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Abstract. MDS matrices are used in the design of diffusion layers in many block
ciphers and hash functions due to their optimal branch number. But MDS matrices,
in general, have costly implementations. So in search for efficiently implementable
MDS matrices, there have been many proposals. In particular, circulant, Hadamard,
and recursive MDS matrices from companion matrices have been widely studied. In a
recent work, recursive MDS matrices from sparse DSI matrices are studied, which are
of interest due to their low fixed cost in hardware implementation. In this paper, we
present results on the exhaustive search for (recursive) MDS matrices over GL(4,F2).
Specifically, circulant MDS matrices of order 4, 5, 6, 7, 8; Hadamard MDS matrices
of order 4, 8; recursive MDS matrices from companion matrices of order 4; recursive
MDS matrices from sparse DSI matrices of order 4, 5, 6, 7, 8 are considered. It is to
be noted that the exhaustive search is impractical with a naive approach. We first
use some linear algebra tools to restrict the search to a smaller domain and then
apply some space-time trade-off techniques to get the solutions. From the set of
solutions in the restricted domain, one can easily generate all the solutions in the full
domain. From the experimental results, we can see the (non) existence of (involutory)
MDS matrices for the choices mentioned above. In particular, over GL(4,F2), we
provide companion matrices of order 4 that yield involutory MDS matrices, circulant
MDS matrices of order 8, and establish the nonexistence of involutory circulant MDS
matrices of order 6, 8, circulant MDS matrices of order 7, sparse DSI matrices of order
4 that yield involutory MDS matrices, and sparse DSI matrices of order 5, 6, 7, 8 that
yield MDS matrices. To the best of our knowledge, these results were not known
before. For the choices mentioned above, if such MDS matrices exist, we provide base
sets of MDS matrices, from which all the MDS matrices with the least cost (with
respect to d-XOR and s-XOR counts) can be obtained. We also take this opportunity
to present some results on the search for sparse DSI matrices over finite fields that
yield MDS matrices. We establish that there is no sparse DSI matrix S of order 8
over F28 such that S8 is MDS.
Keywords: Diffusion Layer · MDS Matrix · Circulant Matrix · Hadamard Matrix ·
Recursive MDS Matrix · Companion Matrix · Sparse DSI Matrix · XOR Count

1 Introduction
The Lightweight Cryptography (LWC) project is an initiative launched by the National
Institute of Standards and Technology (NIST) which aims to create reliable solutions to
the problem of securing data in constrained environments. Solutions to these problems
are typically given by building symmetric cryptosystems that have small footprint in
hardware and/or low computational complexity. The diffusion layer is one of the key
primitives in the design of block ciphers and hash functions, whose major role is to provide
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an avalanche effect, as this ensures a slight change in inputs causes significant changes in
outputs. One way to achieve this is to use MDS matrices as they have optimal branch
number [Dae95]. The term MDS originates from Coding theory, codes for which the
Singleton bound is met are called maximal distance separable codes [MS77]. Over a period
of time, several investigations have been made to construct MDS matrices suitable for
cryptographic applications. In particular circulant and Hadamard matrices are widely
studied [DR02, GR14, SKOP15, LS16a, LW16, PSA+18]. The early implementations
of these matrices are round based. Later in 2011, Guo et al. [GPP11] proposed a new
recursive (serialized) method of constructing MDS matrices using companion matrices. Liu
et al. [LS16a] observed that the implementation of circulant matrices could also be done
in a serialized way. Several constructions of recursive MDS matrices have been studied
in [GPP11, WWW12, AF13, KPPY14, AF14, GPV17, SSSM17, TTKS18]. In 2018, Toh
et al. [TTKS18] proposed a new matrix structure known as Diagonal-Serial Invertible
(DSI) matrices and its variants sparse DSI matrices. The benefit of using a sparse DSI
matrix is that its fixed cost is close to half the cost of other matrix types of the same order
(see Table 2). The ultimate goal of this line of research is to obtain MDS matrices with
low hardware cost.

In many designs of block ciphers, if the diffusion matrix in encryption is M then the
diffusion matrix in decryption is M−1. If the MDS matrix is involutory or orthogonal, then
the same matrix can be used in both encryption and decryption, and hence the overall
hardware cost can be reduced. It is known that there is no involutory circulant MDS
matrix over fields of even characteristic (see [GR14, CL19]). But there exist involutory
circulant MDS matrices over the general linear group GL(m,Fq) (see [LW16]). It is also
known that there is no companion matrix over fields of even characteristic which yields
an involutory MDS matrix (see [GPV19, Theorem 2]). The involutory Hadamard MDS
matrices are studied in [SKOP15].

Many of the constructions consider MDS matrices over finite fields. The finite field
Fq with q = 2m can be interpreted as the m-dimensional vector space Fm2 . With respect
to some basis, the multiplication mapping of an element in F∗2m can be interpreted as
a nonsingular binary matrix in GL(m,F2). So the MDS matrices over F2m can also be
interpreted as MDS matrices over GL(m,F2). In search for efficient MDS matrices, as
a generalization, block matrices over GL(m,F2) are considered. Despite the impressive
progress made so far, exhaustive search for MDS matrices over GL(m,F2) has remained
elusive for some parameter choices of practical importance. There have been many works
that employ some ad hoc techniques to search for efficient MDS matrices over GL(m,F2).
If the exhaustive search is possible then the best MDS matrices that have the least
cost/optimal with respect to some efficiency metrics can be identified. With a naive
approach, it is difficult to search for MDS matrices exhaustively for some parameter
choices. For instance, the size of the search space of 8× 8 circulant matrices over GL(4,F2)
is approximately 2112 as |GL(4,F2)| ≈ 214. So it is of great interest to study different
properties of the block matrices over GL(4,F2) to reduce the search space. In practice, the
concept of equivalence classes of a particular matrix type is used to reduce the search space,
as was done in [LS16a] for circulant matrices and in [SKOP15] for Hadamard matrices. In
this work, we present a method to exhaustively search for MDS matrices over GL(m,F2)
in which we use conjugacy classes and restricted conjugacy classes in order to reduce the
search space. We also identify the best MDS matrices over GL(4,F2) by considering the
hardware cost metrics d-XOR count and s-XOR count.
Our contribution:
We first consider four types of MDS matrices over GL(4,F2): circulant, Hadamard,
recursive MDS matrices from companion and sparse DSI matrices (see Section 2 for
definitions). We also present a one-to-one correspondence between circulant MDS matrices
and cyclic MDS matrices, and so it is enough to search for circulant MDS matrices. We
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use the conjugacy classes and the restricted conjugacy classes discussed in Section 2.2 to
restrict the search to a smaller domain. We apply some space-time trade-off techniques
to speed up the search/computation. For this purpose, we exploit the nonsingularity
of 2 × 2 submatrices consisting of some component pairs/triplets. We also use look-up
table for inverses of the matrices in GL(4,F2). From the set of solutions in the restricted
domain, one can easily generate all the solutions in the full domain. We have implemented
the search for the following parameter choices: circulant matrices of order 4, 5, 6, 7, 8,
Hadamard matrices of order 4, 8, companion matrices of order 4, sparse DSI matrices
of order 4, 5, 6, 7, 8. The problem of constructing involutory circulant MDS matrices
of order 6, 8 over GL(m,F2),m = 4, 8 was mentioned in [LW16]. Also the problem of
generalizing the sparse DSI matrices over GL(m,F2) was mentioned in [TTKS18]. From
the experimental results, we have the following observations. To the best of our knowledge,
these results were not known before.

1. There is no circulant/cyclic MDS matrix of order 7 over GL(4,F2).

2. There exist circulant/cyclic MDS matrices of order 8 over GL(4,F2).

3. There is no involutory circulant/cyclic MDS matrix of order 6, 8 over GL(4,F2).

4. There exists a companion matrix L of order 4 over GL(4,F2) such that L4 is an
involutory MDS matrix.

5. There is no sparse DSI matrix S of order n over GL(4,F2) such that Sn is MDS for
n = 5, 6, 7, 8.

6. There is no sparse DSI matrix S of order 4 over GL(4,F2) such that S4 is involutory
MDS.

In our experimental results, we consider the hardware cost metrics d-XOR count and
s-XOR count to identify the best matrices. From our search results, for the parameter
choices considered, where MDS matrices were known before, we establish that they are the
best with respect to these metrics. We can also see many negative results on the existence
of MDS matrices for some parameter choices. In the first case finding a better MDS matrix
than the known ones and in the other case finding an MDS matrix is a futile attempt. Now
with our results such unsuccessful attempts can be avoided. We are also able to provide
MDS matrices in some cases which were not known before. We provide our experimental
results at https://www.isichennai.res.in/~venku/MDS/es_mds.html. The base lists
of MDS matrices are also available. One can generate all the MDS matrices using our base
lists of matrices, and search exhaustively to find the best matrices with respect to some
other cost metrics or suitable for a particular platform of implementation.

Note that, in our search for efficient matrices, we try to optimize the cost with
respect to the hardware cost metrics d/s-XOR count, by choosing the components of the
matrices having low d/s-XOR count. Recently there have been many works which try
to optimize the total cost by considering the full matrix instead of local optimization.
The first work [KLSW17] in this line exhibits an implementation of AES MixColumn
matrix with 97 XOR gates. In [BFI19, TP19] some improved heuristics are proposed to
get better implementations of binary matrices in the sense of the number of XOR gates
required. As pointed by the anonymous reviewers, it is possible to have implementations
with less number of XOR gates when considered the cost of full matrix implementation
for the matrices presented in the appendix. In future we would like to apply global
optimization tools for the matrices considered. We will make the results available at
https://www.isichennai.res.in/~venku/MDS/es_mds.html.

Next we consider sparse DSI matrices over finite fields. In [TTKS18] the authors have
provided examples of sparse DSI matrices for some parameter values, and it was mentioned

https://www.isichennai.res.in/~venku/MDS/es_mds.html
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as an open problem to construct higher order sparse DSI matrices. For this purpose, we
first analyze the structure of (sparse) DSI matrices over finite fields. We provide several
results on the equivalence of these matrices in the sense of preserving MDS property.
By using these results, we are able to search exhaustively for MDS matrices that can
be obtained from the sparse DSI matrices of order n over F2m for n = 4, 5, 6, 7, 8 and
m = 4, 5, 6, 7, 8, and for n = 8 and m = 9. Also note that it is possible to search for higher
order recursive MDS matrices of this type with our idea. From the experimental results,
we have the following observations.

1. There is no sparse DSI matrix S of order 8 over F2m for m = 4, 5, 6, 7, 8 such that
S8 is MDS.

2. We have a recursive MDS matrix from sparse DSI matrices of order 7 which is better
than the known ones.

In the next section we provide notation and definitions. We also provide some basic
results that we use later. In Section 2.1 we discuss the hardware cost metrics d-XOR count
and s-XOR count. In Section 2.2 we discuss conjugacy classes and restricted conjugacy
classes. In Section 3 we first discuss some basic results. We then present our results on
reducing the search space for circulant matrices. We discuss this case in more details. Later
we present similar search techniques for Hadamard, companion and sparse DSI matrices.
In Section 3.5 we consider the case of sparse DSI matrices over finite fields. We provide
some experimental results in the appendix. We conclude this paper in Section 4.

2 Notation and Preliminaries
Let Fq be the finite field containing q elements with char(Fq) = 2. The ring of m ×m
matrices over Fq is denoted by M(m,Fq) and the general linear group consisting of
nonsingular m×m matrices over Fq is denoted by GL(m,Fq). For simplicity we useMm

forM(m,F2). We consider some special matrices where the entries are either from the
finite field Fq or from the matrix ringMm. LetM(n,m) be the set of n×n block matrices
over Mm and D(n,m) be the set of block diagonal matrices over GL(m,F2). Also let
P(n,m) be the set of n× n block permutation matrices overMm and Pm be the set of
m×m permutation matrices over F2. So the elements ofM(n,m), D(n,m) and P(n,m)
can be viewed as mn×mn binary matrices. Note that the matrices in D(n,m) and P(n,m)
are nonsingular. For M ∈M(n,m), the (i, j)-th entry of the block matrix M is denoted
by M [i, j] for 0 ≤ i, j ≤ n− 1. We denote a matrix D ∈ D(n,m) with Diag(P0, . . . , Pn−1),
where Pi’s are the diagonal entries of D, i.e., D[i, i] = Pi. The identity matrix inMm is
denoted by Im and the identity matrix inM(n,m) is denoted by Im,n which is the same
as Imn. If the block matrix D = Diag(P, P, . . . , P) ∈ D(n,m) for some P ∈ GL(m,F2) then
D = PIm,n, and so we simply write D = Diag(P). The zero matrix/vector is denoted by 0
with suitable size.

We can interpret a column vector v ∈ Fmn2 as a column vector in (Fm2 )n, say v =
(v0,v1, . . . ,vn−1). The m-block weight wtm(v) of v is defined as the number of nonzero
component vectors, i.e., wtm(v) = |{vi : vi 6= 0, 0 ≤ i ≤ n− 1}|. Let M ∈M(n,m) be a
block matrix. The transpose of M denoted by MT is the usual transpose considering M
as an mn ×mn binary matrix, i.e., MT [i, j] = M [j, i]T . The branch number of a block
matrix M ∈M(n,m) is defined as follows.
Definition 1. Let M ∈M(n,m). The differential branch number of M is defined as

Bd(M) = min
v 6=0
{wtm(v) + wtm(Mv)},

and the linear branch number of M is defined as
B`(M) = min

v6=0
{wtm(v) + wtm(MTv)}.
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Similarly, we can also define the branch number of a matrix M of order n over a finite
field F2m by considering the Hamming weight instead of the m-block weight. It is easy to
see that Bd and B` of any matrix M ∈M(n,m) are less than or equal to n+ 1.

Definition 2. A block matrixM ∈M(n,m) is said to beMDS if Bd(M) = B`(M) = n+1.

We can also define MDS matrices over finite fields analogously. Evidently, MDS matrices
have the maximal branch number. So if the matrix used in a diffusion layer is MDS then a
change in a single component of the input vector leads to changes in all the components of
the output vector. The following characterization of MDS matrices is an important tool to
verify whether a matrix is MDS or not.

Theorem 1. (See [BR99]) A matrix M ∈M(n, Fq) is MDS if and only if every square
submatrix of M is nonsingular. Similarly, a block matrix M ∈ M(n,m) is MDS if and
only if every square block submatrix of M is nonsingular.

The following results can easily be seen from the above theorem.

Lemma 1. A block matrix M ∈M(n,m) is MDS if and only if its transpose MT is MDS.

Lemma 2. A block matrix M ∈M(n,m) is MDS if and only if its inverse M−1 is MDS.

In many designs of block ciphers, one needs to implement M−1 in the decryption if
the diffusion layer in the encryption is given by M . In such cases, involutory matrices are
more suitable.

Definition 3. A square matrix M is said to be involutory if M2 is equal to the identity
matrix. An involutory MDS matrix is an MDS matrix which is involutory.

The main advantage of an involutory matrix M is that its inverse is also M . So if
an involutory MDS matrix is used in a diffusion layer, then the diffusion layer process is
exactly the same in both encryption and decryption.

Next we define various types of matrices that we study in this paper. Specifically,
circulant, cyclic, Hadamard, companion and (sparse) DSI matrices are considered. We
define these matrices over Mm, and one can easily see the appropriate form of the
definitions when such matrices are considered over finite fields.

Definition 4. A circulant matrix C of order n overMm is a block matrix where each
subsequent row is a right rotation by 1 of the previous row. So the matrix C can be
determined by its first row, and we denote such a matrix C as Cir(C0, C1, . . . , Cn−1),
where Ci’s are the entries of its first row. The (i, j)-th entry of C can be expressed as
C[i, j] = C(j−i) mod n.

The diffusion matrix used in the block cipher AES [DR02] is a circulant matrix. One
may consider any permutation which is a full cycle instead of the right rotation by 1 as in
the case of circulant matrices. In this direction, as a generalization of circulant matrices,
cyclic matrices were proposed in [LS16a] which we define below.

Definition 5. Let ρ be a cycle of length n in the permutation group of {0, 1, . . . , n− 1}.
A cyclic matrix Cρ of order n determined by the ordered tuple (C0, C1, . . . , Cn−1) ∈ [Mm]n
is a block matrix given by Cρ[i, j] = Cρi(j). We denote such a cyclic matrix Cρ as
Cycρ(C0, C1, . . . , Cn−1).

The circulant matrices are also cyclic matrices and the corresponding permutation is
ρ = (0 (n− 1) (n− 2) · · · 2 1), where ρ = (i0 i1 · · · in−1) means ρ(ij) = i(j+1) mod n for
0 ≤ j ≤ n−1. The number of cycles of length n in the permutation group of {0, 1, . . . , n−1}
is (n − 1)!. The size of the permutation group of {1, . . . , n − 1} is also (n − 1)!. The
following result gives a one-to-one correspondence between circulant matrices and cyclic
matrices. In the discussion below, the columns/rows of a matrix inM(n,m) are indexed
from 0 to n− 1.
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Lemma 3. Let ρ be a cycle of length n in the permutation group of {0, 1, . . . , n−1}. Given
a cyclic matrix Cρ = Cycρ(C0, C1, . . . , Cn−1) there exists a permutation π of the columns 1
to n− 1 such that the matrix obtained by applying π on Cρ is a circulant matrix. Similarly,
given a circulant matrix C, any permutation π of the columns 1 to n − 1 of C gives a
cyclic matrix for some cycle ρ of length n in the permutation group of {0, 1, . . . , n− 1}.

Proof. Let ρ be a cycle of length n in the permutation group of {0, 1, . . . , n − 1}. Note
that ρ0(0) = 0, {ρ(0), ρ2(0), . . . , ρn−1(0)} = {1, 2, . . . , n− 1} and ρn+j(0) = ρj(0) since ρ
is a full cycle. Consider the permutation π in the permutation group of {1, 2, . . . , n− 1}
given below in 2-line notation:

π =
(

1 2 · · · n− 1
ρn−1(0) ρn−2(0) · · · ρ(0)

)
.

It can easily be seen that the mapping given by ρ 7→ π is a bijection. Let P be the
permutation matrix in P(n,m) corresponding to the extended permutation π̂ given by
π̂(0) = 0 and π̂(j) = π(j) for 1 ≤ j ≤ n−1. Now consider C = CρP the matrix obtained by
permuting the columns from 1 to n−1 of Cρ corresponding to π. Observe that the column 0
of C and Cρ are the same and it is given by [C0, Cρ(0), Cρ2(0), . . . , Cρn−1(0)] as Cρ[i, j] = Cρi(j).
Also observe that the row 0 of C is given by [C0, Cρn−1(0), Cρn−2(0), . . . , Cρ(0)]. Suppose
j = ρij (0) for 1 ≤ j ≤ n−1. Then the j-th column of Cρ and the (n−ij)-th column of C are
the same, and it is given by [Cρij (0), Cρij+1(0), . . . , Cρij+n−1(0)]. Now by a careful observation
we can see that C = Cir(C0, Cρn−1(0), Cρn−2(0), . . . , Cρ(0)), and hence the result.

The above result can also be derived with a similar argument as in the proof of [LS16a,
Theorem 3]. Another important class of matrices is Hadamard matrices defined below.

Definition 6. Let n = 2t. An n× n block matrix overMm is called a Hadamard matrix
if it can be expressed as follows:

H =
[
H1 H2
H2 H1

]
where H1 and H2 are also Hadamard matrices of order 2t−1 overMm. Note that if the
first row of H is given by the ordered tuple (H0, H1, . . . , H2t−1) ∈ [Mm]n then H[i, j] = Hi⊕j
for 0 ≤ i, j ≤ n− 1. We denote such a matrix H as Had(H0, H1, . . . , H2t−1).

There has been a lot of study on the design of lightweight ciphers. In 2011, Guo et al.
proposed a new type of matrices known as recursive MDS matrices suitable for lightweight
applications [GPP11]. The main idea in their proposal is to use some power of a companion
matrix in the diffusion layer. The advantage of a companion matrix is that it can be
implemented by an LFSR, and the diffusion layer can be implemented by clocking the
LFSR several times.

Definition 7. Let r be a positive integer. A matrix M is said to be recursive MDS or
r-MDS if the matrix Mr is MDS. If M is r-MDS then we say M yields an MDS matrix.

Remark 1. It is easy to see from Lemmas 1 and 2 that if M is r-MDS then MT and M−1

are also r-MDS.
In our work, we consider recursive MDS matrices of the types companion and sparse

DSI, and for such a matrix M of order n, the matrix Mr cannot be MDS for r < n. If
Mr is MDS for r ≥ n then the matrix M needs to be applied r times in the serialized
implementation of the diffusion layer. So the best case is to see whether Mn is MDS or
not. So, in our experiments, we consider recursive MDS matrices that are n-MDS only.
Also we say a matrix M is involutory n-MDS, if M is n-MDS and M2n is the identity
matrix.
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Definition 8. A companion matrix L associated to the ordered tuple (L0, L1, . . . , Ln−1) ∈
[Mm]n is given by

L =


0 Im 0 . . . 0
...

...
. . .

...
0 0 0 . . . Im
L0 L1 L2 . . . Ln−1

 .

We denote such a matrix L as Comp(L0, L1, . . . , Ln−1). The matrix L is often associ-
ated with the matrix polynomial ΦL(X) = Xn − Ln−1X

n−1 − · · · − L1X − L0 since the
characteristic polynomial of L is equal to the determinant of ΦL(X).

In a recent work [TTKS18], the authors have proposed another type of recursive MDS
matrices known as sparse DSI matrices. The definitions presented below are slightly
different from the definitions in [TTKS18]. However, as we will see later in Section 3.5
that these matrices are similar and so it is okay to consider in this manner.

Definition 9. Let n ≥ 2 be an integer. A Diagonal-Serial Invertible (DSI) matrix
S = (S[i, j])0≤i,j≤(n−1) of order n determined by the ordered tuples (A0, A1, . . . , An−1) ∈
[GL(m,F2)]n and (B0, B1, . . . , Bn−1) ∈ [Mm]n with Bi = 0 for some i, 0 ≤ i ≤ n− 1, is an
n× n block matrix given as follows:

S[i, j] =


A0, i = 0, j = n− 1
Ai, i = j + 1
Bi, i = j

0, otherwise.

We denote such a matrix S as DSI(B0, B1, . . . , Bn−1; A0, A1, . . . , An−1).

In the above definition, we consider Bi = 0 for some i, 0 ≤ i ≤ n− 1, whereas Bn−1 = 0
in [TTKS18].

Definition 10. Let n ≥ 2 be an integer and k = bn+1
2 c. A Diagonal-Serial Invertible

matrix S of order n determined by the ordered tuples (A0, A1, . . . , An−1) ∈ [GL(m,F2)]n
and (B0, B1, . . . , Bn−1) ∈ [Mm]n is said to sparse or simply sparse DSI if Bi = 0 for i odd
and Bi ∈ GL(m,F2) for i even. The (i, j)-th entry of the sparse DSI matrix S is given by

S[i, j] =


A0, i = 0, j = n− 1
Ai, i = j + 1
Bi, i = j and even
0, otherwise.

We denote such a matrix S with SpDSI(B0, B2, . . . , B2(k−1); A0, A1, . . . , An−1) as we have
Bi = 0 for i odd.

In the above definition, in the case when n is odd, we consider Bi = 0 for i odd, whereas
Bi = 0 if i ∈ {1, 3, . . . , n − 4} ∪ {n − 1} in [TTKS18]. In the case when n is even, our
definition matches with that of [TTKS18].

The recursive MDS matrices from sparse DSI matrices are of importance due to their
low fixed cost in hardware implementation (see Section 2.1). In the case where n is even,
the GFS matrices (of suitable order) proposed in [WWW12, Section 5] have the same
fixed cost in hardware implementation. We have the following observation on the relation
between GFS matrices and sparse DSI matrices.
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Remark 2. Let n = 2k and S = SpDSI(B0, B2, . . . , B2(k−1); A0, A1, . . . , An−1) be a sparse
DSI matrix with Ai = Im for i odd. The inverse of the sparse DSI matrix S is a GFS
matrix defined in [WWW12, Section 5]. Note that if M is an n-MDS matrix then its
inverse M−1 is also an n-MDS matrix. So we can view the sparse DSI matrices as a
generalization of the GFS matrices proposed in [WWW12, Section 5].

Let C(n,m) and H(n,m) denote the set of MDS matrices in M(n,m) of the type
circulant and Hadamard respectively. Also let L(n,m) and S(n,m) denote the set of
n-MDS matrices inM(n,m) of the type companion and sparse DSI matrices respectively.

2.1 Hardware Implementation - XOR Count
Suppose that M ∈M(n,m) is an MDS matrix used in a diffusion layer. So the diffusion
layer is given by the mapping v 7→ Mv for v = (v0,v1, . . . ,vn−1) ∈ (Fm2 )n. The main
component of the computation is M [i, j]vj for 0 ≤ i, j ≤ n−1, where vj ∈ Fm2 . Essentially,
we need to evaluate the cost of hardware implementation of the mapping u 7→ Mu for
some M ∈ GL(m,F2) and u ∈ Fm2 . For this purpose, we count the number of XOR gates
required in its hardware implementation. There are two metrics proposed in the literature.
The direct XOR count was introduced in [KPPY14], and later in [JPST17] another metric
known as the sequential XOR count was introduced. We below define both the XOR
count metrics. For more details on the two metrics of XOR count, we refer to [Köl19] and
references therein.

Definition 11. The direct XOR count (d-XOR count) of M ∈ GL(m,F2) denoted by
d-XOR(M) is

d-XOR(M) = ω(M)−m,
where ω(M) denotes the number of ones in the matrix M.

Definition 12. Let M ∈ GL(m,F2) be a nonsingular m×m binary matrix. The sequential
XOR count (s-XOR count) of M denoted by s-XOR(M) is equal to ` if ` is the smallest
non-negative integer such that M can be expressed as

M = P
∏̀
t=1

(Im + Ei,j)

where P ∈ Pm and Ei,j , i 6= j, is a binary matrix with 1 as (i, j)-th entry and 0 elsewhere.

We have the following result on the XOR counts.

Lemma 4. ([Köl19, Lemma 1]) Let M ∈ GL(m,F2). For any two permutation matrices P
and Q in Pm, we have

d-XOR(M) = d-XOR(PMQ) and s-XOR(M) = s-XOR(PMQ).

We have |GL(4,F2)| = 20, 160. In Table 1 we present the number of matrices in
GL(4,F2) with their d-XOR and s-XOR counts.

Table 1: The number of matrices in GL(4,F2) with fixed XOR count

XOR count 0 1 2 3 4 5 6 7 8 9

d-XOR count 24 288 1440 3648 4752 4992 2592 1728 600 96

s-XOR count 24 288 2016 7968 8496 1344 24 0 0 0

In the case where the elements of an MDS matrix are from a finite field Fq, we need
to implement field element multiplication. We can consider Fq with q = 2m as the m-
dimensional vector space Fm2 . By distributive property, it can easily be seen that for
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α ∈ Fq, the field element multiplication by α given by x 7→ αx is a linear function over F2.
For defining the XOR count of α ∈ Fq, we consider the matrix representation Mα,B of the
mapping x 7→ αx with respect to some basis B of Fq over F2.

Definition 13. Let α ∈ Fq and B be a basis of Fq over F2, where q = 2m. Let
Mα,B ∈ GL(m,F2) be the matrix representation of the mapping x 7→ αx with respect to
the basis B. The d-XOR count and the s-XOR count of α with respect to the basis B,
denoted by d-XOR(α,B) and s-XOR(α,B) respectively, is as follows:

d-XOR(α,B) = d-XOR(Mα,B) and s-XOR(α,B) = s-XOR(Mα,B).

Observe that the d/s-XOR count of Mα,B generally differs from the d/s-XOR count of
Mα,B′ for different bases B and B′. In [BKL16], the authors studied methods to find a
basis with which the s-XOR count of a finite field element is optimal.

We use XOR(A) to denote the XOR count of a matrix A ∈Mm and it can be either
the d-XOR count or the s-XOR count of A unless otherwise mentioned. Note that the
circulant (cyclic) MDS and the recursive MDS matrices from the companion or sparse
DSI matrices can have a serialized implementation. So the variable cost depends on the
elements determining such matrices. The XOR count of these matrices is the number
of XOR gates required in one iteration/step of their serialized implementation. Though
it is nontrivial to implement Hadamard matrices in a serialized manner, we follow the
convention, and consider the cost of implementing its defining elements for the purpose of
comparison. We refer to [TTKS18, Section 4.3 & 5] for more details on the XOR count
of these matrices. We often use Cost(M) to denote the XOR count of a matrix M . In
Table 2 we present XOR counts/Costs of the matrices that we consider (see also [TTKS18,
Section 5])

Table 2: XOR count/Cost of various types of matrices

Type of matrix XOR count/Cost

Cycρ(C0, C1, . . . , Cn−1)
∑

XOR(Ci) + (n− 1) ·m

Had(H0, H1, . . . , Hn−1)
∑

XOR(Hi) + (n− 1) ·m

Comp(L0, L1, . . . , Ln−1)
∑

Li|∀j<i Li 6=Lj
XOR(Li) + (n− 1) ·m

SpDSI(B0, B2, . . . , B2(k−1); A0, . . . , An−1)
∑

XOR(Ai) +
∑

Bi 6=A(i+1) mod n

XOR(Bi) + k ·m

where k = bn+1
2 c.

The last component in the entries of the second column in Table 2 gives the fixed cost
of the corresponding matrices, and it depends on the size of the matrix but not on the
entries of the matrix. Note that the fixed cost of sparse DSI matrices is close to half the
cost of other matrix types of the same order.

Next we discuss conjugacy classes and restricted conjugacy classes. These classes play
an important role in the exhaustive search for MDS matrices which we discuss in Section 3.

2.2 Conjugacy Classes and Restricted Conjugacy Classes
Let G = GL(m,Fq) be the general linear group of order m over Fq. For A, B ∈ G, we say A
is similar to B or A ∼ B if there exists P ∈ G such that B = P−1AP. It is well known that the
similarity relation is an equivalence relation on G. A related concept in group theory is G
acting on itself by conjugation. And so the equivalence classes are known as conjugacy
classes. For A ∈ G, the orbit or conjugacy class containing A is given by

cc(A) = {P−1AP : P ∈ G}.
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Let NG denote a set of representatives of the distinct conjugacy classes.

Lemma 5. [Sta12, p. 138] The number of distinct conjugacy classes in the group
G = GL(4,Fq) is given by

|NG | = q4 − q.

The centralizer of an element A ∈ G is defined by

CG(A) = {P ∈ G : P−1AP = A}.

It is also well known that CG(A) forms a subgroup of G. Now consider the action of CG(A) on
G by conjugation. For B, C ∈ G, we say B ∼A C if there exists P ∈ CG(A) such that C = P−1BP.
It is easy to see that this is an equivalence relation. We call these equivalence classes as
A-restricted conjugacy classes. For A ∈ G, the A-restricted conjugacy class containing B ∈ G
is given by

ccA(B) = {P−1BP : P ∈ CG(A)}.

Let N A
G denote a set of representatives of the distinct A-restricted conjugacy classes.

For the case where G = GL(4,F2), we present below a set NG and the sizes of N A
G for

A ∈ NG . Note that by Lemma 5 we have |NG | = 14. In the table below we represent a
matrix A ∈ G = GL(4,F2) given by

A =


a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

 (1)

by the integer value
∑15
i=0 ai2i in hexadecimal form. For example the identity matrix I ∈ G

is represented by 0x8421.

Table 3: The number of elements in A-restricted conjugacy classes : |N A
G | for A ∈ NG

A ∈ NG 0x1842 0x1843 0x1846 0x2816 0x2841 0x2853 0x42c1

|cc(A)| 2520 1344 1344 1680 1120 1344 2880

|CG(A)| 8 15 15 12 18 15 7

|N A
G | 2572 1380 1380 1740 1198 1380 2886

A ∈ NG 0x4812 0x4813 0x4821 0x4c13 0x8143 0x8243 0x8421

|cc(A)| 210 3360 105 112 2880 1260 1

|CG(A)| 96 6 192 180 7 16 20160

|N A
G | 268 3400 149 154 2886 1340 14

Observe that |cc(A)| · |CG(A)| = |G| for A ∈ G. The numbers in Table 3 do not depend
on the choice of representatives NG . We now present our main results in the next section.

3 Exhaustive Search for MDS Matrices
If a circulant matrix C ∈M(n,m) is MDS then all the entries must be nonsingular. In a
naive approach, in order to exhaustively search for circulant MDS matrices, the number
of candidates for that we need to verify the MDS property is |GL(m,F2)|n, which is
practically difficult for m = 4 and n ≥ 4. Note that |GL(4,F2)| = 20, 160 > 214. It is the
same for other types of matrices as well. In this section we first present some basic results
without proofs. By using these basic results and the results on the conjugacy classes, we
are able to reduce the search domain. In order to exhaustively search for circulant MDS



Abhishek Kesarwani, Santanu Sarkar and Ayineedi Venkateswarlu 241

matrices, it is enough to search for circulant MDS matrices in this reduced domain. We
also apply some space-time trade-off techniques to speed up the search/computation. For
given parameters and the type of matrix, from the MDS matrices in the reduced search
domain, one can easily get all the MDS matrices of that type. Next we present some basic
results on the similarity/equivalence of (recursive) MDS matrices.

Definition 14. Two matrices M and M ′ in M(n,m) are called diagonal equivalent,
denoted by M ∼de M ′, if there exist two diagonal matrices P,Q ∈ D(n,m) such that
M ′ = PMQ.

Lemma 6. Suppose that two matrices M and M ′ in M(n,m) are diagonal equivalent.
Then M is MDS if and only if M ′ is MDS.

Definition 15. Two matrices M and M ′ inM(n,m) are called diagonal similar, denoted
byM ∼ds M ′, if there exists a block diagonal matrix P ∈ D(n,m) such thatM ′ = P−1MP .

Lemma 7. Suppose that two matrices M and M ′ inM(n,m) are diagonal similar. Then
M is r-MDS if and only if M ′ is r-MDS.

Definition 16. Two matrices M and M ′ inM(n,m) are called permutation equivalent,
denoted by M ∼pe M ′, if there exist two permutation matrices P,Q ∈ P(n,m) such that
M ′ = PMQ.

Lemma 8. Suppose that two matrices M and M ′ inM(n,m) are permutation equivalent.
Then M is MDS if and only if M ′ is MDS.

Definition 17. Two matrices M and M ′ in M(n,m) are called permutation similar,
denoted by M ∼ps M ′, if there exists a permutation matrix P ∈ P(n,m) such that
M ′ = P−1MP .

Lemma 9. Suppose that two matrices M and M ′ in M(n,m) are permutation similar.
Then M is r-MDS if and only if M ′ is r-MDS.

Similarly, we can also define diagonal/permutation equivalence/similarity for matrices
inM(n,Fq), and one can easily see that Lemmas 6 to 9 are also valid for this case.

If the matrix M ∈ M(n,m) is MDS then it is necessary that all the 2 × 2 block
submatrices of M are nonsingular. The number of 2×2 block submatrices of M is given by(
n
2
)2. It may happen that, some of these submatrices are multiples of another submatrix

by block permutation matrices. By the following result, it is possible to reduce the number
of 2× 2 submatrices that we need to verify the nonsingularity and thus we can avoid some
unnecessary checks.

Lemma 10. Let M ∈M(n,m) be an n× n block matrix overMm. Let P,Q ∈ P(n,m)
be permutation matrices. The matrix M is nonsingular if and only if PMQ is nonsingular.
In particular, if

M =
(

A B
C D

)
is nonsingular then RM,MR and RMR are also nonsingular, where

R =
(

0 Im
Im 0

)
.

To verify the nonsingularity of 2× 2 block matrices, we use the following result.

Lemma 11. Suppose that

M =
(

A B
C D

)
is a 2 × 2 block matrix over GL(m,F2). Then we have M is nonsingular if and only if
(A + BD−1C) is nonsingular.



242 Exhaustive Search for Various Types of MDS Matrices

To verify the nonsingularity of higher order block submatrices, we use the recursive
formulas given in [Pow11]. In particular, we use the formula given in [Pow11, Section 4.2]
for 3× 3 block matrices.

Let G = GL(m,F2) and NG denote a set of representatives of the distinct conjugacy
classes. For A ∈ NG , let N A

G denote a set of representatives of the distinct A-restricted
conjugacy classes. Recall that, for P ∈ G, the block diagonal matrix Diag(P) = PIm,n.
Next we discuss our technique to reduce the search space using conjugacy classes and
restricted conjugacy classes. The results are presented in a more general form, but for the
experimental results we consider m = 4 and the order n of the matrices will be specified.

3.1 Circulant Matrices
In this section we consider circulant matrices overMm. In order to perform exhaustive
search, we first reduce the search space using conjugacy/restricted conjugacy classes.

Theorem 2. Let i, j, k ∈ {0, 1, . . . , n − 1} be distinct integers. For any circulant MDS
matrix C = Cir(C0, C1, . . . , Cn−1) ∈ C(n,m) there exists P, Q ∈ GL(m,F2) such that
C = Diag(P)C ′Diag(Q), where C ′ = Cir(C′0, C′1, . . . , C′n−1) ∈ C(n,m) is a circulant MDS
matrix with C′i = Im, C′j = A for some A ∈ NG and C′k = B for some B ∈ N A

G.

Proof. First note that the product of a circulant matrix and a block diagonal matrix of the
form Diag(P) is a circulant matrix. Let us consider P1 = C−1

i . Suppose that P1Cj ∈ cc(A)
for some A ∈ NG . Then there exists a matrix P2 ∈ G = GL(m,F2) such that P1Cj = P2AP−1

2 .
Now consider the matrix

C1 = Diag(P−1
2 )Diag(P1)CDiag(P2).

Observe that we have C1[0, i] = Im and C1[0, j] = A. Suppose that C1[0, k] ∈ ccA(B) for
some B ∈ N A

G . Then there exists P3 ∈ CG(A) such that C1[0, k] = P3BP−1
3 . Note that

P−1
3 C1[0, j]P3 = P−1

3 AP3 = A since P3 ∈ CG(A) and P−1
3 P−1

2 P1C[0, k]P2P3 = B. We take
Q = P−1

3 P−1
2 and P = P−1

1 Q−1, and it is easy to see that

C ′ = Diag(P−1)CDiag(Q−1)

is in the required form. By Lemma 6 we can see that the matrix C ′ is MDS.

Observe that in order to search for circulant MDS matrices of order n over Mm, it
is enough to search for circulant MDS matrices of the form C ′ given in Theorem 2. We
have C′i = Im, C′j = A ∈ NG and C′k = B ∈ N A

G . We can then get all the solutions C by
C = Diag(P−1)C ′Diag(Q−1), where P, Q ∈ GL(m,F2).

We now illustrate the main ideas of our search technique considering the case of circulant
matrices of order 8 over G = GL(4,F2). Let C = Cir(C0, C1, . . . , C7) be a circulant matrix
of order 8 over GL(4,F2). In our search, we choose C0 = I4, C4 = A ∈ NG , C2 = B ∈ N A

G
and Ci ∈ GL(4,F2) for i ∈ {1, 3, 5, 6, 7}. We first collect all the distinct 2× 2 submatrices
of C that we need to check nonsingularity to verify the MDS property of C. We eliminate
unnecessary checks by using Lemma 10. In fact, we need to check the nonsingularity of
100 distinct 2× 2 submatrices of C in this case. We have

M =
(

C0 C4
C4 C0

)
as a 2× 2 submatrix of C. So we have exactly 5 choices for C4 such that the matrix M is
nonsingular (need to verify whether I4 + C2

4 is nonsingular or not). We have 7 submatrices
of order 2 involving C2, C6 and C4. For a fixed choice of C4, we verify whether these 7
submatrices are nonsingular or not. We store all the choices of C2, C6 that satisfy the
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required conditions in a list for later use. We have 5 submatrices of order 2 involving
C1, C5 and C4 (also with C3, C7 and C4). For a fixed choice of C4, we create lists for valid
choices of the pairs (C1, C5) and (C3, C7) satisfying the required nonsingularity conditions.
We now proceed to verify the nonsingularity of the other 2× 2 submatrices. By creating
lists, we are able to substantially reduce the number of candidates that we need to verify
the remaining conditions. In verifying the remaining conditions, in the process, if we
encounter a singular submatrix then we exit permanently and move on to verify the next
candidate. Finally we prepare a list of potential candidates C satisfying that all the 2× 2
submatrices of C are nonsingular. Now we verify the determinants of submatrices of order
≥ 3 recursively by using the formulas in [Pow11]. As usual, in the process of verification,
if we encounter a singular submatrix, we then exit permanently and move on to verify the
next candidate. Since C0 = I4 and few choices for C4, from the conditions on the 2 × 2
submatrices, we see that the number of candidates that we actually need to verify the
nonsingularity of higher order submatrices is significantly less, and so it is possible to
complete the exhaustive search on a desktop computer quickly.

From the solution set in the restricted domain, we eliminate (few) duplicates in the sense
that no two matrices are constant diagonal similar. In this way, we get 32 distinct circulant
MDS matrices of order n = 8 up to (constant) diagonal similarity, and we denote it by
Cr(8, 4). Now we extend it by considering matrices of the form C ′ = Diag(P)−1CDiag(P)
for C ∈ Cr(8, 4) and P ∈ GL(4,F2), and we denote the extended set by Cre(8, 4). In this
way, we get Cre(8, 4) = 645, 120 distinct circulant MDS matrices. Note that the diagonal
element of the matrices in Cre(8, 4) is equal to I4. Observe that any matrix C in C(8, 4)
satisfies C = Diag(Q)C ′ for some C ′ ∈ Cre(8, 4) and Q ∈ GL(4,F2). Therefore we have

|C(8, 4)| = |Cre(8, 4)| · |GL(4,F2)|.

Next we present our experimental results for n = 4, 5, 6, 7. In the case n = 4 we
consider C0 = I4, C2 = A ∈ NG and C1 = B ∈ N A

G . In this case we have C2 6= I4. We get
|Cr(4, 4)| = 852 and |Cre(4, 4)| = 6, 875, 904.

In the case n = 5 we consider C0 = I4, C3 = A ∈ NG and C2 = B ∈ N A
G . If C3 = I4

then we consider C2 = A ∈ NG and C1 = B ∈ N A
G . We get |Cr(5, 4)| = 1, 485 and

|Cre(5, 4)| = 2, 829, 120.
In the case n = 6 we consider C0 = I4, C3 = A ∈ NG and C2 = B ∈ N A

G . In this case we
have C3 6= I4. We get |Cr(6, 4)| = 54 and |Cre(6, 4)| = 169, 344.
From the experimental results, we have the following observations:

1. There is no circulant/cyclic MDS matrix of order 7 over GL(4,F2).

2. There is no involutory circulant/cyclic MDS matrix of order 6, 8 over GL(4,F2).

3. There is no circulant MDS matrix of order 8 over F24 but there exist circulant MDS
matrices of order 8 over GL(4,F2).

The problem of constructing involutory circulant MDS matrices over GL(4,F2) of order
6, 8 was mentioned in [LW16, Problem 1]. But we have a negative result. In fact, by using
Lemma 3 we have verified that there is no involutory cyclic MDS matrix of order 6, 8
over GL(4,F2). For this purpose, it is enough to verify the involutory property of cyclic
matrices of the form Ĉ = CDiag(Q)P for C ∈ Cr(n, 4), Q ∈ GL(4,F2), and P ∈ P(n,m)
with P [0, 0] = Im.

We have the following result on the permutation equivalence of circulant MDS matrices.

Lemma 12. [LS16a, Lemma 1] Let C = Cir(C0, C1, . . . , Cn−1) be a circulant matrix over
Mm and let Cσ = Cir(Cσ(0), Cσ(1), . . . , Cσ(n−1)) for some permutation σ. Then we have
C ∼pe Cσ if and only if the permutation σ satisfies σ(i) = (bi+a) mod n for 0 ≤ i ≤ n−1,
where a, b ∈ Zn with gcd(b, n) = 1.
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Remark 3. The number of permutations σ satisfying the condition in Lemma 12 is given
by nφ(n), where φ(n) is Euler’s totient function. For each such σ, we can see by Lemma 8
that C is MDS if and only if Cσ is MDS. So given a circulant MDS matrix C ∈ C(n,m),
we can generate up to nφ(n) many matrices in C(n,m). Since the defining elements of all
such matrices are the same, the cost/XOR count of all those matrices are the same.

By Lemma 4 we get the following result.

Lemma 13. Let C be a circulant MDS matrix over Mm. Then for P = Diag(P) and
Q = Diag(Q), where P, Q ∈ Pm are permutation matrices of order m, we have

Cost(C) = Cost(PCQ).

In particular,
Cost(C) = Cost(P−1CP ).

We compute the cost of the matrices in C(n, 4) according to the formula given in
Table 2. We get a list of matrices with the least cost with respect to both d-XOR and
s-XOR metrics. By reverse process, we get a base set of circulant MDS matrices with the
least cost in the sense that by applying Lemmas 12 and 13 we get all the circulant MDS
matrices with the same cost.

In the appendix we present a base set of (involutory) circulant MDS matrices in C(n, 4)
with the least cost (according to the formula in Table 2) from which we can generate all
the circulant MDS matrices with the same cost.

3.2 Hadamard Matrices
In this section we consider Hadamard matrices overMm. With a similar argument as in
the proof of Theorem 2 we get the following result in the case of Hadamard MDS matrices
from which we can reduce the search space.

Theorem 3. Let i, j, k ∈ {0, 1, . . . , n− 1} be distinct integers. For any Hadamard MDS
matrix H = Had(H0, H1, . . . , Hn−1) ∈ H(n,m) there exists P, Q ∈ GL(m,F2) such that
H = Diag(P)H ′Diag(Q), where H ′ = Had(H′0, H′1, . . . , H′n−1) ∈ H(n,m) is a Hadamard
MDS matrix with H′i = Im, H′j = A for some A ∈ NG and H′k = B for some B ∈ N A

G.

We have the following result on the equivalence classes of Hadamard matrices.

Lemma 14. [LS16b, Theorem 5] Let H = Had(H0, H1, . . . , Hn−1) be a Hadamard matrix
overMm and let Hσ = Had(Hσ(0), Hσ(1), . . . , Hσ(n−1)) for some permutation σ. Then we
have H ∼pe Hσ if and only if the permutation σ satisfies σ(i⊕ j) = σ(i)⊕ σ(j)⊕ σ(0) for
0 ≤ i, j ≤ n− 1.

Remark 4. Let n = 2t for some t > 0. The number of permutations σ satisfying the
condition in Lemma 14 is given by n · |GL(t,F2)|. For each such σ, by Lemma 8 we have
H is MDS if and only if Hσ is MDS. Also note that the defining elements are distinct
in a Hadamard MDS matrix. So given a Hadamard MDS matrix H ∈ H(n,m), we can
generate n · |GL(t,F2)| many matrices in H(n,m). Since the defining elements of all such
matrices are the same, the XOR counts of all those matrices are the same.

We now present our experimental results.
Case: n = 4
Let H = Had(H0, H1, H2, H3). In our search we consider H0 = I4, H1 = A ∈ NG and H2 ∈ N A

G .
Note that if H is MDS then Hi 6= Hj for i 6= j. So we have H1 6= I4. This way we get 560
distinct Hadamard MDS matrices up to (constant) diagonal similarity, and we denote it by
Hr(4, 4). Now we extend it by considering matrices of the form H ′ = Diag(P)−1HDiag(P)
for H ∈ Hr(4, 4) and P ∈ GL(4,F2), and we denote the extended set by Hre(4, 4). In
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this way, we get Hre(4, 4) = 2, 376, 912 distinct Hadamard MDS matrices. Note that the
diagonal element of the matrices in Hre(4, 4) is equal to I4. Observe that any matrix in
H(4, 4) is a constant multiple of a matrix in Hre(4, 4). Therefore we have

|H(4, 4)| = |Hre(4, 4)| · |GL(4,F2)|.

Case: n = 8
Let H = Had(H0, H1, H2, . . . , H7). We choose the index choices same as above. In this case,
we get 336 distinct matrices up to (constant) diagonal similarity, and we denote it by
Hr(8, 4). Similarly, we get |Hre(8, 4)| = 451, 584 distinct Hadamard MDS matrices, where
the diagonal element in these matrices is equal to I4.

In the appendix we present a base set of (involutory) Hadamard MDS matrices in
H(n, 4) for n = 4, 8 with the least cost (according to the formula in Table 2) from which
we can generate all the Hadamard MDS matrices with the same cost.

3.3 Recursive MDS Matrices from Companion Matrices
In this section we consider companion matrices overMm. We first present a result from
which we can reduce the search space. Then we present our experimental results on the
exhaustive search for 4-MDS companion matrices of order 4 over GL(4,F2).

Theorem 4. Let i, j ∈ {0, 1, . . . , n − 1} be distinct integers. For any recursive MDS
matrix L = Comp(L0, L1, . . . , Ln−1) ∈ L(n,m) there exists P ∈ GL(m,F2) such that
L = Diag(P)−1L′Diag(P), where L′ = Comp(L′0, L′1, . . . , L′n−1) ∈ L(n,m) is a recursive
MDS matrix with L′i = A for some A ∈ NG and L′j = B for some B ∈ N A

G.

Proof. Let L be a companion matrix as given above. First note that Diag(P)LDiag(P)−1

is also a companion matrix. Suppose that Li ∈ cc(A) for some A ∈ NG . Then there exists a
matrix P1 ∈ G = GL(m,F2) such that Li = P1AP−1

1 . Now consider the matrix

L1 = Diag(P−1
1 )LDiag(P1).

Observe that we have L1[n − 1, i] = A. Suppose that L1[n − 1, j] ∈ ccA(B) for some
B ∈ N A

G . Then there exists P2 ∈ CG(A) such that L1[n − 1, j] = P2BP−1
2 . Note that

P−1
2 L1[n− 1, i]P2 = P−1

2 AP2 = A since P2 ∈ CG(A). We take P = P−1
2 P−1

1 , and it is easy to
see that

L′ = Diag(P)LDiag(P−1)
is in the required form. By Lemma 7 we can see that the matrix L′ is recursive MDS.

We now present our experimental results for the case where n = m = 4. In our search
we first consider L0 = A( 6= I4) ∈ NG and L2 ∈ N A

G . In the case when L0 = I4, we consider
L2 = A ∈ NG and L1 ∈ N A

G . In this way, we get 1, 495 distinct matrices up to (constant)
diagonal similarity, and we denote it by Lr(4, 4). Now we extend it by considering matrices
of the form L′ = Diag(P)−1LDiag(P) for L ∈ Lr(4, 4) and P ∈ GL(4,F2), and observe
that the extended set is L(4, 4). In this way, we get |L(4, 4)| = 7, 358, 400 distinct 4-MDS
companion matrices of order 4 over GL(4,F2).

It is well known that there is no companion matrix over fields of even characteristic
which yields an involutory MDS matrix (see [GPV19, Theorem 2]). But we get involutory
MDS matrices from L(4, 4). We provide such a matrix in the appendix. Now we state this
result.

Theorem 5. There exists a companion matrix L of order 4 over GL(4,F2) such that L4

is involutory MDS.

In the appendix we present a base set of companion matrices in L(4, 4) with the least
cost (according to the formula in Table 2) from which we can generate all the companion
matrices with the same cost.
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3.4 Recursive MDS Matrices from Sparse DSI Matrices
In this section we consider sparse DSI matrices overMm. This problem was mentioned
in [TTKS18, Section 7.2]. We first present a result from which we can reduce the search
space. Then we show a close relationship between sparse DSI matrices and Ring LFSRs.
Next we present our experimental results on the exhaustive search for n-MDS sparse DSI
matrices of order n over GL(4,F2) for n = 4, 5, 6, 7, 8.

Theorem 6. Let n ≥ 2 be an integer and k = bn+1
2 c. Let t be an even integer with 0 ≤ t ≤

n− 1. For any recursive MDS matrix S = SpDSI(B0, B2, . . . , B2(k−1); A0, A1, . . . , An−1) ∈
S(n,m) there exists D = Diag(P0, P1, . . . , Pn−1) ∈ D(n,m) such that S = D−1S′D, where
S′ = SpDSI(B′0, B′2, . . . , B′2(k−1); A′0, Im, . . . , Im) ∈ S(n,m) is a recursive MDS matrix with
A′0 = A for some A ∈ NG and B′t = B for some B ∈ N A

G.

Proof. Let S be a sparse DSI matrix as given above and D′ = Diag(P′0, P′1, . . . , P′n−1) ∈
D(n,m). Observe that S1 = D′SD′−1 is also a sparse DSI matrix. We have S1[i, j] =
D′[i, i]S[i, j]D′−1[j, j] = P′iS[i, j]P′−1

j for 0 ≤ i, j ≤ n − 1 since D′ is a block diagonal
matrix. We also have S[i, i− 1] = Ai for 1 ≤ i ≤ n− 1. Now we choose P′is such that they
satisfy P′i−1 = P′iAi, 1 ≤ i ≤ n− 1. Therefore we get S1[i, i− 1] = Im for 1 ≤ i ≤ n− 1.

Suppose that S1[0, n − 1] ∈ cc(A) for some A ∈ NG . Then there exists a matrix
P1 ∈ G = GL(m,F2) such that S1[0, n− 1] = P1AP−1

1 . Now consider the matrix

S2 = Diag(P1)−1S1Diag(P1).

Observe that we have S2[0, n − 1] = A. Suppose that S2[t, t] ∈ ccA(B) for some B ∈ N A
G .

Then there exists P2 ∈ CG(A) such that S2[t, t] = P2BP−1
2 . Note that P−1

2 S2[0, n− 1]P2 =
P−1

2 AP2 = A since P2 ∈ CG(A). Now consider D = Diag(P1P2)−1D′, and it is easy to verify
that S′ = DSD−1 is in the required form. By Lemma 7 we can see that the matrix S′ is
recursive MDS.

Remark 5. The LFSR associated with the companion matrix L in Definition 8 is known
as Fibonacci LFSR. The state transition matrix of a word-oriented Fibonacci LFSR is
of the form given by L. Another well known type of LFSR is Galois LFSR whose state
transition matrix is of the form (LT )−1. In [ABMP11] Ring LFSRs are introduced as a
generalization. The state transition matrix of a word-oriented Ring LFSR can be given by
(see [ABMP11, Def. 3.7])

A =



Im (∗)
. . .

(∗)
. . .

Im
Im

 (2)

The above matrix is closely related to the restricted version of the sparse DSI matrices
obtained in Theorem 6. So we can see that the sparse DSI matrices are closely related
to the word-oriented Ring LFSRs. There have been some works on Ring LFSRs, so an
interesting problem is to develop a theory for sparse DSI matrices that yield MDS matrices.

We now present our experimental results. We only get n-MDS sparse DSI matrices of
order n = 4 over GL(4,F2), and for n = 5, 6, 7, 8 there is no such matrix. In our search,
we first consider A0 = A( 6= I4) ∈ NG and B0 ∈ N A

G . In the case when A0 = I4, we consider
B0 = A ∈ NG and B1 ∈ N A

G . In this way, we get 236 distinct matrices up to diagonal
similarity, and we denote it by Sr(4, 4). Now we extend it by considering matrices of
the form S′ = Diag(P)−1SDiag(P) for S ∈ Sr(4, 4) and P ∈ GL(4,F2), and we denote
the extended set by Sre(4, 4). In this way, we get |Sre(4, 4)| = 483, 840 distinct matrices.
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Observe that any matrix S′ in S(4, 4) is of the form S′ = D−1SD for some S ∈ Sre(4, 4)
and D = Diag(I4, P1, P2, P3), where P1, P2, P3 ∈ GL(4,F2). So we have

|S(4, 4)| = |Sre(4, 4)| · |GL(4,F2)|3.

Also note that there is no involutory 4-MDS sparse DSI matrix in S(4, 4). Now we state
our search results.

Theorem 7. There is no n-MDS sparse DSI matrix of order n over GL(4,F2) for
n ∈ {5, 6, 7, 8}. Also, there is no involutory 4-MDS sparse DSI matrix of order n = 4 over
GL(4,F2).

In the appendix we present a base set of sparse DSI matrices in Sre(4, 4) with the least
cost (according to the formula in Table 2) from which we can generate all the sparse DSI
matrices with the same cost.

3.5 Recursive MDS Matrices from Sparse DSI Matrices over Finite
Fields

The sparse DSI matrices were introduced in [TTKS18]. The authors have provided n-MDS
sparse DSI matrices over F2m (having low cost) for some parameter values. But they have
not provided matrices for many parameter values. Since these matrices have low fixed cost,
it is of importance to see whether such matrices exist or not. In this section we discuss
many of the issues raised in [TTKS18, Section 7.2].

Throughout this subsection, we assume that n ≥ 2 and k = bn+1
2 c. We denote the

identity matrix in M(n,Fq) by In. Let D(n,Fq) denote the set of nonsingular n × n
diagonal matrices over Fq.

A DSI matrix S of order n over Fq is given by

S = DSI(b0, b1, . . . , bn−1; a0, a1, . . . , an−1), (3)

where ai, bj ∈ Fq with ai 6= 0 ∀ i, 0 ≤ i < n, and bj = 0 for some j, 0 ≤ j < n, (see
Definition 9). Since bj = 0 for some j, the determinant of S is equal to

det(S) =
∏n−1
i=0 ai.

The matrix S is nonsingular since ai 6= 0, ∀ i. Let Rn be the n× n rotation matrix given
by

Rn =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
0 0 . . . 1 0

 (4)

and we denote the inverse of Rn by Ln. Observe that RTn = Ln. We have the following
similarity relation over diagonal matrices.

Lemma 15. Let D = Diag(d0, d1, . . . , dn−1) be a diagonal matrix of order n over Fq.
Then we have

LnDRn = Diag(d1, d2, . . . , dn−1, d0) (5)

Observe that the DSI matrix S in (3) satisfies

S = B +ARn,
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where A = Diag(a0, a1, . . . , an−1) and B = Diag(b0, b1, . . . , bn−1). Now consider the
matrix S′ = LnSRn, where S is the DSI matrix mentioned in (3). Then by (5) we have

S′ = Ln(B +ARn)Rn = LnBRn + (LnARn)Rn = B′ +A′Rn,

where A′ = Diag(a1, a2, . . . , an−1, a0) and B′ = Diag(b1, b2, . . . , bn−1, b0). Therefore we
have the following result.

Corollary 1. The DSI matrix S = DSI(b0, b1, . . . , bn−1; a0, a1, . . . , an−1) and its shifted
version S′ = DSI(b1, b2, . . . , bn−1, b0; a1, a2, . . . , an−1, a0) are permutation similar.

A DSI matrix S = DSI(b0, b1, . . . , bn−1; a0, a1, . . . , an−1) of order n over Fq is said to
be sparse or simply sparse DSI if bi ∈ F∗q for i even and 0 otherwise (see Definition 10). So
we denote the matrix S by

S = SpDSI(b0, b2, . . . , b2(k−1); a0, a1, . . . , an−1).

Remark 6. For n odd, the definition in [TTKS18] is slightly different from our definition
of sparse DSI matrix, but both the matrices are permutation similar. In fact, for n odd,
the matrix L2

nSR
2
n is in the form defined in [TTKS18, Definition 6] (see also Remark 7).

Let S(n,Fq) denote the set of all n-MDS sparse DSI matrices of order n over Fq. From
Lemmas 7 and 9 we have the following result for the case of sparse DSI matrices over Fq.

Lemma 16. If two sparse DSI matrices S and S′ over Fq are diagonal/permutation
similar then S is r-MDS if and only if S′ is r-MDS.

With a similar argument as in the proof of Theorem 6 we get the following result in
the case of sparse DSI matrices over Fq. For completeness, we present a proof.

Theorem 8. Let (a0, a1, . . . , an−1) and (a′0, a′1, . . . , a′n−1) be two tuples in (F∗q)n such that
a =

∏n−1
i=0 ai =

∏n−1
i=0 a

′
i for some a ∈ F∗q. Then, for any k-tuple (b0, b2, . . . , b2(k−1)) ∈

(F∗q)k, the sparse DSI matrices S = SpDSI(b0, b2, . . . , b2(k−1); a0, a1, . . . , an−1) and S′ =
SpDSI(b0, b2, . . . , b2(k−1); a′0, a′1, . . . , a′n−1) are diagonal similar. In particular, S is diago-
nal similar to S′′ = SpDSI(b0, b2, . . . , b2(k−1); a, 1, . . . , 1). Moreover, we have S is r-MDS
if and only if S′ (S′′) is r-MDS.

Proof. Let d0 = 1 and di = a′ia
−1
i di−1 for 1 ≤ i ≤ n− 1. Since a =

∏
ai =

∏
a′i, we can

see that S = D−1S′D, where D = Diag(d0, . . . , dn−1). By Lemma 16 we get the required
result.

Lemma 17. Suppose that S = SpDSI(b0, b2, . . . , b2(k−1); a, 1, . . . , 1) for some k-tuple
(b0, b2, . . . , b2(k−1)) ∈ (F∗q)k and a ∈ F∗q. Then, for any c ∈ F∗q, the matrix S is r-MDS if
and only if S′ = SpDSI(cb0, cb2, . . . , cb2(k−1); cna, 1, . . . , 1) is r-MDS.

Proof. Observe that the matrix cS is also sparse DSI and by Theorem 8 we can see that
cS is diagonal similar to S′. By Lemma 16 we get the required result.

We now discuss further reduction by restricting the choices for the element a. Let α be
a generator of the cyclic group F∗q and let a = αi for some 0 ≤ i < (q − 1). Let n = 2`t,
where t is odd. Suppose that i = jt+ s for some s, 0 ≤ s < t. Also note that there always
exists a 2`th root of α, say β, in F∗q . So we have a = αi = βjnαs. Observe that for c = β−j ,
the matrix S′ in Lemma 17 is given by

S′ = SpDSI(cb0, cb2, . . . , cb2(k−1);αs, 1, . . . , 1), 0 ≤ s < t.

For simplicity, the sparse DSI matrix S = SpDSI(b0, b2, . . . , b2(k−1); a, 1, . . . , 1) is denoted
by

S = SpDSI(b0, b2, . . . , b2(k−1); a). (6)
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Let Ŝ(n,Fq) denote the set of all n-MDS sparse DSI matrices over Fq of the form given
in (6) with a = αs, 0 ≤ s < t, where n = 2`t with t odd and α is a generator of F∗q . From
the discussion above, we can see that any matrix in S(n,Fq) can be obtained from a matrix
in Ŝ(n,Fq) with suitable transformations given in Lemma 17 and Theorem 8. Let B̂(n,Fq)
be the set of ordered k-tuples given by

B̂(n,Fq) = {(b0, b2, . . . , b2(k−1)) : SpDSI(b0, b2, . . . , b2(k−1); a) ∈ Ŝ(n,Fq)}.

Similarly, the set of ordered k-tuples (b0, b2, . . . , b2(k−1)) appearing in the n-MDS sparse
DSI matrices from S(n,Fq) is denoted by B(n,Fq). From the discussion above we can see
the following result.

Lemma 18. The sets satisfy B̂(n,Fq) ⊆ B(n,Fq). Moreover, each tuple in B(n,Fq) is a
constant multiplier of some tuple in B̂(n,Fq).

We now provide some equivalent classes over Ŝ(n,Fq). For this purpose we consider
the following permutation matrix

Jn =


0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...
0 1 . . . 0 0
1 0 . . . 0 0

 .

Observe that J−1
n = Jn. Let Rn be the matrix given in (4) and Ln be the inverse of Rn.

Note that RTn = Ln and JnRnJn = Ln.

Lemma 19. If the sparse DSI matrix S = SpDSI(b0, b2, . . . , b2(k−1); a) is in Ŝ(n,Fq) then
the sparse DSI matrix S′ = SpDSI(b2(k−1), . . . , b2, b0; a) is also in Ŝ(n,Fq). Moreover, if
(b0, b2, . . . , b2(k−1)) ∈ B̂(n,Fq) then (b2(k−1), . . . , b2, b0) ∈ B̂(n,Fq).

Proof. Let D = Diag(d0, d1, . . . , dn−1) be a diagonal matrix. It is easy to see that

JnDJn = Diag(dn−1, . . . , d1, d0). (7)

We have S = B + ARn, where B = Diag(b0, b1, b2, . . . , bn−1) with bi = 0 for i odd and
A = Diag(a, 1, . . . , 1). Suppose that n is even. Then consider the matrix S1 = LnJnSJnRn.
Now we can see that

S1 = LnJn(B +ARn)JnRn = Ln(JnBJn)Rn + Ln(JnAJn)

Moreover,
ST1 = Ln(JnBJn)Rn + (JnAJn)Rn.

From (5) and (7) and by a careful observation we can see that

ST1 = SpDSI(b2(k−1), . . . , b2, b0; 1, . . . , 1, a).

Then by Lemma 16 and Theorem 8 we get the required result. In the case where n is odd,
we consider S1 = JnSJn. By a careful observation, we can see that S′ = ST1 . Hence the
result.

Lemma 20. Let n ≥ 2 be even. If the sparse DSI matrix S = SpDSI(b0, b2, . . . , b2(k−1); a)
is in Ŝ(n,Fq) then the sparse DSI matrix S′ = SpDSI(b2, . . . , b2(k−1), b0; a) is also in
Ŝ(n,Fq). Moreover, if (b0, b2, . . . , b2(k−1)) ∈ B̂(n,Fq) then (b2, . . . , b2(k−1), b0) ∈ B̂(n,Fq).
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Proof. Consider the matrix S1 = L2
nSR

2
n. Clearly, we have

S1 = (L2
nBR

2
n) + (L2

nAR
2
n)Rn.

By a careful observation we can see that S1 = SpDSI(b2, . . . , b2(k−1), b0; 1, . . . , 1, a, 1). By
Theorem 8, we can see that S′ and S1 are diagonal similar, and hence the result.

Remark 7. The above result is valid for even values of n. If n is odd, we have the first and
the last entries are nonzero in the diagonal and zeros appear alternatively. Any rotation
of the elements in the diagonal violates this condition. However, we can see that by
Theorem 8 and Corollary 1 all those matrices are also n-MDS if the matrix S is n-MDS.
Remark 8. In the case where n = 2` we must have a = 1 and the elements of Ŝ(n,Fq) are
of the form S = SpDSI(b0, b2, . . . , b2(k−1); 1). Observe that the transpose of S is in the
form of state transition matrix of a Ring LFSR over Fq (see (2)).

From Lemmas 19 and 20 we have the following result.

Corollary 2. Suppose that n is even. If (b0, b2, . . . , b2(k−1)) ∈ B̂(n,Fq) then the ordered
tuples (bj , bj+2, . . . , bj+2(k−1)) and (bj+2(k−1), bj+2(k−2), . . . , bj+2, bj) are also in B̂(n,Fq)
for j even and 0 ≤ j ≤ n− 1, where the indices are taken modulo n.

We now define an ordering on the elements bj so that we can consider only one choice
among the 2n (or 2) permutations of the tuple (b0, b2, . . . , b2(k−1)) depending on n is even
or odd (see Corollary 2 and Lemma 19). Suppose that the elements of the finite field
Fq, q = 2m, are represented with the polynomial basis. We can order the elements according
to their value in integer representation, i.e., for an element a = c0 + c1α+ · · ·+ cm−1α

m−1,
its integer value representation is given by int(a) = c0 + c12 + · · ·+ cm−12m−1. Then for
a, b ∈ Fq, we say a ≤ b if int(a) ≤ int(b). If n is even then define

Sr(n,Fq) ={S : S = SpDSI(b0, b2, . . . , b2(k−1); a) ∈ Ŝ(n,Fq) (8)
with b0 ≤ b2i for 1 ≤ i ≤ (k − 1) and b2 ≤ b2(k−1)}

and if n is odd then define

Sr(n,Fq) = {S : S = SpDSI(b0, b2, . . . , b2(k−1); a) ∈ Ŝ(n,Fq) with b0 ≤ b2(k−1)} (9)

From the above discussion in this subsection, we have the following result.

Theorem 9. Up to diagonal/permutation similarity, any matrix in S(n,Fq) is a constant
multiple of a matrix in Sr(n,Fq).

So in order to search for n-MDS sparse DSI matrices over Fq exhaustively, it is enough
to search for n-MDS matrices of the form in Sr(n,Fq). We have implemented the search
technique for n × n matrices over F2m for n ∈ {4, 5, 6, 7, 8} and m ∈ {4, 5, 6, 7, 8}, and
n = 8 and m = 9. To verify whether a matrix S is n-MDS, we recursively check that all
the submatrices (of order 1 to n− 1) of Sn are nonsingular. In the process, if we encounter
a submatrix which is singular then we exit permanently, and move on to verify the next
candidate. We use the determinants of 2× 2 submatrices to check the nonsingularity of
3× 3 and 4× 4 submatrices. The search results are presented in Table 4. We can see that
there is no 8-MDS sparse DSI matrix of order 8 over F28 .

Next we discuss the implementation costs of the sparse DSI matrices over Fq. Recall
that the cost of implementing a single iteration of the sparse DSI matrix

S = SpDSI(b0, b2, . . . , b2(k−1); a0, a1, . . . , an−1)

is given by
Cost(S) =

∑
XOR(ai) +

∑
bj 6=a(j+1) mod n

XOR(bj) + k ·m, (10)
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Table 4: Number of n-MDS sparse DSI matrices in Sr(n,Fq)

Size Number of n-MDS sparse DSI matrices of order n
n F24 F25 F26 F27 F28 F29
4 28 330 1566 7434 30748 -
5 0 150 35010 1463175 21584460 -
6 0 0 0 10857 927480 -
7 0 0 0 0 112000 -
8 0 0 0 0 0 9

where k = bn+1
2 c. Let a = det(S) =

∏n−1
i=0 ai. Suppose that a =

∏
j∈T bj , where T is a

subset of {0, 2, . . . , 2(k − 1)}. Now consider the sparse DSI matrix

S′ = SpDSI(b0, b2, . . . , b2(k−1); a′0, a′1, . . . , a′n−1),

where

a′i =
{
b(i−1) mod n if (i− 1) mod n ∈ T
1 otherwise

By Theorem 8, if S is n-MDS then S′ is also n-MDS. Observe that the cost of implementing
a single iteration of the sparse DSI matrix S′ is equal to

Cost(S′) =
2(k−1)∑

even j=0
XOR(bj) + k ·m.

It is likely that that the sparse DSI matrices having the least cost are of the form S′. Recall
that up to diagonal/permutation similarity any n-MDS sparse DSI matrix is a constant
multiple of an n-MDS matrix in Sr(n,Fq) (see Theorem 9).

Now consider a sparse DSI matrix S = SpDSI(b0, b2, . . . , b2(k−1); a) ∈ Sr(n,Fq). By
Lemma 17, we can see that cS is diagonal similar to S′′ = SpDSI(cb0, cb2, . . . , cb2(k−1); cna).
If there exists some subset T ⊂ {0, 2, . . . , 2(k − 1)} of size t such that

ct
∏
j∈T bj = cna

then we can distribute the determinant det(S′′) in ai’s and get a matrix whose cost
only depends on cbj ’s. We apply this technique for the matrices of order n over F28 for
n = 4, 5, 6, 7. We do not get any better matrix than the matrices [TTKS18, Table 4] for
n = 4, 5, 6. But we get a 7 × 7 sparse DSI matrix whose cost is 47, whereas the cost of
the matrix provided in [TTKS18, Table 4] is 54. We use the same notation for the finite
field F28 = GF(28)/0x1c3 and XOR counts of the elements as in [TTKS18, Appendix
B] to present the matrix: S = SpDSI(b0, b2, b4, b6; a0, a1, . . . , a6), where b0 = a1 =
0xe5, b4 = a5 = 0x91 and b2, b6, a0, a2, a3, a4, a6 are equal to 1. We have XOR(b0) = 11
and XOR(b4) = 4. By fixing a basis, we fix the XOR counts of the field elements. For
comparison purpose, we have used the table given in [TTKS18, Appendix B]. It may
be possible that there exists a basis of F28 over F2 with which we can get s-XOR(b0) +
s-XOR(b4) < 15. In [BKL16], the authors provided methods to find a basis with which the
XOR count of a finite field element is optimal. It is an open problem to find an optimal
basis such that

∑
c∈E XOR(c) is minimal for a subset E of F∗q of size |E| ≥ 2.

Remark 9. Essentially we need to distribute the determinant cna of S′′ in ai’s such that∏
ai = cna and it optimizes the cost of the matrix S′′ as given in (10). It is not difficult

to find an optimal distribution even in this general case, and for n = 7 we have not got a
better solution than the matrix presented above. So the sparse DSI matrix S presented
above is one of the best as per the XOR counts given in [TTKS18, Appendix B].
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Remark 10. From each matrix S ∈ Sr(n,Fq), we can generate up to 2n (2) sparse DSI
matrices if n is even (odd), and for each such matrix S′ ∈ Ŝ(n,Fq) generated we get
(q − 1)n many distinct sparse DSI matrices in S(n,Fq), by taking D−1S′D, where D is a
nonsingular diagonal matrix over Fq.

4 Conclusion
We have considered circulant, Hadamard, companion and sparse DSI matrices over
GL(4,F2). We have provided a method with which we are able to exhaustively search
for MDS matrices of these types for some parameter choices. We have provided circulant
MDS matrices of order 8 which were not known before. We have also established the
nonexistence of involutory circulant/cyclic MDS matrices of order 6, 8. It is well known
that there is no companion matrix over fields of even characteristic that yields an involutory
MDS matrix. With our method, we have obtained companion matrices over GL(4,F2) that
yield involutory MDS matrices. We have analyzed the structure of sparse DSI matrices over
finite fields, and using this we are able to exhaustively search for sparse DSI matrices that
yield MDS matrices for some small parameter values. We are able to obtain a sparse DSI
matrix of order 7 over F28 , which is better than the known ones. We have also established
the nonexistence of 8-MDS sparse DSI matrices of order 8 over F28 . A characterization of
recursive MDS companion matrices was given in [GPV17], and they are related to Fibonacci
LFSRs. We have discussed a relation between (sparse) DSI matrices and Ring LFSRs.
It is an interesting open problem to develop a theory for recursive MDS sparse DSI matrices.
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A Experimental Results : Base Sets with the Least Cost
We denote the cost of an MDS matrix M by Costd(M) and Costs(M) according to d-XOR
and s-XOR metrics respectively, where we use the formulas in Table 2 to compute the cost.
Some of the matrices are over the finite field F24 in matrix representation. We highlight such
matrices with ∗ at the end. We present the elements of GL(4,F2) in hexadecimal form as
given (1). For each type, we now present base sets of matrices with the least cost. By apply-
ing appropriate transformations as discussed in this paper, we get all the matrices with the
least cost. For each type, we also provide the number of distinct matrices with the least cost.

Circulant MDS Matrices:
|{C ∈ C(4, 4) : Costd(C) = 12 + 3 = 15}| = 13, 824.

[0x8421, 0x8421, 0x1843, 0x29c4]∗

[0x4821, 0x4928, 0x9482, 0x6841]
[0x2689, 0x4289, 0x4218, 0x8124]

|{C ∈ C(4, 4) : Costs(C) = 12 + 3 = 15}| = 18, 432.
[0x8421, 0x8421, 0x1843, 0x29c4]∗

[0x8421, 0x8421, 0x3187, 0x4298]∗

[0x4821, 0x4928, 0x9482, 0x6841]
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[0x2689, 0x4289, 0x4218, 0x8124]

|{C ∈ C(5, 4) : Costd(C) = Costs(C) = 16 + 4 = 20}| = 8, 640.
[0x8421, 0x1843, 0x4298, 0x4298, 0x1843]∗

[0x8421, 0x1846, 0x4238, 0x4238, 0x1846]∗

[0x8421, 0x4192, 0x2816, 0x2816, 0x4192]

|{C ∈ C(6, 4) : Costd(C) = 20 + 12 = 32}| = 24, 192.
[0x8421, 0x1843, 0xb5a6, 0x1843, 0xc6b9, 0x8421]∗

[0x8421, 0x2943, 0xc5b6, 0x2943, 0x56a8, 0x8421]∗

[0x1c28, 0xa914, 0x4285, 0xa914, 0x3ad6, 0x1c28]
[0xc328, 0x25c8, 0x91a4, 0x4169, 0x461a, 0x5823]

|{C ∈ C(6, 4) : Costs(C) = 20 + 10 = 30}| = 20, 736.
[0x8421, 0x1843, 0xb5a6, 0x1843, 0xc6b9, 0x8421]∗

[0x8421, 0x1843, 0x8421, 0xef7d, 0x29c4, 0x29c4]∗

[0x1843, 0x3187, 0x1843, 0xdefa, 0x4298, 0x4298]∗

|{C ∈ C(8, 4) : Costd(C) = 28 + 20 = 48}| = 36, 864.
[0x2c85, 0x4186, 0x14a2, 0x834a, 0x69a8, 0x54b9, 0xce53, 0x4193]
[0xb6c9, 0x5842, 0x183e, 0x1e42, 0x8162, 0x9726, 0xc41a, 0x28c5]

|{C ∈ C(8, 4) : Costs(C) = 28 + 17 = 45}| = 36, 864.
[0x1348, 0x4ba8, 0xea6f, 0x7b18, 0x2c9d, 0x2853, 0x1284, 0xac41]
[0x1348, 0x3729, 0x1284, 0x512d, 0x2c9d, 0x2853, 0xf8eb, 0xac41]

Involutory Circulant MDS Matrices:
|{C ∈ C(4, 4) : Costd(C) = Costs(C) = 12 + 5 = 17}| = 4 · 24 = 96.

[0x8421, 0x1248, 0x4c32, 0xb521]

|{C ∈ C(5, 4) : Costd(C) = Costs(C) = 16 + 4 = 20}| = 24.
[0x8421, 0x4192, 0x2816, 0x2816, 0x4192]

Hadamard MDS Matrices:
|{H ∈ H(4, 4) : Costd(H) = Costs(H) = 12 + 4 = 16}| = 6, 912.

[0x85a1, 0x4812, 0x2485, 0xa124]

|{H ∈ H(8, 4) : Costd(H) = 28 + 26 = 54 and Costs(H) = 28 + 20 = 48}| = 774, 144.
[0x8421, 0x1843, 0x3187, 0x6b5c, 0x4298, 0xb5a6, 0xdefa, 0x9c62]∗

Involutory Hadamard MDS Matrices:
|{H ∈ H(4, 4) : Costd(H) = 12+6 = 18 and Costs(H) = 12+5 = 17}| = 24∗24 = 576.

[0x8421, 0x1843, 0x29c4, 0x3187]∗

|{H ∈ H(8, 4) : Costd(H) = 28 + 36 = 64}| = 80, 640.
[0x9d63, 0x4639, 0x65ad, 0xa7b5, 0x2394, 0x5f7b, 0x1942, 0xf8ce]∗

[0xd96e, 0x467b, 0x61a8, 0xa3f2, 0x27d3, 0x1b34, 0x5d4f, 0xb8c6]∗

[0xfb68, 0x465c, 0x63a2, 0xa1df, 0x25fe, 0x3915, 0x7f49, 0x98ca]∗

[0xd9ba, 0x421f, 0x21f8, 0xe7c6, 0x63e7, 0x1f84, 0x5d9b, 0xf842]∗

|{H ∈ H(8, 4) : Costs(H) = 28 + 25 = 53}| = 32, 256.
[0x9d63, 0x4639, 0x65ad, 0xa7b5, 0x2394, 0x5f7b, 0x1942, 0xf8ce]∗
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4-MDS Companion Matrices:
|{L ∈ L(4, 4) : Costd(L) = Costs(L) = 12 + 2 = 14}| = 24.

[0x4298, 0x1843, 0x4298, 0x8421]∗

Involutory 4-MDS Companion Matrices:
|{L ∈ L(4, 4) : Costd(L) = 12 + 6 = 18}| = 48.

[0x1482, 0x234c, 0x1a68, 0x9684]
[0x1824, 0x9261, 0x8156, 0x43c2]

|{L ∈ L(4, 4) : Costs(L) = 12 + 5 = 17}| = 48.
[0x8421, 0x2581, 0x32bf, 0x1468]
[0x8421, 0x4823, 0x5f1d, 0x1468]

4-MDS sparse DSI Matrices:
|{S ∈ Sre(4, 4) : Costd(S) = Costs(S) = 8 + 2 = 10}| = 48.

[0x8421, 0x1843, 0x4298]∗

[0x1843, 0x8421, 0x4298]∗
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