_1 monomials

Key-Recovery Attacks on Full Kravatte

Expansion phase attacks

Expansion phase seen as a stream cipher

MITM attack on Kravatte-ePrint

Linearization

- Unknowns: the initial rolling state X₀ and kout
- Form equations by equating the expressions of Y_i as a function of X₀ and as a function of kout
- Collect equations and solve

$\texttt{Keccak}-p^2(\texttt{L}^i(X_0))=\texttt{Keccak}-p^{-2}(\texttt{kout}+Z_i)$

Complexity

$$T \approx T_{\text{solve}} = N^3 \approx 2^{115}$$

■ Use filtered LFSR cryptanalysis techniques from [Key76, RH07, RGH07]

Linear recurrence of the rolling state

- The rolling state is updated linearly $X_{i+1} = LX_i$
- It is a linear recurrence sequence

$$(P.X)_i = \sum_j a_j X_{i+j}$$

= $\sum_j a_j L^{i+j} X_0$
= $(L^i P(L)) X_0$
= 0 if $P(L) = 0$

Use filtered LFSR cryptanalysis techniques from [Key76, RH07, RGH07]

Linear recurrence of the rolling state

Reminder: Linear recurrence sequence

- Consider a polynomial P(x) = ∑_j a_jx^j, and a sequence u = (u_i)
 (P.u) is a sequence obtained by the action of P on u
 (P.u)_i = ∑_j a_ju_{i+j}.
- P annihilates u if P.u = 0, u is a linear recurrence sequence

$$= 0 \text{ if } P(L) = 0$$

■ Use filtered LFSR cryptanalysis techniques from [Key76, RH07, RGH07]

Linear recurrence of the rolling state

- The rolling state is updated linearly $X_{i+1} = LX_i$
- It is a linear recurrence sequence

$$(P.X)_i = \sum_j a_j X_{i+j}$$

= $\sum_j a_j L^{i+j} X_0$
= $(L^i P(L)) X_0$
= 0 if $P(L) = 0$

■ Use filtered LFSR cryptanalysis techniques from [Key76, RH07, RGH07]

Linear recurrence of the rolling state

• The rolling state is updated linearly
$$X_{i+1} = LX_i$$

■ It is a linear recurrence sequence, **as is**
any LC *w* **of its components**

$$(P.w^TX)_i = \sum_j a_j w^T X_{i+j}$$

 $= w^T \sum_j a_j L^{i+j} X_0$
 $= \dots$
 $= 0$ if $P(L) = 0$

■ Use filtered LFSR cryptanalysis techniques from [Key76, RH07, RGH07]

Case of the filtered linear register

- The monomial state X^{≤d}: vector of monomials of deg ≤ d = 2^r
- \blacksquare The monomial state is updated linearly $X_{i+1}^{\leq d} = L_{\leq d} X_i^{\leq d}$
- It is a linear recurrence sequence, as is any LC w of its components, thus Y $(P.Y)_i = \sum_j a_j w_Y^T X_{i+j}^{\leq d}$ = ...

$$=$$
 0 if $P(L_{\leq d}) = 0$

■ Use filtered LFSR cryptanalysis techniques from [Key76, RH07, RGH07]

Case of the filtered linear register

- The monomial state X^{≤d}: vector of monomials of deg ≤ d = 2^r
- The monomial state is updated linearly $X_{i+1}^{\leq d} = L_{\leq d} X_i^{\leq d}$
- It is a linear recurrence sequence, as is any LC w of its components, thus Y $(P.Y)_i = \sum_j a_j w_Y^T X_{i+j}^{\leq d}$

$$=$$
 0 if $P(L_{\leq d}) = 0$

LR attacks

Reuse last round attack framework from HO attacks, replacing HO distinguiser by LR distinguisher

 $(P^*.\texttt{Keccak} - p^{-\epsilon}(\operatorname{\mathsf{kout}} \oplus Z))_i = 0$

Key-Recovery Attacks on Full Kravatte

J.-R. Reinhard

Linear recurrence polynomial for Kravatte

Determination of P^*

- Kravatte rolling function only affects 320 bits of the state
- Restricted update matrix M, corresponding monomial update matrix $M_{\leq d}$
- P_{M<d} cancels the sequences of all monomials involving the last plane
- The other monomials are constant and cancelled by x + 1
- $P^* = (x + 1)P_{M_{\leq d}}, \deg P^*$: # monomials of deg $\leq d$ in 320 variables

Computation of P*

• Considering
$$\alpha = x \mod P_M \in GF(2^{320}),$$

 $P^* = \prod (X + \alpha^k)$

k:HW(k)≤d
 Can be computed in time T_P quasilinear in deg P*, using fast polynom multiplication [Sch77]

r	$\deg P^*$	T_P
2	2 ²⁸	2 ⁴⁰
3	2 ⁵¹	2 ⁶⁵
4	2 ⁸⁸	2 ¹⁰⁴

Verified for r = 2

	version	$r + \epsilon$	Т	$Dpprox {\sf deg} P^*$	$Mpprox {\sf deg} P^*$	
I	ePrint	3+1	2 ⁶⁵	2 ⁵¹	2 ⁵¹	
	ECC	4+2	2 ¹³⁴	2 ⁸⁸	2 ⁸⁸	
/- F	Recovery Attacks on	Full Kravatte	I-R R	einhard	ESE 2018	13 /

Concluding remarks

Attack	version	Т	D	М
НО	ePrint	2 ¹¹²	2 ⁷⁴	2 ⁶²
MITM	ePrint	2 ¹¹⁵	2 ²⁸	2 ⁷⁶
LR	ePrint	2 ⁶⁵	2 ⁵¹	2 ⁵¹
LR	ECC	2 ¹³⁴	2 ⁸⁸	2 ⁸⁸

Properties leveraged by the attacks

- Low algebraic degree of χ and χ^{-1}
- Ability to bypass a part of the construction to focus on a reduced number of rounds
- Special points in the Farfalle construction
 - The convergence point [HO]
 - The divergence point [MITM, LR]

Tweaked version of Kravatte (FSE 2018)

- Resisting HO: increase the number of rounds to 6 (versus ePrint version)
- Resisting LR: make the rolling function in expansion phase **non-linear**

Key-Recovery Attacks on Full Kravatte

J.-R. Reinhard