
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2019, No. 3, pp. 43–80. DOI:10.13154/tosc.v2019.i3.43-80

DoveMAC: A TBC-based PRF with Smaller
State, Full Security, and High Rate

Tony Grochow1, Eik List1 and Mridul Nandi2

1 Bauhaus-Universität Weimar, Weimar, Germany
<firstname>.<lastname>(at)uni-weimar.de

2 Indian Statistical Institute, Kolkata, India
mridul.nandi(at)gmail.com

Abstract. Recent parallelizable message authentication codes (MACs) have demon-
strated the benefit of tweakable block ciphers (TBCs) for authentication with high
security guarantees. With ZMAC, Iwata et al. extended this line of research by
showing that TBCs can simultaneously increase the number of message bits that
are processed per primitive call. However, ZMAC and previous TBC-based MACs
needed more memory than sequential constructions. While this aspect is less an issue
on desktop processors, it can be unfavorable on resource-constrained platforms. In
contrast, existing sequential MACs limit the number of message bits to the block
length of the primitive n or below.
This work proposes DoveMAC, a TBC-based PRF that reduces the memory of
ZMAC-based MACs to 2n+ 2t+2k bits, where n is the state size, t the tweak length,
and k the key length of the underlying primitive. DoveMAC provides (n+min(n+t))/2
bits of security, and processes n+t bits per primitive call. Our construction is the first
sequential MAC that combines beyond-birthday-bound security with a rate above
n bits per call. By reserving a single tweak bit for domain separation, we derive a
single-key variant DoveMAC1k.
Keywords: Authentication · authenticated encryption · message authentication
code · PRF · provable security · tweakable block cipher

1 Introduction
Message Authentication Codes (MACs) secure the integrity and authenticity of commu-
nications. Many standardized MACs, such as CMAC [Dwo16], OMAC [IK03], or PMAC
[BR02] are block-cipher modes of operations with birthday-bound security1 This fact
implies hardly a problem if the state size of the underlying primitive is at least 128 bits;
however, resource-limited platforms often use primitives with smaller state and key size,
e.g., HIGHT [HSH+06] or PRESENT [BKL+07]. Smaller state sizes result in lower security
guarantees, which may be impractical when used in a mode with birthday-bound security,
as emphasized in [IMG+14, MV04]. Therefore, MACs with higher security margins are
desirable for lightweight platforms, in particular, for stateless deterministic MACs that
avoid the transmission of additional nonces.

Existing Parallelizable MACs. A considerable amount of research has been devoted to
the construction of MACs with high security bounds. A generic approach is to sum the
outputs of several independent hash functions or PRFs, e.g., Yasuda’s Sum-ECBC [Yas10]

1The birthday attack was presented on hash functions first by Yuval [Yuv79] and on MACs by Preneel
and van Oorschot [PvO95] (cf. [MvOV96]).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2018-06-01, Revised: 2019-06-01, Accepted: 2019-08-01, Published: 2019-09-20

https://doi.org/10.13154/tosc.v2019.i3.43-80
mailto:<firstname>.<lastname>(at)uni-weimar.de
mailto:mridul.nandi(at)gmail.com
http://creativecommons.org/licenses/by/4.0/

44 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

or Iwata and Minematsu’s Fr [IM16], which accumulates the outputs of multiple GMAC
instances. However, this strategy implies r times the computational effort, the key material,
as well as the state size as the single-hash approach.
Many block-cipher-based MACs with higher security were inspired by the classical PMAC
[BR02] design. Those process the message blocks in parallel, accumulate the results, and
give the sum as input into a finalization that produces the tag. One approach for (slightly)
higher security is the use of counter sums, where some bits of the message inputs are
used for a counter. Thus, the influence of the message length on the security bound is
eliminated [BGR95, Ber99]. This approach has seen a recent revival, e.g., in LightMAC
[LPTY16] or the variable-size counter modes by Dutta et al. [DJN17].
A higher security gain can be achieved by a larger accumulator, as had been proposed in
PMAC+ [Yas11]. This approach was adopted by various proposals, e.g., by the extensions
of LightMAC [Nai17, Nai18a], but also by [IMPS17, LN17, Nai15]. In particular, the
latter profited from the use of tweakable block ciphers as underlying primitive.

Tweakable Block Ciphers. Tweakable block ciphers (TBCs) extend classical block ciphers
(BCs) by an additional public input, called tweak [LRW02]. Given a non-empty set of
keys K, a tweak space T , and a state space B, a TBC π̃ : K × T × B → B is a family of
keyed permutations, s.t. for all combinations of key and tweak K,T ∈ K× T , π̃(K,T, ·) is
a permutation over B. With the recent advent of dedicated performant proposals such as
Deoxys-BC, Joltik-BC [JNP14], or Skinny [BJK+16c], TBCs have been established
for various cryptographic applications, including MACs, encryption, and authenticated
encryption schemes [IMPS17, JNP16b, Nai15, PS16]. In those contexts, the tweak can
efficiently separate domains, which can not only increase security guarantees but also lead
to simpler designs. For instance, PMAC_TBC1k [Nai15], Encrypted Parallel Wegman-
Carter (EPWC) [PS16] and its variant in SCT-2 [JNP16b] encode domains in the tweak
space for avoiding additional input masks and multiple keys.
In general, tweakable block ciphers are slightly slower than classical block ciphers with
equal security guarantees since the additional tweak needs to be processed also in a secure
manner. With ZMAC, Iwata et al. [IMPS17] proposed a message authentication code
that brought a considerable speed-up. In contrast to previous designs, ZMAC used both
the state and the tweak input to process n+ t bits of message material per primitive call.
Thus, it could benefit from a TBC both in terms of high security and a high rate.

State Size of A Scheme. We briefly define our intention of the required state size of a
scheme. Given a TBC with a t-bit tweak, a k-bit key and a block length of n bits, processing
a message block with a (T)BC implies the need to hold n+k (or n+ t+k bits), respectively.
A higher-level scheme may further require to store masking keys or accumulators. We
disregard further memory for performance optimizations; e.g., on the majority of platforms,
it is common to store an extended state with expanded key material. Moreover, TBC-based
constructions can usually be easily adapted to reserve one or a few bits of the tweak for
domain separation to avoid multiple keys. In certain settings, an outside environment can
precompute and prepare eventual checksums, e.g., by appending it to the input; though,
this poses a security risk as we will discuss later in Section 3, and a higher-level environment
may be absent in certain settings.

Parallel Block-cipher-based MACs. In general, the PMAC-like block-cipher-based con-
structions above are not optimized for a small state. The block-cipher-based variants
[Yas11, Yas12, Zha15] require at least 2n bits for the current block-cipher state and an
input mask, plus k bits for at least one key, plus 2n bits for an accumulator. Light-
MAC_Plus [Nai17] is similar to PMAC+, but spares n bits for the mask, yielding
3n+ k bits of memory. LightMAC_Plus_1k [Nai17] shares the state requirements of

Tony Grochow, Eik List and Mridul Nandi 45

Table 1: Comparison of existing deterministic MACs. r ≥ 1 is a flexible parameter for the
rate; n/k/t = state/key/tweak size in bits; c ≤ n = #bits for a counter; q = #queries; m
= max. #blocks per message, σ = total #message blocks. the rate excludes the calls in
the finalization.

State Rate Finalization
Construction #Keys (bits) Security (#bits/call) (#calls)

Based on permutations
Chaskey [MMH+14] 1 2n+ k O(σ2/22n) 2n 1

Based on compression functions
NI+-MAC [DNP16] 1 3n+k O(q2m2/22n) n 2

Based on classical block ciphers
LightMAC [LPTY16] 2 2n+k O(q2/2n) n−c 1
LightMAC_Plus [Nai17] 3 3n+k O(q3/22n) n−c 2
LightMAC_Plus2 [Nai17] 3+r 4n+k O(qr+1/2rn+q2/22n) n−c 2+r
LightMAC_Plus_1k [Nai18a] 1 3n+k−4 O(q3/22n) n−c 3
PMAC+ [Yas11] 3 5n+k O(q3m3/22n+qm/2n) n 2
PMAC w/ Parity [Yas12] 4 (r+2)n+k O(q2/2n+mqσ/22n) (r−1)n/r 2
1k_PMAC+ [DDN+17] 1 5n+k O(qσ2/22n+σ/2n) n 2
3kf9 [ZWSW12] 3 2n+k O(q3m3/22n+qm/2n) n 2

Based on tweakable block ciphers
EPWC [PS16] (no nonces) 1 2n+t+k O(q2/2n) n 1
PMAC_TBC1k [Nai15] 1 3n+t+k O(n2q2/22n) n 2
PMAC_TBC3k [Nai15] 3 3n+t+k O(q2/22n) n 2
ZMAC [IMPS17] 1 4n+2t+k O(σ2/2n+min(n,t)) t+n 4
ZMACb/ZMACt/ZMACbt [Nai18b] 1 4n+2t+k O(q2/2n) t+n 2
ZMAC1 [Nai18b] 1 4n+2t+k O(σ2/2n+min(n,t)+q/2n) t+n 1

DoveMAC [This work] 2 2n+2t+2k O(q2m2/2n+min(n,t)+q/2n) t+n 1
DoveMAC1k [This work] 1 2n+2t+k O(q2m2/2n+min(n,t−1)+q/2n) t+n−1 1

LightMAC_Plus; it spares four bits due to its n− 2-bit accumulators. The generalized
variant of LightMAC_Plus, LightMAC_Plus2 [Nai18a], requires 4n+ k bits in its
finalization; PMAC w/ Parity [Yas12] needs r masks plus n bits each for the current
block and the accumulator.

Parallel TBC-based MACs. The situation is similar for existing TBC-based MACs.
ZMAC needs 3n+ t+k bits for input, masks, and key, plus n+ t bits for the accumulators.
Recently, Naito [Nai18b] investigated variants of ZMAC called ZMACb, ZMACt, and
ZMACbt, which differed from each other in the fact that they used only the plaintext,
tweak, or both inputs during the finalization. The same work developed ZMAC1, which
could avoid the tweak-based domain separation in the hash function with limited loss of
security. Though, his variants share the same memory requirements with ZMAC.2
EPWC or PMAC_TBC1k avoid the need for input masks. the former [PS16] requires
a nonce for beyond-birthday security and 2n+ t+ k bits; its variant as used in SCT-2
[JNP16b] can append the nonce that is used in the finalization to the message to use
the same amount of memory. Though, since we consider deterministic authentication,
Table 1 contains only the nonce-ignoring variant of EPWC, although it can guarantee
only birthday-bound security. Finally, PMAC_TBC1k and PMAC_TBC3k require

2The definition of XT1 [Nai18b, Algorithm 5] suggests that one could alternatively compute the input
masks on-the-fly for each block. Here, we neglect this strategy, because the high rate is usually more
important; however, it could reduce state by 2n bits and may be worth a separate investigation.

46 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

Figure 1: Hashing with DoveHash (left) and finalization with ZFin+ (right) of a
message M = (M1,M2,M3) with three (t+ n)-bit blocks with DoveMAC[ẼK1,K2]. Each
block Mi is split into a t-bit part Ti and an n-bit part Ii. Θ =

⊕m
i=1 Ti denotes a checksum

over all tweak input parts.

3n+ k + t bits each due to their 2n-bit accumulator.

Sequential MACs with High Security Guarantees. Inspired by CBC-based MACs and
iterated hash functions, there exists an alternative portfolio of MACs that are inherently
sequential, but employ significantly smaller amounts of memory. Clearly, the security of
single-chain designs is limited by the birthday bound because of potential state collisions.
A simple approach for increasing the security is to employ a primitive with larger state.
This can be realized, e.g., by a compression function [DNP16, Yas08, Yas09] or with a
wide-state permutation, as in Chaskey [MMH+14]. For n-bit security, Chaskey needs
2n bits for the primitive plus k bits for a final key. LightMAC and [DJN17] are on par
with 2n+ k bits of memory. Though, permutation-based modes such as Chaskey have to
process a 2n-bit state all the time. In contrast, tweakable primitives could set the tweak
constant or transform it in more lightweight manner than the state, as performed in most
recent lightweight TBCs such as e.g. Skinny [BJK+16b] or QARMA [Ava17].
One approach towards higher security is the usage of two chains for (1) primitive calls
and (2) accumulating intermediate results. For instance, 3kf9 [ZWSW12] enhances CBC
by such an accumulating chain; a similar example is NI+-MAC [DNP16]. The former
combines beyond-birthday-bound security with low memory demands of only n+ k bits
for a CBC-like mode plus n bits for an accumulator. The latter used a 2n-bit compression
function instead of a block cipher.

Rate. Besides minimizing the memory requirements, increasing the number of message
bits per primitive call is a second important factor for increasing the efficiency of MACs.
Nearly all constructions considered above process n bits or less of message material
per primitive call, where n is the state size. Only ZMAC and its derivatives allow to
authenticate n+t message bits per call, but at the cost of a much larger state. The question
that arises is if and how the high rate of ZMAC could be combined while maintaining or
reducing its state size.

Contribution. This work tries to give an affirmative answer to the above. We propose
DoveMAC, a highly secure PRF that needs 2n + 2t + 2k bits of memory, based on a
tweakable block cipher with n-bit state and t-bit tweak size. We show a security level
of approximately (n + min(n, t))/2 bits, which means full n-bit security if t ≥ n and
(n+ t)/2 bits otherwise. Figure 1 provides a schematic overview. It maintains a chain of
t bits at the top and n bits at the bottom. Each (t+ n)-bit message block is processed by
a single call of a tweakable block cipher, such that t bits are used as tweak, and n bits as
state input. The output of the primitive is XORed to the bottom lane before the next
block. An accumulated checksum of all tweak inputs is added to the top lane. Finally,
both lanes are used as tweak and state input, respectively, to a final call of the primitive

Tony Grochow, Eik List and Mridul Nandi 47

that uses an independent key for generating the tag.
From a high-level point of view, our construction is inspired by 3kf9, NI+-MAC, and
ZMAC, but possesses twice the rate than the former two, and requires less memory than
the latter. We show its utility for highly secure authenticated encryption by combining it
with the nonce-IV-based variant of Counter-in-Tweak [PS16].
DoveMAC requires 2n+ 2t+ k bits for hashing the message. An additional independent
k-bit key is used for the finalization phase. We briefly outline also a variant called
DoveMAC1k that reserves a single bit for domain separation. Then, the same key can
be used in both hashing and finalization which can save key-management costs, but may
require to split the inputs into unconventional block lengths for usual TBCs.

Outline. The remainder is structured as follows: after Section 2 continues with briefly
stating the necessary preliminaries, Section 3 describes the details of DoveMAC. Section 4
provides an analysis of its PRF security, that is detailed in the subsequent Sections 5
and 6. Section 7 describes an instantiation of DoveMAC with Skinny-64-128 for
common microcontrollers and compares it to the most efficient variant of ZMAC, ZMAC1.
Appendix A describes two birthday-bound attacks on versions from earlier design phases
and a forgery attack on a single-key version, which provide a further insight and rationale
of our final proposal. Furthermore, Appendix C proposes an authenticated encryption
scheme that combines DoveMAC for authentication, and Counter-in-Tweak [PS16] for
highly secure encryption.

2 Preliminaries
General Notation. We write lowercase letters for indices and integers, uppercase letters
for functions and variables, and calligraphic uppercase letters for sets. For a, b ∈ N0, we
write [a..b] as the set of integers {a, a+ 1, . . . , b}. Given a set X , we define X+ =

⋃∞
i=1 X i,

and X ∗ =
⋃∞
i=0 X i. We denote by {0, 1}x the set of bit strings of length x, the concatenation

of binary strings X and Y by X ‖Y , and their XOR by X ⊕ Y . We let |X| denote the
length of a variable X in bits; for a bit string X that is processed in units of blocks,
we write Xi for the i-th block of X. For X ∈ {0, 1}n and i ≤ n, we denote by msbi(X)
the i leftmost and by lsbi(X) the i rightmost bits of X. To split a string into blocks of
fixed maximal length, (X1, . . . , Xx) n←− X indicates that X is split into n-bit blocks i. e.,
X1 ‖ . . . ‖Xx = X, and |Xi| = n for 1 ≤ i ≤ x− 1, and |Xx| ≤ n. For any X ∈ {0, 1}n+t,
we denote by (X1, X2) n,t←−− X the splitting of X into X1 = msbn(X) and X2 = lsbt(X).
We denote by 〈x〉n the encoding of a non-negative integer x into its n-bit representation.
Moreover, we write X � X to indicate that an element X is chosen uniformly at random
from some given set X .
A tweaked permutation π̃ : T × X → X with tweak set T defines a family of permutation
over X , i.e., for every T ∈ T , π̃(T, ·) is a permutation over X . Given three sets T , X , and
Y, we define Func(X ,Y) =def {F |F : X → Y} for the set of all functions with domain
X and range Y. Moreover, we write P̃erm(T ,X) =def {π̃|π̃ : T × X → X} for the set of
all tweaked permutations over X with associated tweak space T . Given sets X and Y, a
uniform random function ρ : X → Y is a mapping of inputs X ∈ X independently from
other inputs and uniformly at random to outputs Y ∈ Y.

Adversaries. An adversary A is an efficient Turing machine that interacts with a given
set of oracles that appear as black boxes to A. We denote by AO the output of A after
interacting with some oracle O. We write ∆A(O1;O2) =def |Pr[AO1 ⇒ 1]−Pr[AO2 ⇒ 1]|
for the advantage of A to distinguish between oracles O1 and O2. All probabilities
are defined over the random coins of the oracles if any. Following [MRV15], we consider

48 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

(mostly) information-theoretic adversaries that are restricted only by their maximal number
of queries and blocks. Moreover, we assume that adversaries they never ask queries to
which they already know the answer. As proposed, e.g. in [CS14], information-theoretic
adversaries can be safely assumed to be deterministic. All our results can be transferred
to the complexity-theoretic setting by restricting the adversaries by the time needed for
the evaluation of all internal primitive calls. Note that for the transferred adversaries, the
setting would assume deterministic adversaries.

Adversary Characteristics. To quantify the power of adversaries, we say that an adversary
A for a notion x against a scheme Π is a (q,m, σ)-x adversary if A asks at most q queries
to its oracles, each of at most m blocks, and of σ blocks in total. The block size will be
given in the context. We will write Advx

Π(q,m, σ) for the maximum over all (q,m, σ)-x
adversaries on Π. For authenticated encryption, we will represent by m the maximum
number of blocks of associated data and message combined; furthermore, σ is the maximum
number of blocks over all associated data and messages combined.

Block Ciphers and Tweakable Block Ciphers. Let B = {0, 1}n be a block space for a
fixed integer n. A TBC Ẽ with associated key space K, tweak space T , and message space
B is a mapping Ẽ : K × T × B → B s.t. for every key K ∈ K and tweak T ∈ T , it holds
that Ẽ(K,T, ·) is a permutation over B. We often write ẼTK(·) as short form of Ẽ(K,T, ·).

Definition 1 (TPRP Advantage). Let K be a non-empty finite set and B, and T be
message and tweak space, respectively. Let Ẽ : K × T × B → B denote a tweakable block
cipher. Let π̃ � P̃erm(T ,B) and K � K. Then, the TPRP advantage of an adversary A
w.r.t. Ẽ is defined as AdvTPRP

Ẽ
(A) =def ∆A(ẼK ; π̃).

PRFs and Universal Hashing. For the remaining definitions in this section, let K, X ,
and Y be non-empty finite sets. We restrict our considerations to Y ⊆ {0, 1}∗, and let
H : K ×X → Y and F : K ×X → Y be keyed functions.

Definition 2 (PRF Advantage). Let F : K × X → Y be a keyed function. Let
ρ � Func(X ,Y) and K � K. Then, the PRF advantage of A w.r.t. F is defined
as AdvPRF

F (A) =def ∆A(FK ; ρ).

Definition 3 (Almost-Universal Hash Function). Let H be defined as above. We call H
ε-almost-universal (ε-AU) if for all distinct X,X ′ ∈ X , it holds that PrK�K[HK(X) =
HK(X ′)] ≤ ε.

The collision probability is strongly related to almost-universality. Here, we define it in
the context of messages that are composed of blocks of bit strings.

Definition 4 (Collision Probability between Message Pairs). Let H be defined as above,
with the restriction that X ⊆ B∗ for some block space B = {0, 1}x. So, inputs to H are
from a set of blocks. For arbitrary distinct messages X ∈ Bm and X ′ ∈ Bm′ for given
integers m and m′, we define the collision probability by the maximum

CollH(x,m,m′) def= max
X 6=X′

Pr
K�K

[HK (X) = HK (X ′)] .

We overload the notation of the collision probability from message pairs to message sets.

Definition 5 (Collision Probability among Message Sets). Let H be defined as above,
with the restriction that X ⊆ B∗ for some block space B = {0, 1}x. So, inputs to H are
from a set of blocks. LetM denote a set of q pairwise distinct messages X ∈ B≤m of at

Tony Grochow, Eik List and Mridul Nandi 49

most m blocks each and σ blocks in total over all messages. Then, we define the collision
probability of any collision of outputs between distinct messages fromM as

CollH(x, q,m, σ) def= Pr
K�K

[∃X,X ′ ∈M, X 6= X ′ : HK (X) = HK (X ′)] .

Given a function that outputs tuples, we will consider the collision probability between
certain parts of the output. This is captured by the notion of truncated almost universality.

Definition 6 (Truncated-AU Hash Function). Let Y = {0, 1}n1 × {0, 1}n2 for positive
integers n1, n2. We say that H is (n1, n2, ε)-truncated-AU (tAU) if, for all distinct X,X ′ ∈
X , it holds that ∑

∆∈{0,1}n2

Pr
K�K

[HK(X)⊕HK(X ′) = (0n1 ,∆)] ≤ ε.

The H-Coefficient Technique. The H-coefficient technique is a proof approach due to
Patarin [Pat08]. It assumes that the results of the interaction of an adversary A with
its oracles are collected in a transcript τ . The task of A is to distinguish the real world
Oreal from the ideal world Oideal given its transcript τ . The transcript is called attainable
if the probability to obtain it in the ideal world is greater than zero. One assumes
that A does not ask duplicate queries or queries prohibited by the game. Θreal and
Θideal denote the distribution of transcripts in the real and the ideal world, respectively.
Then, the fundamental Lemma of the H-coefficient technique, the proof to which is given
in [CS14, Pat08], states for information-theoretic adversaries:

Lemma 1 (Fundamental Lemma of the H-coefficient Technique [Pat08]). Assume, the
set of attainable transcripts can be partitioned into two disjoint sets GoodT and BadT.
Further assume, there exist ε1, ε2 ≥ 0 s.t. for any transcript τ ∈ GoodT, it holds that

Pr [Θreal = τ]
Pr [Θideal = τ] ≥ 1− ε1, and Pr [Θideal ∈ BadT] ≤ ε2.

Then, for all adversaries A, it holds that ∆A(Oreal;Oideal) ≤ ε1 + ε2.

3 The DoveMAC Construction
Basic Definitions. Throughout this section, we denote by two positive integers n and t
the block length and tweak length, respectively. We define a non-empty key set K, a tweak
space T = {0, 1}t, block space B = {0, 1}n, and a tweak-block space S = T × B.
Hereafter, we use a tweakable block cipher Ẽ : K×T ×B → B and a tweakable permutation
π̃ ∈ P̃erm(T ,B), i.e., π̃(T, ·) is a permutation over B for each T ∈ T . For primitives with
t 6= n, we define a padding function pad : N × B → {0, 1}t, where the first parameter
defines the output length t. If t = n, the input X to pad is returned unchanged; if t < n,
the input X is padded by appending n− t zero bits to obtain a t-bit value that is XORed
to Ti. In the case that t > n, the least significant t− n bits of X are truncated instead.

Block. First, we define a mapping Block that will be used in our hash function Dove-
Hash to process each (t+ n)-bit block of the input.

Definition 7 (Block). For all inputs (Xi−1, Yi−1) ∈ B2, and Mi ∈ S, Block[π̃] :
B2 × S → B2 returns (Xi, Yi), which is computed as

(Ti, Ii)
t,n←−−Mi, Xi ← π̃Ti⊕padt(Xi−1)(Ii ⊕ Yi−1), and Yi ← Xi ⊕ Yi−1.

50 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

Hash-then-TBC. Given a keyed hash function H : K × {0, 1}∗ → S, and a tweakable
block cipher π̃ : K × T × B → B. The Hash-then-TBC construction HtTBC[π̃, H]
hashes a message input M ∈ {0, 1}∗ with HK(M). Thereupon, it maps the hash output
(X,Y) ∈ T × B to a flexible number of output blocks Z ∈ Bd by using one part as
tweak, and the other as state input to π̃. The finalization had been defined as ZFin+[π̃]
from [LN17] as a more efficient finalization for ZMAC. The general version XORs a counter
〈i− 1〉t to derive the i-th tweak input to obtain n-bit security. We briefly recall the general
definitions for Hash-then-TBC PRF HtTBC[π̃, H] and ZFin+ from [LN17].

Definition 8 (ZFin+). Let d be a fixed positive integer. Then, for all inputs (X,Y) ∈
T × B, ZFin+[π̃] : T × B → Bd outputs Z = (Z1, . . . , Zd) where Zi ← π̃X⊕〈i−1〉t(Y), for
all 1 ≤ i ≤ d.

Definition 9 (Hash-then-TBC). Let d be a fixed positive integer, and H : K×{0, 1}∗ → S
be a keyed hash function. Then, for all M ∈ {0, 1}∗ and K ∈ K, we define HtTBC[π̃, H] :
K × S∗ → Bd as HtTBC[π̃, HK](M) =def ZFin+[π̃](HK(M)).

DoveHash. Given the general definitions of Block, we define the basic hash function
DoveHash[π̃] : S∗ → S as on the right part of Algorithm 1. It assumes a constant initial
value (X0, Y0) ∈ B2. Internally, the hash function splits the message into m blocks Mi of
t+ n bits each and processes each block by Block[π̃]:

(Xi, Yi)← Block[π̃](Xi−1, Yi−1,Mi), for all 1 ≤ i ≤ m.

All values Ti input are summed up to Θ =
⊕m

i=1 Ti, which is XORed to Xm to produce
the partial hash output X; the other part of the hash output Y is identical to Ym.

DoveMAC. Now, we can define the stateless deterministic PRF DoveMAC[ẼK1,K2] :
{0, 1}∗ → Bd, as in Algorithm 1. It is an instance of the HtTBC paradigm using
DoveHash[ẼK1] as hash function and ZFin+[ẼK2] for finalization, where K1,K2 ∈ K
are independent keys. DoveMAC fixes the number of output blocks to d = 1 and the
initial value to (X0, Y0) = (0n, 0n). A given input message M ∈ {0, 1}∗ is padded first
to M ← M ‖ 10∗, using a one-zero padding such that the output length is the smallest
multiple of (t + n) bits, which is realized in Encode. The padded message M is then
hashed to (X,Y) ← DoveHash[ẼK1](M); in DoveHash, the message is processed in
(t+ n)-bit blocks; in each block, t bits are used as tweak, and n bits as state input, until
the padded message is fully processed. In the end, a checksum of all t-bit tweak inputs is
XORed to the top lane. Finally, the hash output (X,Y) is used as tweak and state input
to ZFin+[ẼK2] to produce the tag, DoveMAC[ẼK1,K2](M) computes Z, where

M ← Encodet+n(M), (X,Y)← DoveHash[ẼK1](M), and Z ← ZFin+[ẼK2](X,Y).

Internally, DoveHash requires a state of n+ t+ k bits for calls to the TBC, plus n bits
for the lower lane, which yields 2n+ t+ k bits. Since one can load the second key at the
end and can supply the tweak checksum appended to the message, DoveMAC requires at
least 2n+ t+ k bits of memory.

Checksum. Setting the checksum Θ =
⊕m

i=1 Ti as part of the message from the outside
is an implementation optimization to reduce the internal state. For maximal security, this
approach should be used only if the integrity of the input can be guaranteed. This could be
done in a secured processor if available on the platform. Otherwise, if this part of state is
critical, the security of DoveMAC would reduce, although it would still be lower bounded
by the birthday bound. If the absence of the checksum was the only modification, the
security of DoveMAC would reduce to the complexity of finding a collision which occurs

Tony Grochow, Eik List and Mridul Nandi 51

Algorithm 1 Authentication of a message M with construction DoveMAC, using a
tweakable block cipher Ẽ and d = 1.

1: function DoveMAC[ẼK1,K2](M)
2: M ← Encodet+n(M)
3: (X,Y)← DoveHash[ẼK1](M)
4: return ZFin+[ẼK2](X,Y)

11: function Encodex(M)
12: M ←M ‖ 1
13: if |M | mod x = 0 then
14: return M
15: return M ‖ 0x−(|M| mod x)

21: function ZFin+[ẼK2](X,Y)
22: for i = 1 to d do Zi ← Ẽ

X⊕〈i−1〉t
K2

(Y)
23: return (Z1, . . . , Zd)

31: function padt(X)
32: n← |X|
33: if n = t then return X
34: else if n < t then return X ‖ 0t−n

35: else if n > t then return msbt(X)

41: function DoveHash[ẼK1](M)
42: m← |M |/(t+ n)
43: (M1, . . . ,Mm) t+n←−−−M
44: (X0, Y0)← (0n, 0n)
45: for i← 1 to m do
46: (Ti, Ii)

t,n←−−Mi

47: (Xi, Yi)← Block[ẼK1](Xi−1, Yi−1, Ti, Ii)
48: Θ←

⊕m

i=1
Ti

49: X ← padt(Xm)⊕Θ
50: Y ← Ym

51: return (X,Y)

51: function Block[ẼK1](Xi−1, Yi−1, Ti, Ii)
52: Ui ← Ti ⊕ padt(Xi−1)
53: Si ← Ii ⊕ Yi−1

54: Xi ← Ẽ
Ui
K1

(Si)
55: Yi ← Xi ⊕ Yi−1
56: return (Xi, Yi)

only in the ideal world, which yields about n/2 bits of security. Such a birthday-bound
attack on a variant that omitted the checksum can be found in Appendix A. Though, it is
relatively easy to see that a significantly better attack is not possible.

A Single-Key Variant DoveMAC1k. A single-key variant can be defined in a straight-
forward manner at the price of a less conventional splitting of the message blocks. Using
a domain space of D, one can assume that the tweak space is T ′ and can be split into a
usable space T and a domain space D: T ′ = T ×D. Define D = {0, 1}δ. A single bit that
differs for the intermediate calls and for the calls in the finalization suffices. A domain
separation with δ ≥ 1 bit for the domain could then use π̃D,Ui(Si) with the domain as,
e.g.,

D =
{
〈0〉δ for π̃D,Ui(Vi),
〈2〉δ for π̃D,X(Y) .

If δ ≥ 2 bits are reserved for domain purposes, further domains could be used for an
encryption scheme used in combination with DoveMAC.
On the downside, this approach must split the message into potentially unconventional
pieces that can potentially conflict, e.g., with byte or register alignments. The advantages
and disadvantages of reserving a few tweak bits for separating domains have to be taken
into account depending on the considered use case. Our security results also apply to
DoveMAC1k when t is replaced by (t− 1) in the bounds.

4 PRF Security
If DoveHash satisfies two criteria, the PRF security of DoveMAC can be derived
similarly as that of HtTBC for single-block outputs. Prior, we replace ẼK1 and ẼK2 in
DoveMAC by two independent random permutations π̃, π̃′ � P̃erm(T ,B), respectively.
We denote the resulting construction by DoveMAC[π̃, π̃′]. Using a hybrid argument, the
advantage to distinguish between both settings is at most AdvTPRP

ẼK
(A′), where A′ is

a TPRP adversary on ẼK that asks at most σ + 2q queries and runs in time at most
O(σ + 2q).

52 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

Theorem 1 (PRF Security of DoveMAC). Let K1,K2 � K be independent keys. Let
π̃, π̃′ � P̃erm(T ,B). Let A be a PRF adversary on DoveMAC[π̃, π̃′] s.t. A asks at most
q queries that consist of at most m < 2n−2 (t+ n)-bit blocks after padding each, and that
sum to at most σ < 2n−2 (t+ n)-bit blocks in total. Then

AdvPRF
DoveMAC[π̃,π̃′](A) ≤ 4σ

2n + q2m2

22n + 2q2 + 4qm2 + 4q2m2

2n+min(n,t) .

Remark 1. While we generalized DoveMAC to arbitrary tweak lengths, our analysis for
the settings t = n and t > n often follow the same arguments since the outputs are simply
truncated before they are XORed to the next tweak input. However, a larger tweak does
not yield higher security, but only increases the rate. When t < n, there are up to 2n−t
possible output values that would produce internal collision events, which reduces the
bound to 2−(n+t) in the exponent.

Proof. The proof of Theorem 1 follows from Theorem 2. The latter will use Lemmas 4
and 5 to derive concrete bounds. Theorem 2 is similar to [LN17, Corollary 1].

Theorem 2 (PRF Security of HtTBC). Let H be short for DoveHash[π̃]. Assume
that the collision probability over all messages Coll

H[π̃](t+ n, q,m, σ) is upper bounded by
ε1, and H is (t, n, ε2)-tAU. Let A be a PRF adversary against HtTBC[π̃′, H] that makes
at most q queries consisting at most m (t+ n)-bit blocks after padding each, that sum to
at most σ (t+ n)-bit blocks in total. Then

AdvPRF
HtTBC[π̃′,H](A) ≤ ε1 +

(
q
2
)
· ε2

2n .

Proof. The queries by A are collected in a transcript τ that contains the messages from A
as well as the outputs {(M i, Xi, Y i, Zi)}1≤i≤q), as well as the ideal primitives π̃ and π̃′.
M i denotes the i-th message, Xi and Y i the inputs to the final call to π̃′, and Zi the tags.
Moreover, we define the length of M i after padding by mi.
Both the real and the ideal worlds have an on-line and an off-line sampling phase. In the
on-line phase, the real world computes the tags Zi. The ideal world maps inputs M i ∈M
to uniformly random outputs Zi � B.
In the off-line phase, the real world releases all internal values Xi and Y i and π̃. The ideal
world samples π̃ to derive those internal values Xi and Y i in this phase and releases π̃,
Xi, and Y i. Those parts of the transcript are revealed to the adversary after it made all
its queries, but before it outputs its decision bit that represents its guess of which world it
interacted with. The task of A is then to distinguish the real world Oreal from the ideal
world Oideal. A transcript τ is called attainable if the probability to obtain τ in the ideal
world is non-zero.
The set of all attainable transcripts can be partitioned into two disjoint sets GoodT and
BadT. We call a transcript τ bad iff τ ∈ BadT, and denote it as good otherwise. A
transcript is called bad if at least one of the following statements holds:

• bad1: There exist distinct i, j ∈ {1, . . . , q} s.t. (Xi, Y i) = (Xj , Y j).

• bad2: There exist distinct i, j ∈ {1, . . . , q} s.t. (Xi, Zi) = (Xj , Zj). We condition
the event bad2 to exclude bad1.

The proof of Theorem follows then from Lemmas 2 and 3 below.

The bad events represent possible input or output collisions in the finalization: bad1 models
the event that two pairs of state and tweak inputs collide; bad2 indicates a collision between
tweak and outputs. For all bad events, the adversary could easily distinguish the worlds.
However, their probability to occur is sufficiently small as is studied in Lemma 2.

Tony Grochow, Eik List and Mridul Nandi 53

Lemma 2 (Bad Transcripts). Given the considerations from Theorem 2, and the bad
events as defined above. Then

Pr [Θideal ∈ BadT] ≤ ε1 +
(
q
2
)
· ε2

2n .

Proof. It holds that Pr[Θideal ∈ BadT] ≤ Pr [bad1] + Pr [bad2|¬bad1]. We upper bound
the probability of those bad events in the following.

Bad1. In this case, it holds that there exists at least one tuple of distinct i, j ∈ [1..q], s.t.
M i and M j yielded (Xi, Y i) = (Xj , Y j). So, the outputs would have to be equal, and
with high probability, A could distinguish the worlds. This probability is at most

Pr[bad1] ≤ Coll
H[π̃](t+ n, q,m, σ) ≤ ε1 .

Bad2. In this case, it holds that M i and M j produced (Xi, Zi) = (Xj , Zj). In the ideal
world, the outputs Zi and Zj are sampled independently and uniformly at random. Given
that H[π̃] is (t, n, ε2)-tAU, the probability that Xi = Xj , for a fixed pair of i and j, is
bounded by ε2. Over q queries, it follows that

Pr [bad2] ≤
(
q

2

)
· ε22n

Our claim in Lemma 2 follows from the sum of both terms.
Note that we can simplify the bound for bad2 that will be treated in Lemma 5, which
captures also the term for a collision between two queries of at most m (t+ n)-bit blocks.
We could generalize it over all queries to another term of the collision bound for q queries
of at most σ blocks in total. However, this would treat collisions twice. Considering

Pr [bad] ≤ Pr [bad1] + Pr [bad2|¬bad1]

avoids the duplicate term for the collision bound.

The finalization of DoveMAC is identical to HtTBC[π̃′, H] for single-block outputs.
Hence, we can apply the following lemma whose proof is given in Lemma 3 in [LN17]; for
the sake of completeness, we sketch it in Appendix B.

Lemma 3 (Interpolation Probability of Good Transcripts). Given the considerations
from Theorem 2, and the definition of good and bad transcripts as from its proof. Let
τ ∈ GoodT. Then, Pr [Θreal = τ] ≥ Pr [Θideal = τ].

The remaining analysis reduces to finding upper bounds for ε1 and ε2. We study these
properties in the upcoming Sections 5 and 6, respectively.

5 Collision Analysis
We will show the following lemma in this section.

Lemma 4 (Collision Probability of DoveHash[π̃]). Let σ < 2n−2. Then, it holds that

CollDoveHash[π̃] (t+ n, q,m, σ) ≤ 4σ
2n + 4qm2 + 4q2m2

2n+min(n,t) .

For our analysis of the collision probability, we need the definition of the longest common
prefix between two messages.

54 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

Definition 10 (Longest Common Prefix). Given an integer n, let M,M ′ ∈ S∗, with S =
{0, 1}t+n, and denote their blocks as (M1, . . . ,Mm) t+n←−−M and (M ′1, . . . ,M ′m′)

t+n←−−M ′.
We define the length of their longest common prefix LCPS as LCPS(M,M ′) =def maxj{1 ≤
i ≤ j : Mi = M ′i}, and will write LCPt+n(M,M ′) hereafter. Given a set Q ⊆ (S∗)∗ of
elements from S∗, we define LCP(M,Q) =def maxM ′∈Q LCP(M,M ′).

Proof of Lemma 4. In the following, we consider q queries M i for i ∈ [1..q] that are
collected in a transcript τ . Most of the time, however, we study the probability of events
for a single message M i, that we will denote as M for simplicity or the probability of a
collision for two distinct messages M i and M j . To reduce the number of indices, we will
simply call them M and M ′ where possible.
Given two distinct messages M , M ′, we denote the blocks of M = (M1, . . . ,Mm), and the
corresponding intermediate values Xi, Yi, Si, Ti, and Ii, for 1 ≤ i ≤ m, as well as the
blocks of M ′ = (M ′1, . . . ,M ′m), and its intermediate values X ′i, Y ′i , etc, for 1 ≤ i ≤ m′, in
the intuitive way. Note that the values Ui can be derived, given Ti and Xi−1. We consider
m ≥ m′; the analysis of the case m ≤ m′ is analogous.
We further define p =def LCPt+n(M,M ′) for the length of the longest common prefix
between M and M ′. If m = m′, it holds that p < m and Mp+1 6= M ′p+1; otherwise, it
holds that p ≤ m if m > m′. Each block Mi or M ′i represents the concatenation of a tuple
(Ti, Ii)

n←−Mi and (T ′i , I ′i)
n←−M ′i after padding, which is XORed with the previous state

to yield tweak and input of the current block: (Ui, Si) = (Ti, Ii)⊕ (padt(Xi−1), Yi−1) and
(U ′i′ , S′i′) = (T ′i′ , I ′i′)⊕ (padt(X ′i′−1), Y ′i′−1), respectively, for all 1 ≤ i ≤ m and 1 ≤ i′ ≤ m′.
We will often denote by ∆ the XOR difference between corresponding blocks of the two
messages. For instance, ∆Xi = Xi ⊕X ′i, ∆Θ = Θ⊕Θ′, and so on.

Non-trivial Input Collisions. We say that a tweak-input tuple (Ui, Si) beyond the common
prefix (i.e. i > p) is old iff

• There exists j ∈ {0, . . . ,m}, j < i, s.t. (Ui, Si) = (Uj , Sj) and/or

• There exist j ∈ {p+ 1, . . . ,m′}, s.t. (Ui, Si) = (U ′j , S′j).

We call such an event a non-trivial tweak-input collision, whereas a trivial tweak-input
collision is a collision of (Ui, Si) = (U ′i , S′i) for all i ∈ {0, . . . , p}. We call a tweak-input
tuple (Ui, Si) fresh iff it is not old. We extend the definition of freshness to tweak-input
tuples of M ′, (U ′i′ , S′i′), in the natural manner.

Structure Graphs. We briefly introduce a tool called structure graph from [BPR05,
JMN17, JN16, Pie06]. We follow the description from [JMN17].

Directed Graphs. We define directed unlabeled graphs G = (V, E) of a set of vertices
V and a set of edges E ⊆ V×V between them. Moreover, we define directed edge-labeled
graphs GL = (V, E ,L) with E ⊆ V ×V ×L, where L denotes a set of labels corresponding
to edges. Here, we consider (u, v, `) or u `−→ v as a directed edge between u, v ∈ V and
label ` ∈ L. For an edge (u, v), u is called the predecessor of v. Analogously, v is called
the successor of u.

Walks. A walk v is a vertex sequence v = (v0, v1, . . . , vm) s.t. vi−1 → vi for all i ∈ [1..m].
If all vertices of a walk are pairwise distinct, v is called a path. If all vertices v1, . . . , vm
are pairwise distinct and v0 = vm, it is called a cycle. If there exist i < j s.t. vi = vj ,
then, vi..j is called to contain a loop. We denote a partial sequence of vi..j ⊆ v as
vi..j =def (vi, . . . , vj). Let G1 = (V1, E1,L1) and G2 = (V2, E2,L2) be two directed edge-
labeled graphs. A function ϕ : V1 → V2 is an isomorphism between G1 and G2, written

Tony Grochow, Eik List and Mridul Nandi 55

G1 ∼= G2, iff α is bijective and (u, v, `) ∈ E1 iff (α(u), α(v), `) ∈ E2. G2 is called the
α-transformed graph of G1, denoted as G2 = α(G1). Note that if α is injective, the range
of α can be restricted to its domain, which yields a bijective α.

Function Graphs. A directed edge-labeled graph GL = (V, E ,L) is called a function
graph if for all vertices u ∈ V and all labels ` ∈ L, there exists at most one successor
v ∈ VS(u) s.t. (u, v) has label `. This definition is extendable to walks. If there is a walk
v with labels (in that order) `1, . . . , `m, then the walk must be unique.

Intermediate Inputs and States. LetM = (M1, . . . ,Mq) be a tuple of q pairwise distinct
messages M i ∈ Bmi , for 1 ≤ mi ≤ m and 1 ≤ i ≤ q and

∑q
i=1mi ≤ σ. Moreover, we

consider that M i = (M i
1, . . . ,M

i
mi

) are sequences of message blocks M i
j , for 1 ≤ j ≤ mi.

For our purpose, we denote by in as the domain of intermediate inputs and state as the
domain of intermediate states. For our purpose, we will use in = T × B and state = B ×B.
We will use in(i, j) = (U ij , Sij) to refer to intermediate inputs and state(i, j) = (Xi

j , Y
i
j) for

intermediate states. Sequences of inputs and states are denoted by in and state, respectively.
A sequence I is attainable if there exists a function F s.t. I = in(F,M). We consider
functions F ∈ Func(T × B,B).

Block-Vertex Input-Structure Graphs. A block-vertex input-structure graph GL
for a function F and a message tupleM is defined by its set of labeled edges

E def=
q⋃
i=1
{(in(i, j − 1), in(i, j),M i

j) : i ∈ [1..mi]} .

Thus, it is a graph-theoretic representation of the intermediate values. The vertices are
inputs (U ij , Sij) to the tweakable block cipher, i.e., V = T × B; edges are transitions from
one permutation state (U ij−1, S

i
j−1) to the next one (U ij , Sij). The labels are the message

blocks M i
j = (T ij , Iij), which implies L = T × B:

(U ij−1, S
i
j−1)

T i
j ,I

i
j−−−→ (U ij , Sij) .

For our purpose, the transition will be defined as

U ij
def= padt

(
π̃
(
U ij−1, S

i
j−1
))
⊕ T ij

Sij
def= π̃

(
U ij−1, S

i
j−1
)
⊕ Iij ⊕ Y ij−1 .

Note that we have to implicitly keep track of the values Y ij =
⊕j−1

k=0 Y
i
k . Given the sequence

of predecessors, Y ij−1 is uniquely determined; however, the notation would become unhandy.
To address this issue, one could consider an isomorphic structure-graph representation
instead.

Block-Vertex State-Structure Graphs. We consider a block-vertex state-structure
graph GSL for a function F and a message tupleM is defined by its set of labeled edges

E def=
q⋃
i=1
{(state(i, j − 1), state(i, j),M i

j) : i ∈ [1..mi]} .

The vertices is the intermediate state (Xi
j , Y

i
j) the tweakable block cipher, i.e., V = T × B;

the edges are transitions from one permutation state (Xi
j−1, Y

i
j−1) to the subsequent one

56 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

(Xi
j , Y

i
j). The labels are again the message blocks M i

j = (T ij , Iij), which implies that
L = T × B: (

Xi
j−1, Y

i
j−1
) T i

j ,I
i
j−−−→
(
Xi
j , Y

i
j

)
,

where the transition is defined as

Xi
j

def= π̃(padt(Xi
j−1 ⊕ T ij , Y ij−1 ⊕ Iij))

Y ij
def= Xi

j ⊕ Y ij−1 .

GSL is a union of all M i-walks, for M i ∈M and 1 ≤ i ≤ q. Both GL and GSL are function
graphs since for every vertex u ∈ V, all outgoing and ingoing edges have distinct labels.
Moreover, each walk is unique. Note that A can construct the structure graph from the
information in the transcript τ . For a given message M , the structure graph GL(M)
is isomorphic to v(M), the walk of M . For multiple messages M , M ′, . . . , the graph
GL(M,M ′, . . .) represents the union of the structure graphs isomorphic to the walks of
the considered messages. Over all messages of a tupleM, GL(M) is isomorphic to the
union of all walks v, v′, and so on.

Partial Walks and Structure Graphs. For our purpose, it will be sufficient to consider
partial walks and partial structure graphs. In the remainder, we use GL(M i,M j) for the
partial structure graph from the union of GL(M i) and GL(M j) that stops when the first
loop or non-trivial state collision in M i, M j or between them occurs.

Core Idea. Let Coll be short-hand for the event CollDoveHash[π̃] (t+ n, q,m, σ). Let
Coll(M i,M j) denote the event that the walks of M i and M j collide. So, we can bound

Pr [Coll] ≤
∑
i<j

Pr
[
Coll(M i,M j)

]
.

In the following, we can concentrate on upper bounding the collision in the graphs between
two messages. To reduce the number of used indices, we name them M and M ′. We
consider the labeled structure graph GL(M,M ′) of M and M ′ until (and including) their
first non-trivial collision:

Pr [Coll(M,M ′)] ≤
∑

GL(M,M ′)

Pr [Coll(M,M ′) ∧GL(M,M ′)] . (1)

Let (vj−1, vj) denote an edge from GL(M) and (v′j′−1, v
′
j′) an edge originally from GL(M ′),

s.t. vj = v′j′ denotes the first non-trivial collision of their union graph GL(M,M ′). We
define by ĜL(M,M ′) = (V ′, E ′) the subgraph of GL(M,M ′) induced by removing this
first non-trivial collision, and by Collj,j′(M,M ′) the event that the subgraph GL(M,M ′)
collided at blocks j of M and j′ of M ′. Note that ĜL(M,M ′) is determined uniquely from
GL(M,M ′); hence, summing over all graphs GL(M,M ′) is equivalent to summing over
all graphs ĜL(M,M ′). Later, we will have to determine the probability of the condition
event Collj,j′(M,M ′). Thus, Equation (1) can be reformulated as∑

ĜL(M,M ′)

Pr
[
Collj,j′(M,M ′) ∧ ĜL(M,M ′)

]
=

∑
ĜL(M,M ′)

Pr
[
ĜL(M,M ′)

]
· Pr

[
Collj,j′(M,M ′)

∣∣∣ĜL(M,M ′)
]
. (2)

We will distinguish between two types of graphs:

Tony Grochow, Eik List and Mridul Nandi 57

• Bad graphs: We call a graph ĜL(M,M ′) bad iff it contains a loop. Since a loop
occurs in the walks of the same message, this is equivalent to the event that at least
one of the structure graphs for the individual messages ĜL(M) or ĜL(M ′) contains
a loop.

• Good graphs: The graph ĜL(M,M ′) contains no loop.

We define GoodG for the set of good partial structure graphs and BadG for the set of bad
partial structure graphs. We will bound

Pr
[
Coll(M,M ′) ∧ Ĝ(M,M ′)

]
≤ Pr

[(
ĜL(M) ∈ BadG

)
∨
(
ĜL(M ′) ∈ BadG

)]
+

Pr
[
Collj,j′(M,M ′) ∧ ĜL(M,M ′) ∈ GoodG

]
.

To upper bound Pr[Collj,j′(M,M ′)] for good graphs, we will later be able to use the entropy
of independent values Xi, Xk from M and X ′i′ , X ′k′ from M ′, for some indices i, k ∈ [1..m]
and i′, k′ ∈ [1..m′], that have not yet been inputs to the permutation π before. Thus, their
corresponding outputs that lead to a collision in the subsequent permutation inputs are
drawn from the set of all not yet fixed values of the permutation π. Since at most 2m
elements have been fixed before, the probability for them to lead to a collision can then be
upper bounded by

Pr
[
Coll(M,M ′) ∧ ĜL(M,M ′) ∧ ĜL(M,M ′) ∈ GoodG

]
≤ 2max(0,n−t)

(2n − 2m)2 .

It follows that, for good graphs, Equation (2) can be computed as∑
ĜL(M,M ′)

Pr
[
ĜL(M,M ′)

]
· Pr

[
Collj,j′(M,M ′) ∧ ĜL(M,M ′)

]

=
∑

ĜL(M,M ′)

Pr
[
ĜL(M,M ′)

]
· 2max(0,n−t)

(2n − 2m)2 = 2max(0,n−t)

(2n − 2m)2 .

The bad partial graphs cover all those that do not yield two independent variables. For
those bad graphs, we will show instead that their number can be upper bounded by a
reasonably “small” amount. Over all q queries, it follows then

q∑
i<j

Pr
[
Coll(M i,M j)

]
≤

q∑
i<j

Pr
[
Coll(M i,M j) ∧ ĜL(M i,M j) ∈ GoodG

]
+

q∑
i=1

Pr
[
ĜL(M i) ∈ BadG

]
.

Bad Graphs. We consider four cases of bad partial structure graphs with loops:

• Bad1: The length of the loop, r, is a single block, i.e., there exists i ∈ [1..m− 1] s.t.
(Ui+1, Si+1) = (Ui, Si).

• Bad2: The length of the loop is a single block, i.e., r = 1, and loops with the begin,
i.e.,(U2, S2) = (U1, S1).

• Bad3: The loop is longer than a single block, i.e., there exist distinct i < j ∈ [1..m]
s.t. (Uj , Sj) = (Ui, Si) and j ≥ i+ 2.

58 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

(a) bad1 (b) bad2 (c) bad3 (d) bad4

(e) good1
(f) good2

(g) good3 (h) good4

Figure 2: Structure graphs that visualize the bad graphs of message M (top), and the
good structure graphs of messages M and M ′ (bottom).

• Bad4: The loop is longer than a single block and collides with the initial value, i.e.,
there exists i ∈ [3..m] s.t. (Ui, Si) = (U1, S1).

In the following, we investigate the probability of a loop in the individual cases of graphs.
W.l.o.g., we consider the case that the loop is contained in the graph of M and consider
m > m′. For each, we will distinguish between the settings where t = n, t > n, and t < n.

Bad1. In this case, the graph of M contains a loop of length one. First, assume the
Setting t = n. For a fixed index i, we investigate the probability that

Pr
[
Ui+1 = Ui

Si+1 = Si

]
= Pr

[
Xi = Ti ⊕ Ti+1

Xi = Xi+1 ⊕ Ii ⊕ Ii+1

]
≤ 1

2n − (i− 1) .

Since there exist at most m blocks, the number of cases is upper bounded by
m

2n −m.

The probability to fulfill the lower equation does not increase with smaller or longer tweaks.
Therefore, it is equal the settings where t > n and t < n.

Bad2. In this case, the second input tuple collides with the first one. First, assume the
Setting t = n. For a fixed index i, we investigate the probability that

Pr
[
U2 = U1

S2 = S1

]
= Pr

[
X1 = X0 ⊕ T1 ⊕ T2

X1 = Y0 ⊕ I1 ⊕ I2

]
≤ 1

2n − (i− 1) .

Since there exist at most m blocks, the number of cases is upper bounded by
m

2n −m.

Again, the probability to fulfill the lower equation does not increase with smaller or longer
tweaks. Therefore, it is equal the settings where t > n and t < n.

Tony Grochow, Eik List and Mridul Nandi 59

Bad3. In this case, the graph of M contains a loop of length at least 2.
First, consider the Setting t = n. For a fixed index i, we investigate the probability that

Pr
[
Ui = Uj

Si = Sj

]
= Pr

[
Xi−1 ⊕Xj−1 = Ti ⊕ Tj⊕j−1

s=i Xi = Ii ⊕ Ij

]
. (3)

Since we consider the first loop, all previous blocks do not form a loop. Consequently,
the blocks (Uj−1, Sj−1), (Uj−2, Sj−2) are fresh and their corresponding outputs Xj−1 and
Xj−2 are chosen randomly from a set of size at least 2n − (j − 1) each. Since there exist
at most m blocks, the probability in this case is upper bounded by(

m
2
)

(2n −m)2 .

In the Setting t 6= n, the top equality from Equation (3) becomes

Pr
[
Ui = Uj

Si = Sj

]
= Pr

[
padt(Xi−1 ⊕Xj−1) = Ti ⊕ Tj⊕j−1

s=i Xi = Ii ⊕ Ij

]
. (4)

Isolating the outputs Xj−1 and Xj−2 as in the setting t = n yields that the probability
that Xj−1 fulfills it is 1/(2n −m) as before. If t > n, the longer tweak cannot increase
the probability. If t < n, there exist up to 2n−t values for Xj−2 that can fulfill the top
equality of Equation (4). The probability is therefore upper bounded by

2n−t ·
(
m
2
)

(2n −m)2 .

Bad4. In this case, it holds that (Ui, Si) = (U1, S1), where i > 2.
Again, let us start with the Setting t = n. For a fixed index i, we investigate the probability
that

Pr
[
Ui = U1

Si = S1

]
= Pr

[
Xi−1 = X0 ⊕ Ti ⊕ T1⊕i−1
j=1Xi = Y0 ⊕ Ii ⊕ Ij

]
. (5)

Since we consider the first loop, all previous blocks do not form a loop and are fresh. So,
Xi−1 and Xi−2 are fresh and chosen randomly from a set of size at least 2n − (i− 1) each.
Since there exist at most m blocks, the probability in this case is upper bounded by(

m
2
)

(2n −m)2 .

In the Setting t 6= n, we can rewrite Equation (5) as

Pr
[

padt(Xi−1) = padt(X0)⊕ Ti ⊕ T1⊕i−1
j=1Xi = Y0 ⊕ Ii ⊕ Ij

]
. (6)

We isolated the outputs Xi−1 and Xi−2 as in the setting t = n. The probability that Xi−2
fulfills the bottom equality is 1/(2n −m) as before. If t > n, the longer tweak cannot
increase the probability. If t < n, there exist up to 2n−t values for Xi−1 that can fulfill
the top equality of Equation (6). The probability is therefore upper bounded by

2n−t ·
(
m
2
)

(2n −m)2 .

60 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

There exist at most q bad graphs. So, the probability for a bad graph is upper bounded by

Pr [G′L(M) ∈ BadG ∨G′L(M ′)] ≤
4∑
i=1

Pr [badi] ≤
q∑
i=1

2 · m

2n − σ + 2 ·
2max(0,n−t) ·

(
m
2
)

(2n − σ)2

≤ 2σ
2n − σ +

2max(0,n−t) · 2q ·
(
m
2
)

(2n − σ)2 ≤ 4σ
2n + 4qm2

2n+min(n,t) ,

using the fact that σ < 2n−2.

Good Graphs. It remains to bound the number of collisions in good graphs. We denote
by r the minimum distance of blocks from the block p where M diverges from M ′

after their longest common prefix until the first collision. This means, r = mini>1 |{i :
(Ui+p, Si+p) ∈ v′}|. Analogously, we define the distance of blocks from the block p
where M ′ diverges from M after their longest common prefix until the first collision:
r′ = mini>1 |{i : (U ′i+p, S′i+p) ∈ v}|. The values r and r′ do not have to be equal. Note
that, for the block directly following the longest common prefix, the inputs to π must differ
by definition, i.e., (Up+1, Sp+1) 6= (U ′p+1, S

′
p+1). So, it must hold that at least one of r and

r′ has length at least 2: (Ui, Si) = (U ′i′ , S′i′), i = p+ r.
We consider the following mutually exclusive cases:

• Good1: r ≥ 3, i.e., there exists i and j s.t. (Ui, Si) = (U ′j , S′j) with i ≥ p+ 3.

• Good2: r = 2, r′ ≥ 2, and ∆T 6= 0.

• Good3: r = 2, r′ ≥ 2, and ∆T = 0.

• Good4: r = 2 and r′ = 1.
Recall that we consider the first collision. Since the graphs are good, they exclude loops.

Good1. In this case, the graphs of M and M ′ diverge and converge again, where r ≥ 3
blocks are between division and conversion in the graph of M .
We start again in the Setting t = n. For a fixed index i, we investigate the probability that

Pr
[
Ui = U ′j

Si = S′j

]
= Pr

[
Xi−1 = X ′j−1 ⊕ Ti ⊕ Tj⊕i−1

k=p+1Xk ⊕
⊕j−1

k=p+1X
′
k = Ii ⊕ Ii+1

]
. (7)

We can isolate the blocks Xi−1 and Xi−2. Since we consider the first collision at Xi and
no loop, the inputs (Ui−1, Si−1) and (Ui−2, Si−2) that produced Xi−1 and Xi−2 are fresh.
So, Xi−1 and Xi−2 are sampled randomly from sets of size at least 2n − (i− 1). Thus, the
probability that they fulfill Equation (7) is upper bounded by(

m
2
)

(2n − 2m)2 .

In the Setting t 6= n, Equation (7) becomes

Pr
[

padt(Xi−1) = padt(X ′j−1)⊕ Ti ⊕ Tj⊕i−1
k=p+1Xk ⊕

⊕j−1
k=p+1X

′
k = Ii ⊕ Ii+1

]
. (8)

The probability that Xi−2 fulfills the bottom equality is still 1/(2n − 2m). If t > n, the
longer tweak cannot increase the probability. If t < n, there exist up to 2n−t values for
Xi−1 that can fulfill the top equality of Equation (8). The probability is therefore upper
bounded by

2n−t ·
(
m
2
)

(2n − 2m)2 .

Tony Grochow, Eik List and Mridul Nandi 61

Good2. In this case, the graphs of M and M ′ diverge and converge again after two blocks
in the i-th block and it holds that Ti 6= T ′i .
In the Setting t = n, we investigate the probability for fixed i that

Pr
[
Ui = U ′i′

Si = S′i′

]
.

We can assume that i = i′ holds for both messages, which means the graphs of both
messages diverge at the i − 1-th block, and join again at the i-th block. Otherwise, if
r′ > 2, we could swap M and M ′ and are in the case of good1. So, we assume r = r′ = 2.
In this case, we also consider that Ti ⊕ T ′i = ∆Ti 6= 0, i.e., Ti 6= T ′i . So, we study the
probability

Pr
[
Xi−1 = X ′i−1 ⊕ Ti ⊕ T ′i
Xi−1 = X ′i−1 ⊕ Ii ⊕ I ′i

]
. (9)

From Ti 6= T ′i , it follows that Xi−1 6= X ′i−1. So, it must hold that Yi 6= Y ′i , i. e., the
bottom lanes of both messages differ. If the graphs of M and M ′ would be common
in all blocks Mj = M ′j , for i ≤ j ≤ m, the bottom lanes would differ until the end:
Ym ⊕ Y ′m = Xi−1 6= X ′i−1. Since the bottom lane is used as state input, this would imply
no collision at the end.
To obtain a collision at the end, there must exist a second diversion phase between the
graphs, i.e., there must exist some fresh index j > i s.t. (Uj−1, Sj−1) 6= (U ′j−1, S

′
j−1) or

even j > m′. This means also the probability

Pr

Xj−1 =

 m′⊕
k=1

k 6=j−1

∆Xk

⊕
 m⊕

k=m′+1
k 6=j−1

Xk


 . (10)

Since i− 1 and j− 1 are distinct indices and fresh, Xi−1 and Xj−1 are random values from
sets of at least 2n − 2m elements each. Thus, the probability that they fulfill Equation (9)
is upper bounded by (

m
2
)

(2n − 2m)2 .

In the Setting t 6= n, we can rewrite Equation (9) to

Pr
[

padt(Xi−1) = padt(X ′i−1)⊕ Ti ⊕ T ′i
Xi−1 = X ′i−1 ⊕ Ii ⊕ I ′i

]
. (11)

The probability that Xj−1 fulfills the bottom equality is still at most 1/(2n−2m). If t > n,
the longer tweak cannot increase the probability. If t < n, there exist up to 2n−t values
for Xi−1 that can fulfill the top equality of Equation (11). The probability is therefore
upper bounded by

2n−t ·
(
m
2
)

(2n − 2m)2 .

Good3. In this case, the graphs of M and M ′ diverge and converge again after two blocks
in the i-th block, and it holds that Ti = T ′i .
Here, Setting t = n investigates the probability

Pr
[
Ui = U ′i′

Si = S′i′

]
.

62 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

We can assume that i = i′ holds for both messages, which means the graphs of both
messages diverge at the i − 1-th block, and join again at the i-th block. Otherwise, if
r′ > 2, we could swap M and M ′ and are in the case of good1. So, we assume r = r′ = 2.
Since Ti = T ′i , we consider the probability

Pr
[
Xi−1 = X ′i−1

]
. (12)

In order to allow Xi = X ′i to collide, it follows that the tweaks must have differed in the
i− 1-th block: Ui−1 6= U ′i−1. Since the outputs from the penultimate blocks Xi−2 = X ′i−2
were equal, this implies that Ti−1 6= T ′i−1.
If the graphs of M and M ′ are identical until the last block, it would follow that the tweak
checksums would differ: Θ 6= Θ′. So, as for good2, there must exist a second diversion
phase between the graphs. This means, there must exist some index j > i s.t. either
(Uj−1, Sj−1) 6= (U ′j−1, S

′
j−1) or alternatively j > m′. This means also the probability

Pr

Xj−1 =

 m′⊕
k=1

k 6=j−1

∆Xk

⊕
 m⊕

k=m′+1
k 6=j−1

Xk


 . (13)

Since i−1 and j−1 are distinct indices and fresh, Xi−1 and Xj−1 are chosen randomly from
sets of at least 2n− 2m elements each. Thus, the probability that they fulfill Equation (12)
is upper bounded by (

m
2
)

(2n − 2m)2 .

In the Setting t 6= n, Equation (12) becomes

Pr
[
padt(Xi−1) = padt(X ′i−1)

]
. (14)

The probability that Xj−1 fulfills Equation (13) equality is still 1/(2n − 2m). If t > n, the
longer tweak cannot increase the probability. If t < n, there exist up to 2n−t values for
Xi−1 that can fulfill Equation (14). The probability is therefore upper bounded by

2n−t ·
(
m
2
)

(2n − 2m) .

Good4. In this case, the graphs of M and M ′ diverge at the (p + 1)-th block and
converge again after two blocks for one graph, which hits the p + 1-th block of the
respective other. We will study the sub-case (Up+2, Sp+2) = (U ′p+1, S

′
p+1). The sub-case

(U ′p+2, S
′
p+2) = (Up+1, Sp+1) is analogous.

Setting t = n investigates the probability

Pr
[
Up+2 = U ′p+1

Sp+2 = S′p+1

]
= Pr

[
Xp = Xp+1 ⊕ Tp+1 ⊕ T ′p+1

Xp+1 = Ip+2 ⊕ I ′p+1

]
. (15)

Since we assume that the graphs are good, there exist no previous non-trivial collisions.
Since π̃ is a random permutation, the values Xp and Xp+1 are randomly chosen from at
least 2n − 2m elements each. Thus, the probability that they fulfill Equation (15) is upper
bounded by (

m
2
)

(2n − 2m)2 .

Tony Grochow, Eik List and Mridul Nandi 63

In the Setting t 6= n, Equation (15) becomes

Pr
[

padt(Xp) = padt(Xp+1)⊕ Tp+1 ⊕ T ′p+1

Xp+1 = Ip+2 ⊕ I ′p+1

]
. (16)

The probability that Xp+1 fulfills the bottom equality is at most 1/(2n − 2m). If t > n,
the longer tweak cannot increase the probability. If t < n, there exist up to 2n−t values
for Xi−1 that can fulfill the top equality of Equation (16). The probability is therefore
upper bounded by

2n−t ·
(
m
2
)

(2n − 2m)2 .

Over all cases of good graphs and
(
q
2
)
query pairs, the probability of a collision is upper

bounded by

4 ·
(
q

2

)
·

2max(0,n−t) ·
(
m
2
)

(2n − 2σ)2 ≤
4 · 2max(0,n−t) ·

(
q
2
)
·
(
m
2
)

(2n − 2σ)2 ≤ 4q2m2

2n+min(n,t) ,

using again our assumption of σ < 2n−2. Taking the sum over all cases, we can derive our
bound in Lemma 4.

6 tAU Analysis
In addition to the collision analysis, we need an upper bound on the probability that two
distinct messages yield a collision in X = X ′. This is captured by the following Lemma.

Lemma 5 (tAU Upper Bound of DoveHash[π̃]). Let m < 2n−2. Then, DoveHash[π̃]
is (t, n, ε)-tAU for

ε ≤ CollDoveHash[π̃] (t+ n, 2,m, 2m) + 2m2

2n + 4
2min(n,t) .

Proof. The proof follows from a similar but simpler argumentation as in our collision
analysis. We study the probability of events for a single message M i, that we will denote
as M for simplicity, or the probability of a collision for two distinct messages M i and M j ,
that we will call M and M ′ for simplicity.
As in the collision analysis, we will consider a directed, edge-labeled function graph
G = (V, E ,L) of our construction. Though, here, we differ from the previous graph by
considering permutation outputs. So, the values (Xi, Yi) will represent the vertices of the
graph. The set of edges E are the transitions between vertices; the set of labels L consists
of exactly those input tuples (Ti, Ii) ∈ T ×B that map (Xi−1, Yi−1) Ti,Ii−−−→ (Xi, Yi). So, we
interpret the blocks of a message M = (M1, . . . ,Mm) as the labels of the graph. Again,
we consider walks v and v′ associated with M and M ′, respectively. In the following, we
differentiate walks according to non-trivial output collisions, i.e., collisions between
two permutation outputs

• Xi = X ′j , where i > LCPt+n(M,M ′) for some i ≥ 1 and j ≥ 0 or

• Xi = Xj for i > j, or

• X ′i = X ′j for i > j.

64 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

We call the event of an output collision in the same message, Xi = Xj or X ′i = X ′j , for
some i 6= j, an output loop. Moreover, we exclude non-trivial tweak-input collisions
from consideration here since their probability has already been studied in the collision
analysis. Clearly, their probability is upper bounded by

CollDoveHash[π̃] (t+ n, 2,m, 2m) .

Instead, we will focus on three mutually exclusive cases:

• Bad Walks:

− bad1: The partial walk v contains an output loop.
− bad2: The partial walks v and v′ contain no output loop but a non-trivial

output collision.

• Good Walks: The walks v and v′ contain no output loops and no non-trivial output
collision. We call such walks v good walks.

Bad1. In the following, we investigate the probability of an output loop. We stop at the
first loop and assume no further non-trivial tweak-input collision. W.l.o.g., we consider
the case that the loop is contained in the walk of M and consider m > m′. For each, we
will distinguish between the settings where t = n, t > n, and t < n.
Assume the Setting t = n. In this case, we consider the probability

Pr [Xi = Xj] .

Since the input has been fresh, the probability that both values are equal is at most
1/(2n − 2m). Over at most

(
m
2
)
possible combinations of blocks, the probability is upper

bounded by (
m
2
)

2n − 2m .

Note that we compare the non-truncated and non-padded values Xi. moreover, X0 ∈ B;
so, the probability upper bound holds also in the Setting t 6= n.

Bad2. Here, we consider non-trivial output collisions between two messages M and M ′.
Again, we study the first non-trivial output collision Xi = X ′i′ . and excluded non-trivial
state-input collisions and bad walks. So, the input tuple (Ui, Si) has been fresh. Thus, the
probability that two permutation outputs are equal is at most 1/(2n − 2m). Over at most(
m
2
)
possible combinations of blocks, the probability is upper bounded by(

m
2
)

2n − 2m .

Again, we compare the non-truncated and non-padded values Xi. Thus, the upper bound
also holds in the Setting t 6= n.
So, the probability that a walk is bad is at most

2 ·
(
m
2
)

2n − 2m ≤
2m2

2n ,

using the assumption that m < 2n−2.

Tony Grochow, Eik List and Mridul Nandi 65

Good Walks. It remains to study the probability of collisions X = X ′ and no output
loops or non-trivial output collisions occurred. For a collision at the end, it has to hold
that

Pr [padt(Xm ⊕X ′m′) = Θ⊕Θ′] .

We study two cases depending on ∆Θ = Θ⊕Θ′: (1) ∆Θ 6= 0t and (2) ∆Θ = 0t.

Case (1): ∆Θ 6= 0t. Here, it must hold that

padt(Xm ⊕X ′m′) =
(

m⊕
i=1

Ti

)
⊕

 m′⊕
i=1

T ′i

 6= 0t .

Since we assume no further non-trivial output nor non-trivial tweak-input collisions, the
tweak-input tuple (Um, Sm) was fresh. In the Setting t = n, the probability is at most

1
2n − 2m .

The probability does not increase in the Setting t > n. In the Setting t < n, there can
exist at most 2n−t outputs Xm that lead to the collision. So, the probability is upper
bounded by

2n−min(n,t)

2n − 2m .

Case (2): ∆Θ = 0t. Here, it must hold that

padt(Xm ⊕X ′m′) = 0t . (17)

We differentiate between our three settings.
In the Setting t = n, the fact that Xm ⊕ X ′m′ must hold implies an output collision.
This would contradict our assumption that no non-trivial output collisions have occurred.
Thus, in this setting, the case has probability zero here. A similar argument holds in the
Setting t > n.
In the Setting t < n, Equation (17) can hold either due to a non-trivial output collision,
or that the most significant t bits collided from two different outputs. Only the latter
event is relevant and would mean that Xm 6= X ′m′ . Again, it implies, together with our
assumptions of no further non-trivial output nor non-trivial tweak-input collisions, that
tweak-input tuple (Um, Sm) was fresh.
In the Setting t < n, there can exist at most 2n−t outputs Xm that lead to the collision
on the most significant t bits. Then, the probability is upper bounded by

2n−min(n,t)

2n − 2m .

So, the probability for an output collision when the transcript is good is at most

2 · 2n−min(n,t)

2n − 2m ≤ 4
2min(n,t) ,

using the assumption that m < 2n−2. From all cases, we obtain our bound in Lemma 5.

66 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

SC AC

ART

≫ 1

≫ 2

≫ 3

ShiftRows MixColumns

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Figure 3: The round function (top) and the tweakey schedule of Skinny (bottom)
[Jea16].

7 Instantiation
This section reports on an instantiation of DoveMAC with Skinny-64-128 [BJK+16c]. We
provide a rationale, results of an implementation on two common Atmel microcontrollers,
and a brief comparison with an implementation of ZMAC1 on the same platform and
with the same primitive [IMPS17].

Choice of A Primitive. DoveMAC would benefit from a tweakable block cipher with
a tweak length of at least the block size. In contrast to ZHash, DoveHash does not
require an additional counter. Moreover, the term O(σ2/2n+min(n,t)) in the bound limits
the security to at most n bits. So, while larger tweaks would increase the rate, the
security does not increase for t > n. So, we considered performant lightweight tweakable
block ciphers for instantiation with t = n. Among the available lightweight primitives,
the search focused on Skinny-64-128 [BJK+16c], Joltik-BC-64-192 [JNP14], MANTIS
[BJK+16c], and QARMA [Ava17]. We opted for Skinny-64-128 due to its lightness and
its availability, among others, for microcontrollers. We give a brief overview for the sake of
self-containment.

Definition. Skinny [BJK+16c] is a lightweight tweakable block cipher that employs
the TWEAKEY schedule [JNP14]. State words and tweakey words are represented by a
4× 4-matrix of cells, where each cell is a nibble for Skinny-64. So, key and tweak words
are considered together and are processed in a linear update function to produce the round
keys. The cipher consists of a 36-round substitution-permutation network which consists
of SubCells (SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows
(SR), and MixColumns (MC). The primitive is optimized towards low code and area
size. Compared to most earlier lightweight SPNs, Skinny omits an initial key whitening
and comes with a non-MDS mixing layer that can be implemented by a few simple XORs.
Moreover, the round tweakey is XORed only to half of the state, i.e., to the two topmost
state rows in each round. The round function and an iteration of the tweakey schedule are
illustrated in Figure 3. More details can be found in [BJK+16c].

Implementation. We implemented DoveMAC in C on ATmega 2560 [Atm14] and
ATmega 328p [Atm18], which are common 8-bit RISC microcontrollers operating at
16 MHz. The former has 256 KiB flash memory, eight KiB RAM, and four KiB EEPROM;
the latter 32 KiB flash memory, two KiB SRAM, and one KiB EEPROM available. As
primitive, we employed the public Skinny-64-128 implementation for microcontrollers
from [rwe18] referenced by the SKINNY designers’ overview [BJK+16a]. Internally, this

Tony Grochow, Eik List and Mridul Nandi 67

Table 2: Rounded throughputs in cycles/byte and RAM storage in bytes of our imple-
mentations on Atmel microcontrollers.

Message length (bytes)

ATmega 2560 ATmega 328p RAM

Scheme 64 128 256 512 1 024 2 048 4 096 64 128 256 512 1 024 (bytes)

DoveMAC[Skinny-64-128] 760 616 544 508 490 481 476 758 614 542 506 488 176
ZMAC1[Skinny-64-128] 1 013 757 630 566 534 518 510 1 009 755 627 564 532 236

implementation uses two parallel four-bit S-boxes and precomputed the subkeys.
For comparison, we also implemented ZMAC1 [Nai18b], a successor of ZMAC with the
same primitive on the same platform. ZMAC is the most intuitive and most illustrative
choice of a MAC with a rate that is comparable to that of our proposal. For fairness, we
used the recent more efficient successor ZMAC1 that spares the separate domains and
employs the same finalization as DoveMAC. So, differences between the constructions
are majorly due to the hash function, plus the hash function avoids to extract odd tweak
portions and can also use 64-bit tweaks per primitive call.
Our instantiation uses two 64-bit keys for both DoveMAC and ZMAC1, one for the
hash function and a second one for the finalization each. The results of our comparison
are given in Table 2 for message lengths of up to four KiB for the ATmega 2560 and of
up to one KiB for the ATmega 328p. We employed avr-gcc as compiler with the -Os
option for minimizing the code size. Each measurement represents the mean of 1 000 tag
computations of hash function and finalization. The storage values in RAM exclude the
size of the message and keys. Since the microcontrollers are similar, the storage results
were identical and are given therefore only once in Table 2.
The storage and performance values depend strongly on the primitive implementation.
For the chosen setup, DoveMAC is about 7-12 percent faster compared to ZMAC1,
which is likely to be caused by the doublings in the latter. After subtracting the message
and key, our implementation of DoveMAC[Skinny-64-128] used 176 bytes of RAM.
An implementation of ZMAC1 on the same platform and with the same block-cipher
implementation employed 236 bytes of RAM. Our implementation results leave room
for further minimizing the state considerably from the theoretical minimal requirements.
Though, the differences reflect implementation-specific overheads in ZMAC1, e.g., the
masks, as well as temporary variables for the counters. We plan to publish the source code
freely available to the public domain.

8 Conclusion and Future Work
This work proposed a sequential TBC-based PRF that attempts to reduce the memory
requirements of ZMAC, in the spirit of the 3kf9 and NI+-MAC designs at a rate of
t+ n bits per primitive call. Our construction is the first sequential block-cipher-based
proposal that processes more message bits than the state size of the primitive while
having O((n+ min(n, t))/2) bits of security. We could simply derive a single-key variant
DoveMAC1k that spares the second key of DoveMAC by reserving a bit from the tweak
space to separate the primitive used for hashing from that used for the finalization.

Future Work. DoveMAC can be easily combined with a small-state encryption mode
to an AE scheme. There exist several options: (1) an on-line scheme that uses a PRF only
for authentication of the associated data, (2) an off-line nonce-based AE scheme, or (3) a
deterministic off-line AE scheme. For all variants, the nonce-IV or the purely IV-based

68 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

versions of CTRT [PS16] would allow to use the already available TBC efficiently. We
outline the second option in Appendix C. The third option would require a longer IV of at
least (t+ n) bits to benefit from the high security guarantees of DoveMAC. This would
require to use a longer output from the PRF. We show briefly in Section A why it is not
straight-forward to derive longer outputs from DoveHash and ZFin+ with high security.
So, a future work is to derive a highly secure deterministic AE scheme. Though, the focus
of the current work resided on a highly secure fixed-output-length PRF that also uses the
tweak for message absorption and reduced the state compared to previous ZMAC-like
variants.

Acknowledgments
We are highly thankful to the reviewers and editors of ToSC for their very helpful comments
that has lead to considerable improvements of this work.

References
[Atm14] Atmel. Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V – 8-bit

Atmel Microcontroller with 16/32/64KB In-System Programmable
Flash, 2014. http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_
datasheet.pdf, last access 2018-11-23.

[Atm18] Atmel. ATmega48A/PA/88A/PA/168A/PA/328/P – megaAVR Data
Sheet, 2018. http://ww1.microchip.com/downloads/en/DeviceDoc/
ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf, last access
2018-11-23.

[Ava17] Roberto Avanzi. The QARMA Block Cipher Family. Almost MDS Matri-
ces Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Con-
structions With Non-Involutory Central Rounds, and Search Heuristics for
Low-Latency S-Boxes. IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017.
https://doi.org/10.13154/tosc.v2017.i1.4-44.

[Ber99] Daniel J. Bernstein. How to Stretch Random Functions: The Security of
Protected Counter Sums. J. Cryptology, 12(3):185–192, 1999. https://doi.
org/10.1007/s001459900051.

[BGR95] Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New Methods
for Message Authentication Using Finite Pseudorandom Functions. In Don
Coppersmith, editor, CRYPTO, volume 963 of LNCS, pages 15–28. Springer,
1995. https://doi.org/10.1007/3-540-44750-4_2.

[BJK+16a] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim.
SKINNY family of block ciphers, 2016. https://sites.google.com/site/
skinnycipher/, last access 2018-11-23.

[BJK+16b] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY
family of block ciphers – Implementations, 2016. https://sites.google.
com/site/skinnycipher/implementation.

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
 https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.1007/s001459900051
https://doi.org/10.1007/s001459900051
https://doi.org/10.1007/3-540-44750-4_2
https://sites.google.com/site/skinnycipher/
https://sites.google.com/site/skinnycipher/
https://sites.google.com/site/skinnycipher/implementation
https://sites.google.com/site/skinnycipher/implementation

Tony Grochow, Eik List and Mridul Nandi 69

[BJK+16c] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO II, volume 9815 of
LNCS, pages 123–153. Springer, 2016. Full version at https://eprint.iacr.
org/2016/660.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of LNCS, pages 450–466. Springer,
2007. https://doi.org/10.1007/978-3-540-74735-2_31.

[BPR05] Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved Security
Analyses for CBC MACs. In Victor Shoup, editor, CRYPTO, volume 3621 of
LNCS, pages 527–545. Springer, 2005. https://doi.org/10.1007/11535218_
32.

[BR02] John Black and Phillip Rogaway. A Block-Cipher Mode of Operation for
Parallelizable Message Authentication. In Lars R. Knudsen, editor, EU-
ROCRYPT, volume 2332 of LNCS, pages 384–397. Springer, 2002. http:
//dx.doi.org/10.1007/3-540-46035-7_25.

[CS14] Shan Chen and John P. Steinberger. Tight Security Bounds for Key-Alternating
Ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT,
volume 8441 of LNCS, pages 327–350. Springer, 2014. Full version at https:
//eprint.iacr.org/2013/222.

[DDN+17] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, and Liting
Zhang. Single Key Variant of PMAC_Plus. IACR Trans. Symmetric Cryp-
tol., 2017(4):268–305, 2017. https://doi.org/10.13154/tosc.v2017.i4.
268-305.

[DJN17] Avijit Dutta, Ashwin Jha, and Mridul Nandi. A New Look at Counters: Don’t
Run Like Marathon in a Hundred Meter Race. IEEE Trans. Computers,
66(11):1851–1864, 2017. https://doi.org/10.1109/TC.2017.2710125.

[DNP16] Avijit Dutta, Mridul Nandi, and Goutam Paul. One-Key Compression Function
Based MAC with Security Beyond Birthday Bound. In Joseph K. Liu and Ron
Steinfeld, editors, ACISP I, volume 9722 of LNCS, pages 343–358. Springer,
2016. https://doi.org/10.1007/978-3-319-40253-6_21.

[Dwo16] Morris J Dworkin. Recommendation for block cipher modes of operation:
The CMAC mode for authentication. Technical report, 2016. Supersedes SP
800-38B (https://www.nist.gov/node/562931).

[HSH+06] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok
Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, Hyun
Kim, Jongsung Kim, and Seongtaek Chee. HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In Louis Goubin and Mitsuru Matsui,
editors, CHES, volume 4249 of LNCS, pages 46–59. Springer, 2006. https:
//doi.org/10.1007/11894063_4.

[IK03] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In Thomas
Johansson, editor, FSE, volume 2887 of LNCS, pages 129–153. Springer, 2003.
https://doi.org/10.1007/978-3-540-39887-5_11.

https://eprint.iacr.org/2016/660
https://eprint.iacr.org/2016/660
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/11535218_32
https://doi.org/10.1007/11535218_32
http://dx.doi.org/10.1007/3-540-46035-7_25
http://dx.doi.org/10.1007/3-540-46035-7_25
https://eprint.iacr.org/2013/222
https://eprint.iacr.org/2013/222
https://doi.org/10.13154/tosc.v2017.i4.268-305
https://doi.org/10.13154/tosc.v2017.i4.268-305
https://doi.org/10.1109/TC.2017.2710125
https://doi.org/10.1007/978-3-319-40253-6_21
https://www. nist. gov/node/562931
https://doi.org/10.1007/11894063_4
https://doi.org/10.1007/11894063_4
https://doi.org/10.1007/978-3-540-39887-5_11

70 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

[IM16] Tetsu Iwata and Kazuhiko Minematsu. Stronger Security Variants of GCM-
SIV. IACR Trans. Symmetric Cryptol., 2016(1):134–157, 2016. https://doi.
org/10.13154/tosc.v2016.i1.134-157.

[IMG+14] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita
Kobayashi. CAESAR candidate SILC. Directions in Authenticated Ciphers,
2014. Latest submission to the CAESAR competition (v3) at https://
competitions.cr.yp.to/round3/clocsilcv3.pdf.

[IMPS17] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message
Authentication. In Jonathan Katz and Hovav Shacham, editors, CRYPTO,
Part III, volume 10403 of LNCS, pages 34–65. Springer, 2017. Full ver-
sion at https://eprint.iacr.org/2017/535. https://doi.org/10.1007/
978-3-319-63697-9_2.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

[JMN17] Ashwin Jha, Avradip Mandal, and Mridul Nandi. On The Exact Security
of Message Authentication Using Pseudorandom Functions. IACR Trans.
Symmetric Cryptol., 2017(1):427–448, 2017. https://doi.org/10.13154/
tosc.v2017.i1.427-448.

[JN16] Ashwin Jha and Mridul Nandi. Revisiting structure graphs: Applications to
CBC-MAC and EMAC. J. Mathematical Cryptology, 10(3-4):157–180, 2016.
https://doi.org/10.1515/jmc-2016-0030.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT II, volume 8874 of LNCS, pages 274–288. Springer, 2014.
Full version at https://eprint.iacr.org/2014/831.pdf.

[JNP16a] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Deoxys v1.4. http://
competitions.cr.yp.to/caesar-submissions.html, Oct 12 2016. Third-
round submission to the CAESAR competition. Finalist.

[JNP16b] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Deoxys v1.41. http://
competitions.cr.yp.to/caesar-submissions.html, Oct 12 2016. Third-
round submission to the CAESAR competition; Deoxys-II became finalist.

[LN17] Eik List and Mridul Nandi. Revisiting Full-PRF-Secure PMAC and Using
It for Beyond-Birthday Authenticated Encryption. In Helena Handschuh,
editor, CT-RSA, LNCS, pages 258–274. Springer, 2017. Full version at https:
//eprint.iacr.org/2016/1174.

[LPTY16] Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC
Mode for Lightweight Block Ciphers. In Thomas Peyrin, editor, FSE, volume
9783 of LNCS, pages 43–59. Springer, 2016. https://doi.org/10.1007/
978-3-662-52993-5_3.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers.
In Moti Yung, editor, CRYPTO, volume 2442 of LNCS, pages 31–46. Springer,
2002. https://dx.doi.org/10.1007/3-540-45708-9_3.pdf.

https://doi.org/10.13154/tosc.v2016.i1.134-157
https://doi.org/10.13154/tosc.v2016.i1.134-157
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://eprint.iacr.org/2017/535
https://doi.org/10.1007/978-3-319-63697-9_2
https://doi.org/10.1007/978-3-319-63697-9_2
https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://doi.org/10.13154/tosc.v2017.i1.427-448
https://doi.org/10.13154/tosc.v2017.i1.427-448
https://doi.org/10.1515/jmc-2016-0030
https://eprint.iacr.org/2014/831.pdf
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
https://eprint.iacr.org/2016/1174
https://eprint.iacr.org/2016/1174
https://doi.org/10.1007/978-3-662-52993-5_3
https://doi.org/10.1007/978-3-662-52993-5_3
https://dx.doi.org/10.1007/3-540-45708-9_3.pdf

Tony Grochow, Eik List and Mridul Nandi 71

[MMH+14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart
Preneel, and Ingrid Verbauwhede. Chaskey: An Efficient MAC Algorithm for
32-bit Microcontrollers. In Antoine Joux and Amr M. Youssef, editors, SAC,
volume 8781 of LNCS, pages 306–323. Springer, 2014. https://doi.org/10.
1007/978-3-319-13051-4_19.

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of Full-
State Keyed Sponge and Duplex: Applications to Authenticated Encryp-
tion. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT II, volume
9453 of LNCS, pages 465–489. Springer, 2015. https://doi.org/10.1007/
978-3-662-48800-3_19.

[MV04] David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee
Viswanathan, editors, INDOCRYPT, volume 3348 of LNCS, pages 343–355.
Springer, 2004. https://doi.org/10.1007/978-3-540-30556-9_27.

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[Nai15] Yusuke Naito. Full PRF-Secure Message Authentication Code Based on
Tweakable Block Cipher. In Man Ho Au and Atsuko Miyaji, editors, ProvSec,
volume 9451 of LNCS, pages 167–182. Springer, 2015. https://doi.org/10.
1007/978-3-319-26059-4_9.

[Nai17] Yusuke Naito. Blockcipher-Based MACs: Beyond the Birthday Bound Without
Message Length. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT
III, volume 10626 of LNCS, pages 446–470. Springer, 2017. https://doi.org/
10.1007/978-3-319-70700-6_16. Full version available at https://eprint.
iacr.org/2017/852.pdf.

[Nai18a] Yusuke Naito. Improved Security Bound of LightMAC_Plus and Its Single-Key
Variant. In Nigel P. Smart, editor, CT-RSA, volume 10808 of LNCS, pages 300–
318. Springer, 2018. https://doi.org/10.1007/978-3-319-76953-0_16.

[Nai18b] Yusuke Naito. On the Efficiency of ZMAC-Type Modes. In Jan Camenisch and
Panos Papadimitratos, editors, CANS, volume 11124 of LNCS, pages 190–210.
Springer, 2018. https://doi.org/10.1007/978-3-030-00434-7_10.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Recon-
sidering Generic Composition. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT, volume 8441 of LNCS, pages 257–274. Springer, 2014.
https://doi.org/10.1007/978-3-642-55220-5_15.

[Pat08] Jacques Patarin. The "Coefficients H" Technique. In Roberto Maria
Avanzi, Liam Keliher, and Francesco Sica, editors, SAC, volume 5381
of LNCS, pages 328–345. Springer, 2008. http://dx.doi.org/10.1007/
978-3-642-04159-4_21.

[Pie06] Krzysztof Pietrzak. A Tight Bound for EMAC. In Michele Bugliesi, Bart
Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP II, volume
4052 of LNCS, pages 168–179. Springer, 2006. https://doi.org/10.1007/
11787006_15.

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated Encryp-
tion Modes for Tweakable Block Ciphers. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO I, volume 9814 of LNCS, pages 33–63. Springer, 2016.
http://dx.doi.org/10.1007/978-3-662-53018-4_2.

https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-319-26059-4_9
https://doi.org/10.1007/978-3-319-26059-4_9
https://doi.org/10.1007/978-3-319-70700-6_16
https://doi.org/10.1007/978-3-319-70700-6_16
https://eprint.iacr.org/2017/852.pdf
https://eprint.iacr.org/2017/852.pdf
https://doi.org/10.1007/978-3-319-76953-0_16
https://doi.org/10.1007/978-3-030-00434-7_10
https://doi.org/10.1007/978-3-642-55220-5_15
http://dx.doi.org/10.1007/978-3-642-04159-4_21
http://dx.doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/11787006_15
https://doi.org/10.1007/11787006_15
http://dx.doi.org/10.1007/978-3-662-53018-4_2

72 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

[PvO95] Bart Preneel and Paul C. van Oorschot. MDx-MAC and Building Fast
MACs from Hash Functions. In Don Coppersmith, editor, CRYPTO, vol-
ume 963 of LNCS, pages 1–14. Springer, 1995. https://doi.org/10.1007/
3-540-44750-4_1.

[Rog04] Phillip Rogaway. Nonce-Based Symmetric Encryption. In Bimal K. Roy and
Willi Meier, editors, FSE, volume 3017 of LNCS, pages 348–359. Springer,
2004. https://doi.org/10.1007/978-3-540-25937-4_22.

[rwe18] rweather. SKINNY-C (Implementation for Arduino), Apr 8 2018. https:
//github.com/rweather/skinny-c, last access 2018-11-23.

[Yas08] Kan Yasuda. A One-Pass Mode of Operation for Deterministic Message
Authentication-Security beyond the Birthday Barrier. In Kaisa Nyberg, editor,
FSE, volume 5086 of LNCS, pages 316–333. Springer, 2008. https://doi.
org/10.1007/978-3-540-71039-4_20.

[Yas09] Kan Yasuda. A Double-Piped Mode of Operation for MACs, PRFs and PROs:
Security beyond the Birthday Barrier. In Antoine Joux, editor, EUROCRYPT,
volume 5479 of LNCS, pages 242–259. Springer, 2009. https://doi.org/10.
1007/978-3-642-01001-9_14.

[Yas10] Kan Yasuda. The Sum of CBC MACs Is a Secure PRF. In Josef Pieprzyk,
editor, CT-RSA, volume 5985 of LNCS, pages 366–381. Springer, 2010. https:
//doi.org/10.1007/978-3-642-11925-5_25.

[Yas11] Kan Yasuda. A New Variant of PMAC: Beyond the Birthday Bound. In
Phillip Rogaway, editor, CRYPTO, volume 6841 of LNCS, pages 596–609.
Springer, 2011. https://doi.org/10.1007/978-3-642-22792-9_34.

[Yas12] Kan Yasuda. PMAC with Parity: Minimizing the Query-Length Influence.
In Orr Dunkelman, editor, CT-RSA 2012, pages 203–214. Springer, 2012.
https://doi.org/10.1007/978-3-642-27954-6_13.

[Yuv79] Gideon Yuval. How to Swindle Rabin. Cryptologia, 3(3):187–191, 1979.
https://doi.org/10.1080/0161-117991854025.

[Zha15] Yusi Zhang. Using an Error-Correction Code for Fast, Beyond-Birthday-Bound
Authentication. In Kaisa Nyberg, editor, CT-RSA, pages 291–307. Springer,
2015. https://doi.org/10.1007/978-3-319-16715-2_16.

[ZWSW12] Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. 3kf9: Enhancing
3GPP-MAC beyond the Birthday Bound. In Xiaoyun Wang and Kazue Sako,
editors, ASIACRYPT, volume 7658 of LNCS, pages 296–312. Springer, 2012.
https://doi.org/10.1007/978-3-642-34961-4_19.

A Attacks on Preliminary Constructions
In this section, we consider birthday-bound attacks on two preliminary constructions
of DoveHash. Thereupon, we demonstrate the requirement of using two keys by an
instant distinguishing attack. Finally, we point out a birthday-bound distinguisher if the
finalization was extended with ZFin+ to multi-block outputs. For all attacks hereafter,
let Ẽ : K × T × B → B be a secure tweakable block cipher and K1,K2 � K × K be
independent secret random keys. Moreover, we use the setting that t = n for the sake of
simplicity.

https://doi.org/10.1007/3-540-44750-4_1
https://doi.org/10.1007/3-540-44750-4_1
https://doi.org/10.1007/978-3-540-25937-4_22
https://github.com/rweather/skinny-c
https://github.com/rweather/skinny-c
https://doi.org/10.1007/978-3-540-71039-4_20
https://doi.org/10.1007/978-3-540-71039-4_20
https://doi.org/10.1007/978-3-642-01001-9_14
https://doi.org/10.1007/978-3-642-01001-9_14
https://doi.org/10.1007/978-3-642-11925-5_25
https://doi.org/10.1007/978-3-642-11925-5_25
https://doi.org/10.1007/978-3-642-22792-9_34
https://doi.org/10.1007/978-3-642-27954-6_13
https://doi.org/10.1080/0161-117991854025
https://doi.org/10.1007/978-3-319-16715-2_16
https://doi.org/10.1007/978-3-642-34961-4_19

Tony Grochow, Eik List and Mridul Nandi 73

A.1 Distinguisher When Omitting The Checksum
Here, we consider the variant without the tweak checksum Θ. The further details re-
main unchanged. If we omit Θ, there exists a birthday-bound distinguisher A against
DoveMAC[ẼK1,K2] that we sketch in the following.

1. Initialize an empty list L.

2. Choose q = O(2n/2) messages M i, for 1 ≤ i ≤ q, which share the same number
of m blocks of (t + n) bits. Choose them such that all messages are pairwise
equal in all blocks, except for one a-priori fixed t-bit block that is used as Tj in
DoveHash[ẼK1,K2], for some block j ∈ {1, . . . ,m}, where m is the number of blocks.

3. Ask for their corresponding outputs Zi, for 1 ≤ i ≤ q, and store the tuples (T ij , Zi)
in L, indexed by Zi.

4. If there exists any pair Zi = Zi
′ in L for distinct indices i, i′, lookup the corresponding

blocks T ij and T i′j .

5. Choose a new message M that contains the same j-block prefix as before, i.e.,
Mk = M i

k for all 1 ≤ k ≤ j, but differs in some of the subsequent blocks from M i.
Ask for its corresponding output Z.

6. Choose a message M ′ that shares the same j − 1-block prefix as M i and M , i.e.,
M ′k = Mk for all 1 ≤ k ≤ j − 1; then uses the M ′j = (T i′j ‖ Ii

′

j), and shares the same
postfix as M : M ′k = Mk, for all k > j. Ask for Z ′ that corresponds to M ′.

7. If Z = Z ′, output 1 (real world); and output 0 (ideal world) otherwise.

Since all q + 2 messages share the same j − 1-block prefix, it holds that (Xj−1, Yj−1) is
equal for all messages. The output of the j-th block is defined as Xi

j = π̃T
i
j⊕Xj−1(Iij⊕Yj−1)

and Xi′ = π̃T
i′
j ⊕Xj−1(Ii′j ⊕ Yj−1), respectively. Since the tweaks differ, T ij 6= T i

′

j , it holds
that Pr[Xi

j = Xi′

j] ≤ 1
2n , and over all queries

∑
i6=i′

i,i′∈{1,...,q}

Pr
[
Xi
j = Xi′

j

]
≤
(
q
2
)

2n .

If Xi
j = Xi′

j , the collision event will occur also betweenM andM ′. Thus, the distinguishing
advantage of A is significant for q = O(2n/2).

A.2 A Birthday-bound Forgery When The State Input Is XORed to
The Bottom Row

The state size of our proposal would decrease by n bits if we would add the part of
each 2n-bit message block that will go into the state input simply to the lower lane. An
illustration of the modified DoveHash function is given at the bottom of Figure 4. In this
section, we sketch a birthday-bound forging adversary on this variant. Again, all further
details are equal as in DoveMAC, including that the checksum is present. Let A be a
forgery against DoveMAC[ẼK1,K2] that we sketch in the following.

1. Initialize an empty list L.

2. Choose q = O(2n/2) messages M i of m ≥ 1 2n-bit blocks, s.t. all messages share the
same p-block prefix, and p = m− 2. Choose M i

m−1 = M i
m = (〈i〉, 〈i〉) after padding,

for 1 ≤ i ≤ q, and ask for their corresponding authentication tags Zi. Store Zi into
L.

74 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

Figure 4: Earlier less secure variants of DoveHash and DoveMAC. Top: Variant
without the final checksum. Middle: Variant where the lower input is XORed directly to
the bottom lane. Bottom: Single-key variant of DoveMAC.

3. If there exists any collision Zi = Zj in L, for i 6= j, generate Mq+1 = M i ‖P , where
P is an arbitrary postfix. Ask for its tag Zq+1.

4. Forge with Mq+2 = M j ‖P and Zq+2 = Zq+1.

The forgery is valid with high probability, namely if Xi
m−1 ⊕X

j
m−1 = Y im−1 ⊕ Y

j
m−1 =

〈i〉⊕ 〈j〉. Then, the differences in X and Y cancel because T im⊕T jm = Iim⊕ Ijm = 〈i〉⊕ 〈j〉.

A.3 An Insecure Single-key Variant of DoveMAC
This section illustrates an O(1) forgery attack if DoveMAC would use the same key ẼK
for both the hash function and finalization. All other aspects compared to the original
definition in Section 3 remain unchanged. The bottom part of Figure 4 visualizes this
scheme.
The forgery attack exploits a classical length extension. For simplicity, we consider the
case t = n and specify the messages after the 10∗ padding has been applied. We provide
the messages as tuples of M i

j = (T ij , Iij), where i denotes the message index and j the block
index. Then, the steps are as follows:

1. Choose M1 = ((0n, 0n), (10n−1, 0n). This implies that checksum is Θ1 = 10n−1. Ask
for the corresponding authentication tag Z1 = ẼX

1

K (Y 1).

2. Derive M2 = ((0n, 0n), (10n−1, 0n), (10n−1, 0n)). Here, the padding is located in the
third block. This implies that the checksum is Θ2 = 0n. Ask for the corresponding
authentication tag Z2 = ẼX

2

K (Y 2). FromX2 = Z1⊕Θ2 = Z1 and Y 2 = Y3 = Y2⊕Z1,
it follows that Z2 = ẼZ

1

K (Y2 ⊕ Z1). So

Tony Grochow, Eik List and Mridul Nandi 75

3. Derive M3 = ((0n, 0n), (10n−1, 0n), (10n−1, 0n), (0n, 0n), (Z1 ⊕ Z2, Z2)). Since Z2 6=
0n holds with probability 1 − 2−n, M3 can be chosen s.t. our description already
contains the 10∗ padding. Here, the checksum is Θ3 = Z1 ⊕ Z2. Furthermore, we
observe that

X4 = Z2

Y4 = Y3 ⊕X4 = Y2 ⊕ Z1 ⊕ Z2

U5 = X4 ⊕ T 5 = Z2 ⊕ Z1 ⊕ Z2 = Z1

S5 = Y4 ⊕ I5 = Y2 ⊕ Z1 ⊕ Z2 ⊕ Z2 = Y2 ⊕ Z2 = Y3 = Y 2.

So, it holds that X5 = ẼU5
K (S5) = ẼZ

1

K (Y 2) = Z2. It follows that

Y 3 = X5 ⊕ Y4 = Z2 ⊕ Y2 ⊕ Z1 ⊕ Z2 = Y2 ⊕ Z1 = Y 2

X3 = X5 ⊕Θ3 = Z2 ⊕ Z1 ⊕ Z2 = Z1.

So, Z3 = ẼX3
K (Y 3) = ẼX

2

K (Y 2) = Z2.

So, the forgery message would be M3 with tag Z3 = Z2.

A.4 A Birthday-bound Distinguisher of DoveMAC with Longer Out-
puts

Unfortunately, DoveMAC cannot be simply extended to multi-block outputs with the
general variant of ZFin+. ZFin+ is given in Algorithm 1. However, we stress that it is
specified only for d = 1. In brief, it computes d output blocks Zi, for i = 1, . . . , d as

Zi ← Ẽ
X⊕〈i−1〉
K2

(Y) .

This section illustrates a birthday-bound distinguisher on such a construction for d = 2.
The steps are as follows, for small constant c, e.g., c = 4:

1. Ask c · 2n/2 messages M i = (T1, I
i
1) after padding, where the values Ii1 are pairwise

distinct and T1 is a fixed arbitrary constant for all messages. Ask for the outputs
Zi = (Zi1, Zi2) and store them in a list L.

2. Ask c · 2n/2 further messages M j = (T1 ⊕ 〈1〉, Ij1) after padding, where the values Ij1
are pairwise distinct. Ask for the outputs Zj = (Zj1 , Z

j
2). With significant probability,

there exists a message M i for some i ∈ [0..c2n/2 − 1] and a message M j for some
j ∈ [c2n/2..2c2n/2], s.t. Xi

1 = Xj
1 . Then, it follows that V i = V j and Y i = Y j and

Θi = Θj ⊕ 〈1〉. So,

Zi1 = ẼV
i⊕Θi

K2
(Y i)

Zi2 = Ẽ
V i⊕Θi⊕〈1〉
K2

(Y i).

and

Zj1 = ẼV
j⊕Θj

K2
(Y j) = Ẽ

V i⊕Θi⊕〈1〉
K2

(Y i) = Zi2

Zj2 = Ẽ
V j⊕Θj⊕〈1〉
K2

(Y j) = Ẽ1,V i⊕Θi

K (Y i) = Zi1 .

Thus, A can expect to find some (Zi1, Zi2) ∈ L that matches some (Zj2 , Z
j
1) with high

probability. This event holds with probability (c · 2n/2)2 · 2−2n ≈ c/2n for a random
function but with high probability for DoveMAC if it would employ longer outputs.

76 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

B Proof of Lemma 3
For the sake of completeness, this section sketches the proof of Lemma 3 from [LN17],
which bounds the ratio of good transcripts.

Lemma 6. It holds that Pr [Θreal = τ] ≥ Pr [Θideal = τ].

Proof Sketch. Let τ be a good transcript. We consider the set of values {Y i}1≤i≤q that
occur as outputs of DoveHash over the queries of the transcript. This set can be rewritten
as {Y1, . . . ,Yr} with r ≤ q s.t. all tweaks Yi are pairwise distinct. We further define qi,
for 1 ≤ i ≤ r, for the number of queries for which DoveHash produced Yi. Clearly, it
holds that

∑r
i=1 qi = q. Since the outputs are sampled independently at random in the

ideal world, it holds that

Pr [Θideal = τ] =
q∏
i=1

1
2n .

To bound the probability in the real world, we adopt the notion of transcript-compatible
permutations. We call π̃ compatible with τ if, for all 1 ≤ i ≤ q, it holds that

π̃(Y i, Xi) = Zi .

Let Comp(τ) denote the set of all tweakable permutations π̃ that are compatible with τ .
Chen and Steinberger showed a variant of the following:

Pr [Θreal = τ] = Pr
[
π̃ � P̃erm(T , {0, 1}n) : π̃ ∈ Comp(τ)

]
.

Over all tweaks Yi, for 1 ≤ i ≤ r, the fraction of compatible permutation is
r∏
i=1

qi∏
j=1

1
2n − (j − 1) =

r∏
i=1

1
(2n)qi

.

It holds that
r∏
i=1

1
(2n)qi

≥
q∏
j=1

q

(2n)1
=

q∏
j=1

1
2n .

We can derive that

Pr [Θreal = τ] ≥ Pr [Θideal = τ] ,

which gives our claim in Lemma 3.

C Authenticated Encryption
We can combine DoveMAC with the nonce-IV-based variant of the Counter-in-Tweak
encryption scheme by Peyrin and Seurin [PS16] to a nonce-based AE scheme. We follow
the notions by [NRS14, Rog04].

Nonce-IV-based Encryption. Let K be a non-empty set of keys. Let further N , IV , and
M be a nonce space, an IV space, and a message space, respectively. A nonce-IV-based
encryption scheme Π = (E ,D) is a tuple of encryption algorithm E : K×N ×IV ×M→ C,
where the encryption chooses IV � IV randomly for each message, and outputs (IV, C) ∈
IV ×C. The nonce must not repeat over all encryption queries. D : K×N ×IV ×C →M
is the deterministic decryption algorithm corresponding to E s.t. Π is correct and length-
preserving assumingM = C ⊆ {0, 1}∗.

Tony Grochow, Eik List and Mridul Nandi 77

Figure 5: Encryption of a message M = (M1, . . . ,Mm) with the nonce-IV-based variant of
Counter-in-Tweak [PS16] under nonce N and IV T . Conv : IV → T is a regular function
and inc : T → T increments the current value of the tweak inputs s.t. Vi = V ⊕ 〈i− 1〉t,
for 1 ≤ i ≤ m.

Definition 11 (nivE Advantage). Let Π = (E ,D) be a nonce-IV-based encryption scheme
with signatures and assumptions as above. Let K � K and let A be an adversary against Π
with access to an oracle, s.t. A never repeats a nonce N . Let ρ� Func(N×IV×M, C) be a
length-preserving function. For each (N,M) ∈ N ×M input, the oracle samples IV � IV ,
and outputs (IV, C) where C = EK(N, IV,C) in the real world and C = ρ(N, IV,M) in the
ideal world. The IV is not chosen by A in both worlds. Then AdvnivE

Π (A) =def ∆A(EK ; ρ).

Counter-in-Tweak. The nonce-IV-based version of Counter-in-Tweak takes as inputs
tuples of (N,V,M) ∈ N × IV ×M, and produces a ciphertext C of equal length as the
message: |C| = |M | for all keys K ∈ K and inputs (N,V,M). Note that V � IV is chosen
by the oracle in the nivE model.
CTRT is a variant of the well-known Counter mode, where the nonce is used as input
to all calls of ẼK and the tweak Vi is derived from V . CTRT defines IV = T , and uses
an increment function inc : T → T that increments the value of a given V . We define
that inci(V) = V ⊕ 〈i − 1〉t for all i ≥ 1. Note that the decryption is similar to the
encryption. It differs only in the fact that the decryption oracle does not choose IVs:
CTRT.D[ẼK](N,V,C) = CTRT.E [ẼK](N,V,C) for all K,N, V,C ∈ K ×N × IV × C.
The following security statement is part of Theorem 1 in the full version of [PS16] for
nonce-respecting adversaries.

Theorem 3 (nivE Security of CTRT [PS16]). Let A be a nonce-respecting nivE adver-
sary against CTRT[Ẽ] that asks at most q queries of σ blocks. Let K � K. Then

AdvnivE
CTRT[Ẽ]

(A) ≤ AdvTPRP
Ẽ

(A′) + σ2

2n+1|T |
,

where A′ asks at most σ queries.

Nonce-based Authenticated Encryption. Let A and U define non-empty sets of as-
sociated data and authentication tags, respectively. A nonce-based authenticated en-
cryption scheme (with associated data) Π = (E ,D) is a tuple of deterministic encryp-
tion algorithm E : K × N × A ×M → C × U and deterministic decryption algorithm
D : K ×N ×A× C × U →M× {⊥} with associated key space K. The associated data is
authenticated but not encrypted. The decryption function D takes a tuple (N,A,C, T) and
outputs either M or ⊥ if the input is invalid. Again, we assume C =M⊆ {0, 1}∗, as well
as correctness and length preservation. Note that [NRS14, Rog04] combine ciphertext and

78 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

tag in a single entity C. Though, it is more natural to consider two entities of ciphertext C
and authentication tag T . Hereafter, we briefly recap the privacy and authenticity notions
for nonce-based authenticated encryption.

Definition 12 (Priv Advantage). Let ρ� Func(N ×A×M, C ×U) be length-preserving
and K � K. Let A be an adversary on E that does not repeat inputs N ∈ N . Then, the
Priv advantage of A w.r.t. Π is defined as AdvPriv

Π (A) =def ∆A(EK ; ρ).

Definition 13 (Auth Advantage). Let A be an adversary on Π that is given access
to an encryption and decryption oracle where K � K is a random secret, and A does
not repeat inputs N ∈ N to the encryption oracle, and does not ask responses from the
encryption oracle to the decryption oracle. Then, the Auth advantage of A is defined
as the probability that A successfully forges a valid ciphertext that is accepted by the
decryption: AdvAuth

Π (A) = Pr [A forges].

Let N = {0, 1}ν , A, M, C ⊆ {0, 1}∗, and U = {0, 1}τ . We define ρ � Func(N × IV ×
M, C × U) to query (C, T) = EK(N, IV,M) for the secret key K � K of the experiment,
and to output (C ′, T ′) with C ′ � {0, 1}|C| and T ′ � {0, 1}|T |, for each input (N, IV,M).
So, ρ is equivalent to a random function that outputs a tuple of random bit strings of the
expected length.

Definition 14 (nAE Advantage). Let Π = (E ,D) be a nonce-based authenticated en-
cryption scheme. Let ρ � Func(N × A ×M, C × U) be length-preserving. Let A be a
nonce-respecting adversary on Π that is given access to an encryption and decryption
oracle, where K � K is a random secret, and A does not ask queries that it received as
responses from the encryption oracle to the decryption oracle. Then, the nAE advantage
of A is defined as AdvnAE

Π (A) =def ∆A(EK ,DK ; ρ,⊥), where ⊥ : N ×A×M×U → {⊥}
returns the invalid symbol for every input.

We call A a (qe, qd, σ)-nAE-adversary if A asks at most qe encryption queries, and at
most qd decryption queries that consist of at most σ blocks in total.

Fact 1. Given a nonce-respecting (qe, qd, σ)-nAE-adversary A on an nAE scheme Π, there
exists a nonce-repeating (qe, qd, σ)-AE adversary A′ on Π s.t. AdvnAE

Π (A) ≤ AdvAE
Π (A′).

Fact 1 follows form the trivial observation that any nonce-respecting adversary A is also a
nonce-repeating A′, and the latter can simply copy the exact behavior from A to inherit
A’s advantage. It is well-known that, if A is an (q, qd, σ)-nAE adversary on Π, then it
holds that

AdvnAE
Π (A) ≤ AdvPriv

EK
(A′) + AdvAuth

EK ,DK
(A′′).

for any (q, σ)-Priv adversary A′ and (q, qd, σ)-Auth adversary A′′.

NSIV. NSIV[F,Π] is a SIV-like nonce-based off-line AEAD scheme by [PS16] based on
a nonce-based function F : K1 × N × A ×M → U , and a nonce-IV-based encryption
scheme Π = (E ,D) with key space K2 and E : K2 × N × IV × {0, 1}∗ → {0, 1}∗. The
scheme defines a regular function Conv : U → IV that converts the output from F into
an IV for Π.3 First, nonce, associated data, and message are processed by F to produce a
tag: T ← FK1(N,A,M). Then, the scheme computes V ← Conv(T), and encrypts the
message M to C ← EK2(N,V,M). The output is given by (C, T). The following theorem
is slightly adapted from Theorem 4a) in [PS16].

Theorem 4 (nAE Advantage of NSIV). Let F and Π have signatures as above, and
let Conv be a regular function. Let K1,K2 � K1 × K2. Let A be a nonce-respecting

3A function F : X → Y is called regular if all Y ∈ Y have the same number of preimages in X ∈ X .

Tony Grochow, Eik List and Mridul Nandi 79

Algorithm 2 Authenticated encryption with DoveSIV[ẼK1,K2,K3].

1: function DoveSIV.E[ẼK1,K2,K3](N,A,M)
2: M ← Encodet+n(N,A,M)
3: T ← DoveMAC[ẼK1,K2](M)
4: V ← Conv(T)
5: C ← CTRT[ẼK3](N, V,M)
6: return (C, T)

11: function DoveSIV.D[ẼK1,K2,K3](N,A,C, T)
12: V ← Conv(T)
13: M ← CTRT[ẼK3](N, V,C)
14: M ← Encodet+n(N,A,M)
15: T ′ ← DoveMAC[ẼK1,K2](M)

16: if T ?= T ′ then
17: return M

18: return ⊥

21: function CTRT[ẼK](U, V,M)
22: (M1, . . . ,Mm) n←−M
23: for i = 1 to m−1 do
24: Vi ← V ⊕ 〈i−1〉t
25: Ci ← Ẽ

Vi
K

(U)⊕M
i

26: Vm ← V ⊕ 〈m−1〉t
27: Cm ← msb|Mm|

(ẼVm
K

(U))⊕Mm

28: C ← (C1 ‖ . . . ‖Cm)
29: return C

31: function Encodet+n(N,A,M)
32: L← 〈|A|〉t−1 ‖ 〈|M |〉n
33: S ← N ‖A ‖M ‖L
34: return S

41: function Conv(T)
42: return msbt(T)

nAE adversary against NSIV[F,Π] with access to two oracles such that A never queries
outputs from its first (encryption) oracle to its second (verification) oracle. A asks at most
q queries to its available oracles consisting of at most m blocks each and σ blocks in total.
Then

AdvnAE
NSIV[F,Π](A) ≤ AdvnivE

Π (A′) + AdvPRF
F (A′′) + q

2n ,

where A′ and A′′ ask at most q queries of at most σ blocks in total and run in time at
most O(σ).

Remark 2. Theorem 4 in [PS16] contains separate inequalities for nonce-repeating and
nonce-respecting adversaries. The bound above is equivalent to the AE security statement
for NSIV[F,Π]; though, it also holds for nonce-repeating adversaries. Their separation
of statements was necessary since the statement of Theorem 4b) provided a significantly
better bound for nonce-respecting settings for the choice of Counter-in-Tweak and the
Encrypted Parallel Wegman-Carter MAC. However, since the security of DoveMAC does
not depend on nonces, we can work with the nonce-repeating bound hereafter.

DoveSIV. Let K1,K2,K3 ∈ K be independent keys, N = {0, 1}n, and T = {0, 1}t. We
define DoveSIV as an instantiation of NSIV[F,Π], where the PRF F is instantiated
with DoveMAC[ẼK1 , ẼK2] and the encryption scheme Π with CTRT[ẼK3] . We write
DoveMAC[ẼK1,K2] as a short form of DoveMAC[ẼK1 , ẼK2], hereafter. More detailed, we
define an injective function Encodex : N×A×M→ ({0, 1}x)∗ that maps nonce, associated
data, and message into the block-wise format for DoveMAC: M = Encodet+n(N,A,M).
The encryption scheme is CTRT[ẼK3] with XOR-based increment of the tweaks. The
conversion function Conv : B → U maps the n-bit IV to a t-bit tweak for Ẽ by chopping
off the least significant n− t bits.
Now, we can combine the results from Theorems 3 and 4 with the security of CTRT and
NSIV with Theorem 1 that quantifies the PRF security of DoveMAC.

Theorem 5 (nAE Advantage of DoveSIV). Let F and Π have signatures as above, and
Conv be given as in Algorithm 2. Let K1,K2,K3 � K3 be independent. Let A be a
nonce-respecting nAE adversary against DoveSIV[F,Π] with access to two oracles such
that A never queries outputs from its first (encryption) oracle to its second (verification)
oracle. Moreover, A asks at most q queries whose concatenated lengths of associated data
and messages consists of at most m (t+n)-bit blocks each and at most σ < 2n−4 (t+n)-bit

80 DoveMAC: A TBC-based PRF with Smaller State, Full Security, and High Rate

blocks in total. Then

AdvnAE
DoveSIV[F,Π](A) ≤ σ2

2t+n+1 + 4σ + 25q
2n + 2q2 + 5q(q + 1)(m+ 6)2

2n+min(n,t) + 3 ·AdvTPRP
Ẽ

(A′) ,

where A′ asks at most 2σ + 6q queries in total, and A as well as A′ run in time at most
O(2σ + 6q).

Proof. The rightmost term follows from a standard argument: we replace ẼK1 , ẼK2 , and
ẼK3 by three independent random tweaked permutations π̃1, π̃2, π̃3 � P̃erm(T ,B). Clearly,
the maximal advantage for an adversary A′ to distinguish between both settings is given
by 3 ·AdvTPRP

Ẽ
(A′), where A′ asks at most 2σ + 6q queries in total. This stems from the

fact that the encoding function Encode may create six additional (t+ n)-bit blocks: one
that includes the nonce in the PRF, one block to append the length of the associated data,
one block by appending the message length, and one block for the padding. We further
include the two blocks for padding in DoveMAC and its finalization for simplicity. In the
following, we define σ′ = σ + 6q and m′ = m+ 6.
The leftmost term in the bound represents the nivE security bound of CTRT:

σ2

2t · 2n+1 .

From the application of Theorem 1, the PRF security of DoveMAC[π̃1, π̃2] for so-encoded
inputs can be upper bounded by

AdvPRF
DoveMAC[π̃1,π̃2](A) ≤ 4σ′

2n + q2m′
2

22n + 2q2 + 4qm′2 + 4q2m′
2

2n+min(n,t) .

From the assumption that σ < 2n−4 and the fact that q ≤ σ, we can upper bound
1/(2n − σ′) ≤ 2/2n, and the above by

4(σ + 6q)
2n + 2q2 + 5q(q + 1)(m+ 6)2

2n+min(n,t) .

Finally, an additional addend of q/2n stems from Theorem 4. The sum of the individual
terms yields our claim in Theorem 5.

Remark 3. Note that the requirement of multiple keys K1, K2, and K3 can be easily lifted
by using pairwise distinct domains, as is done, e.g., in the AE scheme Deoxys [JNP16a].
Then, one can define d1, d2, d3 ∈ D, and define a domain-tweak space TD = D × T . In
this case, a secure tweakable block cipher Ẽ : K × TD × B → B can be used for all calls in
DoveSIV under a single key K ∈ K. For example, the domain can be fixed to d1 for all
calls to Ẽd1

K in DoveHash, fixed to d2 in ZFin+, and fixed to d3 in CTRT.

	Introduction
	Preliminaries
	The DoveMAC Construction
	PRF Security
	Collision Analysis
	tAU Analysis
	Instantiation
	Conclusion and Future Work
	Attacks on Preliminary Constructions
	Distinguisher When Omitting The Checksum
	A Birthday-bound Forgery When The State Input Is XORed to The Bottom Row
	An Insecure Single-key Variant of DoveMAC
	A Birthday-bound Distinguisher of DoveMAC with Longer Outputs

	Proof of Lemma 3
	Authenticated Encryption

