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Abstract. In this paper we are proposing a new member in the SNOW family of
stream ciphers, called SNOW-V. The motivation is to meet an industry demand
of very high speed encryption in a virtualized environment, something that can be
expected to be relevant in a future 5G mobile communication system. We are revising
the SNOW 3G architecture to be competitive in such a pure software environment,
making use of both existing acceleration instructions for the AES encryption round
function as well as the ability of modern CPUs to handle large vectors of integers
(e.g. SIMD instructions). We have kept the general design from SNOW 3G, in terms
of linear feedback shift register (LFSR) and Finite State Machine (FSM), but both
entities are updated to better align with vectorized implementations. The LFSR part
is new and operates 8 times the speed of the FSM. We have furthermore increased the
total state size by using 128-bit registers in the FSM, we use the full AES encryption
round function in the FSM update, and, finally, the initialization phase includes a
masking with key bits at its end. The result is an algorithm generally much faster
than AES-256 and with expected security not worse than AES-256.
Keywords: SNOW · Stream Cipher · 5G Mobile System Security.

1 Introduction
Stream ciphers have always played an important part in securing the various generations
of 3GPP mobile telephony systems, starting with the GSM system employing the A5 suit
of ciphers, continuing with the use of SNOW 3G as one of the core algorithm for integrity
and confidentiality in both UMTS and LTE. When we now turn to the next generation
system, called 5G, we see some fundamental changes in system architecture and security
level that in many cases invalidate the previous algorithms. We will focus on the LTE (or
4G, as it is commonly called) system when describing the current state in link protection
for mobile systems.

The basis for the link security in all 3GPP generations of mobile telephony systems is a
shared secret key between the device (commonly called the User Equipment, UE) and the
home network, the Mobile Network Operator that the user has a service agreement with,
and from whom the user receives the credentials in form of a UICC with a USIM application
(often referred to as the SIM-card). The shared key is stored in the Home Subscriber
Server (HSS) and in the Secure Element on the UICC. From this key, through a set of key
derivations, the home network and the UE both agree on new keys to be used for integrity
and confidentiality protection of the control channel, and confidentiality protection of the
user data channel. The 4G system defines three different possible algorithms for integrity
(128-EIAx) and confidentiality (128-EEAx), based on three different primitives SNOW 3G
[SAG06], AES [oST01], and ZUC [SAG11]. The algorithms used in UMTS and LTE are
all using the 128-bit key size, and are depicted in Table 1.
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Table 1: Base algorithms used in UMTS and LTE for integrity and confidentiality.
UMTS LTE

Integrity Encryption Integrity Encryption
Kasumi UIA1 UEA1
SNOW 3G UIA2 UEA2 EIA1 EEA1
AES EIA2 EEA2
ZUC EIA3 EEA3

The SNOW family of stream ciphers started with the SNOW [EJ01] proposal in the
European project NESSIE, a call for new primitives. Two attacks [HR02, CHJ02] were
soon discovered and the design was subsequently updated to the SNOW 2.0 [EJ02] design.
Attacks on SNOW 2.0 will be more discussed in Section 3. The ETSI Security Algorithm
Group of Experts (SAGE) modified the SNOW 2.0 design and proposed the resulting cipher
SNOW 3G as one of the algorithms protecting the air interface in 3GPP telecommunication
networks.

Although sufficient for 4G system, these 128-EIAx and 128-EEAx algorithms face
some challenges in the 5G environment. For the 5G system, the 3GPP standardization
organization is looking towards increasing the security level to 256-bit key lengths [SA318].
For ExA1, and ExA2, this does not immediately appear to be a problem, since both the
underlying primitives (AES and SNOW) are specified for 256-bit keys. ZUC is currently
only specified and evaluated under 128-bit key strength, but another version, ZUC-256,
supporting 256-bit keys has recently been presented [Bin]. However, since the design of
the radio and core network will also fundamentally change in the 5G system, there are
other challenges. Many of the network nodes will become virtualized [3GP] and thus the
ability to use specialized hardware for the cryptographic primitives will be reduced. Many
newer processors from both Intel and ARM now include instructions to accelerate AES,
and it will be fairly easy to reach encryption speeds of 20-25 Gbps for EIA2 and EEA2,
but for the stream ciphers SNOW and ZUC, we need to look for other solutions. Current
benchmarks on SNOW 3G gives approximately 9 Gbps in a pure software implementation,
which is far too low for the targeted speed of 20 Gbps downlink in the 5G system (see,
e.g., [ITU17]).

In this paper we revise the SNOW 2.0/ SNOW 3G design to be competitive in a pure
software environment, relying on both the acceleration instructions for the AES round
function as well as the ability of modern CPUs to handle large vectors of integers (e.g.
SIMD instructions). We have kept most of the design from SNOW 3G, in terms of linear
feedback shift register (LFSR) and Finite State Machine (FSM), but both entities are
updated to better align with vectorized implementations. We have also increased the total
state size by going from 32-bit registers to 128-bit registers in the FSM. Each clocking of
SNOW-V (V for Virtualization) now produces 128 bits of keystream.

We also propose an AEAD (Authenticated Encryption with Associated Data) oper-
ational mode to provide both confidentiality and integrity protection. The keystream
width of 128 bits makes the authentication framework of GMAC [Dwo07] very easy to be
adopted to SNOW-V.

This paper is organized as follows. In Section 2, we present the new design, including
pseudocode. In Section 3 we give a brief security analysis, describing most of the common
attack approaches and how they apply to SNOW-V. In Section 4 we describe how authen-
tication can be included in an AEAD mode of operation. Then software implementation
aspects are considered in Section 5, and in Section 6 software performance results and
implementation aspects using future SIMD instruction set are presented. We end the
paper with some conclusions in Section 7.
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2 The design
SNOW-V follows the design pattern of previous SNOW versions and consists of an LFSR
part and an FSM part. The overall schematic is shown in Figure 1. The LFSR part is
now a circular construction consisting of two shift registers, each feeding into the other.
The FSM has three 128-bit registers and two instances of a single AES encryption round
function.
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Figure 1: Overall schematics of SNOW-V.

Starting with the LFSR part, we will now provide a detailed description of the design.
The two LFSRs are named LFSR-A and LFSR-B, both of length 16 and with a cell size of
16 bits. The 32 cells are denoted a15 . . . a0 and b15 . . . b0 respectively.

Each cell represents an element in F216 , but LFSR-A and LFSR-B have different
generating polynomials. The elements of LFSR-A are generated by the polynomial

gA(x) = x16 + x15 + x12 + x11 + x8 + x3 + x2 + x+ 1 ∈ F2[x] (1)

and the elements of LFSR-B are generated by

gB(x) = x16 + x15 + x14 + x11 + x8 + x6 + x5 + x+ 1 ∈ F2[x]. (2)

When we consider these elements of F216 as words, the x0 position will be the least
significant bit in the word. Let α ∈ FA216 be a root of gA(x) and β ∈ FB216 be a root of gB(x).
At time t ≥ 0 we denote the states of the LFSRs as (a(t)
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i ∈ FB216 respectively for LFSR-A and LFSR-B. Referring to
Figure 1, the elements a(t)
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0 are the elements to first exit the LFSRs. The LFSRs
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produce sequences a(t) and b(t), t ≥ 0 which are given by the expressions

a(t+16) = b(t) + αa(t) + a(t+1) + α−1a(t+8) mod gA(α) (3)

and
b(t+16) = a(t) + βb(t) + b(t+3) + β−1b(t+8) mod gB(β), (4)

where the initial states of the LFSRs are given by (a(15), a(14), . . . , a(0)) and (b(15), b(14), . . . ,
b(0)). We would like to emphasize the notation here; a(t) means the symbol produced by
the linear recursion in Equation 3 at time t, whereas a(t)

i , 0 ≤ i ≤ 15 are the values of the
cells in the LFSR-A at time t. In the case of α and β, the notation α−1 and β−1 are the
inverses in the respective implemented fields.

As the reader might notice, we are a bit sloppy in Equation 3 and Equation 4 and
apply the field addition operation between elements of different fields, but it should be
interpreted as an implicit bit pattern preserving conversion between the fields.

Each time we update the LFSR part, we clock LFSR-A and LFSR-B 8 times, i.e., 256
bits of the total 512-bit state will be updated in a single step, and the two taps T1 and T2
will have fresh values. In Appendix A we give the proof that this circular construction
gives the maximum cycle length of 2512 − 1.

The tap T1 is formed by considering (b15, b14, . . . , b8) as a 128-bit word where b8 is the
least significant part. Similarly, T2 is formed by considering (a7, a6, . . . , a0) as a 128-bit
word where a0 is the least significant part. The mapping is pictured in Figure 2, and the
expressions are given by

T1(t) = (b(8t)
15 , b

(8t)
14 , . . . , b

(8t)
8 ), (5)

T2(t) = (a(8t)
7 , a

(8t)
6 , . . . , a

(8t)
0 ). (6)

T1
b15 b14 b13 b12 b11 b10 b9 b8 

15...015...015...015...015...015...015...015...0
15...031...16127...112
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15...031...16127...112

MSB LSB

LFSR-A 

a7 a6 a5 a4 a3 a2 a1 a0 
15...015...015...015...015...015...015...015...0

b8 b9 b10 b11 b12 b13 b14 b15 ... 15...015...015...015...015...015...015...015...0

Figure 2: Mapping the 16-bit words of the LFSRs into 128-bit words T1 and T2.

We will now turn to the FSM. The FSM takes the two blocks T1 and T2 from the LFSR
part as inputs and produces a 128-bit keystream as output. R1, R2, and R3 are 128-bit
registers, ⊕ denotes a bitwise XOR operation, and �32 denotes a parallel application of
four additions modulo 232 over each sub-word. So the four 32-bit parts of the 128-bit
words are added with carry, but the carry does not propagate from a lower 32-bit word to
the higher.
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The output, z(t) at time t ≥ 0, is given by the expression

z(t) = (R1(t) �32 T1(t))⊕R2(t). (7)

Registers R2 and R3 are updated through a full AES encryption round function as shown
in Figure 3, see [oST01] for details. Let us denote the AES encryption round function by

SubBytes ShiftRows MixColumns

AES Enc 
Round 

Round key 

Figure 3: Internal functions of the AES encryption round function.

AESR(IN,KEY ). The mapping between the 128-bit registers and the state array of the
AES round function follows the definition in [oST01], and is pictured in Figure 4.

r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

Least Significant ByteMost Significant Byte

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

AES State Array

Figure 4: Mapping between a 128-bit register value and the state array of the AES round
function.

We can now write the update expressions for the registers as

R1(t+1) = σ(R2(t) �32 (R3(t) ⊕ T2(t))), (8)
R2(t+1) = AESR(R1(t), C1), (9)
R3(t+1) = AESR(R2(t), C2). (10)

The values of the two round key constants C1 and C2 are set to zero, and σ is a byte-oriented
permutation given by

σ = [ 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 ]. (11)

This should be interpreted as byte 0 is moved to position 0, byte 4 is moved to position
1, byte 8 is moved to position 2, and so on. Position 0 is the least significant byte in
accordance to the mapping described above. The chosen σ implements the transposition
of the mapped AES state matrix.
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2.1 Initialization
Initialization is done as described in this subsection. The algorithm has a 256-bit key K
and a 128-bit initialization vector(IV) as inputs. The key is denoted by

K = (k15, k14, . . . , k1, k0),

where each ki, 0 ≤ i ≤ 15, is a 16-bit vector. The IV vector is denoted by

IV = (iv7, iv6, . . . , iv1, iv0),

where again each ivi, 0 ≤ i ≤ 7, is a 16-bit vector.
The first step of the initialization is to load the key and IV into the LFSRs by assigning

(a15, a14, . . . , a0) = (k7, k6, . . . , k0, iv7, iv6, . . . , iv0)

and
(b15, b14, . . . , b0) = (k15, k14, . . . , k8, 0, 0, . . . , 0).

Note that (b7, . . . , b0) will have a non-zero value when SNOW-V is used in AEAD-mode,
see Section 4.

Then the initialization consists of 16 steps where the cipher is updated in the same
way as in the running-key mode, with the exception that the 128-bit output z is not an
output but is xored into the LFSR structure to positions (a15, a14, . . . , a8) in every step.
Additionally, at the two last steps of the initialization phase, we xor the key into the R1
register, inspired by [HK18]. We also limit the keystream length to a maximum of 264 for
a single pair of key and IV vectors, and each key may be used with a maximum of 264

different IV vectors.
The pseudocode in Algorithm 1 clarifies the procedure.

Algorithm 1 SNOW-V initialization
1: procedure Initialization(K, IV )
2: (a15, a14, . . . , a8)← (k7, k6, . . . , k0)
3: (a7, a6, . . . , a0)← (iv7, iv6, . . . , iv0)
4: (b15, b14, . . . , b8)← (k15, k14, . . . , k8)
5: (b7, b6, . . . , b0)← (0, 0, . . . , 0)
6: R1, R2, R3← 0, 0, 0
7: for t = 1...16 do
8: T1← (b15, b14, . . . , b8)
9: z ← (R1�32 T1)⊕R2

10: FSMupdate()
11: LFSRupdate()
12: (a15, a14, . . . , a8)← (a15, a14, . . . , a8)⊕ z
13: if t = 15 then R1← R1⊕ (k7, k6, . . . , k0)
14: if t = 16 then R1← R1⊕ (k15, k14, . . . , k8)

This completes the description of SNOW-V, and the full algorithm can be summarized
in the pseudocode as in Algorithm 2, Algorithm 3, and Algorithm 4.

3 Security analysis
The main and most important design criterion is the security of the design. This section
contains a brief analysis for a number of possible standard attack approaches. Before
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Algorithm 2 SNOW-V algorithm
1: procedure SNOW-V(K, IV )
2: Initialization(K, IV )
3: while more keystream blocks needed do
4: T1← (b15, b14, . . . , b8)
5: z ← (R1�32 T1)⊕R2
6: FSMupdate()
7: LFSRupdate()
8: Output keystream symbol z

Algorithm 3 LFSR update algorithm
1: procedure LFSRupdate()
2: for i = 0...7 do
3: tmpa ← b0 + αa0 + a1 + α−1a8 mod gA(α)
4: tmpb ← a0 + βb0 + b3 + β−1b8 mod gB(β)
5: (a15, a14, . . . , a0)← (tmpa, a15, . . . , a1)
6: (b15, b14, . . . , b0)← (tmpb, b15, . . . , b1)

Algorithm 4 FSM update algorithm
1: procedure FSMupdate()
2: T2← (a7, a6, . . . , a0)
3: tmp← R2�32 (R3⊕ T2)
4: R3← AESR(R2) . Note that the round keys for these AES
5: R2← AESR(R1) . encryption rounds are C1 = C2 = 0
6: R1← σ(tmp)

going into the details of various attacks, we need to have a clear picture of the expected
security. We have the target of providing 256-bit security in SNOW-V, by which we mean
that we claim that the total cost of finding the secret key given some keystreams is not
significantly smaller than 2256 simple operations.

The use of the algorithm is limited to keystreams of length at most 264 and we also
limit the number of different keystreams that are produced for a fixed key to be at most 264.
There seem to be no use cases where it makes sense to violate this limitation. Although
attacks beyond these limits are certainly of academic interest, an attack claiming to break
the cipher should meet this requirement. In Subsection 3.1 and Subsection 3.4 we give
some cryptanalysis results also for the case when σ is replaced by the identity mapping σ0.
This may aid the understanding of the strength of different methods of cryptanalysis.

We also frequently compare with AES-256 in the GCM mode. We note that exhaustive
key search of AES-256 requires computational cost around 2256. However, if used in
the GCM mode, it actually takes complexity (and data) around 264 to distinguish such
keystreams from random. For SNOW-V, we claim that the security is never worse than
the security of AES-256 in the GCM mode, for any kind of attack on the algorithmic level.

3.1 Initialization attacks through MDM/AIDA/cube attacks
Stream ciphers always have an initialization phase before producing keystream bits, during
which the key and IV are loaded and mixed by running the cipher a few rounds (16 for
SNOW-V) without giving outputs until the state becomes random-like. It should be
difficult for a cryptanalyst to predict the keystream or get some information about the
initial key according to the output after initialization. It then becomes vital to make sure
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that the key/IV loading has no fatal flaws and the initialization round is carefully chosen
in order not to result in a resource waste (too many rounds) or some weakness (too few
rounds).

A chosen IV attack is one type of attacks targeting this problem [Mj06, EJT07], in
which the adversary attempts to build a distinguishing attack to introduce randomness
failures in the output by selecting and running through certain IV values. The rationales
behind are that: 1) a stream cipher can be regarded as a succession of single-valued boolean
functions fi with each keystream bit as the output and key/IV as the inputs, and 2) any
monomial coefficient in the algebraic normal form (ANF) representations of these Boolean
functions should appear to be 1 (or 0) with probability 1/2 if fi is drawn uniformly at
random [Sta13]. If one can distinguish the output from a random distribution under some
key/IV settings with acceptable complexity, the cipher is believed to be unsafe. In this
attack, the adversary fixes the key and a subset of IV bits and runs through all possible
values of the non-fixed IV bits, which are called a cube. The truth tables of the boolean
functions can be derived, which are further used to compute the monomial coefficients of
the ANF and compared with expected values. If there exists a big gap between them, the
output is believed to be non-random. The best and most commonly used monomial is the
maximum degree monomial (MDM) and the corresponding test is called MDM test. In
[Sta10] one even allows setting arbitrary key values to build a non-randomness detector
to further check whether the initialization is robust enough. It should be noted that the
MDM test and AIDA (algebraic IV differential attack)/cube distinguishers [Vie07, DS09]
are various forms of using higher order differentials [Lai94] on stream ciphers.

We employ the greedy MDM test algorithm in [Sta10] to test the SNOW-V initialization.
We start with the worst 3-bit set under which the randomness result deviates the most
from the expected value and gradually increase to a 24-bit set. Every time when one more
bit is added from the remaining bits, we select the bit resulting in the worst randomness
result until we get a 24-bit set (larger sets can be tested on more powerful computers).
Figure 5 shows the maximum number of initialization rounds failing the MDM test under
different bit set sizes for SNOW-V under permutation σ and no permutation σ0 (identity
mapping). The results for 1, 2 and 3-bit sets are obtained through exhaustive search,
while for the sets with larger sizes, the results are based on greedy searching from the
obtained worst 3-bit set. It can be seen that the performance under σ is better, indicating
the cipher is mixed better and faster in this case. In both cases, roughly the first 7 rounds
fail the MDM test, ensuring a large security gap to 16 rounds. One can also note that the
number of rounds the MDM test can detect grows very slowly with the size of the set of
key/IV bits that are exhausted. In an attack, one could consider sets of sizes up to 64
bits. This indicates that the 16 initialization rounds in SNOW-V should be enough for the
cipher and that the output of the cipher has become random-like after the initialization.
It also indicates that significantly reducing the number of rounds might be dangerous.

Recently, cube attacks based on division property have got a lot of research and
application on multiple stream ciphers. Division property, proposed by Todo et al. in
[Tod15], is a generalization of integral property being used to find integral distinguishers
or launch cube attacks. Unlike traditional experimental attacks where the ciphers are
regarded as black boxes, division property based attacks explore the internal structures
of ciphers and trails of division property according to propagation rules for different
operations. These rules could be expressed with some (in)equalities and the attacks are
modeled as MILP(Mixed Integer Linear Programming) problems with certain constrains
and objective functions. Some optimization tools such as Gurobi, Cplex could then help to
solve the problems very efficiently and identify if the attacks are feasible or not in certain
cases.

In [TIHM17], division property was introduced into cube attacks to evaluate the set
of key bits J involved in the superpoly given a certain cube I. After obtaining the set
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Figure 5: The maximum number of initialization rounds failing the MDM test under
different bit set sizes.

J , attackers are able to recover the superpoly by building the truth table and further
to recover part of the key by querying the encryption oracle. The time complexity of
recovering the superpoly is 2|I|+|J|, which is feasible when |I| + |J | is smaller than the
security bit level. Authors in [WHT+18] further improved the attack by exploiting various
algebraic properties of superpolies. They introduced a technique to evaluate the upper
bound of the algebraic degree, denoted as d, of the superpoly to avoid recovering the
coefficients of monomials with degrees larger than d. Hence, only

(|J|
≤d
)
coefficients need to

be recovered and the time complexity reduces to 2|I| ×
(|J|
≤d
)
.

We evaluate SNOW-V with division property based cube attacks using the method
described above. The MILP model of division property for SNOW-V which can evaluate all
division trails when the initialization rounds are reduced to R is illustrated in Algorithm 5.
We first load key and IV bits to the LFSR state and initialize R1, R2, R3 to 0 according to
the initialization specification of SNOW-V (Algorithm 1). Since K and IV are loaded into
LFSR states through one-by-one mapping, we do not introduce more intermediate variables
in the model. In every round, we deal with the first and last 7 iterations of LFSR update
differently since they have different propagation trails: the function LFSRupdate for the
last 7 LFSR updates consists of copy, xor, multiplication (with α, β, α−1, β−1), shift
to update the LFSR state while for the first round, the function LFSRupdateFirstIter
involves in more complicated copy trails to get T1 and T2. The funcAES function is
four parallel AES rounds consisting of sbox, shiftrow and mixcolumn whose propagation
rules could be found in [Tod15]. The function funcModAdd consists of 4 parallel modular
additions whose propagation rule has been established in [SWW17] and funcXor represents
xor rule for 128 bits. The functions of multiplication and mixcolumn have consistent
characteristic: the sum of input equals to the sum of output in terms of division property
while the functions shift, shiftrow and sigma only permute the division property vectors.

Table 2: Cube attacks on reduced-rounds of SNOW-V (values in round brackets are for
the case with σ as identity (σ0) where the value is different).

Rounds 3 4 5 6 7
cube size |I| 15 40 128 128 128
degree d 17 145(27) 256(106) 256(254) 256

involved key size |J | 131(113) 256(96) 256 256 256
time complexity 284.9(281.1) > 2256(2119.5) > 2256 > 2256 > 2256
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Algorithm 5 MILP model of division property for SNOW-V
1: procedure SnowvCore(round R)
2: Prepare empty MILP ModelM
3: M.var ← s0

i for i ∈ {0, 1, ..., 511} andR10
i , R20

i , R30
i for i ∈ {0, 1, ..., 127}

4: (M, s0,R10,R20,R30) = init (M,K, IV )
5: for r = 1 to R− 1 do
6: (M,T1,T2, sr,0) = LFSRupdateFirstIter (M, sr−1)
7: (M,X) = funcModAdd (M,R1r−1,T1)
8: (M,Zr) = funcXor (M,X,R2r−1)
9: (M,Y ) = funcXor (M,R3r−1,T2)

10: (M,U) = funcModAdd (M,R2r−1,Y )
11: (M,R1r) = sigma (M,U)
12: (M,R3r) = funcAES (M,R2r−1)
13: (M,R2r) = funcAES (M,R1r−1)
14: for i = 1 to 7 do
15: (M, sr,i) = LFSRupdate (M, sr,i−1)
16: (M, sr128...255) = funcXor (M, sr,7128...255,Z

r)
17: (M, sr0...127, s

r
256...511) = (M, sr,70...127, s

r,7
256...511)

18: (M,X) = funcModAdd (M,R1R−1, sR−1
384...511)

19: (M,ZR) = funcXor (M,X,R2R−1)
20: for i = 0 to 383 do
21: M.con← sR−1

i = 0
22: for i = 0 to 127 do
23: M.con← R3R−1

i = 0
24: M.con←

∑
ZRi = 1

25: returnM

We tried different cubes and Table 2 listed some examples under which adversaries
have good advantages for permutations σ and σ0. The time complexity in the table shows
the time complexity of superpoly recovery. One can see, all key bits are involved in the
superpolies from the 4-th round under permutation σ while 5-th round under σ0, which
indicates the good mixing effect after 4(or 5) rounds and guarantees a large enough security
margin for 16 rounds. The results match well with the research on division property based
distinguishing attacks on AES in [Tod15], where only 4-round distinguisher could be found
with 2120 plaintexts and the conclusion in [SWW16] that integral distinguishers for AES
based on division property covering more than four rounds probably do not exist.

3.2 Other initialization attacks
Another attack possibility is to launch a differential attack, either in the IV bits only,
or in combination with key bits. The latter would then lead to a related-key attack.
Since the initialization contains 16 rounds, each including two applications of the AES
encryption round function, the differential would have to go through a lot of highly
nonlinear operations, which makes this approach less successful.

Finally, a further option is the slide attacks [BW99]. Such sliding properties have been
considered on previous versions in the SNOW family [KY11]. The idea is to have the
same initial state for two different key/IV pairs in different time instances. Then they
will produce the same keystream with the difference of a shift in time. Since the required
IV values vary with the choice of key bits, it is questionable whether such an approach is
useful at all in cryptanalysis, but at least it indicates that the cipher is not to be considered
as a random function of both the key and IV. For SNOW-V such properties would still be
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much more difficult to find, due to the update of 128-bit blocks in each time instance and
the use of the FP(1)-mode [HK18] in the initialization.

3.3 Time/Memory/Data tradeoff attacks
A Time/Memory/Data tradeoff (TMD-TO) attack is a generic method of inverting ciphers
by balancing between spent time, required memory and obtained data, which can be much
more efficient and applicable than an exhaustive key search attack. Some stream ciphers
are vulnerable to TMD-TO attacks, and their effective key lengths (e.g., n-bit) could then
be reduced towards the birthday bound (i.e., n/2), typically happening if the state size is
small. A well known such attack on A5/1 was given in [BSW01].

The TMD-TO attacks have two phases: a preprocessing phase, during which the
mapping table from different secret keys or internal states to keystreams is computed and
stored with time complexity P and memoryM ; and a real-time phase, when attackers have
intercepted D keystreams and search them in the table with time complexity T , expecting
to get some matches and further recover the corresponding input. By balancing between
parameters P,D,M , and T under some tradeoff curves, attackers can launch attacks
according to their available time, memory and data resources. The most popular tradeoffs
are Babbage-Golic (BG) [Bab95, Gol97] and Biryukov-Shamir (BS) [BS00] tradeoff with
curves TM = N , P = M with T ≤ D; and TM2D2 = N2, P = N/D with T ≥ D2, where
N is the input space, respectively. Attackers can try to reconstruct the internal state at a
specific time or recover the secret key.

The rationale behind the TMD-TO attacks that try to reconstruct the internal state is
that in many stream ciphers, the internal state update process is invertible, which means
that if an attacker manages to reconstruct an internal state at any specific time, it can not
only obtain subsequently generated keystreams by running the cipher forwards, but also
recover previous states iteratively and further get the underlying secret key by running
backwards. But for the SNOW-V case, attackers have no obvious ways to reconstruct
the internal state, since SNOW-V has a large internal state with 896 bits (2 × 256-bit
LFSRs + 3 × 128-bit registers), which is 3.5 times the secret key length. The best attack
complexity achieved is under BG tradeoff with point T = M = D = N1/2 = 2448, which is
still much worse than the exhaustive key search attack. Actually, SNOW-V satisfies the
rule derived from TMD-TO attacks in [Gol97] and widely applied in the design of new
ciphers, that the size of the internal state should be at least twice the size of the secret
key to get the expected security level.

Moreover, in SNOW-V, attackers would get even less even if they reconstructed an
internal state. While computing subsequent keystreams corresponding to that specific IV
is still possible, they can not trivially recover the secret key or keystreams under other
IV values. This is due to the key masking to the register R1 at the last two rounds of
initialization, which represents an instantiation of the FP(1)-mode introduced in [HK18].

Attackers can also try to recover the secret key directly. To do so, some mappings
from different key/IV pairs to generated keystream segments are firstly pre-computed and
stored [HS05, DK08]. If attackers get some keystream data under different secret keys
corresponding to these IV values, they can search them in the table to expect a collision
and further recover some of the secret keys directly. The tradeoff curves are still the same
as that to recover the internal states except N is now changed to be the size of the set of
all possible (K, IV ) pairs. In the SNOW-V case, the sizes of key and IV spaces are 2256

and 2128, respectively. Two typical points for BG and BS attacks are T = D = M = 2192

and T = 2256, D = M = 2128. Someone would question that the efficient size of the key
in the first tradeoff is reduced from 256 to 192 bits, but actually, no ciphers including
AES-256 can be immune to this as long as their IV sizes are smaller than the key sizes. In
any case, the corresponding multikey attacks on AES-256 are not more costly.
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3.4 Linear distinguishing attacks and correlation attacks
Traditionally, the main threat against stream ciphers has been various types of linear
attacks, either in the form of distinguishing attacks on the keystreams, or state recovery
attacks through correlation attacks. The basic foundations of correlation attacks can be
found in papers like [CJS01, CJM02] and an overview of distinguishing attacks is to be
found in [HJB09].

The basic technique for these types of attacks is to use linear approximations of the
nonlinear operations used in the cipher and then derive a linear relationship between
output values from different time instances. Such a relationship will then hold only as a
very rough approximation, which in turn can be thought of as a linear function of some
given output bits being considered as a sample drawn from a nonuniform distribution. This
approach may give a distinguishing property for the keystream. If the relationship also
involves state bits, the same arguments may give samples that are highly noisy observations
of state bits, which in turn may be linear combinations of the original initial state. This
may give a way to recover the state and that is the foundation of a correlation attack.

For SNOW 2.0, several distinguishing attacks and correlation attacks have been proposed
[NW06, ZXM15]. The basic idea has been to approximate the FSM part through linear
masking and then to cancel out the contributions of the registers by combining expressions
for several keystream words. We should note that this kind of attacks tend to require
an extremely large length of the keystream. Also, no significant attack of this type on
SNOW 3G has been published. We now consider a similar approach for making some basic
arguments on SNOW-V.

We recall the FSM equations:

z(t) = (R1(t) �32 T1(t))⊕R2(t),

R1(t+1) = σ(R2(t) �32 (R3(t) ⊕ T2(t))),
R2(t+1) = AESR(R1(t)),
R3(t+1) = AESR(R2(t)).

A linear approximation of the FSM would then try to cancel out the contribution from
the registers, leaving keystream symbols and the LFSR contribution. Assume that the
value of the registers at some time t is (R̂1, R̂2, R̂3). Then we have

z(t) = (R̂1�32 T1(t))⊕ R̂2,
R1(t+1) = σ(R̂2�32 (R̂3⊕ T2(t))),
R2(t+1) = AESR(R̂1),
R3(t+1) = AESR(R̂2).

For time t+ 1,

z(t+1) = (σ(R̂2�32 (R̂3⊕ T2(t)))�32 T1(t+1))⊕AESR(R̂1).

It is now straight-forward to see that since z(t) depends only on R̂1 and z(t+1) depends on
both R̂1 and R̂2, there can be no biased linear approximation using only z(t) and z(t+1).
So the minimum number of equations that needs to be considered is three. To simplify
coming derivations, we introduce the expressions for z(t−1), i.e.,

z(t−1) = ((AESR)−1(R̂2)�32 T1(t−1))⊕ (AESR)−1(R̂3),

and seek a biased expression involving z(t−1), z(t), z(t+1).
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Consider all 128-bit variables as column vectors of 16 bytes. Then AESR(X) can
be written as L · S(X), where S is an application of the 16 AES S-Boxes, one on each
byte of X, and L is a linear transformation over the 16 bytes (including both ShiftRow
and MixColumn). Furthermore, (AESR)−1(X) = S−1(L−1 · X). We now introduce
simplifications to the SNOW-V algorithm to show the best results on versions weaker than
the proposed algorithm.

3.4.1 Analysis of the bias using σ0 and using byte-wise addition �8

We assume that there is no byte-wise permutation, i.e., σ0 is just the identity. Furthermore,
instead of �32 we consider a modulo addition which is restricted to each byte, denoted �8.
With this simplification all operations are byte-oriented and the investigation of linear
approximations is easier.

Let us now seek a byte-oriented linear approximation. We examine the following three
equations.

z(t−1) = (S−1(L−1 · R̂2)�8 T1(t−1))⊕ S−1(L−1 · R̂3),
z(t) = (R̂1�8 T1(t))⊕ R̂2,

L−1z(t+1) = L−1((R̂2�8 (R̂3⊕ T2(t)))�8 T1(t+1))⊕ S(R̂1).

Let Xi denote the ith byte of a vector of bytes X. Summing up the three z-terms on the
left side and taking byte 0 gives us

[z(t−1) ⊕ z(t) ⊕ L−1z(t+1)]0 = [N1⊕N2⊕N3⊕ T1(t) ⊕ T1(t−1) ⊕ L−1(T2(t) ⊕ T1(t+1))]0,

where

N1 = (S−1(L−1 · R̂2)�8 T1(t−1))⊕ S−1(L−1 · R̂2)⊕ T1(t−1),

N2 = (R̂1�8 T1(t))⊕ S(R̂1)⊕ T1(t),

N3 = L−1((R̂2�8 (R̂3⊕ T2(t))�8 T1(t+1))⊕ T2(t) ⊕ T1(t+1))⊕ R̂2︸ ︷︷ ︸
Linear part A

⊕ S−1( L−1 · R̂2︸ ︷︷ ︸
Linear part B

)⊕ S−1( L−1 · R̂3︸ ︷︷ ︸
Linear part C

).

The general idea is that [N1⊕N2⊕N3]0 is a biased distribution. It is true because
the (types of) noise variables n1, n2, n3 defined below are biased, which can be checked:

n1 = (x�8 y)⊕ x⊕ y,
n2 = (x�8 y)⊕ S(x)⊕ y,
n3 = (x�8 y)⊕ x⊕ S(x)⊕ y.

Each of the noise terms N1, N2, N3 given above are of the above types and hence the sum
of them can also be a biased distribution.

Computation of the bias: it remains to compute the bias and the N30 part is the
most complicated case (although we are computing the bias of [N1⊕N2⊕N3]0 as there
is a dependence between N1 and N3). The noise N3 at byte 0 can be rewritten as:

N30 =
∑3
i=0(ci · Ui)⊕ R̂20 ⊕ S−1

(∑3
i=0(ci · R̂2i)

)
⊕ S−1

(∑3
i=0(ci · R̂3i)

)
,

where the coefficients are c = [e b d 9]. First note that Ui is the variable corresponding
to Ui = (R̂2i �8 (R̂3i ⊕ T2(t)

i )�8 T1(t+1)
i )⊕ T2(t)

i ⊕ T1(t+1)
i , for 0 ≤ i ≤ 3. Note also that
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L−1 corresponds to first applying the inverse MixColumn and then the inverse ShiftRow
(which does not change the position of byte 0).

The idea of computing the distribution is now simple. We assume that we have
8-bit adders �8 instead of the original 32-bit ones, keeping all operations within bytes.
We try all combinations of the first bytes of the inputs R̂20, R̂30, T2(t)

0 , T1(t+1)
0 which

leads to a partial sum as a 3-byte value denoted A|B|C, as marked in the equations
above. Thus, we can compute the distribution D0(A|B|C). We also compute similar
distributions for every "slice" of the inputs, Dk(A|B|C), k = 0, 1, 2, 3, corresponding to
inputs R̂2k, R̂3k, T2(t)

k , T1(t+1)
k .

The XOR-convolution of the computed distributions of the partial linear expressions
gives the combined distribution of the triple A|B|C over all possible 32-bit inputs. Having
that total distribution, it is then easy to construct the 8-bit distribution of N30.

Let D be a distribution of a noise variable X. Then we compute the bias denoted
ε(X) = ε(D) using the Squared Euclidean Imbalance as in [ZXM15], defined through

ε(D) = |D|
|D|−1∑
x=0

(
D(x)− 1

|D|

)2
.

The number of samples needed to distinguish a source of noise D from random is roughly
O(1/ε). The results when we use 8-bit adders �8, and σ identity are as follows: ε(N1) >
1, ε(N2) ≈ 2−2.9, ε(N3) ≈ 2−46.0, and

ε(Ntot) ≈ 2−53.5, ε(2×Ntot) ≈ 2−106.8, ε(3×Ntot) ≈ 2−160.2, ε(4×Ntot) ≈ 2−213.6.

Here the N1, N2, N3 denotes the partial noise as described above and Ntot represents the
full noise of a single approximation, i.e., Ntot = [N1⊕N2⊕N3]0. Finally, i×Ntot denotes
the noise obtained by a sum of i such independent noise terms.

3.4.2 Analysis of the bias using σ0 and using 32-bit �32

In order to deal with 32-bit adders we should actually compute partial noise distributions
Dk that also correspond to different values of input and output carries (0, 1, or 2) and then
perform sums and convolutions over matching distribution tables. It is computationally
more demanding but not unreachable and we have computed the biases also in this case.

The results when using 32-bit adders �, and σ as identity are as follows: ε(N1) >
1, ε(N2) ≈ 2−2.9, ε(N3) ≈ 2−46.4, and

ε(Ntot) ≈ 2−58.7, ε(2×Ntot) ≈ 2−118.4, ε(3×Ntot) ≈ 2−177.8, ε(4×Ntot) ≈ 2−237.1.

3.4.3 Using the bias in a fast correlation attack

A detected bias can be used in a distinguishing attack if one can find, say, a weight
3 or weight 4 multiple of the polynomial corresponding to the byte-oriented sequence
W (t) = [T1(t) ⊕ T1(t−1) ⊕ L−1(T2(t) ⊕ T1(t+1))]0. Since the LFSR feedback is defined
in F216 , it can be rewritten in F28 and there will be a linear recursion relation for W (t)
over F28 . The complexity of finding a weight 3 or weight 4 multiple with general methods
is far more than that of exhaustive key search. Instead, a fast correlation attack looks
more promising. In such an attack the LFSR state at some initial time is considered as a
length 64 byte vector v = (v0, v1, . . . v63), vi ∈ F28 and every W (t) is written as a linear
combination of initial state bytes, i.e., W (t) = wt · vT , where the vector wt is computed
through the recursion for W (t). If we now look for pairs of vectors wt and wt′ such that
wt ⊕wt′ is zero in the last d entries, we can form the sum

[z(t−1) ⊕ z(t) ⊕ L−1z(t+1)]0 ⊕ [z(t′−1) ⊕ z(t′) ⊕ L−1z(t′+1)]0
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which approximates W (t)⊕W (t′) with a noise which is the sum of two noise variables of
the form Ntot, which has a bias of 2−118.4. In the attack we guess 64− d byte entries of
the initial state and then we need to find in the order of 2118 pairs of vectors that have
the same last d entries. Through a birthday argument, assuming we generate all such
values up to t0, we need to have t20 ≈ 2118+8d. For example, if d = 36 then we need to
guess 28 · 8 = 224 bits and we need to generate output until time t0 = 2203. Following
the complexity estimations of e.g. [ZXM15] we end up with a complexity slightly below
exhaustive key search. This however requires a keystream of length t0 = 2203, which can
be compared to the maximum keystream length allowed which is 264. The attack also uses
memory of size 2203 units, each storing the necessary information of one time unit. So the
relevance of such attacks is indeed questionable.

3.4.4 Analysis of the bias using σ as proposed

In this scenario, we use σ as given in Section 2. This presumably makes the bias of linear
approximations for the FSM to be much smaller, and we will sketch some ideas on how to
find good linear approximations. Let us again return to the equations for a three word
approximation, and use 8-bit adders �8 in order to simplify derivations:

z(t−1) = (S−1(L−1 · R̂2)�8 T1(t−1))⊕ S−1(L−1 · R̂3),
z(t) = (R̂1�8 T1(t))⊕ R̂2,

z(t+1) = (σ(R̂2�8 (R̂3⊕ T2(t)))�8 T1(t+1))⊕ L · S(R̂1).

We consider a byte-oriented linear approximation with left side Λ0z
(t−1)⊕Λ1z

(t)⊕Λ2z
(t+1),

where Λi are length 16 row vectors of bytes viewed as elements in F28 .
Recall now that if a particular byte is only present once as a linear term or in an

S-box expression in the right side, then the approximation will be unbiased. However,
if it appears at least twice in different types of expressions, it is likely to give a biased
contribution.

The first observation we can do is that the bytes in R̂1 appear only in two different
expressions: as the direct value R̂1 in the expression for z(t) and as L · S(R̂1) in the
expression for z(t+1). In turn, this means that Λ1z

(t) ⊕ Λ2z
(t+1) depends on R̂1 through

Λ1R̂1 ⊕ Λ2L · S(R̂1). It is biased only if every byte present in Λ1R̂1 is also present in
Λ2L · R̂1 and we come to the conclusion that Λ2 = Λ1L

−1, in its straightforward case.
Now we consider the contributions from R̂2 and R̂3. For R̂2 we have contributions

Λ0S
−1(L−1 · R̂2), Λ1R̂2 and Λ1L

−1σ(R̂2 �8 ...). When σ0 was used, we could simply
consider byte 0 (Λ0 = Λ1 = (1, 0, . . . , 0)) because it involved four bytes (byte 0-3) and they
all appeared at least twice in the above expression. But for the actual σ, this is no longer
possible since L−1σ(R̂2) includes different bytes in a position, compared to L−1 · R̂2.

We have not been able to find better approximations than the ones that include all 16
bytes of R̂2 and R̂3, and 4 bytes of R̂1 in the approximation. One such example would
be Λ0 = Λ1 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), which would nearly correspond to the
sum of 4 approximations of the previous kind with σ0 (no-permutation).

In our best attempt to approximate the FSM of the proposed algorithm, we have got
the total noise (with �8) having the bias (more details can be found in Appendix B):

ε(Ntot) ≈ 2−214.8 and ε(2×Ntot) ≈ 2−429.7.

3.5 Algebraic attacks
In an algebraic attack the attacker derives a number of nonlinear equations in either
unknown key bits or unknown state bits and solves the system of equations. In general,
the problem of solving a system of nonlinear equations is not known to be solvable in
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polynomial time (even for quadratic equations), but some special cases might be solved
efficiently [CKPS00].

For SNOW 2.0 there was a very interesting algebraic attack on a simplified version,
given in [BG05]. However, due to the use of three FSM registers instead of two, applying
such an approach on SNOW-V does not give such a nice quadratic system as in [BG05].

So for a general algebraic attack, we should either target the key or the state. For the
latter, one would need to use equations from 7 keystream blocks to be able to solve for the
7 ∗ 128 bit internal state. That would involve nonlinearity from 11 AES encryption round
functions and 13 �32 operations. Instead, targeting the key bits would require stepping
through the equations of the 16 initialization rounds together with the equations of two
keystream blocks. Both these approaches give systems of nonlinear equations that appear
to be much more difficult to solve than corresponding equations for AES-256. This is due
to the use of the �32 operation.

3.6 Guess-and-determine attacks
In a guess-and-determine attack one guesses part of the state and from the keystream
equations, determines the value of other parts of the state. The goal is to guess as few bits
as possible and determine as many as possible through keystream equations. For the case
of SNOW-V, the equation z(t) = (R1(t) �32 T1(t))⊕R2(t) involves three unknown values,
each of size 128 bits. In order to determine some state bits, one then has to guess two of
them, i.e. guessing 256 bits. Then looking at the equation for z(t+1), it would require the
guess of one more 128 bit value. This indicates that a guess-and-determine attack would
not be successful.

3.7 Other attacks
We have not made any specific design choices to explicitly support implementations
that should protect against side-channel attacks and fault attacks. So such attacks, if
relevant for an application, have to be considered when the algorithm is implemented.
In particular, information leakage from the CPU in a software implementation must be
carefully considered.

4 AEAD mode of operation
The GMAC integrity and authentication algorithm specified in [Dwo07] can easily be
adopted to work with SNOW-V to define an AEAD mode of operation. We will use
notations from [Dwo07] in the following. In GCM, an unspecified block cipher is used in
counter mode to encrypt the plaintext. Additionally, the block cipher is used to produce
the final authentication tag T , and to derive the key H used in the function GHASHH .

When using SNOW-V together with the GHASHH algorithm, the key H is the very
first keystream output z(0). Then we use keystream output z(1) as the final masking for
the tag, similarly to the encrypted value of J0 in [Dwo07]. To encrypt the n plaintext
blocks, we use the keystream outputs z(2), . . . , z(n+1), feeding the ciphertext blocks into
GHASHH .

SNOW-V works as described in Section 2 with a single change. During initialization of
the LFSRs, we set the lower part of the LFSR-B to the following hex values:

(b7, b6, . . . , b0) = (6D6F, 6854, 676E, 694A, 2064, 6B45, 7865, 6C41). (12)

The hex values are the UTF8 encoding of the names of the authors.
An overview of how SNOW-V is used together with the GHASHH algorithm is shown

in Figure 6. The padding of the Additional Authenticated Data (AAD) and how to
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Z(0) Z(3)Z(2) Z(n+1)Z(1)

Keystream output z: 

Key H

Plaintext1 Plaintext2 Plaintextn

...

AAD

MULH

Ciphertext1 Ciphertext2 Ciphertextn

MULH MULH MULH

len(AAD) || len(C)

...

MULH

Auth tag T

GHASHH

Tag mask MT

MT

Figure 6: How SNOW-V is used together with GHASHH to enable AEAD.

concatenate the length of the AAD and the length of the ciphertext C and all other
restrictions on plaintext length and change of IV from [Dwo07] remain. We have only
defined a new way to derive the counter mode keystream, and the additional key and tag
mask needed in the GCM algorithm.

5 Software implementation aspects
One important change in future telecom networks is the virtualization of the network
functions. This puts new requirements on the crypto algorithms used to protect the traffic
in that it needs to execute fast in a pure software implementation on modern CPUs.
According to [ITU17], the minimum requirements related to 5G radio interface are 10 Gbps
uplink and 20 Gbps downlink, at peak data rates. Classical encryption algorithms cannot
reach these high speeds in pure software without any hardware support.

Nowadays, most of CPU vendors provide large registers and vectorized SIMD instruc-
tions, such as AVX2 set of instructions (intrinsics) that can execute over registers of up to
256 bits. Typical instructions include such functions as XOR, AND, nADD32, etc., applied
to long registers, where, depending on the instruction, a single register can be represented
as a vector of 8/16/32/64-bit values.

AES is one of the most widely used crypto algorithms and it has received special
support from CPU vendors in the form of SIMD instructions (AES-NI for Intel) that makes
it possible to execute AES quite fast even on user-grade laptops. Crypto ciphers SNOW
3G and ZUC, standardized in 4G, and other ciphers (to our best knowledge), cannot reach
the speed even close to AES when AES-NI is used.

SNOW-V is designed to perform very fast in software, with the aim to utilize currently
available SIMD instructions. However, even without AES-NI, SNOW-V can be implemented
quite efficiently with 16/32/64-bit registers. Our take-away is that if a given platform
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supports AES-NI then other SIMD instructions are also likely supported. If AES-NI
is not available then AES-256 will be much slower than SNOW-V, and actually, slower
than SNOW 3G as well. This section is written with Intel intrinsics notation, but similar
implementations can likely be made on other CPUs, e.g. AMD and ARM. A comprehensive
guide on Intel’s intrinsics can be found in [Int18].

The FSM part of SNOW-V is quite straightforward to implement using 128-bit registers
__m128i and AES-NI intrinsic function _mm_aesenc_si128(). For 4 parallel arithmetic
additions one can use _mm_add_epi32()1. The 16-byte permutation σ can be done with
_mm_shuffle_epi8().

The key to an efficient implementation of the LFSRs is choosing the right data structures.
We propose to store the content of the two LFSRs in two 256-bit registers __m256i hi, lo,
such that:

lo[127..0 bits] = {a7, . . . , a0} hi[127..0 bits] = {a15, . . . , a8}
lo[255..128 bits] = {b7, . . . , b0} hi[255..128 bits] = {b15, . . . , b8}

To perform a single LFSR update (8 steps), we only need to calculate new values for one
register, hi_new=update(lo, hi) while the other register update is a copy lo_new=hi.

Let gA=0x990f represents the generating polynomial gA(α) of the field FA216 , without
the term α16. Then, multiplication of x by α in FA216 can be done as follows: we first shift
x<<1, then, based on the 15th bit of the original x, we XOR the result with gA. This may
be done with only 4 instructions, using 16-bit values

mul_alpha(uint16 x, uint16 gA) := (x<<1) xor ( ((signed int16)x >> 15) and gA)

Note that the condition wether to xor with gA or not is implemented with the help of
the 16-bit mask = (signed int16)x >> 15, where the mask is created by the arithmetical
shift of the signed x to the right by 15 positions. The arithmetical shift to the right results
in propagation of the sign (15th) bit, thus forming the mask either 0xffff in case the bit
15 was 1, or 0x0000, otherwise.

The above trick can be applied to the combined 256-bit vector lo = (b7, . . . , b0, a7, . . . , a0)
to multiply the first half with α from the first base field FA216 and the high part with β from
the second base field FB216 , simultaneously. Here we need to use _mm256_srai_epi16()
that performs arithmetical shift to the right of 16 16-bit signed integers represented in
the combined 256-bit register lo. Obviously, the and operand should be done with the
constant where the low 8 x 16-bit values are gA=0x990f and the second half contains
gB=0xc963.

A similar idea is applied for multiplication of hi by α−1 and β−1. In our reference
implementation we found the way with only 4 instructions with the help of a non-trivial
intrinsic _mm256_sign_epi16() – however, if that intrinsic is not available then there is
an alternative solution with 5 instructions.

The results of the above two steps should be XORed together with the values at tap
offsets 1 and 3 for LFSRs A and B, respectively. The latter part is just byte shuffling that
can be done with _mm256_blend_epi32() and _mm256_alignr_epi8(), three instructions
in total.

6 Software performance evaluation
In this section we give software performance benchmarks of SNOW-V-(GCM), implemented
by us in C++ (Visual Studio 2017) utilizing AVX2/AES-NI/PCLMULQDQ intrinsics.

1This intrinsic is intended for addition of signed integers but because most CPUs use two’s complement
representation for negative numbers, it will produce the correct results also for the unsigned addition
needed in SNOW-V.
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All performance tests were carried out on a user-grade laptop with Intel i7-8650U CPU
@1.90GHz with Turbo Boost up to @4.20GHz, testing each algorithm on a single pro-
cess/thread and with various lengths of the input plaintext. Before each encryption process,
we perform a key/IV setup procedure. In the first place, we should compare SNOW-V
with AES since it demonstrates the fastest speed on commodity CPUs with available
AES-NI instructions set. Perhaps, the second best choice algorithm, that is in various
places serves as a backup for AES, is ChaCha20, and we should compare with that as well.
We also include our best possible implementation of SNOW-3G in order to demonstrate
the advantage of the new member of the SNOW family of stream ciphers.

For a fair and most challenging comparison we have downloaded the latest OpenSSL
(3.0.0-dev, 2019-04-01) sources, and built it with the latest NASM and Visual Studio 2017
for that certain native x64 machine, with most possible optimizations switched on.

Implementations of the algorithms AES-256-(CBC, CTR, GCM) and ChaCha20-
(Poly1305) in OpenSSL are the most recent and highly optimized assembly codes that utilize
AVX2/AES-NI/PCLMULQDQ, instructions stitching, and other best practice optimization
techniques. OpenSSL’s command line tool was used for performance evaluation of the
selected algorithms; it runs an algorithm for a chosen number of seconds and delivers the
number of bytes per second processed, out of which we derive the speed in Gigabits/sec
(Gbps).

In order to fully align our own measurements of SNOW-V with the numbers given by
OpenSSL, we actually extracted and adopted the benchmarking code from OpenSSL’s
sources and did exactly the same way of measurements of SNOW-V. To negotiate pitfalls
from the system and the OS, we benchmarked every considered algorithm several times,
for 1-3 seconds, then picked the best values (a similar method is used in SUPERCOP
benchmarking approach). The results are presented in Table 3.

Table 3: Performance comparison of SNOW-V-(GCM) and best OpenSSL’s algorithms.
Performance values are given in Gbps.

Encryption only Size of input plaintext (bytes)
16384 8192 4096 2048 1024 256 64

SNOW-3G-128 (C++) 9.22 9.07 8.89 8.50 7.81 5.38 2.37
AES-256-CBC (asm) 8.50 8.50 8.49 8.48 8.42 8.11 7.07
ChaCha20 (asm) 26.53 26.41 26.29 25.86 24.99 11.80 5.61

AES-256-CTR (asm) 35.06 34.82 34.16 32.94 30.95 22.67 11.32
SNOW-V (C++) 58.25 56.98 54.60 50.70 45.28 26.37 9.85

AEAD mode
ChaCha20-Poly1305 (asm) 18.46 18.24 18.16 17.54 16.99 8.98 4.29

AES-256-GCM (asm) 34.42 33.86 32.74 30.49 27.22 17.32 8.54
SNOW-V-GCM (C++) 38.91 37.66 34.86 30.71 26.16 13.93 5.16

For a large plaintext, SNOW-V outperforms AES-256-CBC by around 6.5 times,
even though AES-256-CBC is implemented in an optimized assembly code with AES-NI.
SNOW-V is also 2 times faster than ChaCha20. An encryption in AES-256-CTR can be
done in "parallel", so that the technique called "instructions interleaving" makes it possible
to speed up a lot. Even here, SNOW-V is 66% faster than AES-256-CTR.

We would like to note that running an algorithm for even 1 second includes a lot of
system overhead such as OS’s scheduler, switching to other hundreds of OS’s processes
and services, switching CPUs’ contexts and affinity for load balancing, etc. When we tried
to measure SNOW-V for a very small fraction of a second (basically, measuring a single
encryption), we have seen the speed goes up to 67Gbps (for encryption of 16384 bytes),
which indicates that the OS’s overhead is a significant factor.

One could notice from our measurements that AEAD mode of OpenSSL’s AES-256-
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GCM is almost for "free" (35.06Gbps vs. 34.42Gbps). This was achieved by careful
instructions interleaving and stitching techniques done in their optimized assembly code.
In case of SNOW-V-GCM we, however, did not get GHASH for "free" in our C++
implementation (58.25Gbps vs. 38.91Gbps), but we think that an optimized assembly
implementation of SNOW-V-(GCM) could potentially give a better result.

AVX512 is a new set of intrinsics utilizing wider 512-bit registers, and a subset of
the AVX512 instructions is currently only available on high-end Intel CPUs. In this new
set of intrinsics, there is an instruction to perform 4 AES encryption rounds in parallel
_mm512_aesenc_epi128(), which would speed up AES-256-CTR by around x4 times.

For SNOW-V it will mainly reduce the number of instructions, as several operations in
both the LFSR and the FSM can be combined in a single new AVX512 instruction. A
first approximation is that the number of instructions will be approximately halved, but
we need to evaluate SNOW-V on a full AVX512 implementation first. Since SNOW-V
would only use half of the 512-bit wide registers, the second half could be used to perform
another SNOW-V instance in parallel, with its own key and IV. Thus, as a rough estimate,
the speed of SNOW-V could be increased by 2-4 times.

We also did small tests for ARM NEON implementations of SNOW-V and AES on an
Apple A11 ARM processor2. Note that ARM architectures for devices are very different
from Intel desktop/server architectures in the sense that there is not a standardized
implementation of the SoC. It is up to the SoC designer to decide on e.g. cache configu-
rations. At least, this test gives some indication of relative performance. The SNOW-V
implementation is a single threaded code using NEON intrinsics in C, and the AES-CTR
implementation is a single threaded assembly code from OpenSSL 1.1.1c. The results are
presented in Table 4.

Table 4: Performance comparison of SNOW-V and AES-CTR on an Apple A11 ARM
processor. Performance values are given in Gbps.

Size of input plaintext (bytes)
16384 8192 4096 2048 1024 256 64

SNOW-V (C) 23.59 23.24 22.38 21.31 19.39 12.31 5.0
AES-CTR (asm) 15.97 15.87 15.59 15.08 14.34 10.62 5.04

7 Conclusions
A new 128-bit stream cipher called SNOW-V is presented. It follows the design principles of
the previous ciphers in the SNOW family, but leverages the AES round function instruction
support found in many modern CPUs. In a single thread implementation in software,
SNOW-V outperforms AES in all comparable modes of operation for plaintext lengths
above 256 bytes. Basic cryptanalysis of the new design is presented and SNOW-V is argued
to be resistant against these attacks. Finally, an AEAD mode of operation based on the
well known GCM scheme is given. Test vectors and reference implementations are given in
Appendix C, Appendix D, and Appendix E. We also provide a brief hardware evaluation
of SNOW-V in Appendix F, including a 64-bit implementation utilizing a single AES core.
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A Remarks about the maximum period of the LFSR struc-
ture

We can denote the LFSR state at time t ≥ 0 as

S(t) = (a(t)
0 , a

(t)
1 , ..., a

(t)
14 , a

(t)
15 , b

(t)
0 , b

(t)
1 , ..., b

(t)
14 , b

(t)
15 )

with 32 16-bit cells, i.e., 512 bits in total. If we consider the binary representation of the
state, then the next state at t+ 1, S(t+1) can be written as,

S(t+1) = S(t)M

where M is the 512× 512 state transition matrix.
Every cell of the next state except a(t+1)

15 , b
(t+1)
15 is determined by a shift from the

neighboring cell, that is a(t+1)
i = a

(t)
i+1, b

(t+1)
i = b

(t)
i+1 for i = 0, 1, ...14, and the corresponding

binary state transition submatrices for such update are identity matrixMI with size 16× 16.
As for a15, b15, we can rewrite them in the polynomial form. Suppose the bases for finite
fields FA216 and FB216 are respectively (1, α, ..., α15),(1, β, ..., β15), then every state element
can be expressed as a polynomial corresponding to the two bases.

For instance, a certain element e ∈ FA216 can be interpreted as e = e0+e1α+, ...,+e14α
14+

e15α
15, where ei denotes the value at the i-th position of e. Then,

eα mod gA(α)=(e15α
16 + e14α

15+, ...,+e1α
2 + e0α) mod gA(α)

Since
α16 mod gA(α) = α15 + α12 + α11 + α8 + α3 + α2 + α+ 1,

eα mod gA(α) can be expanded and rearranged as,

=e15(α15+α12+α11+α8+α3+α2+α+1) + e14α
15+, ...,+e1α

2 + e0α
= (e15 + e14)α15 + e13α

14 + e12α
13 + (e15 + e11)α12 + (e15 + e10)α11+

e9α
10 + e8α

9 + (e15 + e7)α8 + e6α
7 + e5α

6 + e4α
5 + e3α

4 + (e15 + e2)α3

+(e15 + e1)α2 + (e15 + e0)α+e15
= (e0, e1, ..., e15)Mα(1, α, ..., α15)T

From which we can deduce the matrix

Mα =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1
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With the same method, we can also derive Mα−1 ,Mβ ,Mβ−1 . Then we can rewrite the
update for a(t+1)

15 , b
(t+1)
15 in a matrix form,

a
(t+1)
15 = b

(t)
0 MI + a

(t)
0 Mα + a

(t)
1 MI + a

(t)
8 Mα−1

b
(t+1)
15 = a

(t)
0 MI + b

(t)
0 Mβ + b

(t)
3 MI + b

(t)
8 Mβ−1

Then the complete binary transition matrix for the LFSR update can be written as,

M =

0 1 ... 7 ... 14 15 ... 18 ... 23 ... 30 31
0 Mα MI

1 MI MI

2 MI

... ...
8 MI Mα−1

... ...
15 MI

16 MI Mβ

... ...
19 MI MI

... ...
24 MI Mβ−1

... ...
31 MI

where every element in the 32× 32 matrix is a 16× 16 matrix and all the other empty
places are 16× 16 zero matrices. Then we can get the 512× 512 transition matrix and some
mathematical tools, such as Sagemath, can be employed to verify whether it is primitive. We
employ the built-in function charpoly() in Sagemath to get the characteristic polynomial,
which is,

m(x) =
x512 + x491 + x489 + x480 + x478 + x475 + x474 + x473 + x472 + x468 + x467+
x466 + x464 + x455 + x453 + x452 + x445 + x444 + x443 + x441 + x438 + x437+
x434 + x433 + x429 + x426 + x425 + x424 + x423 + x422 + x420 + x419 + x418+
x417 + x416 + x415 + x410 + x409 + x407 + x405 + x404 + x402 + x394 + x393+
x391 + x390 + x385 + x384 + x383 + x382 + x381 + x380 + x374 + x371 + x369+
x368 + x367 + x366 + x365 + x363 + x361 + x360 + x358 + x357 + x354 + x351+
x345 + x344 + x341 + x339 + x337 + x336 + x334 + x330 + x325 + x324 + x321+
x317 + x315 + x314 + x313 + x311 + x310 + x309 + x308 + x307 + x305 + x302+
x299 + x296 + x292 + x291 + x284 + x283 + x281 + x280 + x279 + x276 + x275 +
x273 + x271 + x267 + x264 + x263 + x262 + x260 + x259 + x258 + x257 + x256+
x254 + x253 + x251 + x249 + x248 + x247 + x246 + x245 + x243 + x242 + x240+
x238 + x236 + x229 + x225 + x218 + x217 + x216 + x215 + x214 + x209 + x208+
x207 + x205 + x204 + x203 + x201 + x198 + x193 + x192 + x190 + x189 + x187+
x186 + x185 + x180 + x178 + x176 + x173 + x170 + x169 + x167 + x165 + x164 +
x163 + x162 + x160 + x159 + x155 + x152 + x151 + x150 + x149 + x148 + x147+
x145 + x144 + x142 + x141 + x136 + x134 + x131 + x126 + x125 + x123 + x122 +
x121 + x118 + x117 + x114 + x113 + x109 + x106 + x105 + x104 + x103 + x101+
x100 + x96 + x95 + x94 + x91 + x87 + x86 + x85 + x83 + x82 + x81 + x78 +
x76 + x74 + x73 + x69 + x68 + x67 + x66 + x64 + x63 + x62 + x61 + x59 +
x56 + x54 + x53 + x50 + x49 + x47 + x42 + x38 + x36 + x35 + x33 + x25+
x24 + x23 + x20 + x16 + x15 + x14 + x13 + x11 + x9 + x6 + x+ 1

Then we can verify it primitive by Sagemath, which indicates the LFSR structure has the
maximum period 2512−1.
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B Details on the exampled linear approximation of the
FSM for the proposed algorithm

In this Section we provide more details on the exampled approximation given in Section 3.4.4.
We, again, assume 8-bit adders �8, instead of �32. Recall the exampled approximation
where Λ0 = Λ1 = [1 1 1 1 0 0 ... 0], and Λ2 = Λ1 · L−1. We can thus analyse the following
expressions on three consecutive keystream words z(t−1), z(t), and z(t+1):

z(t−1) = (S−1(L−1 · R̂2)�8 T1(t−1))⊕ S−1(L−1 · R̂3),
z(t) = (R̂1�8 T1(t))⊕ R̂2,

L−1z(t+1) = L−1(σ(R̂2�8 (R̂3⊕ T2(t)))�8 T1(t+1))⊕ S(R̂1).

The exampled approximation is the sum (⊕) of the first 4 bytes of the above 3 expressions.
In order to make it easier to follow our derivations we give explicit matrices for L−1 and
L−1σ in Listing 1.

=== matrix 'L^{-1}' === matrix 'L^{-1}*sigma'
e b d 9 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 e 0 0 0 | b 0 0 0 | d 0 0 0 | 9 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 9 e b d 0 0 0 9 | 0 0 0 e | 0 0 0 b | 0 0 0 d
0 0 0 0 | 0 0 0 0 | d 9 e b | 0 0 0 0 0 0 d 0 | 0 0 9 0 | 0 0 e 0 | 0 0 b 0
0 0 0 0 | b d 9 e | 0 0 0 0 | 0 0 0 0 0 b 0 0 | 0 d 0 0 | 0 9 0 0 | 0 e 0 0

-------------------------------------- --------------------------------------
0 0 0 0 | e b d 9 | 0 0 0 0 | 0 0 0 0 0 e 0 0 | 0 b 0 0 | 0 d 0 0 | 0 9 0 0
9 e b d | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 9 0 0 0 | e 0 0 0 | b 0 0 0 | d 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | d 9 e b 0 0 0 d | 0 0 0 9 | 0 0 0 e | 0 0 0 b
0 0 0 0 | 0 0 0 0 | b d 9 e | 0 0 0 0 0 0 b 0 | 0 0 d 0 | 0 0 9 0 | 0 0 e 0

-------------------------------------- --------------------------------------
0 0 0 0 | 0 0 0 0 | e b d 9 | 0 0 0 0 0 0 e 0 | 0 0 b 0 | 0 0 d 0 | 0 0 9 0
0 0 0 0 | 9 e b d | 0 0 0 0 | 0 0 0 0 0 9 0 0 | 0 e 0 0 | 0 b 0 0 | 0 d 0 0
d 9 e b | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 d 0 0 0 | 9 0 0 0 | e 0 0 0 | b 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | b d 9 e 0 0 0 b | 0 0 0 d | 0 0 0 9 | 0 0 0 e

-------------------------------------- --------------------------------------
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | e b d 9 0 0 0 e | 0 0 0 b | 0 0 0 d | 0 0 0 9
0 0 0 0 | 0 0 0 0 | 9 e b d | 0 0 0 0 0 0 9 0 | 0 0 e 0 | 0 0 b 0 | 0 0 d 0
0 0 0 0 | d 9 e b | 0 0 0 0 | 0 0 0 0 0 d 0 0 | 0 9 0 0 | 0 e 0 0 | 0 b 0 0
b d 9 e | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 b 0 0 0 | d 0 0 0 | 9 0 0 0 | e 0 0 0

Listing 1: Matrices L−1 and L−1σ.

We first note that with �8 for any 16-byte expression W we have:

3∑
i=0

[L−1σ ·W ]i =
3∑
i=0

3∑
j=0

c4j+(−i mod 4)W4j+(−i mod 4) =
3∑
i=0

3∑
j=0

c4i+jW4i+j ,

where the coefficients are:

c = [e b d 9 b d 9 e d 9 e b 9 e b d].
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Then we get the following linear approximation of the FSM:

3∑
i=0

[
L−1z(t+1) ⊕ z(t) ⊕ z(t−1)

]
i

=
3∑
i=0

S(R̂1i)⊕ (R̂1i �8 T1(t)
i )⊕ T1(t)

i︸ ︷︷ ︸
Noise N1i

⊕T1(t)
i



⊕
3∑
i=0

R̂2i ⊕
3∑
j=0

c4i+j [(R̂24i+j �8 (R̂34i+j ⊕ X̂i,j)�8 Ŷi,j)⊕ X̂i,j ⊕ Ŷi,j︸ ︷︷ ︸
Linear part Ci of N2i

⊕X̂i,j ⊕ Ŷi,j ]



⊕
3∑
i=0


S−1(

3∑
j=0

c4i+jR̂24i+j︸ ︷︷ ︸
Linear part Ai of N2i

)�8 T1(t−1)
i

⊕ S−1(
3∑
j=0

c4i+jR̂34i+j︸ ︷︷ ︸
Linear part Bi of N2i

)

 ,

where X̂i,j = T2(t)
4i+j and Ŷi,j = (σ−1T1(t+1))4i+j .

In the above it now becomes clear that we need to compute byte-oriented distributions
of two independent noise variables N1 and N2. The first noise is trivial to compute, while
the second N2 is a bit more complicated, but it can be computed with the technique
mentioned in Section 3.4.1. I.e., for every i we first compute 4 partial joint distributions
Di,j(Ai,j |Bi,j |Ci,j) of linear parts A|B|C for each j = 0...3, then we use Fast Walsh-
Hadamard Transform to perform the XOR-convolutions in order to get the complete
24-bit joint distribution Di(Ai|Bi|Ci) for all possible 32-bit input arguments running
over j = 0, 1, 2, 3, for that certain i. Having that joint distribution Di(Ai|Bi|Ci) being
computed it is then trivial to compute the 8-bit sub-noise distribution N2i: we simply loop
over all possible choices of Ai, Bi, Ci, T1(t−1)

i , and approximate ...�8 T1(t−1)
i by adding

that term outside of S−1, near by the linear part A. I.e., we compute

Pr{N2i = (S−1(Ai)�8 T1(t−1)
i )⊕ T1(t−1)

i ⊕ S−1(Bi)⊕ Ci} += 1
28 ·Di(Ai|Bi|Ci).

We repeat the above for each i, and the total noise N2 is the XOR-convolution of the four
independent sub-distributions N2i.

We would like to note that the first sub-distribution N20 has a smaller bias since 4
bytes of the term R̂2i in the linear part C of N2 are added to N20, while the remaining 3
sub-distributions are free from these terms. This means that N20 includes 4 approximations
of type n3 with a smaller bias (≈ 2−3.3) than those of the types n1(≈ 23.1) and n2(≈ 2−2.9).
Our computation results are as follows: ε(N2i=0) ≈ 2−53.828334, ε(N2i=1..3) ≈ 2−30.382642,
ε(N1i=0..3) ≈ 2−2.920807, and

ε(
3∑
i=0

N1i) ≈ 2−26.446376,

ε(
3∑
i=0

N2i) ≈ 2−187.562693,

ε(Ntot) ≈ 2−214.848865,

ε(2×Ntot) ≈ 2−429.674887.
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C Test Vectors
This section presents test vectors for SNOW-V with three different keys and IVs. The
vectors are written with the least significant byte of the 128-bit word appearing to the
left in the row. For the keys, the lower 128-bit part is written on the first row, followed by
the high part on the second row.

== SNOW-V test vectors #1:
key = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
iv = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Initialization phase, z =

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5
ea ea ea ea eb eb eb eb eb eb eb eb eb eb eb eb
55 f7 f7 c2 e8 e8 dd 4a e8 dd 4a e8 dd 4a e8 e8
c7 2a 23 bf e8 93 73 30 23 bc 66 ec 94 d2 eb b2
a7 dd ca f3 13 87 61 02 6e ad f4 2b 54 e3 ef cf
6a 67 62 3e 6f 8a f9 79 1e cd 81 83 c5 86 8e 3a
45 10 1e 83 a2 c6 dd eb 40 86 38 2d ac fb 3b 65
3c c4 df 56 ec bf c1 06 6d ac 02 c5 0a 68 3c fe
0c cb e1 de 2e 41 af da 70 98 d5 60 19 20 06 98
53 cd 98 69 c7 78 ca de d7 db 45 9b 6f 45 8b 10
8d 94 0b e5 9f bd b1 61 c1 21 fc 29 7a 3d 0a 15
26 13 2c 14 9e af 12 cc d3 2f 35 76 f6 43 68 94
0e 75 be 09 54 18 1e f5 8a 60 a9 a9 54 3a 05 ff
dc 77 a4 97 23 eb 65 6a e1 8f 28 2c f1 de 1d 00

Keystream phase, z =
69 ca 6d af 9a e3 b7 2d b1 34 a8 5a 83 7e 41 9d
ec 08 aa d3 9d 7b 0f 00 9b 60 b2 8c 53 43 00 ed
84 ab f5 94 fb 08 a7 f1 f3 a2 df 18 e6 17 68 3b
48 1f a3 78 07 9d cf 04 db 53 b5 d6 29 a9 eb 9d
03 1c 15 9d cc d0 a5 0c 4d 5d bf 51 15 d8 70 39
c0 d0 3c a1 37 0c 19 40 03 47 a0 b4 d2 e9 db e5
cb ca 60 82 14 a2 65 82 cf 68 09 16 b3 45 13 21
95 4f df 30 84 af 02 f6 a8 e2 48 1d e6 bf 82 79

Listing 2: Test vectors for SNOW-V.

== SNOW-V-GCM test vectors #1:
key = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
iv = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
aad =
plain =
key H = e9 c0 d9 30 07 99 d4 f6 70 23 08 78 cd 49 65 d5
endpad= 02 9a 62 4c da a4 d4 6c b9 a0 ef 40 46 95 6c 9f
cipher=
auth = 02 9a 62 4c da a4 d4 6c b9 a0 ef 40 46 95 6c 9f

== SNOW-V-GCM test vectors #2:
key = 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f

0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa
iv = 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
aad =
plain =
key H = a5 78 c7 e6 c9 dd e7 7f af b7 ae 37 fa 56 95 4a
endpad= fc 7c ac 57 4c 49 fe ae 61 50 31 5b 96 85 42 4c
cipher=
auth = fc 7c ac 57 4c 49 fe ae 61 50 31 5b 96 85 42 4c

== SNOW-V-GCM test vectors #3:
key = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
iv = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
aad = 30 31 32 33 34 35 36 37 38 39 61 62 63 64 65 66
plain =
key H = e9 c0 d9 30 07 99 d4 f6 70 23 08 78 cd 49 65 d5
endpad= 02 9a 62 4c da a4 d4 6c b9 a0 ef 40 46 95 6c 9f
cipher=
auth = 5a 5a a5 fb d6 35 ef 1a e1 29 61 42 03 e1 03 84

== SNOW-V-GCM test vectors #4:
key = 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f

0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa
iv = 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
aad = 30 31 32 33 34 35 36 37 38 39 61 62 63 64 65 66
plain =
key H = a5 78 c7 e6 c9 dd e7 7f af b7 ae 37 fa 56 95 4a
endpad= fc 7c ac 57 4c 49 fe ae 61 50 31 5b 96 85 42 4c
cipher=
auth = 25 0e c8 d7 7a 02 2c 08 7a df 08 b6 5a dc bb 1a

== SNOW-V-GCM test vectors #5:
key = 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f

0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa
iv = 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
aad =
plain = 30 31 32 33 34 35 36 37 38 39
key H = a5 78 c7 e6 c9 dd e7 7f af b7 ae 37 fa 56 95 4a
endpad= fc 7c ac 57 4c 49 fe ae 61 50 31 5b 96 85 42 4c
cipher= dd 7e 01 b2 b4 24 a2 ef 82 50
auth = dd fe 4e 31 e7 bf e6 90 23 31 ec 5c e3 19 d9 0d

== SNOW-V-GCM test vectors #6:
key = 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f

0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa
iv = 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
aad = 41 41 44 20 74 65 73 74 20 76 61 6c 75 65 21
plain = 30 31 32 33 34 35 36 37 38 39 61 62 63 64 65 66

20 53 6e 6f 77 56 2d 41 45 41 44 20 6d 6f 64 65
21

key H = a5 78 c7 e6 c9 dd e7 7f af b7 ae 37 fa 56 95 4a
endpad= fc 7c ac 57 4c 49 fe ae 61 50 31 5b 96 85 42 4c
cipher= dd 7e 01 b2 b4 24 a2 ef 82 50 27 07 e8 7a 32 c1

52 b0 d0 18 18 fd 7f 12 24 3e b5 a1 56 59 e9 1b
4c

auth = 90 7e a6 a5 b7 3a 51 de 74 7c 3e 9a d9 ee 02 9b

Listing 3: Test vectors for SNOW-V-GCM.
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D SNOW-V 32-bit Reference Implementation in C/C++
// SNOW-V 32-bit Reference Implementation (Endianness-free)
#include <stdint.h>
#include <stdlib.h>

typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;

u8 SBox[256] =
{

0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16

};
u8 Sigma[16] = {0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15};
u32 AesKey1[4] = { 0, 0, 0, 0 };
u32 AesKey2[4] = { 0, 0, 0, 0 };

#define MAKEU32(a, b) (((u32)(a) << 16) | ((u32)(b) ))
#define MAKEU16(a, b) (((u16)(a) << 8) | ((u16)(b) ))

struct SnowV32
{

u16 A[16], B[16]; // LFSR
u32 R1[4], R2[4], R3[4]; // FSM

void aes_enc_round(u32 * result, u32 * state, u32 * roundKey)
{

#define ROTL32(word32, offset) ((word32 << offset) | (word32 >> (32 - offset)))
#define SB(index, offset) (((u32)(sb[(index) % 16])) << (offset * 8))
#define MKSTEP(j)\

w = SB(j * 4 + 0, 3) | SB(j * 4 + 5, 0) | SB(j * 4 + 10, 1) | SB(j * 4 + 15, 2);\
t = ROTL32(w, 16) ^ ((w << 1) & 0xfefefefeUL) ^ (((w >> 7) & 0x01010101UL) * 0x1b);\
result[j] = roundKey[j] ^ w ^ t ^ ROTL32(t, 8)

u32 w, t;
u8 sb[16];
for (int i = 0; i < 4; i++)

for (int j = 0; j < 4; j++)
sb[i * 4 + j] = SBox[(state[i] >> (j * 8)) & 0xff];

MKSTEP(0);
MKSTEP(1);
MKSTEP(2);
MKSTEP(3);

}

u16 mul_x(u16 v, u16 c)
{ if (v & 0x8000)

return(v << 1) ^ c;
else



32 A new SNOW stream cipher called SNOW-V

return (v << 1);
}

u16 mul_x_inv(u16 v, u16 d)
{ if (v & 0x0001)

return(v >> 1) ^ d;
else

return (v >> 1);
}

void permute_sigma(u32 * state)
{ u8 tmp[16];

for (int i = 0; i < 16; i++)
tmp[i] = (u8)(state[Sigma[i] >> 2] >> ((Sigma[i] & 3) << 3));

for (int i = 0; i < 4; i++)
state[i] = MAKEU32(MAKEU16(tmp[4 * i + 3], tmp[4 * i + 2]),

MAKEU16(tmp[4 * i + 1], tmp[4 * i]));
}

void fsm_update(void)
{ u32 R1temp[4];

memcpy(R1temp, R1, sizeof(R1));

for (int i = 0; i < 4; i++)
{ u32 T2 = MAKEU32(A[2 * i + 1], A[2 * i]);

R1[i] = (T2 ^ R3[i]) + R2[i];
}
permute_sigma(R1);
aes_enc_round(R3, R2, AesKey2);
aes_enc_round(R2, R1temp, AesKey1);

}

void lfsr_update(void)
{

for (int i = 0; i < 8; i++)
{ u16 u = mul_x(A[0], 0x990f) ^ A[1] ^ mul_x_inv(A[8], 0xcc87) ^ B[0];

u16 v = mul_x(B[0], 0xc963) ^ B[3] ^ mul_x_inv(B[8], 0xe4b1) ^ A[0];

for (int j = 0; j < 15; j++)
{ A[j] = A[j + 1];

B[j] = B[j + 1];
}

A[15] = u;
B[15] = v;

}
}

void keystream(u8 * z)
{

for (int i = 0; i < 4; i++)
{ u32 T1 = MAKEU32(B[2 * i + 9], B[2 * i + 8]);

u32 v = (T1 + R1[i]) ^ R2[i];
z[i * 4 + 0] = (v >> 0) & 0xff;
z[i * 4 + 1] = (v >> 8) & 0xff;
z[i * 4 + 2] = (v >> 16) & 0xff;
z[i * 4 + 3] = (v >> 24) & 0xff;

}

fsm_update();
lfsr_update();

}

void keyiv_setup(u8 * key, u8 * iv, int is_aead_mode)
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{
for (int i = 0; i < 8; i++)
{ A[i] = MAKEU16(iv[2 * i + 1], iv[2 * i]);

A[i + 8] = MAKEU16(key[2 * i + 1], key[2 * i]);
B[i] = 0x0000;
B[i + 8] = MAKEU16(key[2 * i + 17], key[2 * i + 16]);

}

if(is_aead_mode == 1)
{ B[0] = 0x6C41;

B[1] = 0x7865;
B[2] = 0x6B45;
B[3] = 0x2064;
B[4] = 0x694A;
B[5] = 0x676E;
B[6] = 0x6854;
B[7] = 0x6D6F;

}

for (int i = 0; i < 4; i++)
R1[i] = R2[i] = R3[i] = 0x00000000;

for (int i = 0; i < 16; i++)
{ u8 z[16];

keystream(z);

for (int j = 0; j < 8; j++)
A[j + 8] ^= MAKEU16(z[2 * j + 1], z[2 * j]);

if (i == 14)
for (int j = 0; j < 4; j++)

R1[j] ^= MAKEU32(MAKEU16(key[4 * j + 3], key[4 * j + 2]),
MAKEU16(key[4 * j + 1], key[4 * j + 0]));

if (i == 15)
for (int j = 0; j < 4; j++)

R1[j] ^= MAKEU32(MAKEU16(key[4 * j + 19], key[4 * j + 18]),
MAKEU16(key[4 * j + 17], key[4 * j + 16]));

}
}

};
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// AEAD mode: SNOW-V-GCM in C++ (Endianness-free)
#include <stdint.h>
#include <stdlib.h>
#include "SNOWV.h"
#include "ghash.h"

#define min(a, b) (((a) < (b)) ? (a) : (b))

void snowv_gcm_encrypt(u8 * A, u8 * ciphertext, u8 * plaintext, u64 plaintext_sz,
u8 * aad, u64 aad_sz, u8 * key32, u8 * iv16)

{
u8 Hkey[16], endPad[16];
struct SnowV32 snowv;
memset(A, 0, 16);
snowv.keyiv_setup(key32, iv16, 1);
snowv.keystream(Hkey);
snowv.keystream(endPad);
ghash_update(Hkey, A, aad, aad_sz);

for (u64 i = 0; i < plaintext_sz; i += 16)
{ u8 key_stream[16];

snowv.keystream(key_stream);
for(u8 j = 0; j < min(16, plaintext_sz - i); j++)

ciphertext[i + j] = key_stream[j] ^ plaintext[i + j];
}

ghash_update(Hkey, A, ciphertext, plaintext_sz);
ghash_final(Hkey, A, aad_sz, plaintext_sz, endPad);

}

void snowv_gcm_decrypt(u8 * A, u8 * ciphertext, u8 * plaintext, u64 ciphertext_sz,
u8 * aad, u64 aad_sz, u8 * key32, u8 * iv16)

{
u8 Hkey[16], endPad[16], auth[16] = {0x00};
struct SnowV32 snowv;
snowv.keyiv_setup(key32, iv16, 1);
snowv.keystream(Hkey);
snowv.keystream(endPad);
ghash_update(Hkey, auth, aad, aad_sz);
ghash_update(Hkey, auth, ciphertext, ciphertext_sz);
ghash_final(Hkey, auth, aad_sz, ciphertext_sz, endPad);
for(int i = 0; i < 16; i++)

if(auth[i] != A[i])
{ printf("Authentication Failed!");

exit(1);
}

for (u64 i = 0; i < ciphertext_sz; i += 16)
{ u8 key_stream[16];

snowv.keystream(key_stream);
for(u8 j = 0; j < min(16, ciphertext_sz - i); j++)

plaintext[i + j] = key_stream[j] ^ ciphertext[i + j];
}

}



Patrik Ekdahl, Thomas Johansson, Alexander Maximov and Jing Yang 35

// Informative: an exampled implementation of GHASH core (C++)
#define XOR2x64(dst, src) ((u64*)(dst))[0] ^= ((u64*)(src))[0], \

((u64*)(dst))[1] ^= ((u64*)(src))[1]
#define XOR3x64(dst, src1, src2) ((u64*)(dst))[0] = ((u64*)(src1))[0] ^ ((u64*)(src2))[0], \

((u64*)(dst))[1] = ((u64*)(src1))[1] ^ ((u64*)(src2))[1]

void ghash_mult(u8 * out, const u8 * x, const u8 * y)
{ char tmp[17];

u64 c0, c1, u0 = ((u64*)y)[0], u1 = ((u64*)y)[1];
memset(out, 0, 16);

for (int i = 0; i < 16; i++)
for (int j = 7; j >= 0; j--)
{ if ((x[i] >> j) & 1) ((u64*)out)[0] ^= u0, ((u64*)out)[1] ^= u1;

c0 = (u0 << 7) & 0x8080808080808080ULL;
c1 = (u1 << 7) & 0x8080808080808080ULL;
u0 = (u0 >> 1) & 0x7f7f7f7f7f7f7f7fULL;
u1 = (u1 >> 1) & 0x7f7f7f7f7f7f7f7fULL;
((u64*)(tmp + 1))[0] = c0;
((u64*)(tmp + 1))[1] = c1;
tmp[0] = (tmp[16] >> 7) & 0xe1;
u0 ^= ((u64*)tmp)[0];
u1 ^= ((u64*)tmp)[1];

}
}

void ghash_update(const u8 * H, u8 * A, const u8 * data, long long length)
{ u8 tmp[16];

for( ;length >= 16; length -=16, data += 16)
{ XOR3x64(tmp, data, A);

ghash_mult(A, tmp, H);
}
if(!length) return;
memset(tmp, 0, 16);
memcpy(tmp, data, length);
XOR2x64(tmp, A);
ghash_mult(A, tmp, H);

}

void ghash_final(const u8 * H, u8 * A, u64 lenAAD, u64 lenC, const u8 * maskingBlock)
{

u8 tmp[16];
lenAAD <<= 3;
lenC <<= 3;
for(int i=0; i<8; ++i)
{ tmp[7-i] = (u8)(lenAAD >> (8 * i));

tmp[15-i] = (u8)(lenC >> (8 * i));
}
XOR2x64(tmp, A);
ghash_mult(A, tmp, H);
XOR2x64(A, maskingBlock); /* The resulting AuthTag is in A[] */

}
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E SNOW-V Reference Implementation with SIMD
// SNOW-V Reference Implementation utilizing AES-NI, SSE2, SSSE3, AVX, AVX2 (Little endian)
#include <immintrin.h>
#define vpset16(value) _mm256_set1_epi16(value)
const __m256i _snowv_mul = _mm256_blend_epi32(vpset16( 0x990f), vpset16( 0xc963), 0xf0);
const __m256i _snowv_inv = _mm256_blend_epi32(vpset16(-0xcc87), vpset16(-0xe4b1), 0xf0);
const __m128i _snowv_aead = _mm_lddqu_si128((__m128i*)"AlexEkd JingThom");
const __m128i _snowv_sigma= _mm_set_epi8(15,11,7,3,14,10,6,2,13,9,5,1,12,8,4,0);
const __m128i _snowv_zero = _mm_setzero_si128();

struct SnowV256
{

__m256i hi, lo; // LFSR
__m128i R1, R2, R3; // FSM

inline __m128i keystream(void)
{

// Extract the tags T1 and T2
__m128i T1 = _mm256_extracti128_si256(hi, 1);
__m128i T2 = _mm256_castsi256_si128(lo);

// LFSR Update
__m256i mulx = _mm256_xor_si256(_mm256_slli_epi16(lo, 1),

_mm256_and_si256(_snowv_mul, _mm256_srai_epi16(lo, 15)));
__m256i invx = _mm256_xor_si256(_mm256_srli_epi16(hi, 1),

_mm256_sign_epi16(_snowv_inv, _mm256_slli_epi16(hi, 15)));
__m256i hi_old = hi;
hi = _mm256_xor_si256(

_mm256_xor_si256(
_mm256_blend_epi32(

_mm256_alignr_epi8(hi, lo, 1 * 2),
_mm256_alignr_epi8(hi, lo, 3 * 2), 0xf0),

_mm256_permute4x64_epi64(lo, 0x4e)),
_mm256_xor_si256(invx, mulx));

lo = hi_old;

// Keystream word
__m128i z = _mm_xor_si128(R2, _mm_add_epi32(R1, T1));

// FSM Update
__m128i R3new = _mm_aesenc_si128(R2, _snowv_zero);
__m128i R2new = _mm_aesenc_si128(R1, _snowv_zero);
R1 = _mm_shuffle_epi8(_mm_add_epi32(R2, _mm_xor_si128(R3, T2)), _snowv_sigma);
R3 = R3new;
R2 = R2new;
return z;

}

template<int aead_mode = 0>
inline void keyiv_setup(const unsigned char * key, const unsigned char * iv)
{

R1 = R2 = R3 = _mm_setzero_si128();
hi = _mm256_lddqu_si256((const __m256i*)key);
lo = _mm256_zextsi128_si256(_mm_lddqu_si128((__m128i*)iv));
if (aead_mode)

lo = _mm256_insertf128_si256(lo, _snowv_aead, 1);

for (int i = 0; i < 15; ++i)
hi = _mm256_xor_si256(hi, _mm256_zextsi128_si256( keystream() ));

R1 = _mm_xor_si128(R1, _mm_lddqu_si128((__m128i*)(key + 0)));
hi = _mm256_xor_si256(hi, _mm256_zextsi128_si256( keystream() ));
R1 = _mm_xor_si128(R1, _mm_lddqu_si128((__m128i*)(key + 16)));

}
};



Patrik Ekdahl, Thomas Johansson, Alexander Maximov and Jing Yang 37

// AEAD mode: SNOW-V-GCM with SIMD (Little Endian)
#define SNOWV_ENCDEC(snowv, out, in) _mm_storeu_si128((__m128i*)(out),\

_mm_xor_si128(_mm_lddqu_si128((__m128i*)(in)), snowv.keystream()))

// Any external implementation of GHASH
struct ghash_context;
extern void ghash_init (ghash_context & gh, __m128i H);
extern void ghash_update(ghash_context & gh, const u8 * data, long long length);
extern __m128i ghash_final (ghash_context & gh, u64 lenAAD, u64 lenC, __m128i endPad);

// Note: ciphertext must reserve [plaintext_sz + 16] bytes
long long snowv_gcm_encrypt(u8 * ciphertext, const u8 * plaintext, u64 plaintext_sz,

const u8 * aad, u64 aad_sz, const u8 * key32, const u8 * iv16)
{

ghash_context gh;
SnowV256 snowv;
snowv.keyiv_setup<1>(key32, iv16); // init with AEAD mode
ghash_init(gh, snowv.keystream() ); // GHASH key H
__m128i endPad = snowv.keystream(); // ending pad
ghash_update(gh, aad, aad_sz); // push AAD into GHASH

// SNOW-V Encryption
for (long long i = 0; i < plaintext_sz; i += 16)

SNOWV_ENCDEC(snowv, ciphertext + i, plaintext + i);

// Push ciphertext into GHASH
ghash_update(gh, ciphertext, plaintext_sz);

// Finalize GCM mode and add the authorization tag to the end of the ciphertext
_mm_storeu_si128((__m128i*)(ciphertext + plaintext_sz),

ghash_final(gh, aad_sz, plaintext_sz, endPad));

// return the total length of the ciphertext
return plaintext_sz + 16;

}

// Note: plaintext must reserve [ciphertext_sz - 16] bytes
long long snowv_gcm_decrypt(u8 * plaintext, const u8 * ciphertext, u64 ciphertext_sz,

const u8 * aad, u64 aad_sz, const u8 * key32, const u8 * iv16)
{

ghash_context gh;
SnowV256 snowv;
snowv.keyiv_setup<1>(key32, iv16); // init with AEAD mode
ghash_init(gh, snowv.keystream() ); // GHASH key H
ghash_update(gh, aad, aad_sz); // push AAD into GHASH
ghash_update(gh, ciphertext, (ciphertext_sz -= 16) ); // push ciphertext to GHASH

// Finalize GCM mode and verify the authorization tag
__m128i auth = ghash_final(gh, aad_sz, ciphertext_sz, snowv.keystream());
auth = _mm_xor_si128(auth, _mm_lddqu_si128((__m128i*)(ciphertext + ciphertext_sz)));

if (!_mm_test_all_zeros(auth, auth))
return -1; // auth tag is not correct? return a negative value

// SNOW-V Decryption
for (long long i = 0; i < ciphertext_sz; i += 16)

SNOWV_ENCDEC(snowv, ciphertext + i, plaintext + i);

// return the total length of the plaintext
return ciphertext_sz;

}
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F Hardware implementation aspects
When designing new algorithms targeting existing systems, reusability of hardware com-
ponents is important to reduce area and cost of the ASICs. Many systems dealing with
network communication security implement some form of AES acceleration, either in a
specialized ASIC or as specialized CPU instructions. SNOW-V leverages this co-existence
by using two full AES encryption rounds as the main nonlinear element. A hardware
implementation of SNOW-V can utilize either one or two external AES cores, if present,
or implement its own AES encryption rounds in a stand-alone design for maximum speed.
Although a 128-bit implementation is straight-forward from the algorithm description,
it has some drawbacks when we only have one single external AES core available, as is
the case in many constraint implementations. In this section we will consider how to
implement SNOW-V using a single AES core with a 64-bit hardware architecture. We
will refer to the 64-bit and 128-bit hardware implementations as the 64-SNOW-V and
128-SNOW-V respectively.

F.1 SNOW-V 64-bit Hardware Architecture
In this section we propose a 64-bit hardware architecture where SNOW-V requires a single
AES encryption core (external or built-in), and each clocking of 64-SNOW-V produces 64
bits of the keystream.

Cons: additional two 64-bit delay registers D1 and D2 are needed; the logic needs
additional 6 64-bit multiplexers; two clocks to produce 128 bits of keystream that actually
halves the speed.

Pros: a single AES encryption core is needed; produces 64 bits of keystream at each
clock; all basic operations in both FSM and LFSR, such as XOR and ADD, are now halved
in size.

In order to utilize a single AES core the FSM update function should be split into two
steps. The main critical path is the AES EncRound, which means that while splitting
FSM into two stages we should avoid any extra logic on the input and output signals of
the AES core. Thus, input to and output from the AES core must be registers.

Let us split all 128-bit registers and all 128-bit signals of the FSM block, say X, into
two 64-bit halves as Xa (low) and Xb (high). We also assume that the tap values T1 and
T2 from the LFSRs also arrive in 64-bit chunks, such that every even clock FSM gets T1a
and T2a, and every odd clock T1b and T2b.

In Figure 7 we propose a possible way to split the FSM such that it contains the two
circuits for even and odd steps, 0 and 1 resp. (excluding the gates needed for initialization).
One can notice that after these two steps the content of the registers R1, R2, R3 become
updated to new 128-bit values ′R1,′R2,′R3, and ready to process the next 128 bits of
data with the same two steps. The above two circuits are then combined into a single
circuit using multiplexers.

In Figure 8 the complete hardware architecture for 64-bit SNOW-V is presented. There
are 7 64-bit multiplexers in total, and we denote the control signal to them by M1..M7,
respectively. There are also 5 64-bit AND gates, the purpose of which is to either bypass
the signal or block it. Those AND blocks are controlled by four signals GA, GZ , GK , GF ,
the latter controls 2x64 AND-blocks. The Control Unit in Figure 8 generates the control
signals for the multiplexers and AND gates depending on the state of SNOW-V.

Critical path. Our primary assumption is that the AES encryption round would
be the main critical path (MCP). However, one can easily determine that the secondary
critical path (SCP) would be the sequence AND-MUX-XOR-ADD-XOR-MUX over 2x32-bit
integers, denoted by red wires in Figure 8. Thus, when selecting 32-bit adders one should
make sure that they are fast enough so that the MCP is sustained.

The algorithm has 3 stages:
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Stage 1 – Loading. The design is constructed in such a way that the registers do
not need to have any RESET signal. Instead, all registers will be sequentially loaded with
the key and IV, and the remaining registers will be zeroized, during this stage.

The stage begins with a strobe signal on LOAD, and the first 64-bit chunk of data is
expected on the IN_DATA bus. In total, the stage expects to receive 8 64-bit words each
clock in the following order: {iv0, iv1, k0, k1, 0, 0, k2, k3}.

In this stage, the control unit should block AND gates GZ = GA = 0, and set M6 = 1,
in order to concatenate LFSRs A and B into a single large LFSR while shifting in the
initialization data. In order to zeroize FSM registers, the control unit should block GF = 0
and also enforce the multiplexer inputs M4 = 1,M5 = M7 = 0. GK is set to 0.

After the 8 clocks where the key and IV are loaded, we proceed to stage 2.
Stage 2 – Initialization. In this stage, the FSM works in the same way as when it

produces keystream output symbols, i.e. the multiplexer control signals switches according
to even/odd clock cycle as explained previously. The LFSRs are connected together by
setting GZ = GA = 1 and switching M6 = 0 to disable any external input.

Note that we placed the AND gating after the registers R3a, R3b, so that we do not
add extra depth to the critical path of AES core, hence these registers will not be zeroized.
To overcome this problem the control unit generates GF = 0 in the first clock of this stage,
and then sets GF = 1 until the end of stage 2. We keep GK = 0 for the first 28 clocks. In
the remaining 4 clocks we need to XOR the key K to R1 according to the initialization
procedure. So we enable GK = 1 and expect to receive {k0, k1, k2, k3} consecutively from
the input bus IN_DATA. After this, the circuit is ready to produce keystream words.

Stage 3 – Keystream generation. Both LFSR and FSM operate normally. The
control unit in this stage detaches the Z signal from being feeded into LFSR-A by setting
GZ = 0. The input bus is also detached by setting GK = M6 = 0.

F.2 Theoretical Analysis of 64/128-bit SNOW-V in Hardware
The area will be estimated in terms of gate equivalence (GE), where 1GE = size of a
NAND gate. The speed will be estimated in terms of Gigabits per second (Gbps), based on
known speed results of AES circuits. We will use GE values given in [Sam00] for 1-speed
technology elements.

For comparison with AES, we will use one of the more recent results from [UMHA16]
where an area-speed optimized AES-128 (10 rounds) on NanGate 15nm technology runs
with the speed 71.19 Gbps and has the area 17232 GE. This means that having the same
design, AES-256 (14 rounds) would run with the speed of 50.85 Gbps.

Our basic assumption is that the AES core is the critical path of the SNOW-V circuit.
Thus, if SNOW-V would utilize a single AES core as above, the speed of 64-SNOW-V could
be as high as 356 Gbps. The speed of 128-SNOW-V with two AES cores is therefore as
high as 712 Gbps. What remains is to calculate the hardware cost of SNOW-V, excluding
the external AES core, but including the cost of integration into that external AES core.
We will also exclude the control unit, as this can be implemented with a very few gates
and latches and every implementation will have slightly different needs of control and
ready signaling.

State Registers. For 64-SNOW-V, there are 512 registers for the LFSR and 6x64+2x64
registers for the FSM. Since our 64-bit implementation does not require complex latches
(e.g., no RESET), we can use the simplest D-latch with Q-output only from [Sam00] [FD1Q].
The total cost is 1024 ∗ 4.33 = 4434 GE.

For 128-SNOW-V we also need 512 registers for the LFSRs without reset, and 3x128
registers with RESET [FD2Q], thus resulting in 512*4.33+(3*128)*5.67 = 4394 GE.

For arithmetical 32-bit adders we suggest to take, for example, a Han-Carlson
32-bit adder, as it has a low area overhead (15%-25% larger than Ripple-Carry adders) and
a very small delay O(log(n)) – which is important in order to keep the critical path upper
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bounded by the AES round function. We can estimate these components as 4x(30FADD3
+ 2HADD2)+20%= 4(30∗6.33 + 2∗3.67)∗1.20 = 947 GE for 64-SNOW-V and 1894 GE
for 128-SNOW-V.

The remaining part of the FSM update logic therefore contains 3x64AND2 +
6x64MUX2 + 4x64XOR2 = 3 ∗ 64 ∗ 1.33 + 6 ∗ 64 ∗ 2.33 + 4 ∗ 64 ∗ 2.33 = 1747 GE
for 64-SNOW-V and (128AND2+3x128XOR2)=1065 GE for 128-SNOW-V.

LFSR Update logic involves two circuits for the feedback functions. 16-bit field
multiplications by α, α−1, β, β−1 can be done with 8 XORs in each case, since the Hamming
weight of both gA(α) and gB(β) is 8.

However, let us have a closer look on how each bit of, e.g. a16 is calculated. Each bit
a16[i], 14 ≥ i ≥ 1 is unconditionally depending on four bits, namely

a16[i] : a0[i− 1] + a1[i] + a8[i+ 1] + b0[i] (13)

The end bits are easy to work out too. Some of the bits of a16 are also depending on a0[15]
and a8[0], due to the multiplication with α and α−1. Table 5 gives a full overview of the
dependencies for both a16 and b16.

Table 5: Bit dependencies due to multiplications for a16 and b16.
i 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Depending on

a16[i] X X X X X X X X a0[15]
X X X X X X X X a8[0]

b16[i] X X X X X X X X b0[15]
X X X X X X X X b8[0]

This means that in order to compute a16[i], we have to XOR 4, 5, or 6 different input
bits. For example, in the table above we see that the a16[13] is only dependent on the
basic input bits in Equation 13, and the XOR gate needs 4 inputs:

a16[13] = a0[12] + a1[13] + a8[14] + b0[13].

On the other hand, a16[11] needs to XOR 6 inputs:

a16[11] = a0[10] + a1[11] + a8[12] + b0[11] + a0[15] + a8[0].

since the multiplication with α and α−1 will both influence that bit.
Following the hardware architecture of 64-SNOW-V given in Figure 8 we have to

split the calculation of the feedback function LFSR-A due to the control AND-gateway.
Also, the circuit should compute 4 16-bit updates in parallel. Summarizing, we get (a)
LFSR-A feedback function, excluding input from b0: 4x(5XOR3 + 6XOR4 + 5XOR5)
≈ 4 ∗ (5 ∗ 4.00 + 6 ∗ 6.00 + 5 ∗ 8.00) = 384 GE ; (b) LFSR-B feedback function, including
input from a0: 4x(4XOR4 + 8XOR5 + 4XOR6) ≈ 4 ∗ (4 ∗ 6.00 + 8 ∗ 8.00 + 4 ∗ 10.00)
= 512 GE; (c) the remaining part of LFSR block: 2x64AND2 + 64XOR3 + 64MUX2
= 64 ∗ (2 ∗ 1.33 + 4.00 + 2.33) = 575 GE. For 128-SNOW-V we simply double the above
numbers.

Integration into an external AES Engine requires input multiplexers for 128 bits
of the plaintext and 128 bits for the round key. However, the AES round keys C1 and
C2 are zeroes so that we can use 128AND gates, instead. In total we get 128MUX2 +
128AND2 = 128 ∗ (2.33 + 1.33) = 468 GE for 64-SNOW-V. 128-SNOW-V requires two
such integration circuits.

In case we decide to implement SNOW-V with its own internal AES EncRound, the
hardware cost could be as small as 16 AES SBoxes, plus some logic for MixColumn. Also
note that in this case the critical path decreases since we only need the forward SBox
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and thus any outer multiplexing logic for a combined forward and inverse SBox can be
removed. This could lead to a potential speed up for 128-SNOW-V.

The part MixColumn of AES encryption round, applied to the AES state {ri,j} for
0 ≤ i, j ≤ 3, is the following matrix multiplication.

r′0,j
r′1,j
r′2,j
r′3,j

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·

r0,j
r1,j
r2,j
r3,j

 , 0 ≤ j ≤ 3.

That can be computed in a depth 2 circuit, for each 0 ≤ j ≤ 3, as t0 = r0 + r1,
t1 = r1 + r2, t2 = r2 + r3, t3 = r3 + r0, and then r′0 = 2t0 + t2 + r1, r′1 = 2t1 + t3 + r2,
r′2 = 2t2 + t0 + r3, r′3 = 2t3 + t1 + r0, where multiplication 2ti is the multiplication by x
in the Rijndael field and can be implemented with 3XOR2. The cost of MixColumn is
therefore 4x4x(8XOR2 + 8XOR3 + 3XOR2) = 922 GE3.

The cost of a single forward SBox is around 220 GE (see, e.g., [RMTA18]). Thus,
for a single internal AES EncRound the total cost is 16 ∗ 220 + 922 = 4442 GE.
Summarizing the above we can derive the comparison given in Table 6 .

Table 6: Theoretical comparison of four SNOW-V versions vs AES-256 in hardware.
Hardware AES-256 64-SNOW-V 64-SNOW-V 128-SNOW-V 128-SNOW-V
design from [UMHA16] 1xAES 1xAES 2xAES 2xAES

ext. core int. round ext. cores int. rounds
Area 17232 GE 9067 GE 13041 GE 11231 GE 19179 GE
Speed 50.85 Gbps 358 Gbps 358+ Gbps 712 Gbps 712+ Gbps

3Recent results in [Max19] suggest that MixColumn can be implemented with 4x92 gates. However, we
believe that the proposed classical solution with 4x108 gates is a better choice since it has a lower depth
of the critical path, thus allowing SNOW-V to perform faster.
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