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Abstract.
In the CAESAR competition, Deoxys-I and Deoxys-II are two important authenticated
encryption schemes submitted by Jean et al. Recently, Deoxys-II together with Ascon,
ACORN, AEGIS-128, OCB and COLM have been selected as the final CAESAR
portfolio. Notably, Deoxys-II is also the primary choice for the use case “Defense
in depth”. However, Deoxys-I remains to be one of the third-round candidates of
the CAESAR competition. Both Deoxys-I and Deoxys-II adopt Deoxys-BC-256 and
Deoxys-BC-384 as their internal tweakable block ciphers.
In this paper, we investigate the security of round-reduced Deoxys-BC-256/-384 and
Deoxys-I against the related-tweakey boomerang and rectangle attacks with some new
boomerang distinguishers. For Deoxys-BC-256, we present 10-round related-tweakey
boomerang and rectangle attacks for the popular setting (|tweak|, |key|) = (128, 128),
which reach one more round than the previous attacks in this setting. Moreover, an
11-round related-tweakey rectangle attack on Deoxys-BC-256 is given for the first time.
We also put forward a 13-round related-tweakey boomerang attack in the popular
setting (|tweak|, |key|) = (128, 256) for Deoxys-BC-384, while the previous attacks in
this setting only work for 12 rounds at most. In addition, the first 14-round related-
tweakey rectangle attack on Deoxys-BC-384 is given when (|tweak| < 98, |key| > 286),
that attacks one more round than before. Besides, we give the first 10-round rectangle
attack on the authenticated encryption mode Deoxys-I-128-128 with one more round
than before, and we also reduce the complexity of the related-tweakey rectangle attack
on 12-round Deoxys-I-256-128 by a factor of 228. Our attacks can not be applied to
(round-reduced) Deoxys-II.
Keywords: CAESAR, Deoxys-BC, Boomerang Attack, Rectangle Attack, TWEAKEY

1 Introduction
Authenticated encryption (AE) is a form of encryption algorithm providing confidentiality,
integrity and authenticity assurances on messages. The most widely used AE algorithm is
AES-GCM [Nat01]. However, GCM is usually seen as a not robust enough standard [NIS].
Therefore, to satisfy the growing demand for AE algorithms, a new competition named
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CAESAR was launched in 2014 [Com14]. In total, 57 candidates have been submitted to
CAESAR in the first round of the competition. After three rounds of assessments from
world-wide cryptographers and engineers, only six authenticated encryption algorithms
survived as the final CAESAR portfolio.

Deoxys family [JNPS16] was submitted to CAESAR by Jérémy Jean et al., and is
composed of two AE schemes, i.e. Deoxys-I and Deoxys-II. Deoxys-I is one of the 3rd
round candidates. Deoxys-II together with Ascon [DEMS15], ACORN [Wu16], AEGIS-128
[WP13], OCB [KR16] and COLM [ABD+16] have been selected as the final CAESAR
portfolio, and Deoxys-II is the primary choice for the use case “Defense in depth”. Both
Deoxys-I and Deoxys-II adopt an AES-based tweakable block cipher (TBC), i.e. Deoxys-BC,
as the underlying primitive. Deoxys-BC is designed based on the TWEAKEY framework
[JNP14] and is composed of two versions, i.e. Deoxys-BC-256 and Deoxys-BC-384.

The design of tweakable block ciphers (TBC) was first proposed by Moses Liskov et
al. [LRW02] in 2002. In addition to the secret key and a plaintext, the tweakable block
cipher employs another public input named tweak. Different from the traditional block
ciphers, under the same plaintext and same secret key over TBC, different ciphertexts can
be obtained because of the different tweaks. Compared with usual tweakable block cipher
constructions which take a known permutation as a black box and use the tweak as an
independent input, Deoxys-BC follows the TWEAKEY framework [JNP14] which uses
a unified view of the key and tweak, denoted by tweakey. Namely, Deoxys-BC can be a
block cipher with arbitrary tweak and key size. With a (k + t)-bit tweakey, composed of a
k-bit key and a t-bit tweak, and a dedicated tweakey schedule, the n-bit subtweakeys are
generated for each round. For Deoxys-BC, the length of the subtweakey is 128 bits, and
the length of the tweak and of the key can vary within the tweakey length as long as the
key size is longer than or equal to the block size.

Cid et al. [CHP+17] introduced the first third-party analysis of Deoxys-BC at ToSC
2017. They proposed a new method to search for related-key boomerang trails with Mixed
Integer Linear Programming (MILP) by incorporating linear incompatibility, and presented
a 8-round and a 9-round related-tweakey boomerang distinguisher of Deoxys-BC-256 with
probability 2−72 and 2−122, and a 10-round and an 11-round related-tweakey boomerang
distinguishers of Deoxys-BC-384 with probability 2−84 and 2−120, respectively. They gave
related-key rectangle attacks against 9-round and 10-round Deoxys-BC-256, 12-round and
13-round Deoxys-BC-384. Later, based on the related-key boomerang paths proposed
in [CHP+17], Sasaki introduced improved boomerang attacks on reduced-round Deoxys-
BC-256 and Deoxys-BC-384 with lower complexities in [Sas18]. At EUROCRYPT 2018,
Cid et al. [CHP+18] proposed a new technique named Boomerang Connectivity Table
(BCT), and increased the probability of the 10-round distinguisher of Deoxys-BC-384 by a
factor of 20.6. At ToSC 2019, Wang and Peyrin [WP19] and Song et al. [SQH19] revisited
the BCT and proposed a generalized framework which can be applied in multiple rounds
of boomerang switch. Wang and Peyrin [WP19] introduced a tool named Boomerang
Difference Table (BDT), which is an improvement of the BCT and allows a systematic
evaluation of the boomerang switch through multiple rounds, and hence increases the
probability of the 9-round related-tweakey boomerang distinguisher of Deoxys-BC-256 by
a factor of 21.6. In addition, Mehrdad et al. [MMS18] and Zong et al. [ZDW18] evaluated
the security of Deoxys-BC-256 against impossible differential attacks.

Our Contributions. By slightly modifying the MILP model introduced in [CHP+17]
in the search of boomerang distinguisher and increasing further the probability of the
distinguisher with the BDT technique, we find a new 9-round boomerang distinguisher
with probability 2−120.4 for Deoxys-BC-256, and an 11-round boomerang distinguisher with
probability 2−122 for Deoxys-BC-384. Based on the new distinguishers, we give improved
boomerang and rectangle attacks on reduced-round Deoxys-BC-256 and Deoxys-BC-384.
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For Deoxys-BC-256, utilizing the 9-round boomerang distinguisher, we give a 10-
round related-tweakey boomerang attack with a data complexity of 298.4 adaptive chosen
plaintexts and ciphertexts and a time complexity of 2109.1 encryptions. Besides, we propose
a related-tweakey rectangle attack on 10-round Deoxys-BC-256, which needs 2114.2 chosen
plaintexts and 2114.2 queries. It is obvious that our two attacks on 10-round Deoxys-BC-256
work for the popular setting with (|tweak|, |key|) = (128, 128) of Deoxys-BC-256. We
successfully apply the 10-round rectangle attack on Deoxys-BC-256 to the AE mode
Deoxys-I-128-128 for the first time. Besides, we introduce a related-tweakey rectangle
attack on 11-round Deoxys-BC-256 that covers one more round than before.

For Deoxys-BC-384, although the new 11-round boomerang distinguisher (probability
2−122) has a lower probability than the one in [CHP+17], it works more effectively in
our boomerang and rectangle attacks. We present improved related-tweakey boomerang
attacks on 12-round and 13-round Deoxys-BC-384. The 13-round attack needs 2125 adaptive
chosen plaintexts and ciphertexts and 2191.3 encryptions, which works in the popular setting
(|tweak|, |key|) = (128, 256) of Deoxys-BC-384. Furthermore, the related-tweakey rectangle
attack on 12-round Deoxys-BC-384 is introduced with 2115 chosen plaintexts, which can
be applied to the AE mode Deoxys-I-256-128 as well. What’s more, we propose the first
related-tweakey rectangle attacks on 14-round Deoxys-BC-384 with 2127 chosen plaintexts
and 2286.2 encryptions. The cryptanalysis results on Deoxys-BC-256, Deoxys-BC-384 and
Deoxys-I AE schemes are listed in Table 1. The tweak size and master key size satisfy
|tweak|+ |key| = 256 for Deoxys-BC-256 and |tweak|+ |key| = 384 for Deoxys-BC-384.

Table 1: Summary of analysis results of Deoxys, where RK denotes related-tweakey. All
of the analyses are key recovery attacks.

Deoxys-BC
Rounds Approach Time Data Memory Size set up Ref.

Deoxys-BC-256

9/14
RK rectangle 2118 2117 2117 k = 128 [CHP+17]
RK Imp. dif. 2118 2118 2102 k = 128 [MMS18]
RK boomerang 2112 298 217 k = 128 [Sas18]

10/14

RK rectangle 2204 2127.58 2127.58 k > 204 [CHP+17]
RK Imp. dif. 2173 2135 − k > 173 [ZDW18]
RK boomerang 2170 2170 217 k > 170 [Sas18]
RK boomerang 2170 298 298 k > 170 [Sas18]
RK boomerang 2109.1 298.4 288 k = 128 Sect. 5.1
RK rectangle 2114.2 2114.2 2112.2 k = 128 Sect. 6.1

11/14 RK rectangle 2249.9 2122.1 2128.2 k > 252 Sect. 6.2

Deoxys-BC-384

12/16

RK rectangle 2127 2127 2125 k = 256 [CHP+17]
RK boomerang 2148 2148 217 k = 256 [Sas18]
RK boomerang 2148 2100 2100 k = 256 [Sas18]
RK boomerang 298 298 264 k = 128 Sect. A.1
RK rectangle 2114 2114 2112 k = 128 Sect. 6.3
RK rectangle 2208 2115 2113 k = 256 Sect. 6.3

13/16 RK rectangle 2270 2127 2144 k > 270 [CHP+17]
RK boomerang 2191.3 2125 2136 k = 256 Sect. A.2

14/16 RK rectangle 2286.2 2127 2136 k > 286 Sect. 6.4

Deoxys-I AE schemes
Rounds Key size Time Data Memory Approach Ref.

Deoxys-I 9/14 128 2118 2117 2117 RK rectangle [CHP+17]
-128-128 10/14 128 2114.2 2114.2 2112.2 RK rectangle Sect. 7
Deoxys-I 12/16 256 2236 2126 2124 RK rectangle [CHP+17]
-256-128 12/16 256 2208 2115 2113 RK rectangle Sect. 7

Comparison with Sasaki’s attacks on Deoxys-BC at Africacrypt 2018. In [Sas18],
Sasaki improved the related-tweakey boomerang attacks on Deoxys-BC utilizing the
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differential trails proposed in [CHP+17]. As described in [Sas18], by changing differential
trail to truncated differential trail in one of the two pairs of the boomerang quartet, the
probability of the partial differential through the Sbox in one side of the boomerang distin-
guisher in the first round can be saved, which increases the probability of the distinguisher.
Both Sasaki’s attack and ours use structures to collect plaintexts or ciphertexts, and we
list some differences between our attack and Sasaki’s attack [Sas18] as follows:

1. Both Sasaki’s attack and ours use shortened boomerang distinguisher. For example,
Sasaki [Sas18] gave a 10-round related-tweakey boomerang attack on Deoxys-BC-256
under the 9-round distinguisher, and treated the active bytes in the first round in one
side as truncated differential, which increases the probability of the distinguisher. In
contrast, we analyze 10-round Deoxys-BC-256 with an 8-round distinguisher, whose
probability will be higher than Sasaki’s.

2. Our attacks utilize more effective related-tweakey boomerang trails as described in
Section 4. There will be fewer active bytes when appending one or two rounds at
the end of the distinguisher than for the one introduced by [CHP+17], which leads
to fewer subtweakey bytes to be guessed and more wrong quartets to be filtered in
advance.

3. In the key recovery process, instead of guessing all of the subtweakey at once, we
determine whether a candidate quartet is useful by guessing only a small fraction of
the unknown related subtweakey bytes.

All the three advantages help us to attack Deoxys-BC in less time complexity.

2 Preliminaries
2.1 Description of Deoxys and Deoxys-BC
Deoxys-BC is an ad-hoc tweakable block cipher of the Deoxys authenticated encryption
scheme, conforming to the TWEAKEY framework [JNP14]. Therefore, it takes a tweak T
as the third input in addition to the two standard inputs, a plaintext P and a key K of a
block cipher. Both Deoxys-BC-256 and Deoxys-BC-384 compose the internal primitive of
Deoxys authenticated encryption scheme. Both versions of the cipher have 128-bit state
and variable size key and tweak, and are defined in a standard way, i.e. EK(T, P ) = C and
DK(T,C) = P . According to the TWEAKEY framework, we can use a tweakey to provide
a unified view of the tweak and of the key. The length of the tweakey is the cumulative
size of the key and of the tweak. The tweakey size for Deoxys-BC-n (n = 256, 384) is n.
In Deoxys, the key size and tweak size can vary according to the users as long as the size
of the key is higher than 128 bits. For more details, we refer to [JNPS16].

Deoxys-BC is an AES-like design, i.e., it is an iterative substitution-permutation
network (SPN) that transforms the initial plaintext through series of AES round functions
to a ciphertext. The number r of rounds is 14 and 16 for Deoxys-BC-256 and Deoxys-BC-
384, respectively. As Deoxys uses the AES round function, the index of the 4× 4 matrix
of bytes is represented as 



0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15




Similarly to AES, every round consists of the following specified transformations, for
example in round i, 0 ≤ i ≤ r − 1:
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• AddRoundKey (AK) - XOR the 128-bit round subtweakey (i.e. STKi defined further)
to the internal state.

• SubBytes (SB) - Apply the 8-bit AES [DR02] Sbox S to the 16 bytes of the internal
state separately.

• ShiftRows (SR) - Rotate the 4 bytes of the j−th row left by ρ[j] positions, where
ρ = (0, 1, 2, 3).

• MixColumns (MC) - Multiply the internal state by the 4× 4 constant MDS matrix
M whose coefficients lie in a finite field GF (28), and the multiplication is performed
modulo the irreducible polynomial x8 + x4 + x3 + x+ 1.

After the last round, a final AddRoundKey operation, that XORs subtweakey STKr to
the state, is performed to produce the ciphertext.

Definition of the Subtweakeys. The key schedule of Deoxys-BC is a linear transformation,
which is different from AES. Similarly to [JNPS16], we denote the concatenation of the
key K and the tweak T as KT , i.e. KT = K ‖ T . Then the tweakey state is divided into
128-bit words. The size of KT is 256 bits for Deoxys-BC-256, and we denote the first
(most significant) 128-bit word by TK1 and the second word by TK2. The size of KT
for Deoxys-BC-384 is 384 bits, with the first (most significant), the second and the third
128-bit word being denoted TK1, TK2, TK3 respectively. Finally, a 128-bit subtweakey
STKi is produced in round i (i ≥ 0) and is added to the state during the AddRoundKey
process. The subtweakey STKi is defined as

STKi = TK1
i ⊕ TK2

i ⊕RCi
for Deoxys-BC-256, and defined as

STKi = TK1
i ⊕ TK2

i ⊕ TK3
i ⊕RCi

for Deoxys-BC-384.
The 128-bit TK1

i , TK
2
i , TK

3
i are outputs produced by a special tweakey schedule

algorithm, initialized with TK1
0 = TK1, TK2

0 = TK2 for Deoxys-BC-256, while an extra
TK3

0 = TK3 is initialised for Deoxys-BC-384. Then the tweakey schedule algorithm is
defined as follows:

TK1
i+1 = h(TK1

i ),
TK2

i+1 = h(LFSR2(TK2
i )),

TK3
i+1 = h(LFSR3(TK1

i )),
where h is a linear byte permutation defined by:

h =
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)

The LFSR2 and LFSR3 functions are simply the applications of a linear feedback
shift register to each of the 16 bytes of a 128-bit tweakey word. The two linear functions
are defined in Table 2.

Table 2: The two LFSRs used in Deoxys-BC tweakey schedule

LFSR2 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)
LFSR3 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

Besides, RCi denotes the round constant used in the tweakey schedule. For more
clarity, the tweakey schedule and encryption process are illustrated in Figure 1.
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Deoxys-BC is an AES-like design, i.e. it is an iterative substitution-permutation network
(SPN) that transforms the initial plaintext (viewed as a 4 × 4 matrix of bytes) using
the AES round function, with the main differences with AES being the number of rounds
and the round subkeys that are used every round. Deoxys-BC-256 has 14 rounds, while
Deoxys-BC-384 has 16 rounds.

Deoxys-BC round function. Similarly to the AES, one round of Deoxys-BC has the fol-
lowing four transformations applied to the internal state in the order specified below:

• AddRoundTweakey – XOR the 128-bit round subtweakey (defined below) to the
internal state.

• SubBytes – Apply the 8-bit AES S-box S to each of the 16 bytes of the internal state.

• ShiftRows – Rotate the 4-byte i-th row left by ρ[i] positions, where ρ = (0, 1, 2, 3).

• MixColumns – Multiply the internal state by the 4× 4 constant MDS matrix of AES.

After the last round, a final AddRoundTweakey operation is performed to produce the
ciphertext.
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Figure 1: Instantiation of the TWEAKEY framework for Deoxys-BC-384.

Definition of the Subtweakeys. We denote the concatenation of the key K and the tweak
T as KT , i.e. KT = K||T . The tweakey state is then divided into 128-bit words. More
precisely, in Deoxys-BC-256 the size of KT is 256 bits with the first (most significant) 128
bits of KT being denoted W2; the second word is denoted by W1. For Deoxys-BC-384,
the size of KT is 384 bits, and we denote the first (most significant), second and third
128-bit words of KT by W3, W2 and W1, respectively. Finally, we denote by STKi the
128-bit subtweakey that is added to the state at round i during the AddRoundTweakey
operation. For Deoxys-BC-256, a subtweakey is defined as STKi = TK1

i ⊕ TK2
i ⊕RCi,

whereas for Deoxys-BC-384 it is defined as STKi = TK1
i ⊕ TK2

i ⊕ TK3
i ⊕RCi.

The 128-bit words TK1
i , TK

2
i , TK

3
i are outputs produced by a special tweakey schedule

algorithm, initialised with TK1
0 = W1 and TK2

0 = W2 for Deoxys-BC-256 and with
TK1

0 = W1, TK2
0 = W2 and TK3

0 = W3 for Deoxys-BC-384. The tweakey schedule
algorithm is defined as

TK1
i+1 = h(TK1

i ), TK2
i+1 = h(LFSR2(TK2

i )), TK3
i+1 = h(LFSR3(TK3

i )),

where the byte permutation h is defined as
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

5

Figure 1: Tweakey schedule and encryption process of Deoxys-BC-384 [CHP+17]

Deoxys AEAD operating modes. Deoxys adopts the tweakable block cipher Deoxys-BC
as its internal primitive and provides two AEAD modes including Deoxys-I and Deoxys-II.
Both modes are nonce-based AEAD, but Deoxys-I is for attackers that are assumed to be
nonce-respecting while Deoxys-II allows users to reuse the same nonce under the same key.

The two schemes Deoxys-I-128-128 and Deoxys-II-128-128 are based on Deoxys-BC-256
which lead to a 128-bit key version, and Deoxys-I-256-128 and Deoxys-II-256-128 are based
on Deoxys-BC-384 which lead to a 256-bit key version. As described in [JNPS16], Deoxys
uses the 4-bit prefixes for the tweak input, thus the data that attackers obtain can not
exceed 2124 blocks under the same key. For more details, we refer to [JNPS16].

2.2 Notations and Definitions
The following notations are followed throughout the rest of the paper.

Xi : state before AddRoundKey operation in round i, 0 ≤ i ≤ r − 1
Yi : state after AddRoundKey operation in round i, 0 ≤ i ≤ r − 1
Zi : state after ShiftRows ◦ SubBytes operation in round i, 0 ≤ i ≤ r − 1

thus the internal states of i-th round (0 ≤ i ≤ r − 1) are as follows:

Xi
AK−−−−→

STKi

Yi
SB, SR−−−−→ Zi

MC−→ Xi+1. (1)

∆X : difference of the state X
Xi[j · · · k] : jth byte, · · · , kth byte of Xi, where 0 ≤ j, k ≤ 15
Yi[j · · · k] : jth byte, · · · , kth byte of Yi, where 0 ≤ j, k ≤ 15
Zi[j · · · k] : jth byte, · · · , kth byte of Zi, where 0 ≤ j, k ≤ 15
IKi[j] : involved (equivalent) key byte in round i with the same index to Yi[j]

2.3 The Boomerang and Rectangle Attacks
The boomerang attack is a differential attack that was proposed by Wagner [Wag99]. It
attempts to generate a quartet structure at an intermediate value halfway through the
cipher.

The boomerang attack allows an attacker to concatenate two shorter differential paths
when long differentials with probability higher than for a random permutation can not
be found. That is, the adversary will split the encryption process E(·) into two shorter
sub-processes E = E1 ◦ E0, where E0 represents the first half of the cipher while E1
represents the last half. For the sub-cipher E0, there is a differential characteristic α→ β
with probability p, and a differential characteristic γ → δ for E1 with probability q.
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Figure 2: Boomerang attack framework

If the plaintexts and ciphertexts can pass the boomerang distinguisher, a right quartet
(m,m′, m̄, m̄′) can be obtained. The adversary gets a correct quartet with a probability
p2q2. However, when m ⊕m′ = α, a pair (m̄, m̄′) satisfies m̄ ⊕ m̄′ = α with an average
probability of 2−n for a random permutation. Therefore, for the existing differentials, the
probability of the corresponding boomerang distinguisher has to satisfy pq > 2−n/2.

The boomerang attack was further developed into a chosen-plaintext attack by Kelsey
et al. [KKS00] called amplified boomerang attack, which was independently introduced as
rectangle attack by Biham et al. in [BDK01]. The rectangle attack is a chosen-plaintext
attack, which gets a right quartet with a probability 2−np2q2. As it was pointed out, if
one only fixed the values α and δ and allowed any values of β and γ as long as β 6= γ, the
probability of obtaining a correct quartet would be increased to 2−np̂2q̂2, where

p̂ =
√∑

βi

Pr2(α→ βi) and q̂ =
√∑

γj

Pr2(γj → δ).

Related-tweakey boomerang and rectangle attacks were proposed by Biham et al. in
[BDK05]. Assume one has a related-tweakey differential α → β over E0 under a key
difference ∆K with a probability p and another related-tweakey differential γ → δ over
E1 under a key difference ∇K with probability q. As shown in Figure 2, if K1 is known,
the other three keys are all determined, where K2 = K1 ⊕∆K,K3 = K1 ⊕ ∇K,K4 =
K1 ⊕∆K ⊕∇K. Then a right quartet over a related-tweakey boomerang distinguisher
can be obtained with the following steps:

1. Randomly choose a plaintext pair (m,m′) with difference m⊕m′ = α, and encrypt
it over E to get the ciphertext pair (c, c′) with two chosen-plaintext queries, where
c = EK1(m), c′ = EK2(m′).

2. Generate another ciphertext pair (c̄, c̄′) by c̄ = c⊕ δ and c̄′ = c′ ⊕ δ, then decrypt
(c̄, c̄′) to obtain their plaintexts (m̄, m̄′) with two adaptive chosen-ciphertext queries
under key K3,K4 respectively.

3. Check whether the difference of (m̄, m̄′) is equal to α or not.

2.4 General Strategy of Key-recovery Attacks using Structures
In this section, we briefly describe the key-recovery models of the related-tweakey boomerang
attack and rectangle attack on block ciphers with linear key schedule, which are mainly
based on the previous works [BDK01, BDK05, BK09], etc.
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2.4.1 Related-tweakey Rectangle Attack

We follow the symbolic style of Liu et al. [LGS17] and denote the whole cipher E as
E = Ef ◦ E′ ◦ Eb, where E′ is the rectangle distinguisher and Eb and Ef are the rounds
added at the start and at the end of the distinguisher, respectively. Denote the block
size as n, the number of active bytes of the input difference of Eb as rb/8, the number of
subtweakey bits needed to be guessed in Eb as mb. Similarly, we define rf and mf for Ef .
When rb/8 ≤ 15, i.e., by appending Eb to the rectangle distinguisher E′, there are still
inactive Sboxes in the input of Eb (for instance, the attacks shown in Subsection 6.4). Let
k denote the master key size, we give the following general model:

1. Construct y =
√
s · 2n/2−rb/p̂q̂ structures of 2rb plaintexts each, where s is the

expected number of right quartets, each structure takes all the possible values of the
rb/8 active bytes with the other 16− rb/8 bytes as some constant.

2. For each structure, query the 2rb plaintexts by the encryption oracle underK1, K2, K3
andK4 and obtain four plaintext-ciphertext sets denoted by L1, L2, L3 and L4, where
K1 is the secret key and K2 = K1⊕∆K, K3 = K1⊕∇K and K4 = K1⊕∆K⊕∇K.
Insert L2 and L4 into hash tables H1 and H2 indexed by the rb bits of plaintexts.

3. Guess the mb subtweakey bits involved in Eb:

(a) Initialize a list of 2mf counters, each of which corresponds to amf -bit subtweakey
guess.

(b) For each structure, partially encrypt plaintextm ∈ L1 to the position of α by the
guessed subtweakeys, and partially decrypt it to the plaintext m′ after xoring
the known difference α. Then we look up H1 to find the plaintext-ciphertext
indexed by the rb bits. Do the same operation with m̄ and m̄′. We get two sets

S1 = {(m, c,m′, c′) : (m, c) ∈ L1, (m′, c′) ∈ L2, EbK1
(m)⊕ EbK2

(m′) = α},

S2 = {(m̄, c̄, m̄′, c̄′) : (m̄, c̄) ∈ L3, (m̄′, c̄′) ∈ L4, EbK3
(m̄)⊕ EbK4

(m̄′) = α}.

(c) y structures make the size of S1 and S2 be y · 2rb . Insert S1 into a hash table
H3 indexed by the n − rf bits of c and n − rf bits of c′ that set to 0 in the
output difference through Ef from δ. Then for each element of S2, we find the
corresponding (m, c,m′, c′) satisfying c ⊕ c̄ = 0 and c′ ⊕ c̄′ = 0 in the rf bits.
In total we obtain y2 · 22rb−2(n−rf ) quartets.

(d) We use all the quartets obtained in step (c) to recover the subtweakeys involved
in Ef . This phase is just a guess and filter procedure. For details, we refer to
the key-recovery phase of Subsection 5.1. We denote the time complexity in
this step as ε.

(e) Select the top 2mf−h hits in the counter to be the candidates, which delivers a
h-bit or higher advantage.

4. Exhaustively search the remaining k −mb −mf unknown key bits cooperating the
key schedule algorithm.

The data complexity is 4y ·2rb chosen plaintexts, and do 2mb(2y ·2rb +y ·2rb) table look-
ups to prepare quartets. We need 2mb · (y2 ·22rb−2(n−rf )) ·ε encryptions in the key recovery
process. The total time complexity, including data collection, key recovery and exhaustively
searching the remaining unknown key bits, is 4y · 2rb + 2mb · (y2 · 22rb−2(n−rf )) · ε+ 2k−h.
The memory complexity is 4y · 2rf + y · 2rb + 2mf .
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Success Probability. For both boomerang and rectangle attacks, with the same method
as in [Sel08], the success probability is evaluated to:

Ps = Φ(
√
sSN − Φ−1(1− 2−h)√

SN + 1
), (2)

where SN is the signal-to-noise ratio and SN = p̂2q̂2/2−n.
Note that, in Subsection 6.2, all the bytes of the input of the 11-round rectangle attack

on Deoxys-BC-256 are active, i.e. rb/8 = 16. In this situation, we have to tweak the data
collection phase to avoid using the full codebook. As the method is dedicated to the attack
on Deoxys-BC-256, we refer the readers to Subsection 6.2 to find the details.

2.4.2 Related-tweakey Boomerang Attack

We first explain how to append one or two rounds at the end of the boomerang distin-
guisher Ef . We express the cipher by E = Ef ◦ E′. The symbols are the same as in
Subsubsection 2.4.1. The process of related-tweakey boomerang attack for Deoxys-BC can
be summarized as:

1. Choose y = s/(2rf · p̂2q̂2) structures of 2rf ciphertexts each, where s is the expected
number of right quartets. Each structure takes all the possible values for the rf/8
active bytes while the other 16− rf/8 bytes are fixed to some constant.

2. For each structure, we can obtain the plaintext m for each ciphertext c by calling
the decryption oracle under K1, computing m′ by m′ = m⊕ α, and obtaining the
ciphertext c′ by EK2(m′). Here we can obtain a set

L1 = {(m, c,m′, c′),m = E−1
K1

(c),m′ = m⊕ α, c′ = EK2(m′)}.

Then we compute the set L2 under K3 and K4 in a similar way:

L2 = {(m̄, c̄, m̄′, c̄′), m̄ = E−1
K3

(c̄), m̄′ = m̄⊕ α, c̄′ = EK4(m̄′)}.

3. Insert L1 into a hash table H1 indexed by the n−rf bits of c′. Then for each element
of L2, we find the corresponding (m, c,m′, c′) colliding in the n− rf bits. We obtain
a total of y · 22rf−(n−rf ) = y · 23rf−n quartets.

4. The process that recovers the subtweakeys involved in Ef is the same as the one in
the previous related-tweakey rectangle attack, the complexity of this step is denoted
as ε.

The attack needs 4y · 2rf adapted chosen ciphertexts and plaintexts, and y · 2rf lookups
to construct quartets. The time complexity is y · 23rf−n · ε encryptions in the key recovery
process. The memory complexity is 2rf + 2mf .

3 Searching Distinguishers of Deoxys-BC
3.1 Searching Truncated Differentials and Corresponding Characteris-

tics
As described in [CHP+17], if we want to find a boomerang distinguisher over R1 + R2
rounds, an MILP model including R1 + 1 rounds for the upper part and R2 + 1 rounds for
the lower part is needed. However, when using the distinguisher to launch the key-recovery
attack, the trail with fewer active Sboxes when appending certain rounds is preferred.
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Therefore, we add such conditions for two extra rounds behind the (R1 + R2)-round
boomerang distinguisher to Cid et al.’s model [CHP+17] and keep other constraints in Cid
et al.’s model unchanged.

Note that, given a (R1 + R2)-round boomerang distinguisher of Deoxys-BC, when
appending the first extra round behind, the first operation is the AddRoundKey, where the
output difference of the (R1 +R2)-round distinguisher may be canceled by the difference
of the AddRoundKey. However, when appending the second extra round behind, all
the differences of the internal state are in truncated form, hence, the difference of the
AddRoundKey will not cancel the difference of the internal state. We list the detailed
constraints below:

1. For the first extra round.
This is the first round that is extended from the distinguisher, we denote the state in

AddRoundKey as (xi, stki, yi), i.e. xi ⊕ stki = yi, for the i-th byte. The constraints for the
AddRoundKey operation in this round are identical to those in [CHP+17], that need to
exclude (xi, stki, yi) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)} as

xi + stki − yi ≥ 0, xi − stki + yi ≥ 0, − xi + stki + yi ≥ 0. (3)

The differences of the active bytes of the internal state are indeterminate after the
SubBytes operation. Therefore, the constraints for the MixColumns operation are different
from those in [CHP+17] which only makes the branch number to be 5. All of the 4 bytes in
one column will be active after the MC function if any byte in this column is active before
the MC function. Let the Boolean variables (xi, xi+1, xi+2, xi+3) denote the activeness of
the input 4-byte of MC function and (yi, yi+1, yi+2, yi+3) denote the output 4-byte, then
the constraints are as follows:

dk−xi ≥ 0, dk−xi+1 ≥ 0, dk−xi+2 ≥ 0, dk−xi+3 ≥ 0, xi+xi+1 +xi+2 +xi+3−dk ≥ 0,

yi − dk = 0, yi+1 − dk = 0, yi+2 − dk = 0, yi+3 − dk = 0,

where dk is a dummy variable that equals zero only when xi, xi+1, xi+2, xi+3 are all zero.

2. For the second extra round.
The state differences at the start of the second round are all in truncated form, therefore

cancelation can not occur in the AddRoundKey operation. For (xi, stki, yi) with xi⊕ stki =
yi, yi must be active if xi or stki is active. The constraints are different from Equation 3
and are expressed as

yi − xi ≥ 0, yi − stki ≥ 0, xi + stki − yi ≥ 0.

Since we do not consider the last MixColumns operation in the key recovery attacks,
there are no constraints for it.

At the end of the MILP model, we add an extra constraint to restrict the number of
active bytes in the difference of the ciphertext. If yi (0 ≤ i ≤ 15), denote the differences of
the 16 bytes of ciphertext, we can add

∑15
0 yi ≤ l, where l can be tested from 0 to 15.

By running the MILP model, we find a 9-round truncated boomerang differential with
9 active Sboxes and 9 active bytes in the difference of the ciphertext when extending one
round for Deoxys-BC-256, as well as a 11-round truncated boomerang differential with 9
active Sboxes and 12 active bytes in the difference of the ciphertext when extending two
rounds for Deoxys-BC-384.
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Deduce all the master tweakey difference. With the truncated boomerang differential,
we can easily deduce the space of the master tweakey difference, and leave out the difference
that is not compatible with the difference distribution table of the Sbox, the method is
the same as the one in [CHP+17] but we maintain all the right trails. Then check whether
the probability of these trails can be increased by the BDT technique [WP19].

3.2 Increase the Probability Further
At ToSC 2019, Wang and Peyrin [WP19] and Song et al. [SQH19] considered the BCT
effect in multiple rounds of boomerang switch. Wang and Peyrin [WP19] introduced a
general tool named Boomerang Difference Table (BDT) to evaluate the boomerang switch
through multiple rounds. We first briefly recall the BDT technique.

Definition 1. (Boomerang Difference Table (BDT))[WP19]. Let S be an invertible
function from Fn2 to Fn2 , and (∆0,∆1,∇0) ∈ Fn2 . The boomerang difference table (BDT)
of S is a three-dimensional table, in which the entry for (∆0,∆1,∇0) is computed by:

BDT (∆0,∆1,∇0) = #{x ∈ {(0, 1)}n|S−1(S(x)⊕∇0) ⊕ S−1(S(x⊕∆0)⊕∇0) = ∆0,
S(x) ⊕ S(x⊕∆0) = ∆1}.

Haoyang Wang and Thomas Peyrin 145

K2 = K1⊕∆K, K3 = K1⊕∇K and K4 = K1⊕∆K⊕∇K. The attack is then performed
with the following process:

1. Choose a plaintext P1 at random, compute another plaintext P2 = P1 ⊕ α.

2. Ask for the encryption of P1 and P2 with secret key K1 and K2 separately, denote
the ciphertexts C1 and C2 respectively.

3. Compute C3 = C1 ⊕ δ and C4 = C2 ⊕ δ.

4. Ask for the decryption of C3 and C4 with K3 and K4 separately, denote the new
plaintexts P3 and P4 respectively.

5. Check whether P3 ⊕ P4 = α.

2.2 Boomerang Switch and Boomerang Connectivity Table.
The boomerang switch, proposed in [BK09], was used to obtain free rounds in the middle
of the cipher in the attacks against full AES-192 and AES-256. The idea was to optimize the
transition between the sub-paths of E0 and E1 in order to minimize the overall complexity
of the distinguisher. In [BK09], two S-box based switches were introduced: the ladder
switch, and the S-box switch. The idea of the ladder switch is to realize that instead of
necessarily decomposing the cipher into rounds, one can decompose it into smaller parallel
transformations and this may lead to better distinguishers. The idea of the S-box switch
is that when a same S-box is activated in both E0 and E1, and when the output difference
in E0 is identical to the input difference in E1, then the differential transition through the
S-box is free in one of the two directions.

These switches were further generalized with the boomerang connectivity table [CHP+18]
and we provide here the definition.

Definition 1 ( [CHP+18]). Let S be an invertible function from Fn
2 to Fn

2 , and ∆0, ∇0 ∈
Fn

2 . The boomerang connectivity table (BCT) of S is defined by a 2n × 2n table, in which
the entry for (∆0,∇0) is computed by:

BCT (∆0,∇0) = #{x ∈ {0, 1}n|S−1(S(x)⊕∇0)⊕ S−1(S(x⊕∆0)⊕∇0) = ∆0}.

The generation of the BCT can be visualized in Figure 3. The ladder switch is captured
by the BCT in the case where at least one of the index equals to zero. The S-box switch
is captured by the BCT in the case where ∇0 equals ∆1. Moreover, the incompatibility
pointed out by Murphy [Mur11] simply corresponds to zero entries in the BCT.
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S S

S S
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Figure 3: Generation of a right quartet at the S-box levelFigure 3: Generation of a right quartet at the S level[WP19].

The process of generating a right quartet in the S level is visualized in Figure 3. The
BDT reveals the probability of generating a boomerang quartet with a certain differential
trail at the Sbox level. When the boomerang comes back, ∇1 determines the differential
characteristic in the backward rounds. So similarly to BDT, there is a definition for BDT′.

Definition 2. (BDT′)[WP19]. BDT′ takes into account (∇0,∇1,∆0), and is defined as

BDT ′(∇0,∇1,∆0) = #{x ∈ {(0, 1)}n|S(S−1(x)⊕∆0) ⊕ S(S−1(x⊕∇0)⊕∆0) = ∇0,
S−1(x) ⊕ S−1(x⊕∇0) = ∇1}.

Increase the probability by BDT and BDT′. For each differential trail obtained in
Subsection 3.1, we check whether the BDT and BDT′ can be applied to increase its
probability. We take the 9-round distinguisher of Deoxys-BC-256 listed in Table 4 as an
example to describe the process. In the two-round boomerang switch, BDT is used in the
first Sbox layer and BDT′ is applied in the second Sbox layer.

For the known master tweakey difference, the values of ∆Y6 and ∇Z6 can be deduced.
Therefore, ∆0 used in BDT and ∇0 used in BDT′ are known, i.e. ∆0 = ∆Y5[9] = 0x80
and ∇0 = ∇Z6[1] = 0x32. We follow the steps below to determine the exact probability of
the trail.

1. With the fixed value of ∆0 = ∆Y5[9] = 0x80 in BDT, we take all the 28 values of
∇0 and output all the combinations of (0x80,∆1,∇0) whose entry in the BDT is
greater than 0, where ∆1 = ∆Z5[5] and ∇0 = ∇Z5[5].
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2. For each 3-tuple obtained in step 1, since ∆Z5[5] = ∆1 is known, the value of ∆Y6[5],
which will be used to be ∆0 in the BDT′, can be computed with the MC function,
and we can construct the BDT′ with the fixed ∆0 = ∆Y6[5].

3. Output all the 3-tuple (0x32,∇1,∆0) whose entry in the BDT′ is greater than 0,
∇Y6[5] is determined by ∇1.

With the above process, we find a total of two differential characteristics for the
two-round switch, which are listed in Table 4 and Table 5. In Table 4, the entry of
(0x80, 0xae, 0x00) is 4 in the BDT and (0x32, 0x47, 0x47) is 2 in the BDT′ which contribute
a probability of 2−6 and 2−7 respectively, and the probability of the two-round switch is
2−13. In Table 5, the entry of (0x80, 0x96, 0x96) is 2 in the BDT and (0x32, 0x37, 0x37) is
2 in the BDT′ which makes the probability of the two-round switch be 2−14. Therefore, the
probability of the two-round switch is 2−13 +2−14 = 2−12.4 and the 9-round related-tweakey
boomerang distinguisher for Deoxys-BC-256 is 2−120.4. For the other trails in the truncated
differential, there are no trails with a probability greater than 2−120.4.

For the 11-round distinguisher of Deoxys-BC-384, we do not find trails with a probability
greater than 2−122 with the help of the BDT technique.

Experimental Verification. Similar to [WP19], we use 220 randomly chosen plaintexts
and tweakeys for the 2-round boomerang switch and iterate it for 1000 times. The results
show that the average probability of getting a right quartet for Deoxys-BC-256 is 2−12.4

and for Deoxys-BC-384 is 214, which verifies the correctness of our characteristics.

4 Advantages of the New Distinguishers
We construct two more effective related-tweakey boomerang distinguishers including a
9-round distinguisher of Deoxys-BC-256 and an 11-round distinguisher of Deoxys-BC-384,
respectively. For all the distinguishers of Deoxys-BC-256 and Deoxys-BC-384, we only
modify the lower part of the trails compared with those in [CHP+17].

New 9-round Related-tweakey Boomerang Distinguishers of Deoxys-BC-256.
We present a new 9-round related-tweakey boomerang distinguisher in Table 4 and Ta-

ble 5, the probability of which is p̂2 · q̂2 = 2−120.4, where the upper differentials of E0 are un-
der the related key ∆K = {∆TK1

0 ,∆TK2
0} , and the lower differentials of E1 are under the

related key∇K = {∇TK1
0 ,∇TK2

0}. Here, α = (00 b0 00 00 00 c0 00 00 7b 00 af 00 00 00 00
c2), δ = (00 00 00 00 00 14 00 00 00 00 00 80 00 00 00 00). For our new related-tweakey
boomerang distinguisher illustrated in Table 4, we extend the differential trails of E1 for-
ward for one round, and obtain only 9 active bytes after SubBytes operation, see Figure 4.
If we append one round to Cid et al.’s 9-round boomerang distinguisher [CHP+17], which
is illustrated in Table 3, there will be 10 active bytes shown in Figure 5. Our distinguisher
is used to improve the efficiency of collecting quartets to recover key.

It is obvious that the 9-round related-tweakey boomerang distinguisher can be trans-
formed into a 9-round related-tweakey rectangle distinguisher, whose probability
is p̂2 · q̂2 · 2−128 = 2−248.4.

New 11-round Related-tweakey Boomerang Distinguisher of Deoxys-BC-384.
We search an 11-round related-tweakey boomerang distinguisher of Deoxys-BC-384

illustrated in Table 7. The probability of the 11-round boomerang distinguisher is p̂2 · q̂2 =
2−122.
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Figure 4: Appending one round to our 9-round boomerang distinguisher of Deoxys-BC-256.
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Figure 6: Appending two rounds for our 11-round boomerang distinguisher of Deoxys-BC-
384.
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Deoxys-BC-384.



134 New Related-Tweakey Boomerang and Rectangle Attacks on Deoxys-BC

SB

SR *

*



*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*


*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

SB

SR

*

*

*

*

*

*

* *

*


8-round distinguisher of Deoxys-BC-256

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

MC

Round 8

Round 9

X8 Y8 Z8

X9 Y9 Z9 X10 Ciphertext

STK9 STK10

STK8

*Known difference Unknown difference

Round 0

…
…

MC

Figure 8: Key-recovery attack against 10-round Deoxys-BC-256

Note that the last column in the last round at the end of the boomerang trail is
(d9, 00, 00, 38), which leads to (91, e1, 91, 00) after MixColumns operation. If we extend
the trails of E1 forward for two rounds, there are only 12 active bytes after SubBytes
operation in the last round shown in Figure 6, while there will be 16 active bytes using
Cid et al.’s distinguisher [CHP+17] which is listed in Table 6 shown in Figure 7. Making
use of the new distinguisher, we can attack reduced-round Deoxys-BC-384 for one more
round than before, though the probability of the boomerang distinguisher is a little lower
than the one in [CHP+17].

It is obvious that we can also construct an 11-round related-tweakey rectangle
distinguisher of Deoxys-BC-384 in use of the 11-round related-tweakey boomerang
distinguisher, whose probability is p̂2 · q̂2 · 2−128 = 2−250.

5 New Related-tweakey Boomerang Attacks on Round-
Reduced Deoxys-BC

Deoxys-BC includes MixColumns operation in the last round, but it is well known that the
last MixColumns is a linear operation which does not impact the differential cryptanalysis.
Indeed, attackers can analyze MC−1(∆c) instead of (∆c), where c is the ciphertext. To
simplify the discussion, we omit the last MixColumns operation and the effect of the key
difference, and denote MC−1(c) (i.e. state Z) by c in the last round.

5.1 Related-tweakey Boomerang Attack on 10-Round Deoxys-BC-256
We apply the first 8-round path of the 9-round related-tweakey boomerang distinguisher in
Table 4, and append 2 rounds to the end of the 8-round related-tweakey boomerang trail
to attack 10-round Deoxys-BC-256, which is illustrated in Figure 8. The probability of the 8-
round boomerang distinguisher is p̂2·q̂2 = 2−96.4, where α = (00 b0 00 00 00 c0 00 00 7b 00 af
00 00 00 00 c2), δ = 0. After appending two rounds to the 8-round boomerang distinguisher,
the difference δ propagates to η = (00 ∗ ∗ 00 ∗ ∗ ∗ 00 ∗ 00 00 ∗ 00 00 ∗ ∗ ).

In Round 9, there are nine active bytes in ∆Z9 (∆Z9[j], j = 1, 2, 4, 5, 6, 8, 11, 14, 15),
where ‘*’ denotes active bytes throughout the rest of the paper.

The attack process includes data collection phase and key recovery phase, and following
the general process in Subsubsection 2.4.2 rf = 72 and mf = 88.
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Data Collection. This boomerang attack is an adaptive chosen plaintexts and ciphertexts
attack. We construct structures of ciphertexts, which traverse all the possible values of
the 9 active bytes Z9[j], j = 1, 2, 4, 5, 6, 8, 11, 14, 15, while the other 7 bytes are fixed to
a constant. For each structure S, we query the corresponding sets L1, L2 under the two
related keys K1 and K3, i.e.

L1 = {(m, c),m = E−1
K1

(c), c ∈ S},
L2 = {(m̄, c̄), m̄ = E−1

K3
(c̄), c̄ ∈ S}.

Then we compute m′ = m⊕ α,∀m ∈ L1 and query the new ciphertexts c′ under the key
K2 and update

L1 = {(m, c,m′, c′),m = E−1
K1

(c),m′ = m⊕ α, c′ = EK2(m′), c ∈ S}.

Then compute m̄′ = m̄⊕ α,∀m̄ ∈ L2 and query the new ciphertexts c̄′ under the key K4
and update

L2 = {(m̄, c̄, m̄′, c̄′), m̄ = E−1
K3

(c̄), m̄′ = m̄⊕ α, c̄′ = EK4(m̄′), c̄ ∈ S}.

Insert the elements of L1 into a hash tableH1 indexed by 7 bytes c′[j] (j = 0, 3, 7, 9, 10, 12,
13) of L1 (note that ciphertexts c, c′ here are equivalent to Z9 for simplicity). Then for
elements of L2, we check H1 to find the elements of L1, where c′ ⊕ c̄′ ∈ η. Each structure
provides 272 ciphertext pairs (c, c′) and (c̄, c̄′), there are 272 · 272 · 2−56 = 288 quartets
whose differences satisfy c ⊕ c̄ ∈ η and c′ ⊕ c̄′ ∈ η. There are 288 · 2t = 2t+88 quartets
remaining for 2t structures.

Key Recovery. As illustrated in Figure 8, 9 bytes of equivalent subtweakeys of STK10
and 2 bytes of equivalent subtweakeys of STK9 are involved in the partial decryption
process from ciphertexts to ∆Y8. For the sake of clearness, we denote the equivalent
subtweakeys IKi = SR−1 ◦MC−1(STKi+1) in round i.

Take the example of IK9[4] in round 9 in Figure 8. To get the value of Y9[4], we need
the value of Z9[4], which equals (note that c[i] is the i-th byte of ciphertext):

0e ·(c[4]⊕STK10[4])⊕0b ·(c[5]⊕STK10[5])⊕0d ·(c[6]⊕STK10[6])⊕09 ·(c[7]⊕STK10[7]),

so we denote

IK9[4] = 0e · STK10[4]⊕ 0b · STK10[5]⊕ 0d · STK10[6]⊕ 09 · STK10[7]

as a byte of the equivalent subtweakey.
We optimize the complexity of the key recovery phase by guessing some equivalent

key bytes separately. We initialize a list of 288 counters, each of which corresponds to a
88-bit subtweakey guess. For the 2t+88 remaining quartets (c, c′, c̄, c̄′), we use the following
attack process to recover the key.

1. The input difference of Sboxes ∆Y9[14] is known and the corresponding output
difference is obtained from ciphertext pairs, therefore we get a 8-bit subtweakey
from the ciphertexts pair (c, c̄) on average. Then decrypt (c′, c̄′) to Y9[14] using the
corresponding 8-bit subtweakey. If the difference is not equal to the known difference,
we eliminate the quartet. Otherwise, we keep the quartet and the 8-bit subtweakey.
There are about 2t+80 remaining quartets.

2. Then, we guess one byte of involved subtweakeys IK9[4] and the values and difference
of Y9[4] is deduced. There are three zero-difference bytes in the second column of
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∆Z8, so the differences ∆Y9[5, 6, 7] are deduced utilizing the MixColumns operation1.
Then we get the corresponding subtweakeys IK9[5, 6, 7] because the input and output
differences of Sboxes are known. Then partially decrypt (c′, c̄′) to get the second
column of ∆Z8. If ∆Z8[4, 5, 7] = 0, we keep the quartet and corresponding 32-bit
subtweakey. Otherwise, we eliminate the quartet. There are about 2t+64 remaining
quartets.

3. Partially decrypt the pair (c, c̄) to get ∆Z8[6], and deduce the corresponding sub-
tweakey IK8[14]. Then we use the subtweakey to partially decrypt (c′, c̄′) to get
the difference of ∆Y8[14]. If it does not equal the known difference, we remove the
quartet. There are about 2t+56 remaining quartets.

4. Conduct similar process to Step 2 and 3 to obtain IK9[8, 9, 10, 11] and IK8[7]. We
count the 88-bit corresponding subtweakey. There are about 2t+32 remaining quartets
with the corresponding 88-bit subtweakeys.

Complexity Computation. The complexity of data collection is 4 · 2t+72 queries. The
complexity of key recovery is about 2t+88 one round encryptions, which is equivalent
to about 2t+88/10 = 2t+84.7 encryptions. Because the probability of the difference η
propagating to δ = 0 is 2−72 and the probability of boomerang distinguisher is 2−96.4,
there are 2t · 2144 · 2−72 · 2−96.4 = 2t−24.4 right quartets in data collection in total. Once a
right quartet is obtained, the right key is counted. The expected counter of the right key
is 2t−24.4, and the expected counter of the wrong key is 2t+32−88 = 2t−56. When t = 24.4
and h = 28, the total complexity is 298.4 queries and 2109.1 + 2128−28 ≈ 2109.1 encryptions,
the memory complexity is bounded by the size of the key-counter, which is 288, and the
success probability is 72.02% according to Equation 2. When t = 27 and h = 27, the
total complexity is 299.4 queries and 2110.1 + 2128−27 ≈ 2110.1 encryptions, and the success
probability is 84.26%.

The related-tweakey boomerang attacks for other versions of Deoxys-BC are listed in
Appendix A.

6 New Related-tweakey Rectangle Attacks on Reduced
Deoxys-BC

6.1 Related-tweakey Rectangle Attack on 10-round Deoxys-BC-256
We extract the first 8-round trail in Table 4 to construct a 8-round related-tweakey rectangle
distinguisher with probability p̂2 · q̂2 · 2−128 = 2−224.4. The figure of the attack is the same
as Figure 8. In round 9, there are 7 inactive bytes in ∆Z9 (Z9[j], j = 0, 3, 7, 9, 10, 12, 13).

Data Collection. Choose 2t plaintextsm, computem′ = m⊕α, where α = (00 b0 00 00 00
c0 00 00 7b 00 af 00 00 00 00 c2). For the 2t pairs (m,m′), we query the corresponding
ciphertexts set L1 under the two related keys K1 and K2, i.e.

L1 = {(m, c,m′, c′), c = EK1(m),m′ = m⊕ α, c′ = EK2(m′)}.

Since there are 7 zero-difference bytes in ∆Z9 (j = 0, 3, 7, 9, 10, 12, 13), we insert the ele-
ments of L1 into a hash table H1 indexed by c[0, 3, 7, 9, 10, 12, 13] and c′[0, 3, 7, 9, 10, 12, 13]
(Note that c is equivalent to Z9 for simplicity). Then for each of the 2t plaintext pairs
(m̄, m̄′) = (m,m′), query their new ciphertexts (c̄, c̄′) under K3 and K4, and lookup H1
to obtain quartets whose 14 bytes (used for index) of c||c′ and c̄||c̄′ have the same value.
Totally, there are 22t · (2−56)2 = 22t−112 quartets remaining.

1Note that if 4 out of 8 input-output bytes of MixColumns are known, all other bytes can be deduced.
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Figure 9: Key recovery attack against 11-round Deoxys-BC-256.

Key Recovery. The process of key recovery is identical to the boomerang attack on
10-round Deoxys-BC-256 in Subsection 5.1.

Complexity Computation. In the process above, rf = 72 and mf = 88. The complexity
of data collection is 4 ·2t queries. The complexity of key recovery is about 22t−112 one round
encryptions, which is equivalent to about 22t−112/10 = 22t−115.3 encryptions. Since the
probability of the 8-round related-tweakey rectangle distinguisher is p̂2q̂2 · 2−128 = 2−224.4,
there are 22t · 2−224.4 = 22t−224.4 right quartets in data collection in total. When t = 112.2
and h = 19, the total complexity is 2114.2 queries and 2109.1 +2128−19 ≈ 2110.05 encryptions,
the memory complexity is bounded by the data volume in hash table H1, which is 2112.2,
and the success probability is 74.75%.

6.2 Rectangle Attack on 11-Round Deoxys-BC-256
We mount an 11-round rectangle attack on Deoxys-BC-256 by prefixing a round at the
beginning and appending two rounds at the end of the 8-round rectangle distinguisher used
in Subsection 6.1, which is illustrated in Figure 9. It is obviously that α propagates 16
active bytes in ∆Y0 of the first round, which leads to the fact that 16 bytes of subtweakeys
STK0 are involved.

Choose 2112+t plaintexts by traversing the first 14 bytes of plaintext and choosing 2t
values of the 14-th and 15-th bytes at random, and query their corresponding ciphertexts
under key K1, K2, K3 and K4, respectively. We denote the 4 plaintext-ciphertext sets as
L1, L2, L3 and L4. Obviously, the size of Li (i = 1, 2, 3, 4) is 2112+t. We insert L2 and
L4 in the hash tables H1 and H2 indexed by bytes of plaintexts, i.e., m[j] (j = 0, · · · , 13),
respectively. So under each index in H1 or H2, there are 2t elements. Then, carry out the
following process to recover key.

1. First, we guess the 112-bit subtweakey STK0[j] (j = 0, · · · , 13). ∀m ∈ L1, we
partially encrypt to get Z0[j] (j ∈ {0, ..., 15} and j 6= 3 or 6), compute Z ′0[j] = Z0[j]⊕
MC−1(α)[j] (j ∈ {0, ..., 15} and j 6= 3 or 6), and then calculate the corresponding
plaintexts m′[0, · · · , 13] under guessed STK0[0, · · · , 13] by partial decryption. At
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last, we look up H1 to find the plaintexts and ciphertexts indexed by m′[0, · · · , 13].
Therefore, we construct a set

S1 = {(m, c,m′, c′) : (m, c) ∈ L1, (m′, c′) ∈ L2,
SB(m[j]⊕ STK0[j])⊕ SB(m′[j]⊕ STK0[j]⊕∆K[j]) = SR−1 ◦MC−1(α)[j],
j = 0, · · · , 13}.

There are about 2112+2t elements in S1. In a similar way, we get another set S2 with
size of 2112+2t as

S2 = {(m̄, c̄, m̄′, c̄′) : (m̄, c̄) ∈ L3, (m̄′, c̄′) ∈ L4, SB(m̄[j]⊕ STK0[j]⊕∇K[j])⊕
SB(m̄′[j]⊕ STK0[j]⊕∇K[j]⊕∆K[j]) = SR−1 ◦MC−1(α)[j], j = 0, · · · , 13}.

We insert S1 in a hash table H3 indexed by the 14 bytes c[j] (j = 0, 3, 7, 9, 10, 12, 13)
and c′[j] (j = 0, 3, 7, 9, 10, 12, 13) (note here that c is equivalent to Z10 for simplicity).
For each element (m̄, c̄, m̄′, c̄′) of S2, we find the corresponding (m, c,m′, c′) by c̄ and
c̄′ that satisfy c⊕ c̄ ∈ η and c′ ⊕ c̄′ ∈ η. Then we obtain a quartet (c, c′, c̄, c̄′). There
are about 24t+112 quartets (c, c′, c̄, c̄′) satisfying c⊕ c̄ ∈ η and c′ ⊕ c̄′ ∈ η.

2. For each of the 24t+112 quartets, we compute the subtweakey STK0[14] and STK0[15]
as a result of input and output differences of Sboxes in the first round for (m,m′)
and verify the subtweakey STK0[14] and STK0[15] with the corresponding (m̄, m̄′).
There are about 24t+96 remaining quartets.

3. Recover 11 bytes of equivalent subtweakeys with a method similar to the one
in the rectangle attack on 10-round Deoxys-BC-256, and exhaustively search the
unknown remaining subtweakeys under the guessing STK0 and verify the key by
two plaintexts and ciphertexts pairs. If the key is wrong, we start another guess of
STK0[j] (j = 0, · · · , 13).

Complexity Computation. The complexity of data collection is 4 · 2112+t queries. In key
recovery phase, the complexity of step 1 is about 2112 ·(2·2112+t+2112+2t) = 2224(22t+2t+1)
table lookups, we need 2112 ·24t+112 ·2/16 one round encryptions and 2112 ·24t+96 one round
encryptions in step 2 and step 3, respectively, which is equivalent to about 24t+221/11 =
24t+217.5 encryptions. There are 2112+2t · 2112+2t · 2−32 · 2−96.4 · 2−128 = 24t−32.4 right
quartets. The expected counter of the right key is 24t−32.4, and the expected counter of
the wrong key is 24t−62.4 for each guessed STK0[0, · · · , 13]. When t = 8.1 and h = 19,
the data complexity is 2122.1 chosen plaintexts, the total complexity is 2122.1 queries,
2249.9 + 2256−19 ≈ 2249.9 encryptions and 2240.2 table lookups, the memory complexity is
2128.2 which corresponds to the size of the set S1, and the success probability is 74.75%.

6.3 Related-tweakey Rectangle Attack on 12-round Deoxys-BC-384
We extract the first 10 rounds of the trail in Table 7 to construct a 10-round related-tweakey
rectangle distinguisher with probability of p̂2 · q̂2 · 2−128 = 2−224. We append two rounds
at the end of the 10-round trail to mount a 12-round related-tweakey rectangle attack on
Deoxys-BC-384, the differences propagation is shown in Figure 12 in Appendix A. The
data collection process is similar to that in Subsection 6.1, so we omit it here. Note that
there are 10 zero-difference bytes in ∆Z11, therefore, we obtain 22t · (2−80)2 = 22t−160

quartets remaining.
For the 22t−160 remaining quartets, we recover equivalent subtweakeys IK11[2, 3, 12, 13,

14, 15] and IK10[11, 12]. Firstly, we deduce the IK11[2, 3] by the known difference values
of ∆Y11[2, 3] and ciphertext pairs (c, c̄), and then verify the obtained 16-bit subtweakey by
decrypting (c′, c̄′) to get ∆Y11[2, 3]. There are about 22t−176 remaining quartets. Secondly,
similarly to the second and third step of key recovery in Subsection 5.1, we guess the
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Figure 10: Key-recovery attack against 14-round Deoxys-BC-384.

216 values of IK11[12, 13] and deduce the subtweakeys IK11[14, 15] and IK10[11, 12] for
the remaining quartets. There are about 22t−192 remaining quartets with 8 bytes of
subtweakeys. we count the 64-bit corresponding subtweakey.

In summary, 2t+2 queries are made and the complexity of key recovery is 22t−160

one round encryptions, which is about 22t−160/12 = 22t−163.6 encryptions. Because the
probability of the 10-round related-tweakey rectangle distinguisher is 2−224, there are
22t ·2−224 = 22t−224 right quartets in data collection in total. When the key size is k = 128,
we choose t = 112 and h = 20, we need 2114 queries and 260.4 + 2128−20 ≈ 2108 encryptions
in key recovery process, the memory complexity is 2112, and the success probability is
65.60%. When the key size is k = 256, we choose t = 113, the total complexity is 2115

queries, the memory complexity is 2113, and the success probability is 84.60%, where
h = 48, the time complexity is bounded by the 2k−h = 2208 encryptions.

6.4 Related-tweakey Rectangle Attack on 14-round Deoxys-BC-384

Making use of the 11-round trails in Table 7, we construct a 11-round related-tweakey
rectangle distinguisher with probability of p̂2 · q̂2 · 2−128 = 2−250. We prefix one round at
the beginning of the 11-round related-tweakey rectangle distinguisher and append two
rounds at the end to attack 14-round of Deoxys-BC-384, which is illustrated in Figure 10.
Note that 12 active bytes will appear in ∆Y0 in the first round, leading to the fact that 12
bytes of STK0 are involved.

Construct 2t structures of plaintexts, each taking all the possible values on the 12 bytes
m[0, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15] with the other 4 bytes being fixed to some constant. For
each plaintext in the structure, query the corresponding ciphertexts under K1, K2, K3 and
K4. Similarly, we denote the four plaintext and ciphertext sets as L1, L2, L3 and L4, and
insert L2 and L4 in a hash table H1 and H2 indexed by m[0, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15],
respectively.

Guess the 296 possible values of STK0[0, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15], and for all
m ∈ L1 and all m̄ ∈ L3, we compute the corresponding 12 bytes of m′ and m̄′ by the same
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operations as the one used in Subsection 6.2. Then we get two sets as

S1 = {(m, c,m′, c′) : (m, c) ∈ L1, (m′, c′) ∈ L2,m[i] = m′[i]⊕∆K[i], i = 1, 6, 11, 12,
SB(m[j]⊕ STK0[j])⊕ SB(m′[j]⊕ STK0[j]⊕∆K[j]) = SR−1 ◦MC−1(α)[j],
j = 0, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15}.

S2 = {(m̄, c̄, m̄′, c̄′) : (m̄, c̄) ∈ L3, (m̄′, c̄′) ∈ L4, m̄[i] = m̄′[i]⊕∆K[i], i = 1, 6, 11, 12
SB(m̄[j]⊕ STK0[j]⊕∇K[j])⊕ SB(m̄′[j]⊕ STK0[j]⊕∇K[j]⊕∆K[j])
= SR−1 ◦MC−1(α)[j], j = 0, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15}.

As a result, 2t structures make the size of S1 and S2 be 296+t. Then we insert S1 in a
hash table H3 indexed by 8 bytes c[j] (j = 0, 7, 10, 13) and c′[j] (j = 0, 7, 10, 13). For each
element (m̄, c̄, m̄′, c̄′) of S2, we find the corresponding (m, c,m′, c′) by c̄ and c̄′ satisfying
c⊕ c̄ ∈ η and c′ ⊕ c̄′ ∈ η. Totally, there are about 22t+128 quartets (c, c′, c̄, c̄′) satisfying
c⊕ c̄ ∈ η and c′ ⊕ c̄′ ∈ η.

For each guess, we make use of 22t+128 quartets obtained above to recover the 17-byte
involved equivalent subtweakeys with a procedure similar to the one in Subsection 6.3,
exhaustively search the unknown remaining subtweakeys and verify the key by encrypting
two plaintexts and ciphertexts pairs. If the key is wrong, we start another guess of
STK0[0, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15].

Here, rb = 96, mb = 96, rf = 96 and mf = 136. We need 4 · 296+t queries to
construct 4 sets L1, L2, L3, L4 and 296 · (2 · 296+t + 296+t) = 3 · 2192+t table lookups to
prepare some quartets. Finally, 296 · 22t+128 · 28/14 = 22t+228.2 encryptions are costed.
There are about 296+t · 296+t · 2−250 = 22t−58 right quartets. The expected counter of the
right key is 22t−58, and the expected counter of the wrong key is 22t−64 for each guessed
STK0[0, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15]. When t = 29, the data complexity is 2127 chosen
plaintexts, the total complexity is 2127 queries, 2286.2 encryptions and 2222.6 table lookups,
the memory complexity is 2136 which is bounded by the size of the key-counter, and the
success probability is 51.08%, where h = 48.

7 Impact on Deoxys Authenticated Encryption
We have presented related-tweakey boomerang and rectangle attacks on Deoxys-BC in
previous sections, where there is no restriction for tweak and key differences and we
can make queries to both encryption and decryption oracles. However, the AE model
Deoxys-I employing Deoxys-BC as its internal primitive has more restrictions to the input
parameters. Therefore, we make some extra analyses for Deoxys-I.

An AE scheme will return a null character and no decryption process proceeds when a
tag is invalid. Therefore, the boomerang attack on the internal primitive can not be applied
to the corresponding AE scheme since the chosen ciphertexts process is not permitted.
However, this restriction is not problematic for the rectangle attack, where only chosen
plaintexts are required.

Use Case 1 – Lightweight applications (resource constrained environments)

critical fits into small hardware area and/or small code for 8-bit CPUs

desirable natural ability to protect against side-channel attacks

desirable hardware performance, especially energy/bit

desirable speed on 8-bit CPUs

message sizes usually short (can be under 16 bytes), sometimes longer

Use Case 2 – High-performance applications

critical efficiency on 64-bit CPUs (servers) and/or dedicated hardware

desirable efficiency on 32-bit CPUs (small smartphones)

desirable constant time when the message length is constant

message sizes usually long (more than 1024 bytes), sometimes shorter

Use Case 3 – Defense in depth

critical authenticity despite nonce misuse

desirable limited privacy damage from nonce misuse

desirable authenticity despite release of unverified plaintexts

desirable limited privacy damage from release of unverified plaintexts

desirable robustness in more scenarios; e.g., huge amounts of data

Table 2.2: List of typical AE use-cases selected by the CAESAR committee.

2.3.1 Nonce-Respecting Mode: EI and DI

The encryption algorithm EI is depicted in Figures 2.1, 2.2 and 2.3, and an algorithmic description
is given in Algorithm 1. The verification/decryption algorithmic description of DI is given in
Algorithm 2. We note that our scheme follows the framework from ΘCB3 [27] and therefore directly
benefits from the security proof regarding authentication and privacy.
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Figure 2.1: Handling of the associated data for the nonce-respecting mode: in the case where the
associated data is a multiple of the block size, no padding is needed.
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Figure 2.2: Message processing for the nonce-respecting mode: in the case where the message-
length is a multiple of the block size, no padding is needed.
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Figure 11: Encryption part of Deoxys-I.
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For Deoxys-I, there is a 4-bit prefix in the tweak input to separate the various types,
hence, the differential characteristic used to analyze Deoxys-I can not contain any difference
in these 4 bits, and we have checked that there is no difference on the 4 bits in our related-
tweakey rectangle attacks that are applied to Deoxys-I. The other 124-bit tweak input
is composed of a nonce N and a block counter l. The ciphertexts are generated by the
process as illustrated in Figure 11, where E is Deoxys-BC.

When using the recommended parameters, the maximum of encryption blocks has to
be no more than 2124 under the same key when the length of tweak is 128 bits [JNPS16].
Since the nonce N and the block counter l can be controlled, attackers can make queries
in advance and do rectangle attack on the internal TBC. Therefore, the rectangle attack
with the maximal data complexity ≤ 2124 under the same key and time complexity ≤ 2128

for Deoxys-BC-256 and ≤ 2256 for Deoxys-BC-384 can be applied to the Deoxys-I.
The rectangle attack on 10-round Deoxys-BC-256 has a data complexity of 2114.2 chosen

plaintexts and time complexity of 2114.2 queries, which is applicable for cryptanalysis
of Deoxys-I-128-128. For Deoxys-BC-384, the 12-round rectangle attack with a data
complexity 2115 chosen plaintexts and 2115 queries is available to analyse Deoxys-I-256-128
as well.

8 Conclusion
In this paper, we find new related-tweakey boomerang and rectangle distinguishers to
attack reduced-round Deoxys-BC-256 and Deoxys-BC-384, and improve the related-tweakey
boomerang and rectangle attacks on 10-round Deoxys-BC-256 and 12/13-round Deoxys-BC-
384 with lower time complexity. Especially, we give related-tweakey rectangle attacks on
11-round Deoxys-BC-256 and 14-round Deoxys-BC-384 for the first time. Our cryptanalysis
results show that not only the probability of the boomerang distinguisher plays an important
role in the key recovery, but also the differential propagation of the distinguisher.

Some cryptanalysis results not only apply to the block cipher Deoxys-BC, but also
are compliant with the Deoxys authenticated encryption scheme. The related-tweakey
rectangle attacks against 10-round Deoxys-BC-256 are available to Deoxys-I-128-128, and
we also analyze Deoxys-I-256-128 by the 12-round rectangle attack on Deoxys-BC-384.
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A.1 Related-tweakey Boomerang Attack on 12-Round Deoxys-BC-384
Given the 11-round boomerang distinguisher in Table 7, we extract the first 10-round
boomerang trail of the distinguisher to attack 12-round Deoxys-BC-384. We append
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2 rounds to the end of the 10-round trail to launch the attack, which is illustrated in
Figure 12. The probability of 10-round boomerang distinguisher is p̂2 · q̂2 = 2−96.
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Figure 12: Key-recovery attack against 12-round Deoxys-BC-384

The attack process includes data collection phase and key recovery phase.

1. There are 6 active bytes in ∆Z11 in Round 11, so we choose structures of ciphertexts
taking all possible values of the 6 active bytes with the other bytes as constants. We
apply a method similar to the one in Subsection 5.1 to collect the quartets, and get
296−80 · 2t = 2t+16 quartets (c, c′, c̄, c̄′) satisfying c⊕ c̄ ∈ η and c′ ⊕ c̄′ ∈ η, where

η = (00 00 00 ∗ 00 00 ∗ ∗ 00 ∗ ∗ 00 ∗ 00 00 00).

2. For the 2t+16 remaining quartets, we recover equivalent subtweakeys IK11[2, 3, 12, 13,
14, 15] and IK10[11, 12]. Firstly, we deduce the IK11[2, 3] by the known difference
values of ∆Y11[2, 3] and ciphertext pairs (c, c̄), and then verify the obtained 16-bit
subtweakey by decrypting (c′, c̄′) to get ∆Y11[2, 3]. There are about 2t remaining
quartets. Secondly, similarly to the second and third step of key recovery in Sub-
section 5.1, we guess the 216 values of IK11[12, 13] and deduce the subtweakeys
IK11[14, 15] and IK10[11, 12] for the remaining quartets. There are about 2t−16

remaining quartets with 8 bytes of subtweakeys. We count the 64-bit corresponding
subtweakey.

Complexity Computation: In the process above, rf = 48 andmf = 64. The complexity
of data collection is 4 · 2t+48 queries. The complexity of key recovery is about 2t+16 one
round encryptions, which is equivalent to about 2t+16/12 = 2t+12.4 encryptions. Because
the probability of the difference η propagating to δ is 2−48 and the probability of boomerang
distinguisher is 2−96, there are 2t · 296 · 2−48 · 2−96 = 2t−48 right quartets in data collection
in total. Once a right quartet is obtained, the right key is counted. The expected counter
of the right key is 2t−48, and the expected counter of the wrong key is 2t−16−64 = 2t−80.
When the master key size is k = 128 and t = 48, the total complexity is 298 queries and
260.4 + 2128−32 ≈ 296 encryptions, the memory complexity is bounded by the size of the
key-counter, which is 264, and the success probability is 58.68%, where h = 32. When
t = 49, the total complexity is 299 queries and 261.4 + 2128−32 ≈ 296 encryptions, and the
success probability is 73.58%, where h = 32.
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Figure 13: Key-recovery attack against 13-round Deoxys-BC-384

A.2 Related-tweakey Boomerang Attack on 13-round Deoxys-BC-384
Based on the 11-round boomerang distinguisher in Table 7, we mount a 13-round key-
recovery attack by appending 2 rounds at the end of the distinguisher illustrated in
Figure 13. Note that there are 12 active bytes in ∆Z12 in the last round, here we redefine
the difference that form η by

η = (00 ∗ ∗ ∗ ∗ ∗ ∗ 00 ∗ ∗ 00 ∗ ∗ 00 ∗ ∗ ).

Here, rf = 96 and mf = 136. The 13-round key recovery attack process is as follows.

Data Collection.
Choose structures of ciphertexts taking all the possible values of the 12 active bytes in

η, and all of the remaining bytes are fixed to some arbitrary values. We apply a method
similar to the one in Subsection 5.1 to collect the quartets satisfying c⊕ c̄ ∈ η and c′⊕ c̄′ ∈ η.
Note that there are 4 zero-differences in ∆Z12, so there are about 296·2 × 2−32 = 2160

quartets for each structure. There are 2160 ·2t = 2t+160 quartets remaining for 2t structures.
Key Recovery.

There are 12 bytes of equivalent subtweakeys of STK13 and 5 bytes of equivalent
subtweakeys of STK12 involved in the partial decryption process from ciphertext to
∆Y11. Use similar process as the attack on 12-round on Deoxys-BC-384, we give a
simple description of the key-recovery process. For each of the 2t+160 remaining quartets
(c, c′, c̄, c̄′), we do the following steps.

1. We guess the subtweakey byte IK12[12] and deduce the value and difference of Y12[12].
There are three zero-difference bytes in the last column of ∆Z11, so the differences
∆Y12[13, 14, 15] are deduced utilizing the MixColumns operation. Then we get the
corresponding subtweakeys IK12[13, 14, 15] because the input and output differences
of the Sboxes are known. Then partially decrypt (c′, c̄′) to get the last column
of ∆Z11. If ∆Z11[13, 14, 15] = 0, we keep the quartets and corresponding 32-bit
subtweakey. Otherwise, we eliminate the quartets. There are about 2t+144 remaining
quartets. Then we compute ∆Z11[12], deduce the corresponding subtweakey IK11[12]
for pairs (c, c̄) and verify the subtweakey using the corresponding pair (c′, c̄′). There
are about 2t+136 remaining quartets with 5 bytes subtweakeys.
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2. Similar to above step, we guess the 216 values of IK12[8, 9] and deduce the subtweakeys
IK12[10, 11] and IK11[2, 13] for the remaining quartets. There are about 2t+136−16 =
2t+120 remaining quartets with 11 bytes subtweakeys.

3. We also apply the same methods to compute the subtweakeys IK12[6, 7] and
IK11[3, 14] by guessing IK12[4, 5] for the remaining quartets. There are about
2t+104 remaining quartets with the corresponding 136-bit subtweakeys. We count
the 136-bit corresponding subtweakey.

Complexity Computation: The complexity of data collection is 4 · 2t+96 queries.
The complexity of key recovery is about 2t+160+8 one round encryptions, which is equivalent
to about 2t+160 · 28/13 = 2t+164.3 encryptions. Because the probability of the difference η
propagating to δ is 2−96 and the probability of boomerang distinguisher is 2−122, there
are 2t · 2192 · 2−96 · 2−122 = 2t−26 right quartets in data collection in total. Once a right
quartet is obtained, the right key is counting. The expected counter of the right key is
2t−26, and the expected counter of the wrong key is 2t+104−136 = 2t−32. The memory
complexity is bounded to the size of the key-counter, which is 2136. When t = 27 and
h = 70, the total complexity is 2125 queries and 2191.3 + 2256−70 ≈ 2191.3 encryptions,
the memory complexity is bounded by the size of the key-counter, which is 2136, and the
success probability is about 42%.

B Related-tweakey Boomerang Distinguishers of Deoxys-
BC
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Table 3: 9-round distinguisher of Deoxys-BC-256 in [CHP+17]

∆TK1
0 : 00 7f 00 00 00 ff 00 00 0b 00 f1 00 00 00 00 7c

∆TK2
0 : 00 cf 00 00 00 3f 00 00 70 00 5e 00 00 00 00 be

∇TK1
0 : 00 00 00 00 00 a1 00 04 00 00 00 00 00 00 00 00

∇TK2
0 : 00 00 00 00 00 bf 00 a8 00 00 00 00 00 00 00 00

R ∆X ∆K ∆Y ∆Z pr

1

00 00 7b 00
b0 c0 00 00
00 00 af 00
00 00 00 c2

00 00 7b 00
b0 c0 00 00
00 00 af 00
00 00 00 c2

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

2

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

e0 80 00 00
00 4d 00 00
00 00 00 00
00 00 00 ea

e0 80 00 00
00 4d 00 00
00 00 00 00
00 00 00 ea

b4 c9 00 00
21 00 00 00
00 00 00 00
73 00 00 00

2−28

3

63 89 00 00
85 c9 00 00
00 c9 00 00
00 40 00 00

00 89 00 00
85 00 00 00
00 c9 00 00
00 40 00 00

63 00 00 00
00 c9 00 00
00 00 00 00
00 00 00 00

8d 00 00 00
8c 00 00 00
00 00 00 00
00 00 00 00

2−14

4

8e 00 00 00
8e 00 00 00
01 00 00 00
00 00 00 00

8e 00 00 00
8e 00 00 00
01 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

5

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 80 03
13 00 00 00
00 98 00 00

00 00 00
00 00

00 00 00
00 00 00

00 00 00
00 00
00 00 00
00 00 00

1

6

00 00
00 00
00 00
00 00

00 07
00 35
00 b4
00 00

00
00
00
00 00

00
00

00
00 00

1

5

00
00 00

00
00

00
00 00

00
00

1

6

00 00
32 00
05 00
00 00

00 00
00 00
05 00
00 00

00 00 00
32 00 00
00 00 00
00 00

00 00 00
2f 00 00
00 00 00

00 00

2−7

7

00 00 00 00
06 00 00 00
00 00 00 00
71 00 00 00

00 00 00 00
06 00 00 00
00 00 00 00
71 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

8

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

9

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 e3 00 00
00 00 00 00
00 0c 00 00

00 00 00 00
00 e3 00 00
00 00 00 00
00 0c 00 00

00 00 00 00
72 00 00 00
00 00 00 00
00 00 9d 00

2−12
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Table 4: 9-round distinguisher of Deoxys-BC-256. The probabilities marked with † are
only counted once

∆TK1
0 : 00 7f 00 00 00 ff 00 00 0b 00 f1 00 00 00 00 7c

∆TK2
0 : 00 cf 00 00 00 3f 00 00 70 00 5e 00 00 00 00 be

∇TK1
0 : 00 00 00 00 00 00 00 7e 00 00 00 00 00 00 9b 00

∇TK2
0 : 00 00 00 00 00 00 00 66 00 00 00 00 00 00 5b 00

R ∆X ∆K ∆Y ∆Z pr

1

00 00 7b 00
b0 c0 00 00
00 00 af 00
00 00 00 c2

00 00 7b 00
b0 c0 00 00
00 00 af 00
00 00 00 c2

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

2

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

e0 80 00 00
00 4d 00 00
00 00 00 00
00 00 00 ea

e0 80 00 00
00 4d 00 00
00 00 00 00
00 00 00 ea

b4 c9 00 00
21 00 00 00
00 00 00 00
73 00 00 00

2−28

3

63 89 00 00
85 c9 00 00
00 c9 00 00
00 40 00 00

00 89 00 00
85 00 00 00
00 c9 00 00
00 40 00 00

63 00 00 00
00 c9 00 00
00 00 00 00
00 00 00 00

8d 00 00 00
8c 00 00 00
00 00 00 00
00 00 00 00

2−14

4

8e 00 00 00
8e 00 00 00
01 00 00 00
00 00 00 00

8e 00 00 00
8e 00 00 00
01 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

5

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 80 03
13 00 00 00
00 98 00 00

00 00 00
00 00 80

00 00 00
00 00 00

00 00 00
00 ae 00
00 00 00
00 00 00

2−6 †

6

00 00
00 00
00 00
00 00

00 07
00 35
00 b4
00 00

00
00 47
00
00 00

00
00

00
00 00

1

5

00
00 00

00
00

00
00 00

00
00

1

6

00 00
47 00
a1 00
00 00

00 00
00 00
a1 00
00 00

00 00 00
47 00 00
00 00 00
00 00

00 00 00
32 00 00
00 00 00

00 00

2−7 †

7

56 00 00 00
c1 00 00 00
00 00 00 00
00 00 00 00

56 00 00 00
c1 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

8

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

9

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 ac
00 83 00 00

00 00 00 00
00 00 00 00
00 00 00 ac
00 83 00 00

00 00 00 00
00 00 00 00
00 f2 00 00
00 00 8f 00

2−12
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Table 5: Another 2-round boomerang switch for Deoxys-BC-256. The probabilities marked
with † are only counted once

R ∆X ∆K ∆Y ∆Z pr

5

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 80 03
13 00 00 00
00 98 00 00

00 00 00
00 00 80

00 00 00
00 00 00

00 00 00
00 96 00
00 00 00
00 00 00

2−7 †

6

00 00
00 00
00 00
00 00

00 07
00 35
00 b4
00 00

00
00 37
00
00 00

00
00

00
00 00

1

5

00
00 00

00
00

00
96 00

00
00

1

6

00 00
47 00
a1 00
00 00

00 00
00 00
a1 00
00 00

00 00 00
37 00 00
00 00 00
00 00

00 00 00
32 00 00
00 00 00

00 00

2−7 †
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Table 6: 11-round distinguisher of Deoxys-BC-384 in [CHP+17]

∆T K1
0 : 00 8b 00 00 c4 00 00 00 7a 00 c5 a6 00 00 00 00

∆T K2
0 : 00 ad 00 00 c4 00 00 00 73 00 21 d8 00 00 00 00

∆T K3
0 : 00 a3 00 00 9a 00 00 00 3b 00 0d 2e 00 00 00 00

∇T K1
0 : 00 00 02 00 00 00 00 00 d7 00 00 00 00 00 00 00

∇T K2
0 : 00 00 99 00 00 00 00 00 bc 00 00 00 00 00 00 00

∇T K3
0 : 00 00 0c 00 00 00 00 00 f1 00 00 00 00 00 00 00

R ∆X ∆K ∆Y ∆Z pr

1

00 9a 32 00
85 00 00 00
00 00 e9 00
00 00 50 00

00 9a 32 00
85 00 00 00
00 00 e9 00
00 00 50 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

2

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

3

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 4f
f1 7a 00 00
00 57 00 00

00 00 00 00
00 00 00 4f
f1 7a 00 00
00 57 00 00

00 00 00 00
00 00 2a 00
00 00 15 a6
00 00 6b 00

2−28

4

00 00 00 a6
00 00 00 f1
00 00 bd 57
00 00 e9 a6

00 00 00 a6
00 00 00 f1
00 00 00 57
00 00 e9 00

00 00 00 00
00 00 00 00
00 00 bd 00
00 00 00 a6

00 00 00 00
00 00 00 00
19 00 00 00
2b 00 00 00

2−13

5

32 00 00 00
00 00 00 00
4f 00 00 00
4f 00 00 00

32 00 00 00
00 00 00 00
4f 00 00 00
4f 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

6

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 85 00
00 00 00 b9
00 00 00 00
9a 34 00 00

00 00 00
00 00 00

00 00 00
00 00

00 00 00
00 00 00
00 00 00
00 00

1

7

00 00
00 00
00 00
00 00

00 08
00 00
00 09
00 1b

00
00 00
00
00

00
00 00
00

00

1

6

00
00

00
00 00

cb 00
ff 00
1a 00
00 00

1

7

8d 00
00 00
00 00
a3 00

8d 00
00 00
00 00
00 00

00 00 00
00 00
00 00 00
a3 00 00

00 00 00
00 00
00 00 00
00 b5 00

2−7

8

00 00 00 00
00 00 c4 00
00 00 00 00
00 00 05 00

00 00 00 00
00 00 c4 00
00 00 00 00
00 00 05 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

9

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

10

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

11

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 05
00 00 00 00
00 c4 00 00
00 00 00 00

00 00 00 05
00 00 00 00
00 c4 00 00
00 00 00 00

00 00 00 08
00 00 00 00
00 00 00 7f
00 00 00 00

2−12
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Table 7: 11-round distinguisher of Deoxys-BC-384

∆T K1
0 : 00 8b 00 00 c4 00 00 00 7a 00 c5 a6 00 00 00 00

∆T K2
0 : 00 ad 00 00 c4 00 00 00 73 00 21 d8 00 00 00 00

∆T K3
0 : 00 a3 00 00 9a 00 00 00 3b 00 0d 2e 00 00 00 00

∇T K1
0 : 00 00 8f 00 00 43 00 00 00 00 00 00 00 00 00 00

∇T K2
0 : 00 00 e7 00 00 a6 00 00 00 00 00 00 00 00 00 00

∇T K3
0 : 00 00 21 00 00 8b 00 00 00 00 00 00 00 00 00 00

R ∆X ∆K ∆Y ∆Z pr

1

00 9a 32 00
85 00 00 00
00 00 e9 00
00 00 50 00

00 9a 32 00
85 00 00 00
00 00 e9 00
00 00 50 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

2

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

3

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 4f
f1 7a 00 00
00 57 00 00

00 00 00 00
00 00 00 4f
f1 7a 00 00
00 57 00 00

00 00 00 00
00 00 2a 00
00 00 15 a6
00 00 6b 00

2−28

4

00 00 00 a6
00 00 00 f1
00 00 bd 57
00 00 e9 a6

00 00 00 a6
00 00 00 f1
00 00 00 57
00 00 e9 00

00 00 00 00
00 00 00 00
00 00 bd 00
00 00 00 a6

00 00 00 00
00 00 00 00
19 00 00 00
2b 00 00 00

2−13

5

32 00 00 00
00 00 00 00
4f 00 00 00
4f 00 00 00

32 00 00 00
00 00 00 00
4f 00 00 00
4f 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

6

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 85 00
00 00 00 b9
00 00 00 00
9a 34 00 00

00 00 00
00 00 00

00 00 00
00 00

00 00 00
00 00 00
00 00 00
00 00

1

7

00 00
00 00
00 00
00 00

00 08
00 00
00 09
00 1b

00
00 00
00
00

00
00 00
00

00

1

6

00
00

00
00 00

cf 00
96 00
a1 00
00 00

1

7

85 00
00 00
00 00
7d 00

85 00
00 00
00 00
00 00

00 00 00
00 00
00 00 00
7d 00 00

00 00 00
00 00
00 00 00
00 94 00

2−7

8

00 00 00 00
00 00 00 00
00 00 a7 00
00 00 d8 00

00 00 00 00
00 00 00 00
00 00 a7 00
00 00 d8 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

9

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

10

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

11

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 d8
00 00 00 00
00 00 00 00
00 00 a7 00

00 00 00 d8
00 00 00 00
00 00 00 00
00 00 a7 00

00 00 00 2a
00 00 00 00
00 00 00 00
00 00 00 3f

2−13
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