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Abstract. Cube attacks are an important type of key recovery attacks against stream
ciphers. In particular, they are shown to be powerful against Trivium-like ciphers.
Traditional cube attacks are experimental attacks which could only exploit cubes
of size less than 40. At CRYPTO 2017, division property based cube attacks were
proposed by Todo et al., and an advantage of introducing the division property to
cube attacks is that large cube sizes which are beyond the experimental range could
be explored, and so powerful theoretical attacks were mounted on many lightweight
stream ciphers.

In this paper, we revisit the division property based cube attacks. There is an
important assumption, called Weak Assumption, proposed in division property based
cube attacks to support the effectiveness of key recovery. Todo et al. in CRYPTO
2017 said that the Weak Assumption was expected to hold for theoretically recovered
superpolies of Trivium according to some experimental results on small cubes. In
this paper, it is shown that the Weak Assumption often fails in cube attacks against
Trivium, and moreover a new method to recover the exact superpoly of a given cube
is developed based on the bit-based division property. With our method, for the cube
I proposed by Todo et al. at CRYPTO 2017 to attack the 832-round Trivium, we
recover its superpoly pI(x, v) = v68v78 · (x58 ⊕v70) · (x59x60 ⊕x34 ⊕x61). Furthermore,
we prove that some best key recovery results given at CRYPTO 2018 on Trivium
are actually distinguishing attacks. Hopefully this paper gives some new insights on
accurately recovering the superpolies with the bit-based division property and also
attract some attention on the validity of division property based cube attacks against
stream ciphers.
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1 Introduction
The cube attack is a powerful cryptanalytic technique against stream ciphers proposed
by Dinur and Shamir at Eurocrypt 2009 in [DS09]. Let f(x, v) be a tweakable Boolean
polynomial describing the first output bit of a stream cipher, where x are secret key
variables and v are public IV variables. Let I be a subset of IV indices. Then f(x, v) could
be written as

f(x, v) = tI · pI(x, v)⊕ qI(x, v),

where tI =
∏

i∈I vi and each term of qI is not divisible by tI . The variables indexed
by I are called cube variables. By assigning all possible combinations of 0/1 values
to the cube variables, one could derive 2|I| polynomials from f , where the set of 2|I|
possible assignments is called a cube. The symbolic sum pI(x,v) of all these 2|I| resultant
polynomials is called the superpoly of I in f . The goal of cube attacks is to find a set I and
a proper assignment IV to the noncube variables such that the superpoly pI(x, IV ) is a
low-degree and nonconstant polynomial in x. Once such a set I and a proper assignment
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IV are found, an equation on secret key variables x could be built by inquiring the value
of pI(x, IV ) online.

In [DS09, FV13, MS11, YT18b], the original polynomial f(x, v) is treated as a black-
box polynomial and linearity/quadraticity tests are used to detect low-degree superpolies.
If a superpoly passes through linearity/quadraticity tests, the algebraic normal form
(ANF) of it could also be experimentally recovered by interpolation. Cube attacks in
[DS09, FV13, MS11, YT18b] are called experimental cube attacks, since superpolies are
recovered by experimental tests. The advantage of an experimental cube attack is that it
is easy to verify the correctness of a recovered superpoly since its ANF is clearly provided.
However, testing cubes of size greater than 35 is time consuming. Hence, in experimental
cube attacks, the sizes of cubes are typically confined to 40, which greatly restricts the
number of attacking rounds.

In [YT18a], based on the numeric mapping technique proposed by Liu in [Liu17], the
authors proposed a new variant of cube attacks, which is named deterministic cube attacks.
In [YT18a], by expressing the output bit z as a polynomial on the internal state s(t), i.e.
zt = gt(s(t)), they first introduced a new type of cubes, called useful cubes. For a useful
cube I, the numeric degree of each term of gt is less than or equal to |I|. Due to this
special property of useful cubes, their superpolies could be recovered more easily. Then,
they developed an algebraic method to recover the exact superpoly of a useful cube. As
a result, they recovered some superpolies of up to the 838-round Trivium. However, it
seems that the deterministic cube attacks could not exploit large cubes and the recovered
superolies are highly biased, where the number of 0’s is much larger than the number of
1’s.

In [TIHM17], by introducing the bit-based division property into cube attacks, Todo
et al. could exploit large cube sizes and theoretically evaluate the security of a stream
cipher against cube attacks. The division property was first proposed by Todo in [Tod15]
as a generalization of integral property used in integral cryptanalysis against block ciphers.
In [Tod15], Todo systematically studied propagation rules of division property against
Feistel Networks and Substitute-Permutation Networks (SPN). Later, in [TM16], Todo
and Morii further proposed the bit-based division property and applied it to the SIMON
family yielding several new integral distinguishers. In [XZBL16], Xiang et al. introduced
mixed integer linear programming (MILP) models to evaluate the division propagation
which was shown to be more efficient.

In [TIHM17], for a cube CI , with the help of MILP aided division property, the authors
could determine a set J of key variables which includes all the key variables appearing in
the superpoly pI(x,v). Then, by constructing the truth table of pI for some randomly
chosen assignments to noncube variables, they attempted to find a proper assignment IV
such that pI(x, IV ) was nonconstant. Once a nonconstant superpoly pI was found, a
part of the key information could be recovered. Due to the power of MILP solvers, large
cubes could be explored. For example, in [TIHM17], it was shown that the superpoly of
a given 72-dimensional cube depended on at most five key variables for the 832-round
Trivium. Later in [WHT+18], the authors introduced several techniques to improve the
division property based cube attacks proposed in [TIHM17]. Their techniques focused
on finding proper assignments of noncube variables faster and reducing the complexity
of recovering the superpoly. It was shown in [WHT+18] that the superpoly of a given
78-dimensional cube was dependent on at most one key variable for the 839-round Trivium.
However, in the division property based cube attacks, it could not guarantee a nonconstant
superpoly. Hence, the key recover attacks proposed in [TIHM17, WHT+18] may be just
distinguishing attacks.

Besides recovering the superpolies to retrieve key variables directly, there are another
two important variants of cube attacks, namely dynamic cube attacks [DS11] and correla-
tion cube attacks [LYWL18]. Dynamic cube attacks recover key variables by exploiting
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distinguishers on superpolies such as unbalance and constantness. To obtain such distin-
guishers, the main idea of dynamic cube attacks is to simplify the ANF representation of
some intermediate state bits by assigning dynamic constraints to public variables. Dynamic
cube attacks were successfully used to break Grain-128 [DS11, DGP+11]. Although in
[FWDM18], the authors propose dynamic cube attacks against the 721- and 855-round
Trivium, quickly the attack against 721-Trivium was experimentally verified to fail and
some complexity analysis also indicated that the 855-round attack was questionable in
[HJL+18]. Correlation cube attacks recover key variables by solving a system of proba-
bilistic equations in key variables derived from conditional correlation properties between
superpolies and a set of simple key expressions which is a basis of the superpoly. In
[LYWL18], a correlation cube attack was applied to the 835-round Trivium which could
recover about 5-bit key information with time complexity 244, using 245 keystream bits
and preprocessing time 251.

1.1 Motivations
In this part, we first revisit what is guaranteed by a bit-based division trail for an r-round
iterative cipher. Second, we briefly discuss how division trails are used in cube attacks
against stream ciphers, and we will see that a problem may occur when using division
trails in cube attacks. Third, we discuss the countermeasure proposed by previous papers
to the problem. Finally, we explain why we focus on Trivium.

Let E be a target r-round n-bit iterated cipher, whose input variables are denoted by
x1, x2, . . . , xn and the output variable is denoted by y, respectively, i.e., y = E(x1, x2, . . .,
xn). If E is a block cipher, then x1, x2, . . . , xn will represent plaintext bits and y means a
ciphertext bit1. If E is a stream cipher, then x1, x2, . . . , xn will represent both IV and key
variables and y means the first keystream bit. If there is a division trail k0

E−→ kr = 1, then
attackers do not know whether the output bit y is balanced or not2. On the other hand, if
there is no division trail such that k0

E−→ 1, then it is guaranteed that the output bit y
is balanced. The prevail method to check the existence of a division trail like k0

E−→ 1 is
using MILP solvers, that is, generating an MILP model to cover all division trails starting
from k0, and the feasibility of the model will tell us whether there is a division trail from
k0 to 1 or not.

Next let us revisit how the division property is used in a cube attack against a stream
cipher f(x,v) where x and v denote the secret key and IV variables, respectively. Given
a cube CI and a secret key variable xj where I is a subset of IV indices, generate an
MILP modelM that covers all division trails from (ej ,kI) and evaluate whether there
exists a division trail such that (ej ,kI) f−→ 1, where kI is the division property of the cube
CI and ej is the unit vector whose only j-th bit is 1. If there is no division trail such
that (ej , kI) f−→ 1, then it is guaranteed that the secret key variable xj is not involved in
the superpoly pI of the cube CI . But on the other hand, if there is a division trail such
that (ej ,kI) f−→ 1, attackers do not know whether the secret key variable xj is involved in
pI(x,v) or not. Hence, what is guaranteed by the division property in a cube attack is a
set of secret key variables not appearing in a target superpoly. However, to mount a key
recovery attack, attackers need to know all key variables that are involved in a superpoly.

The countermeasure used in the previous papers on division property based cube
attacks is giving the following assumption to support the existence of key variables in a

1Generally, for a block cipher, there are n-bit ciphertexts. Because we focus on stream ciphers, here we
simplify the representation of an iterated block cipher to make it look unified with that of a stream cipher.

2Since there is a division trail k0
E−→ kr = 1, the output bit has the division property D11

1 . According
to the definition of division property, it indicates that attackers do not know whether the output bit y is
balanced or not.
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superpoly, namely Weak Assumption.

Assumption 1 (Weak Assumption [TIHM17, TIHM18, WHT+18]). For a cube CI , there
are many values in the constant part of IV whose corresponding superpoly is not a constant
function.

Based on this assumption, a division property based cube attack goes roughly like this.
Also take f(x,v) and the cube CI for example. First, using the division property to rule
out a set J1, where xj does not appear in the superpoly pI for xj ∈ J1. On the other
hand, with J1, one could know the set J2 which includes all the key variables which may
appear in the superpoly pI . However, for xj ∈ J2, it is not guaranteed that xj appears
in the superpoly pI . Particularly, when pI is a constant polynomial, there would not
be key variables involved in pI . Second, according to the Weak Assumption, one could
easily find a proper assignment to the constant part of IV variables such that pI(x, IV ) is
nonconstant. Third, after finding a nonconstant pI(x, IV ), attackers recover the ANF of
pI on the variables of J2. Finally, attackers could build an equation on key variables by
obtaining the value of pI online.

Because cube sizes used in division property based cube attacks were very large, the best
results are theoretical attacks that are impossible to verify experimentally. We argue that
if Assumption 1 fails, some key recovery attacks claimed in [TIHM17, TIHM18, WHT+18]
will be distinguishing attacks only. The validity of the Weak Assumption was ever briefly
discussed in [TIHM18, Sect. 7]. Based on some experiments on small cubes, it was
concluded in [TIHM18] that the Weak Assumption was expected to hold in theoretical
recovered superpolies for Trivium, and if the assumption did not hold, the recovered
superpoly is useful for distinguishing attacks. Although we agree that Assumption 1 should
hold with a large probability, it still might fail for a few specific attacks, especially when
few key variables are involved in a superpoly, say 1 or 2 key variables, which often happens
on Trivium.

The validity of Assumption 1 as well as our experimental observation that Assumption
1 fails in some best key recovery attacks on Trivium is the motivation of our work in this
paper.

Finally, there are two reasons for us focusing on Trivium in this paper. First, Trivium
is an important and typical target for cube attacks. Second, compared with other NFSR-
based ciphers, we feel that Weak Assumption is more likely to fail for Trivium since Trivium
has quite simple state update function and the recovered superpolies often involve few
key variables. So far we do not observe invalid key recovery results for other NFSR-based
ciphers.

1.2 Our Contributions
In this paper, we propose a new method to recover the superpoly pI(x,v) of a cube indexed
by a set I in the output bit function z(x,v) of a cipher based on the MILP-aided division
property. It is known that this is a quite difficult problem for a well-designed cipher since
the ANF of z(x,v) is designed to be very complex which is generally thought to be a
black-box polynomial. However, it is shown in this paper that our method is practically
feasible for lots of large cubes based on the MILP-aided division property. Thus, our
method has two implications. First, the division property could be used to algebraically
recover the superpoly of a large cube while previous division property based cube attacks
are only theoretical attacks where the exact ANFs of superpolies are not given. Second,
with the aid of the division property, the superpoly of a large cube could be recovered
which is impossible for previous experimental cube attacks.

Our basic idea is very simple and consists in gradually expressing z as a polynomial on
the initial state s(0) iteratively and by discarding during each iteration all the terms on
which the superpoly of I is proved to be zero using the MILP-aided division property. It
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can be seen that we only use the division property to judge 0-sum property not identifying
key bits. Therefore, our method does not rely on the Weak Assumption. Besides, we
emphasize that in our MILP models, all IV bits are set to be variables (active or non-active).
When we reach the initial state s(0), we could recover the superpoly pI(x,v) according
to how s(0) is initialized. Due to the efficiency of MILP solvers, this iterative progress of
computing the local algebraical expansion of z for a given cube is practical on a normal
PC.

With the knowledge of the exact superpoly of a given cube, we could easily verify the
correctness of the Weak Assumption for previous results. Besides, there are two more
benefits brought by our new method. Let pI(x,v) be a recovered superpoly which includes
key variables.

– It is very convenient for us to give different assignments of noncube IV variables
yielding different superpolies according to the ANF of pI(x,v).

– When the ANF of pI(x,v) has many terms, it is very convenient for us to obtain
several simple superpolies by enlarging the set of cube variables.

As an application, we apply our method to the round-reduced Trivium. Consequently,
we get the following results.

• For I1 = {1, 2, . . . , 65, 67, 69, . . . , 79} proposed in [TIHM17], we recover the superpoly
pI1(x,v) of I1 in the output bit of the 832-round Trivium given by

pI1(x,v) = v68v78 · (x58 ⊕ v70) · (x59x60 ⊕ x34 ⊕ x61).

– If we set IV =0x20080000000000000000, then the corresponding superpoly is

pI1(x, IV ) = x58 · (x59x60 ⊕ x34 ⊕ x61).

– If we set IV =0x20280000000000000000, then the corresponding superpoly is

pI1(x, IV ) = (x58 ⊕ 1) · (x59x60 ⊕ x34 ⊕ x61).

• For the cubes proposed in [WHT+18], we prove that their superpolies in the output
bit of the 833-, 835-, 836- and 839-round Trivium are 0-constant.

It can be seen that Weak Assumption proposed in [TIHM17, WHT+18] does not always
hold. We summarize our results in the following table.

Table 1: Results on Trivium variants with up to 839 rounds

Rounds Cube “Involved” Key Variables Exact Superpoly
832 I1 x34, x58, x59, x60, x61 [TIHM17] v68v78 · (x58 ⊕ v70) · (x59x60 ⊕ x34 ⊕ x61)
833 I2 x49, x58, x60, x64, x74, x75, x76 [WHT+18] 0-constant
833 I3 x60 [WHT+18] 0-constant
835 I4 x57 [WHT+18] 0-constant
836 I5 x57 [WHT+18] 0-constant
839 I6 x61 [WHT+18] 0-constant

I1 = {1, 2, . . . , 65, 67, 69, . . . , 79}
I2 = {1, 2, . . . , 67, 69, 71, . . . , 79}
I3 = {1, 2, . . . , 69, 71, 73, . . . , 79}
I4 = {1, 2, 3, 4, 6, 7, . . . , 50, 52, 53, . . . , 64, 66, 67, . . . , 80}
I5 = {1, . . . , 11, 13, . . . , 42, 44, . . . , 80}
I6 = {1, . . . , 33, 35, . . . , 46, 48, . . . , 80}
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1.3 Organization
The rest of this paper is organized as follows. Sect. 2 briefly introduces the necessary
backgrounds of this paper. In Sect. 3, we introduce two useful lemmas and propose a
new method to recover the superpoly. In Sect. 4, we apply our attack framework to the
round-reduced Trivium. Finally, Sect. 5 concludes this paper.

2 Preliminaries
2.1 Mixed Integer Linear Programming
Mixed Integer Linear Programming (MILP) is a kind of mathematical optimization whose
objective function and constraints are linear, and all or some of the variables are constrained
to be integers. Generally, there are variablesM.var, constraintsM.con, and the objective
functionM.obj in an MILP modelM. If there is no objective function inM, then MILP
solvers like Gurobi [GRB] will return whether M is feasible. The following is a small
example.

Example 1.

M.var ← a, b, c as binary.
M.con← a+ b+ c ≥ 1
M.con← a+ 2b+ c ≤ 3
M.obj ← minimize a+ b+ 2c

The minimum value of a+ b+ 2c is 1, where (a, b, c) = (1, 0, 0) is one optimal solution.

MILP was first applied to differential and linear cryptanalysis by N. Mouha et al.
in [MWGP11]. Since then, MILP has been applied to search characteristics in many
cryptanalysis techniques such as differential cryptanalysis [SHW+14, SS14], impossible
differential cryptanalysis [ST17] and integral cryptanalysis based on the division property
[XZBL16].

2.2 Cube Attacks
The idea of cube attacks was first proposed by Dinur and Shamir in [DS09]. In a cube
attack against stream ciphers, an output bit z is described as a tweakable Boolean function
f in key variables x = (x1, x2, . . . , xn) and public IV variables v = (v1, v2, . . . , vm), i.e.,
z = f(x,v). Let I = {i1, i2, . . . , id} be a subset of IV indices. Then f can be rewritten as

f(x,v) = tI · pI(x,v)⊕ q(x,v), (1)

where tI =
∏

i∈I vi, pI does not contain any variable in {vi1 , vi2 , . . . , vid
}, and each term

in q is not divisible by tI . It can be seen that the summation of 2d functions derived from
f by assigning all the possible values to d variables indexed by the set I equals to pI , that
is, ⊕

(vi1 ,vi2 ,...,vid
)∈Fd

2

f(x,v) = pI(x,v). (2)

The public variables in {vi1 , vi2 , . . . , vid
} are called cube variables, while the remaining

public variables are called noncube variables. The set CI of all 2d possible assignments
of the cube variables is called a d-dimensional cube, and the polynomial pI is called the
superpoly of CI in f . For the sake of convenience, we also call pI the superpoly of I in f .
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When the noncube IV variables are set to a specific value IV , we could get a superpoly
that only depends on key variables, which is denoted by pI(x, IV ).

A cube attack consists of the preprocessing phase and the online phase. In the
preprocessing phase, attackers try to find cubes with low-degree superpolies. In the online
phase, the previously found superpolies are evaluated under the real key. By solving a
system of low-degree equations, some key variables could be recovered.

2.3 The Bit-Based Division Property
The conventional bit-based division property was introduced in [TM16]. The authors of
[TM16] also introduced the bit-based division property using three subsets. In this paper,
we focus on the conventional bit-based division property. The definition of the conventional
bit-based division property is as follows.

Definition 1 (Bit-Based Division Property). Let X be a multiset whose elements
take a value of Fn

2 . Let K be a set whose elements take an n-dimensional bit vector. When
the multiset X has the division property D1n

K , it fulfills the following conditions:

⊕
x∈X

xu =
{
unknown if there exists k in K s.t. u � k,
0 otherwise.

where u � k if and only if ui ≥ ki for all i and xu =
∏n

i=1 x
ui
i .

Let Er be an r-round iterative cipher of size n, which is initialized with x1, x2, . . . , xn.
Assume that X is the input set with the division property D1n

K0
. Denote by Y the cor-

responding output set created from X by Er. Generally, it is difficult to evaluate the
division property of Y directly. Based on the propagation rules of basic operations proved
in [TM16, XZBL16], the division property of Y, denoted by D1n

Kr
, can be figured out

by evaluating the propagation of the division property for every round function. More
specifically, when the input set X is generated by a set of active variables indexed by
I = {i1, i2, . . . , id}, where the active variables traverse all 2|I| possible combinations while
the other variables are assigned to constants. Then, X has the division property D1n

k ,
where ki = 1 if i in I and ki = 0 otherwise. In this case, the division property of Y can be
evaluated as {k} = K0 → K1 → K2 · · · → Kr, where D1n

Ki
is the division property of the

internal state after i rounds. Moreover, if there does not exist a vector ej (only the j-th
element is 1) in D1n

Kr
, then the j-th output bit is balanced.

However, as r increases, |Kr| would expand rapidly and lead to a high memory
complexity [WHT+18]. It confines the bit-based division property to be applied to
small block ciphers such as SIMON32 and Simeck32 [TM16]. To avoid the high memory
complexity, in [XZBL16], the authors applied the MILP methods to the bit-based division
property. They first introduced the concept of division trails, which is defined as follows.

Definition 2 (Division Trail [XZBL16]). Let us consider the propagation of the division
property {k} = K0 → K1 → K2 · · · → Kr. Moreover, for any vector k∗i+1 ∈ Ki+1, there
must exist a vector k∗i ∈ Ki such that k∗i can propagate to k∗i+1 by the propagation rules
of division property. Furthermore, for (k0, k1, . . . , kr) ∈ K0 × K1 × · · · × Kr if ki can
propagate to ki+1 for i ∈ {0, 1, . . . , r−1}, we call k0 → k1 → · · · → kr an r-round division
trail.

In [XZBL16], the authors described the propagation rules for AND, COPY and XOR
with MILP models, see [XZBL16] for the detailed definition of AND, COPY and XOR.
Therefore, they could build an MILP model to cover all the possible division trails
generated during the propagation. Besides, in [TIHM17, SWW16], the authors made some
simplifications to those MILP models in [XZBL16]. Later, to describe the propagation of
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division property more precisely, the authors of [WHT+18] proposed the flag technique. In
the following, we briefly recall the flag technique and MILP models describing the modified
propagation rules of basic operations considering the effects of flags.

The Flag Technique [WHT+18]. To treat each variable more appropriately, for each
variable in v the MILP modelM, the authors introduced a flag variable v.F ∈ {0c, 1c, δ},
where 1c means the bit is constant 1, 0c means constant 0 and δ means variable. Then, the
authors defined =,⊕ and × operations for the elements of set {0c, 1c, δ}. The = operation
tests whether two elements are equal (naturally 1c = 1c, 0c = 0c and δ = δ ). The ⊕
operation follows the rules: 1c ⊕ 1c = 0c

0c ⊕ x = x⊕ 0c = x for arbitrary x ∈ {1c, 0c, δ}
δ ⊕ x = x⊕ δ = δ

(3)

The × operation follows the rules: 1c × x = x× 1c = x
0c × x = x× 0c = 0c for arbitrary x ∈ {1c, 0c, δ}
δ × δ = δ

(4)

As a result, the propagation rules of the basic operations XOR, AND and COPY
should be modified considering the effects of flags. The modified versions are denoted by
copyf, xorf, and andf whose MILP models are described in Propositions 1, 2 and 3 as
follows.

Proposition 1 (MILPModel for AND with Flag [WHT+18]). Let (a1, a2, . . . , am) AND−−−→
b be a division trail of AND. The following inequalities are sufficient to describe the prop-
agation of the division property for AND.

M.var ← a1, a2, . . . , am, b as binary,
M.con← b = max(a1, a2, . . . , am),
b.F = a1.F × a2.F × · · · × am.F
M.con← b = 0 if b.F = 0c.

We denote this process as (M, b)← andf(M, a1, a2, . . . , am).

Proposition 2 (MILPModel for XOR with Flag [WHT+18]). Let (a1, a2, . . . , am) XOR−−−→
b be a division trail of XOR. The following inequalities are sufficient to describe the prop-
agation of the division property for XOR. M.var ← a1, a2, . . . , am, b as binary,

M.con← b = a1 + a2 + · · ·+ am,
b.F = a1.F ⊕ a2.F ⊕ · · · ⊕ am.F

We denote this process as (M, b)← xorf(M, a1, a2, . . . , am).

Proposition 3 (MILP Model for COPY with Flag [WHT+18]). Let a COPY−−−−→
(b1, b2, . . . , bm) be a division trail of COPY. The following inequalities are sufficient
to describe the propagation of the division property for COPY. M.var ← a, b1, b2, . . . , bm as binary,

M.con← a = b1 + b2 + · · ·+ bm,
a.F = b1.F = b2.F = · · · = bm.F.

We denote this process as (M, b1, · · · , bm)← copyf(M, a).
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2.4 Cube Attacks Combining with the Bit-based Division Property
In [TIHM17], the authors applied the bit-based division property to cube attacks. Instead
of using the division property to find zero-sum integral distinguishers, in [TIHM17], they
used the division property to analyze the ANF coefficients of a Boolean function f . Based
on the following lemma and proposition, they proposed the division property based cube
attacks.

Lemma 1. Let f(x) be a polynomial from Fn
2 to F2 and af

u be the ANF coefficients. Let
k be an n-dimensional bit vector. If there is no division trail such that k f−→ 1, then af

u is
always 0 for u � k.

Proposition 4. Let f(x, v) be a polynomial, where x and v denote the secret and public
variables, respectively. For a set of indices I = {i1, i2, . . . , id} ⊂ {1, 2, . . . ,m}, let CI be a
set where {vi1 , vi2 , . . . , vid

} traverse all 2|I| values and the other public variables are set to
constants. Let kI be an m-dimensional bit vector such that vkI = tI = vi1vi2 · · · vid

, i.e.,
ki = 1 if i ∈ I and ki = 0 otherwise. If there is no division trail such that (ej , kI) f−→ 1,
then xj is not involved in the superpoly of the cube CI .

When f represents the output bit of the target cipher, based on Proposition 4, for
a cube CI , the authors could identify a set J , where {xj |j ∈ J} is the set of all the key
variables involved in the superpoly pI(x,v). More concretely, if there exists a division
trail such that (ej ,kI) f−→ 1, then the secret variable xj is regraded as one of the key
variables involved in the superpoly, i.e., J is updated as J ∪ j. After knowing the set J , in
[TIHM17], division property based cube attacks are described in the following three steps.

1. (Offline phase.) Find a preferable superpoly. Set the noncube variables to constants
randomly. For each possible value of the key variables indexed by J , query the oracle
and obtain the summation of all the 2|I| output values. Thus, the truth table of
pI(x,v) can be constructed with time complexity 2|I|+|J|. Search for nonconstant
pI(x,v) by changing the values of noncube variables.

2. (Online phase.) Set the noncube variables to previous found values which make the
corresponding pI(x,v) nonconstant. Query the encryption oracle and get one bit
pI(x,v), denoted by a. Then, we obtain an equation pI(x,v) = a about secret key
variables. The values of key variables which do not satisfy pI(x,v) = a could be
discarded.

3. (Brute-force search phase.) Guess the remaining secret key variables to recover the
entire key.

After the division property based cube attacks were first presented in [TIHM17], some
improvements were given in [TIHM18, WHT+18]. To name a few, in [TIHM18], which
is the full version of [TIHM17], noncube IV variables could be filled up with 0, later
in [WHT+18] noncube IV variables could be filled up with either 0 or 1, and also in
[WHT+18] with degree bounding and term enumeration techniques, the time complexity
to recover the superpoly could be reduced from 2|I|+|J| to 2|I|×

(|J|
≤d

)
where d is the degree

upper bound of the superpoly.

3 Towards Recovering the Superpoly
Let E be the target cipher, which is updated iteratively with a round function. Assume
that x = (x1, x2, . . . , xn) and v = (v1, v2, . . . , vm) are the secret and public variables in E,
respectively. Denote the output bit by z(x,v). Let I be a set of cube indices. If we could
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recover the exact ANF of superpoly pI(x,v) of I in z, then we could check the validity of
Weak Assumption.

However, the output bit z(x,v) is usually a very complex polynomial on x and v.
Namely, it seems difficult to recover pI(x,v) by calculating the complete ANF of z(x,v).
Note that the superpoly pI(x,v) of I in z usually depends on a tiny part of z(x,v).
Therefore, rather than calculating the complete ANF of z(x,v), our basic idea is to express
z as a polynomial on the initial state iteratively and discard the terms where the superpolies
of I are 0-constant in each iteration. When we reach the initial internal state s(0), we could
recover the superploly pI(x,v) according to how s(0) is initialized in the target cipher.

In the following two subsections, we will first introduce two useful lemmas in Subsection
3.1 and describe our new attack framework in Subsection 3.2.

3.1 Two Useful Lemmas
Let s(t) = (s(t)

1 , s
(t)
2 , . . . , s

(t)
N ) be the internal state of E after t rounds. Note that s(t)

i is a
polynomial on x and v for 1 ≤ i ≤ N . Namely,

s(t)(x,v) = (s(t)
1 (x,v), s(t)

2 (x,v), . . . , s(t)
N (x,v)).

For simplicity, we denote s(t)
i (x,v) by s(t)

i (x,v) without any ambiguity. Similarly, s(t)(x,v)
is denoted by s(t). We propose the following lemma first.

Lemma 2. For a set of indices I ⊂ {1, 2, . . . ,m}, let kI be an m-dimensional bit vector
such that vkI =

∏
i∈I vi. Assume that u =

∏N
i=1(s(t))wi

u , where wi
u ∈ {0, 1}. Namely, u is

a term which is the product of some internal state bits of s(t). If there is no division trail
such that (0,kI) s(t)

−−→ w = (w1, w2, . . . , wN ) for each w � wu = (w1
u, w

2
u, . . . , w

N
u ), then

the superpoly of I in u is 0-constant, where w � wu means that wi ≤ wi
u for 1 ≤ i ≤ N .

Proof. Let w = (w1, w2, . . . , wN ) be an N -dimensional vector such that w � wu. Let
Fw(x,v) =

∏N
i=1(s(t)

i (x,v))wi . The ANF representation of Fw(x,v) is as following.

Fw(x,v) =
⊕

γ∈Fm+n
2

aF w

γ (x||v)γ .

Since there is no division trial such that (0,kI) s(t)

−−→ (w1, w2, . . . , wN ), according to Lemma
1, we have that the coefficient aF w

γ = 0 for γ � (0,kI). Namely, the superpoly of I in Fw
is 0-constant.

Since there is no division trail (0,kI) Ft−→ w = (w1, w2, . . . , wN ) for each w � wu, we
have that the superpoly of I in u is 0-constant.

Remark 1. Let w = (w1, w2, . . . , wN ) be an N -dimensional vector such that w � wu =
(w1

u, w
2
u, . . . , w

N
u ). If there exists a division trail (0,kI) s(t)

−−→ (w1, w2, . . . , wN ), then the
coefficient aF w

γ for γ � (0,kI) is not guaranteed to be 0. Namely, the superpoly of I in
Fw(x,v) is not guaranteed to be 0-constant. Since wu � w, i.e, Fu(x,v) is divisible by
Fw(x,v), the superpoly of I in u is not guaranteed to be 0-constant according to the
definition of the division property.

For simplicity, for a given set I, a term u =
∏h

j=1 s
(t)
ij

satisfying the condition in Lemma
2 is called an invalid term for I in the rest of this paper. Besides, for a polynomial gt(s(t)),
we denote all terms of gt by T (gt), i.e.,

T (gt) = {ac

N∏
i=1

(s(t)
i )ci |ac = 1, c = (c1, c2, . . . , cN ) ∈ FN

2 }.

Based on Lemma 2, we could obtain the following lemma.
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Lemma 3. Let I be a set of cube indices. Assume that the output bit z is presented as
a polynomial in s(t), i.e., z = gt(s(t)). Then, according to Lemma 2, gt(s(t)) could be
rewritten as gt(s(t)) = g1

t (s(t)) ⊕ g2
t (s(t)), where each term u ∈ T (g2

t (s(t))) is an invalid
term for I. It can be seen that the superpoly of I in z = gt(s(t)) is exactly the superpoly of
I in g1

t (s(t)).

Since each term u ∈ T (g1
t (s(t))) is an invalid term for I, we have that the superpoly of

I in g2
t (s(t)) is 0-constant. Consequently, the superpoly of I in z = gt(s(t)) is exactly the

superpoly of I in g1
t (s(t)). According to Lemma 3, when recovering the superpoly of I in

z, we could discard the invalid terms for I by expressing the output bit z as a polynomial
in the internal state s(t).

3.2 A New Method to Recover Superpolies
In fact, Lemma 3 offers us a new approach to calculate the superpoly pI(x,v) corresponding
to a cube indexed by the set I. The basic idea is to express the output z iteratively and
utilize Lemma 3 to discard invalid terms for I during each iteration.

To outline our idea, we assume that the output bit z is represented as a polynomial
on the internal state s(t), i.e., z = gt(s(t)). Then, for each term u ∈ T (gt), we check
whether the superpoly of I in u is 0-constant with the MILP-aided division property. If
the superpoly of I in u is 0-constant, then we discard u. As a result, we could obtain a
simplified polynomial g1

t (s(t)), where g1
t (s(t)) includes all the remaining terms. According

to Lemma 3, pI(x,v) equals to the superpoly of I in g1
t (s(t)). Naturally, we could further

express g1
t (s(t)) as a polynomial on the internal state s(t−nt), i.e., g1

t (s(t)) = gt−nt(s(t−nt)),
where nt is a positive integer. Similarly, after discarding the invalid terms for I in T (gt−nt),
we could obtain a simplified polynomial g1

t−nt
(s(t−nt)). Note that the superpoly of I

in g1
t−nt

(s(t−nt)) equals to the superpoly of I in g1
t (s(t)), which equals to pI(x,v). By

performing the above procedure iteratively, we can finally obtain a polynomial g1
0(s(0))

such that the superpoly of I in g1
0(s(0)) is exactly the superpoly of I in z. Therefore, we

can easily recover pI(x,v) according to how s(0) is initialized.
We describe our idea in Algorithm 1 formally. In Algorithm 1, the procedure Recur-

sivelyExpressing is used to express the f(s(t)) as a polynomial on the internal state
s(t−nt), where nt is a positive integer. The procedure IsZeroConstant judges whether
the superpoly of I in u is 0-constant with the help of the MILP-aided division property.
Based on the procedures RecursivelyExpressing and IsZeroConstant, the procedure
RecoveringSuperpoly shows the detailed procedure to recover the superpoly of a given
cube indexed by the set I against the target cipher.

Remark 2. In the procedure IsZeroConstant, we do not set the noncube IV variables
to specific constant values, namely, we treat them as non-active variables whose flags are
δ. Hence, during each iteration, we only discard the terms on which the superpolies of I
are 0-constant for all possible assignments to the noncube IV variables. Consequently, we
could recover pI(x,v) completely and exactly rather than the ANF of pI(x, IV ), which is
the superpoly under the condition that noncube IV variables are assigned to a specific
value IV .

4 Experimental Results
In this section, we apply our new attack framework to the round-reduced Trivium. We
first present the concrete attacking algorithm for Trivium. Then, we perform various
experiments on several variants of the round-reduced Trivium.
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Algorithm 1 Recover the ANF of the superpoly of a given cube
1: procedure RecursivelyExpressing(f(s(t)), the number of recursive rounds
nt)

2: Express f(s(t)) as a polynomial on the internal state s(t−nt), i.e., determine the
polynomial gt−nt

such that

f(s(t)) = gt−nt
(s(t−nt)).

3: return gt−nt
(s(t−nt))

4: end procedure
1: procedure IsZeroConstant(the chosen term u, the set I of cube indices,

the target round t)
2: Declare an empty MILP modelM;
3: Declare x1, · · · , xn be n MILP variables ofM corresponding to secret variables;
4: Declare v1, · · · , vm be m MILP variables ofM corresponding to public variables;
5: M.Con← vi = 1 for i ∈ I;
6: M.Con← vi = 0 for i /∈ I;
7: xi.F lag = δ for i ∈ {1, 2, . . . , n};
8: vi.F lag = δ for i ∈ {1, 2, . . . , n};
9: for i from 1 to t do

10: UpdateM according to the round function of the target cipher;
11: end for
12: Set J = {j|s(t)

j appears in the term u};
13: M.Con ←

∑
j∈J a

(t)
j ≤ |J |, where a(t)

1 , a
(t)
2 , · · · , a(t)

N are the MILP variables de-
scribing the final division property after t rounds propagation.

14: M.Con← a
(t)
j = 0 for j /∈ J ;

15: SolveM;
16: if M is feasible then
17: return FALSE
18: else
19: return TRUE
20: end if
21: end procedure
1: procedure RecoveringSuperpoly(the set I of cube indices, the target

round r)
2: Set f = h(s(r)) initially, where h(s(r)) is the output function of the target cipher;
3: Set t = r;
4: Set nt = N0, where N0 is the number of recursive rounds;
5: while t > 0 do
6: Set nt = t if t ≤ N0;
7: Set f =RecursivelyExpressing(f , nt);
8: Set t = t− nt;
9: Set tempf = 0;
10: for u ∈ T (f) do
11: if IsZeroConstant(u,I,t) returns FALSE then
12: tempf = tempf ⊕ u;
13: end if
14: end for
15: Set f = tempf ;
16: end while
17: Set pI = 0;
18: for u ∈ T (f) do
19: Recover tu =

∏
j∈Ju

s
(0)
j according to how s

(0)
j is initialized in the target cipher;

20: pI = pI ⊕ tu;
21: end for
22: return pI ;
23: end procedure
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Algorithm 2 Pseudo-code of Trivium
1: (s1, s2, . . . , s93)← (x1, x2, . . . , x80, 0, . . . , 0);
2: (s94, s95, . . . , s177)← (v1, v2, . . . , v80, 0, . . . , 0);
3: (s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1);
4: for i from 1 to N do
5: t1 ← s66 ⊕ s93 ⊕ s91 · s92 ⊕ s171;
6: t2 ← s162 ⊕ s177 ⊕ s175 · s176 ⊕ s264;
7: t3 ← s243 ⊕ s288 ⊕ s286 · s287 ⊕ s69;
8: if i > 1152 then
9: zi−1152 ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288;
10: end if
11: (s1, s2, . . . , s93)← (t3, s1, . . . , s92);
12: (s94, s95, . . . , s177)← (t1, s94, . . . , s176);
13: (s178, s179, . . . , s288)← (t2, s178, . . . , s287);
14: end for

4.1 Specification of Trivium
Trivium is a bit oriented synchronous stream cipher designed by De Cannière and Preneel,
which was selected as one of eSTREAM hardware-oriented portfolio ciphers. The main
building block of Trivium is a 288-bit Galois nonlinear feedback shift register. For every
clock cycle there are three bits of the internal state updated by quadratic feedback functions
and all the other bits of the internal sate are updated by shifting. The internal state of
Trivium, denoted by (s1, s2, . . . , s288), is initialized by loading an 80-bit secret key and an
80-bit IV into the registers, and setting all the remaining bits to 0 except for the last three
bits of the third register. Then, the algorithm would not output any keystream bit until
the internal state is updated 4× 288 = 1152 rounds. This is described by the pseudo-code
shown in Algorithm 2. For more details, please refer to [CP08].

4.2 Discarding Terms with Degree Evaluation Methods
Let I be a set of cube indices. Assume that f(s(t)) is a polynomial generated in some
iteration of Algorithm 1. In our new attack framework, for each term u ∈ T (f), we need
to check whether the superpoly of I in u is 0-constant by solving a corresponding MILP
modelMu. When the order of T (f) is large, the time complexity of checking all the terms
of f would be high. Our solution is using the degree evaluation method. For the chosen
set I, if degI(u) < |I|, then the superpoly of I in u is 0-constant, where degI(u) is the
degree of u on variables indexed by I. Namely, by utilizing the degree evaluation method
based on the numeric mapping, we could discard a large amount of terms of f , and so
the number of MILP models needed to be solved could be reduced dramatically. Due to
the high efficiency of degree evaluation method, the total solving time could be reduced
dramatically. For example, in our application to the 832-round Trivium, we could discard
about 4999 out of 5295 terms in the first iteration. Note that it would definitely cost a
large amount of times to discard 4999 terms.

4.3 The Concrete Attacking Algorithm for Trivium
In this subsection, we show the concrete algorithm which is used to recover superpolies in
cube attacks against Trivium.

First, in the procedure TriviumCore of Algorithm 3, we show the MILP model which
describes the propagation of division property through the round function of Trivium. Based
on TriviumCore, for a given term u, the procedureGenerateMILPModelForTrivium
shows how to build an MILP modelMu which is used to check whether the superpoly of
I in u is 0-constant.
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Algorithm 3 Generate MILP models for Trivium
1: procedure TriviumCore(M,x,i1,i2,i3,i4,i5,i)
2: for j from 1 to 4 do
3: (M, y5·i+j , z4·i+j)← copyf(M, xij );
4: end for
5: (M, ai)← andf(M, z4·i+3, z4·i+4);
6: (M, y5·i+5)← xorf(M, ai, z4·i+1, z4·i+2, xi5 );
7: for j ∈ {1, 2, . . . , 288} \ {i1, i2, i3, i4, i5} do
8: Set wj = xj ;
9: end for
10: Set wij = y5·i+j for 1 ≤ j ≤ 5;
11: return (M, w)
12: end procedure
1: procedure GenerateMILPModelForTrivium(the set I of cube indices, the target round t,

the chosen term u =
∏h

i=1 s
(t)
ji

)
2: Declare an empty MILP modelM;
3: M.var ← w0

i for all i ∈ {1, 2, . . . , 288};
4: Set w0

i .F = δ for i ∈ {1, 2, . . . , 80, 94, 95, . . . , 173};
5: Set w0

i .F = 0 for i ∈ {81, 82, . . . , 93, 174, 175, . . . , 285};
6: Set w0

i .F = 1 for i ∈ {286, 287, 288};
7: for i = 1 to t do
8: (M,x)=TriviumCore(M,wi−1, 66, 171, 91, 92, 93, 3 · i+ 1);
9: (M, y)=TriviumCore(M,x,162, 264, 175, 176, 177, 3 · i+ 2);
10: (M, z)=TriviumCore(M,y,243, 69, 286, 287, 288, 3 · i+ 3);
11: Set wi = z >>> 1;
12: end for
13: M.con← wt

i = 0 for all i ∈ {1, 2, . . . 288} w/o {j1, j2, . . . , jh};
14: M.con←

∑h

i=1 w
t
ji
≤ h; B Add the constraint corresponding to u;

15: return M;
16: end procedure

Then, in Algorithm 4, we describe how to recover the superpolies in cube attacks
against Trivium. The critical part of Algorithm 4 is the while-loop from line 5 to line 19,
which consists of the following three phases.

– Call the procedure ExpressRecursivelyForTrivium to express the current poly-
nomial f(s(t)) as a polynomial on the internal state s(t−nt), where nt is positive
integer.

– After updating f with the procedure ExpressRecursivelyForTrivium, we discard
some terms of f with the degree evaluation method based on numeric mapping.

– For each term u ∈ RT , we build an MILP modelMu to check whether the superpoly
of I in u is 0-constant, where RT is the set of terms which cannot be discarded by
the degree evaluation method [Liu17].

In Algorithm 4, we perform this while-loop iteratively until we reach the initial internal
state s(0). As a result, we could obtain a simplified polynomial f(s(0)) such that the
superpoly of I in f(s(0)) equals to pI(x,v). Finally, according to the way how the state
s(0) is initialized, we could recover the superpoly pI(x,v) exactly.

On Determining nt. For a term u =
∏h

i=1 s
(t)
ji
, we need to build an MILP modelMu

which describes the propagation of the division property through t rounds. When t is
large,Mu includes a large amount of MILP variables and constraints. Generally, it is not
easy to solve such a large and complex MILP model. Hence, we initially set nt = 300, i.e.,
we express the output bit z after r rounds as a polynomial on the internal state s(r−300).
As a result, in the first iteration of the while-loop, we only need to build and solve MILP
models covering r − 300 rounds propagation of division property which are much easier to
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Algorithm 4 Recover the superpoly of a given cube for Trivium
1: procedure RecoverSuperpolyForTrivium(the set I of cube indices, the target round r)
2: Set f = sr

66 ⊕ s
r
93 ⊕ s

r
162 ⊕ s

r
177 ⊕ s

r
243 ⊕ s

r
288;

3: Set t = r;
4: Set nt = 300;
5: while t > 0 do
6: Set f =ExpressRecursivelyForTrivium(f , nt); B See Algorithm B in Appendix B.
7: Set t = t− nt;
8: Set tempf = 0;
9: Compute the set RT = {u|u ∈ T (f) and DEGI(u) ≥ |I|} with the degree evaluation method

proposed by Liu in [Liu17], where DEGI(u) is the evaluated degree of u w.r.t. I;
B When calculating DEGI(u), the noncube IV variables are treated as variables of degree 0.

10: for each term u in RT do
11: Mu ←GenerateMILPModelForTrivium(I, u, t);
12: SolveMu;
13: if Mu is feasible then
14: Set tempf = tempf ⊕ u;
15: end if
16: end for
17: Set f = tempf ;
18: Set nt to a proper value; B We would explain the rules in the following.
19: end while
20: Set pI = 0;
21: for u ∈ T (f) do
22: Recover tu =

∏
j∈Ju

s
(0)
j according to how s

(0)
j is initialized in the target cipher;

23: Set pI = pI ⊕ tu;
24: end for
25: return pI(x, v);
26: end procedure

solve. Furthermore, due to the degree evaluation method, the number of MILP models
needed to be solved could be reduced dramatically in the first iteration.

In the following iterations of the while-loop in Algorithm 4, we first set nt to 30 and
decrease nt if ft−nt(s(t−nt)) has too many terms, where ft−nt is generated by expressing
f(s(t)) as a polynomial on the internal state s(t−nt). We show the detailed rules in
Algorithm 5.

4.4 Experimental Verification
In this subsection, we provide two small examples to illustrate and verify our attacks.
In our experiments, the MILP solver Gurobi is used to solve our MILP models. More
specifically, we use the .Net API of Gurobi, and we use Visual Studio 2015 to compile our
source code under a PC with a Windows operation system.

Example 2. Let I = {1, 11, 21, 31, 41, 51, 61, 71} be the set of cube indices. We take
the 591-round Trivium for an example. With Algorithm 4, the superpoly p591

I (x,v) is
recovered in about 4 minutes under a PC with an Intel(R) Core(TM) i5-6200U CPU and
8G RAM.

With the knowledge of p591
I (x,v), we could easily determine some different assignments

to the noncube IV variables corresponding to different superpolies. In the following, we
list some assignments to the noncube IV variables and the corresponding superpolies.

– If we set IV 3 =0x00000000000080040010, then the corresponding superpoly is

p591
I (x, IV ) = x23x24 ⊕ x25 ⊕ x67.

3IV = v80||v79|| · · · ||v1
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Algorithm 5 Determine the number of backward rounds
1: procedure DetermineBackwardRounds(f , t)
2: Set nt = 30 if t ≥ 30, set nt = t otherwise;
3: for u =

∏h
i=1 s

(t)
ji
∈ T (f) do

4: Set exp=0;
5: for i from 1 to h do
6: if ((ji − nt < 1) or (94 ≤ ji ≤ 177 and ji − nt < 94) or (178 ≤ ji and
ji − nt < 178)) then

7: Set exp=exp+1;
8: end if
9: end for
10: if exp>3 then
11: Set nt = nt − 1;
12: end if
13: end for
14: return return nt;
15: end procedure

– If we set IV =0x00200000000020000040, then the corresponding superpoly is

p591
I (x, IV ) = x66 · (x23x24 ⊕ x25 ⊕ x67 ⊕ 1).

– If we set IV =0x00000000000000000000, then the corresponding superpoly is 0-
constant, i.e.,

p591
I (x,0) = 0.

It worth noting that, when setting the noncube IV variables to 0’s, we only obtain a
zero-sum distinguisher. This implies that setting the noncube IV variables to 0’s, which is
widely adopted, may not be the optimal choice.

Beside setting noncube IV variables to different values, with the knowledge of the
superpoly pI(x,v), we could obtain various superpolies by appending some noncube IV
variables to the set of cube variables. With this trick, although pI(x,v) is complex, we
can obtain some simple superpolies. We provide the following example.

Example 3. Let I = {1, 11, 21, 31, 41, 51, 61, 71} be the set of cube indices. We take the
586-round Trivium for an example. With Algorithm 4, p586

I (x,v) is recovered in about
3 minutes under a PC with an Intel(R) Core(TM) i5-6200U CPU and 8G RAM. After
knowing p586

I (x,v) which is not simple, we easily obtain 5 simple superpolies by appending
some noncube variables to the set of cube variables. In Table 2, we show some new cubes
with simple superpolies, where all the noncube IV variables are set to 0’s.

Table 2: New cubes and the corresponding superpolies

new cubes indices set superpoly
I ∪ {32, 37, 42, 50, 73} x58
I ∪ {32, 37, 42, 49, 50, 70} x60 ⊕ 1
I ∪ {32, 37, 50, 70, 73} x30 ⊕ x55x56 ⊕ x57
I ∪ {23, 24, 32, 42} x65x66 ⊕ x40 ⊕ x67
I ∪ {23, 24, 42} (x45x46 ⊕ x20 ⊕ x47) · (x65x66 ⊕ x40 ⊕ x67)
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4.5 Key Recovery Attacks on Trivium
In this subsection, we target at the Trivium variants with not less than 832 initialization
rounds. For the cubes proposed in [TIHM17] and [WHT+18], we recover their superpolies
with our methods. All the experiments in this subsection are performed on a PC with an
Inter(R) Core i1-7700K CPU and 32G RAM.

Results for the 832-round Trivium. For I1 = {1, 2, . . . , 65, 67, 69, . . . , 79} proposed in
[TIHM17], we recover the exact ANF of its superpoly pI1(x,v) in the output of the
832-round Trivium given by

pI1(x,v) = v68v78 · (x58 ⊕ v70) · (x59x60 ⊕ x34 ⊕ x61).

With the knowledge of the pI1 , we could easily determine assignments of the noncube
variables which could lead to different superpolies.

– If we set IV =0x20080000000000000000, then the corresponding superpoly is

pI(x, IV ) = x58 · (x59x60 ⊕ x34 ⊕ x61).

– If we set IV =0x20280000000000000000, then the corresponding superpoly is

pI(x, IV ) = (x58 ⊕ 1) · (x59x60 ⊕ x34 ⊕ x61).

Thus, we can recover the value of x59x60 ⊕ x34 ⊕ x61 regardless of the value of x58.
Namely, we can recover at least one key variables for the 832-round Trivium. In particular,
when x59x60 ⊕ x34 ⊕ x61 = 1, we could recover the value of x58 as well. Consequently, we
could attack the 832-round Trivium with a complexity less than 279.

Results for Trivium Variants with More than 832 Rounds. In [WHT+18], the authors
proposed some cubes whose superpolies were declaimed to include key variables. Based
on these cubes, the authors presented the key recovery attacks on up to the 839-round
Trivium. With our method, we recover the superpolies of these cubes, and we find that
all the superpolies are actually zero constant. It indicates that the key recovery attacks
declared in [WHT+18] are distinguishing attacks in fact. We summarize our results in the
following table.

Table 3: The exact superpolies of the cubes given in [WHT+18]

Rounds Cube indices “Involved” Key Variables Superpoly
833 {1, 2, . . . , 67, 69, 71, . . . , 79} x49, x58, x60, x74, x75, x76 0-constant
833 {1, 2, . . . , 69, 71, 73, . . . , 79} x60 0-constant
835 {1, 2, . . . , 80} \ {5, 51, 65} x57 0-constant
836 {1, . . . , 11, 13, . . . , 42, 44, . . . , 80} x57 0-constant
839 {1, . . . , 33, 35, . . . , 46, 48, . . . , 80} x61 0-constant

5 Conclusion
In this paper, based on the bit-based division property, we propose a new method to
recover the exact ANF of the superpoly pI(x,v) corresponding to a given cube indexed by
the set I. We practically recovered the superpolies of the cubes proposed in CRYPTO 2017
and CRYPTO 2018, where except the 832-round Trivium, all superpolies are 0. Hence
these best key recovery attacks are actually distinguishing attacks. These results on the
other hand imply that the validity of the Weak Assumption used in division property
based cube attacks should be reconsidered at least for the case of Trivium.
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A The Technique of Removing Invalid Division Trails and
Its Error

First, we illustrate the technique of removing invalid division by a small example.

Example 4. Let nf be a toy 8-bit NFSR-based stream cipher. Denote the state of nf at
time clock t by s(t) = (s(t)

1 , s
(t)
2 , · · · , s(t)

8 ). Assume that nf is initialized with x1, x2, · · · , x8,
i.e., s(0) = (x1, x2, . . . , x8). The state of nf is updated as

s
(t+1)
1 = s

(t)
5 ⊕ s

(t)
6 s

(t)
7 ⊕ s

(t)
8

s
(t+1)
i = s

(t)
i−1 for i ∈ {2, 3, 4, 5, 6, 7, 8}

Furthermore, the output bit after r rounds is defined as zr = s
(r)
1 s

(r)
3 .

We choose x2, x3, x4, x5 as active variables. Then, according to the propagation rules
of the conventional division property, the following conventional division trail would exist.

round 0 (0, 1, 1, 1, 1, 0, 0, 0)
round 1 (1, 0, 1, 1, 1, 0, 0, 0)
round 2 (1, 1, 0, 1, 1, 0, 0, 0)
round 3 (0, 1, 1, 0, 1, 1, 0, 0)
round 4 (0, 0, 1, 1, 0, 1, 1, 0)
round 5 (1, 0, 0, 1, 1, 0, 0, 0)
round 6 (0, 1, 0, 0, 1, 1, 0, 0)
round 7 (0, 0, 1, 0, 0, 1, 1, 0)
round 8 (1, 0, 0, 1, 0, 0, 0, 0)

In fact, for the above conventional division trail, we could know the distribution of
active variables through this division trail. We show the corresponding more detailed
division trail, called new division trail, in the following. This new division trial records
more information than the conventional one. For example, [1, x2x3], the second component
of the vector at round 6, indicates that x2x3 appears in s6

1.

https://eprint.iacr.org/2018/1082
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round 0 ([0, 1], [1, x2], [1, x3], [1, x4], [1, x5], [0, 1], [0, 1], [0, 1])
round 1 ([1, x5], [0, 1], [1, x2], [1, x3], [1, x4], [0, 1], [0, 1], [0, 1])
round 2 ([1, x4], [1, x5], [0, 1], [1, x2], [1, x3], [0, 1], [0, 1], [0, 1])
round 3 ([0, 1], [1, x4], [1, x5], [0, 1], [1, x2], [1, x3], [0, 1], [0, 1])
round 4 ([0, 1], [0, 1], [1, x4], [1, x5], [0, 1], [1, x2], [1, x3], [0, 1])
round 5 ([1, x2x3], [0, 1], [0, 1], [1, x4], [1, x5], [0, 1], [0, 1], [0, 1])
round 6 ([0, 1], [1, x2x3], [0, 1], [0, 1], [1, x4], [1, x5], [0, 1], [0, 1])
round 7 ([0, 1], [0, 1], [1, x2x3], [0, 1], [0, 1], [1, x4], [1, x5], [0, 1])
round 8 ([1, x4x5], [0, 1], [0, 1], [1, x2x3], [0, 1], [0, 1], [0, 1], [0, 1])

The above division trail indicates that ⊕
(x2,x3,x4,x5)∈F4

2

z8

is unknown, where z8 = s
(8)
1 s

(8)
3 . However, by computing the real ANFs of s(t) for 0 ≤ t ≤ 8,

we know that x4x5 does not appear in the s(8)
1 and x2x3x4x5 does not appear in z8. This

indicates that the above division trail is invalid and should be aborted.
To remove the invalid division trails, our main idea is recording the new division trails

and adding constrains corresponding to the vanished terms. In this example, we could add
constrains to require that the x4x5 does not appear in s(8)

1 .

However, there is a subtle error in the above technique, and we would like to explain it
in the following. The propagation rules of the division property for active variables is not
consist with the computation of ANFs for iterative ciphers. We could not remove a division
trial by comparing its intermediate result with the ANF for some internal state bit. Here is
a small example to illustrate it which we hope will be helpful. Let NF be a stream cipher of
size 7. Denote the internal state of NF after t rounds by s(t) = (s(t)

0 , s
(t)
1 , · · · , s(t)

6 ). Assume
that NF is initialized with x0, x1, x2, x3, x4, x5, x6, i.e. s(0) = (x0, x1, x2, x3, x4, x5, x6).
The state of NF is updated as

s
(t+1)
0 = s

(t)
3 + s

(t)
4 s

(t)
5 + s

(t)
6

s
(t+1)
i = s

(t)
i−1 for 1 ≤ i ≤ 6

Furthermore, the output bit after r rounds is defined as zr = s
(r)
0 s

(r)
1 . Now, we consider

the output bit after 9 rounds and choose x1, x2, x3, x4, x5 as active variables. According to
the update function, s(9)

1 = s
(8)
0 can be computed as

s
(9)
1 = s

(8)
0 = s

(7)
3 + s

(7)
4 s

(7)
5 + s

(7)
6 ,

where s(7)
6 = x3 + x4x5 + x6, s

(7)
5 = x2 + x3x4 + x5, s

(7)
4 = x1 + x2x3 + x4, and s

(7)
3 =

x0 +x1x2 +x3. It can be seen that the term x4x5 does not appear in s(9)
1 . Then , based on

our previous idea, a division trail indicating x4x5 in s(9)
1 is defined as an invalid division

trail. After removing all such invalid division trails and solving a corresponding MILP
model, it will tell us that there is no division trail such that (0, 1, 1, 1, 1, 1, 0)→ 1, and so
we conclude that the multiples of x1x2x3x4x5 would not appear in the output z9. However,
it can be verified that x1x2x3x4x5 actually appears in z9. Therefore, even if x4x5 is not in
the ANF of s(9)

1 , we could not remove a division trail indicating that x4x5 appears in s(9)
1 .
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B Expressing the Polynomial on Earlier Internal state Vari-
ables

In the following algorithm, for a given polynomial f(s(t)) on the internal state s(t), we show
how to express f as a polynomial on the internal state s(t−nt), where nt is a positive integer.
When nt is larger than the length of a register, we can not express f as a polynomial on
s(t−nt) by calling Algorithm B directly. However, this could be achieve by call Algorithm
B iteratively.

Algorithm 6 Express the polynomial with earlier internal state
1: procedure ExpressRecursivelyForTrivium(f , nt)
2: Set g(s(t−nt)) = 0;
3: for u =

∏
j∈Ju

s
(t)
j ∈ T (f) do

4: for j ∈ Ju do
5: Set l = 1;
6: if 1 ≤ j ≤ 93 then
7: if j > nt then
8: Set hl = s

(t−nt)
j−nt

;
9: else
10: Set hl = s

(t−nt)
286−∆ ·s

(t−nt)
287−∆⊕s

(t−nt)
288−∆⊕s

(t−nt)
243−∆⊕s

(t−nt)
69−∆ , where ∆ = nt−j;

11: end if
12: Set l = l + 1;
13: end if
14: if 94 ≤ j ≤ 177 then
15: if j − nt ≥ 94 then
16: Set hl = s

(t−nt)
j−nt

;
17: else
18: Set hl = s

(t−nt)
91−∆ · s

(t−nt)
92−∆ ⊕ s

(t−nt)
93−∆ ⊕ s

(t−nt)
66−∆ ⊕ s

(t−nt)
171−∆, where ∆ =

94 + nt − j;
19: end if
20: Set l = l + 1;
21: end if
22: if 178 ≤ j ≤ 288 then
23: if j − nt ≥ 178 then
24: Set hl = s

(t−nt)
j−nt

;
25: else
26: Set hl = s

(t−nt)
175−∆ · s

(t−nt)
176−∆ ⊕ s

(t−nt)
177−∆ ⊕ s

(t−nt)
243−∆ ⊕ s

(t−nt)
264−∆, where ∆ =

178 + nt − j;
27: end if
28: Set l = l + 1;
29: end if
30: end for
31: Set g(s(t−nt)) = g(s(t−nt))⊕

∏l
i=1 hi(s(t−nt));

32: end for
33: return g(s(t−nt));
34: end procedure
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