
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2019, No. 2, pp. 218–240. DOI:10.13154/tosc.v2019.i2.218-240

Efficient Search for Optimal Diffusion Layers
of Generalized Feistel Networks

Patrick Derbez∗, Pierre-Alain Fouque†,
Baptiste Lambin‡ and Victor Mollimard

Univ Rennes, The French National Centre for Scientific Research (CNRS), Institut de Recherche
en Informatique et Systèmes Aléatoires (IRISA), Rennes, France

{baptiste.lambin,patrick.derbez,victor.mollimard}@irisa.fr
pierre-alain.fouque@univ-rennes1.fr

Abstract. The Feistel construction is one of the most studied ways of building block
ciphers. Several generalizations were then proposed in the literature, leading to the
Generalized Feistel Network, where the round function first applies a classical Feistel
operation in parallel on an even number of blocks, and then a permutation is applied
to this set of blocks. In 2010 at FSE, Suzaki and Minematsu studied the diffusion
of such construction, raising the question of how many rounds are required so that
each block of the ciphertext depends on all blocks of the plaintext. They thus gave
some optimal permutations, with respect to this diffusion criteria, for a Generalized
Feistel Network consisting of 2 to 16 blocks, as well as giving a good candidate for
32 blocks. Later at FSE’19, Cauchois et al. went further and were able to propose
optimal even-odd permutations for up to 26 blocks.
In this paper, we complete the literature by building optimal even-odd permutations
for 28, 30, 32, 36 blocks which to the best of our knowledge were unknown until
now. The main idea behind our constructions and impossibility proof is a new
characterization of the total diffusion of a permutation after a given number of rounds.
In fact, we propose an efficient algorithm based on this new characterization which
constructs all optimal even-odd permutations for the 28, 30, 32, 36 blocks cases and
proves a better lower bound for the 34, 38, 40 and 42 blocks cases. In particular,
we improve the 32 blocks case by exhibiting optimal even-odd permutations with
diffusion round of 9. The existence of such a permutation was an open problem for
almost 10 years and the best known permutation in the literature had a diffusion
round of 10. Moreover, our characterization can be implemented very efficiently and
allows us to easily re-find all optimal even-odd permutations for up to 26 blocks with
a basic exhaustive search.
Keywords: Diffusion round · Feistel · Permutations

1 Introduction
The Feistel network is one of the main generic designs for building modern block ciphers.
It was initially proposed in the data encryption standard DES [DES77], and is still used in
more recent ciphers such as Twofish [SKW+98], Camellia [AIK+00] or SIMON [BSS+13].
The idea behind this construction is to split the plaintext into two halves x0, x1, and
∗Patrick Derbez was supported by the French Agence Nationale de la Recherche through the CryptAudit

project under Contract ANR-17-CE39-0003.
†Pierre-Alain was supported by the French Agence Nationale de la Recherche through the BRUTUS

project under Contract ANR-14-CE28-0015.
‡Baptiste Lambin was supported by the Direction Générale de l’Armement (Pôle de Recherche CYBER).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-03-01, Accepted: 2019-05-01, Published: 2019-06-11

https://doi.org/10.13154/tosc.v2019.i2.218-240
mailto:baptiste.lambin@irisa.fr,patrick.derbez@irisa.fr,victor.mollimard@irisa.fr,pierre-alain.fouque@univ-rennes1.fr
mailto:baptiste.lambin@irisa.fr,patrick.derbez@irisa.fr,victor.mollimard@irisa.fr,pierre-alain.fouque@univ-rennes1.fr
http://creativecommons.org/licenses/by/4.0/

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Victor Mollimard 219

build the round function which sends (x0, x1) to (x1, x0 ⊕ Fi(x1)), where Fi is a non-
linear function for the i-th round. One of the main advantage of this construction is
that Fi does not need to be invertible, and thus it allows to transform a pseudorandom
function (PRF) into a pseudorandom permutation (PRP). Moreover, there are theoretical
arguments suggesting that it is a good method to construct block ciphers, as Luby and
Rackoff proved in 1988 [LR88] that if each Fi is a pseudorandom function and all three
are independent, then 3 rounds of the Feistel construction are enough to get a block
cipher which is indistinguishable from a random permutation under the Chosen Plaintext
Attack (CPA) model, and 4 rounds with 4 independent functions are enough in the Chosen
Ciphertext Attack (CCA) model. This was later improved by Pieprzyk in 1990 [Pie90] : if
one takes f as a pseudorandom function, 4 rounds of Feistel with Fi = f for i = 1, 2, 3 and
F4 = f2 are sufficient to obtain a block cipher that is indistinguishable from a random
permutation in the CPA model. In 1989 at CRYPTO, Zheng et al. [ZMI89] proposed some
generalizations of the Feistel construction. Especially, they defined the Type-2 Feistel1
construction, which splits the message into 2k blocks and uses a round function of the form

(x0, . . . , x2k−1) 7→ (x2k−1, x0 ⊕ Fi,0(x1), x1, x2 ⊕ Fi,1(x3), x3, . . . , x2k−2 ⊕ Fi,k−1(x2k−1)),

where each Fi,j is a pseudorandom function for the i-th round. This is essentially a parallel
application of k Feistels followed by a cyclic shift of the blocks. They also showed that
when all Fi,j are pseudorandom functions, then 2k + 1 rounds of such a construction
provide a block cipher that is indistinguishable from a random permutation. Moreover,
the Type-2 construction is inherently easier to compute in parallel, and the corresponding
decryption function is basically the same except that the functions Fi,j are applied in
reverse order, i.e. for r rounds, the first round of decryption uses the functions Fr,j . Both
of these properties make this construction very efficient in practice, both on hardware and
software, e.g. TWINE [SMMK12] and Simpira [GM16]. All of these arguments lead to
some block ciphers based on this Type-2 Feistel construction, such as HIGHT [HSH+06]
and CLEFIA [SSA+07].

At ASIACRYPT’96, Nyberg [Nyb96] studied a variant of the Type-2 Feistel construction
using a different permutation than the cyclic shift, called Generalized Feistel Network.
Such a construction was used to design block ciphers such as TWINE [SMMK12] and
Piccolo [SIH+11]. However, Nyberg only focused on one specific permutation. Suzaki
and Minematsu thus studied at FSE’10 [SM10] a more general case where the cyclic
shift is replaced by any other permutation of the blocks. Their work was focused on
finding permutations with the lowest diffusion round. The diffusion round is close to the
concept of diffusion introduced by Shannon in 1949 [Sha49]. Essentially, a block cipher
has full diffusion if every bit of the ciphertext depends on every bit of the plaintext. In
the context of Generalized Feistel Network (GFN), [SM10] defined the diffusion round
as the minimal number of rounds such that every block of the ciphertext depends on
every block of the plaintext. Focusing on blocks instead of bits allows them to get rid of
the precise specification of the functions Fi,j as well as the exact size of the blocks, thus
giving structural results. Especially, they tied the diffusion round of a given GFN to its
resistance against Impossible Differential distinguishers [BBS99], proving that if a GFN
has a diffusion round of DR, then it needs strictly more than 2DR + 1 rounds to avoid any
Impossible Differential distinguisher. Along with a lower bound on the diffusion round
of a GFN of 2k blocks, they gave optimal permutations (w.r.t the diffusion round) for
2 ≤ 2k ≤ 16. It is worthy to note that such an optimal permutation was then used to
design block ciphers such as TWINE [SMMK12]. At FSE’19, Cauchois et al. went further
and gave optimal permutations for 18 ≤ 2k ≤ 26, as well as good candidates for 2k = 32
(which was already found in [SM10]), as well as for 2k = 64 and 128 using a sophisticated
technique that they called Collision-free exhaustive search. Note that these permutations

1Note that some papers use the term Type-2 Generalized Feistel to denote this construction

220 Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks

are even-odd, i.e. the image of an even number is an odd number. On a side note, relaxing
the condition that the permutation is the same in each round make the problem easier
and in [KPP+17], Kales et al. give such a construction for any number of blocks.

Our contribution. In this paper, we focus on even-odd permutations and we complete
the work on the 10-year-old problem (introduced by [SM10]) of finding optimal even-odd
permutations for 32 blocks, as well as finding optimal even-odd permutations for 28, 30
and 36 blocks which were not given in the previous literature. To do so, we propose a new
characterization of a permutation reaching full diffusion after a given number of rounds.
Using this characterization, we are able to create a very efficient algorithm, which on
the previously mentioned cases yields all the permutations that achieve full diffusion in
9 rounds. Note that our algorithm essentially uses branch-and-bound techniques, and
thus it is hard to evaluate the exact complexity. However, the size of the search space
goes from 243 for 2k = 28 up to 275 for 2k = 42, but we were able to treat each of
these cases in less than one hour for each value of k when using 72 threads. Moreover,
this characterization has a very efficient implementation which allowed us to re-find all
optimal even-odd permutations for up to 26 blocks with a basic exhaustive search in a
few hours, showing that for these cases, there is no need for sophisticated techniques as
in [CGT19]. Furthermore, for 34, 38, 40 and 42 blocks, we prove with this method that
there is no even-odd permutation with a diffusion round of 9, which is the lower bound on
the diffusion round for these sizes given in [SM10]. We were also able to find even-odd
permutations with a diffusion round of 10 for 2k = 34 (which is thus optimal), as well as
even-odd permutations with diffusion round 11 for 2k = 38, 40, 42. Finally, we evaluate the
security of our constructed permutations against impossible differentials and differentials
(by computing the minimum number of active S-boxes). In particular, for the 32 blocks
case, and the impossible differentials, all our permutations have a one-round shorter longest
impossible differential distinguisher compared to what was proposed by [CGT19], which
brings it down to 17 rounds.

2 Preliminaries

2.1 Generalized Feistel Networks (GFN)
Zheng et al. [ZMI89] introduced Type-2 Feistels as a generalization of the original Feistel
construction. Given an even number 2k of blocks (X0, . . . , X2k−1), it first applies the
Feistel construction on the pairs of blocks which yields (X0 ⊕ S0(X1), X1, . . . , X2k−2 ⊕
Sk−1(X2k−1), X2k−1). The blocks are then cyclically right shifted to obtain the result.
Later, it was proposed to use another permutation than the cyclic shift in [Nyb96], leading
to Generalized Feistel Networks.

Definition 1. Let 2k be an even number, n, r be positive integers, and {Fi,j}i∈{1,...,r},j∈{0,...,k−1}
be a set of cryptographic keyed functions from Fn2 to Fn2 . Let π be a permutation over 2k
elements. A Generalized Feistel Network (GFN) is a block cipher built as Rr ◦ · · · ◦ R1,
where Ri is the round function

Ri : (X0, . . . , X2k−1)→ π(X0 ⊕ Fi,0(X1), X1, . . . , X2k−2 ⊕ Fi,k−1(X2k−1), X2k−1)

Note that for this paper, neither the exact definition of the keyed functions Fi,j nor
their sizes are relevant. We can thus consider all of them as an arbitrary S-box S, leading
to the framework depicted in Figure 12. As the only variable parameters are thus k and π,
we denote by GFN k

π a GFN with 2k blocks that uses the permutation π.

2In practice, one should carefully study the primitive if the same F-function is used, e.g. [GM16]

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Victor Mollimard 221

Xi
0

X̃i
0

Xi
1

X̃i
1

S

Xi+1
0 Xi+1

1

Xi
2

X̃i
2

Xi
3

X̃i
3

S

Xi+1
2 Xi+1

3

Xi
2k−4

X̃i
2k−4

Xi
2k−3

X̃i
2k−3

S

Xi+1
2k−4 Xi+1

2k−3

Xi
2k−2

X̃i
2k−2

Xi
2k−1

X̃i
2k−1

S

Xi+1
2k−2 Xi+1

2k−1

π

Figure 1: Generalized Feistel Network

2.2 Diffusion Round
We use the notations depicted in Figure 1. The input variables of the i-th round of a GFN
are denoted by (Xi

0, X
i
1, . . . , X

i
2k−1). We also denote by (X̃i

0, X̃
i
1, . . . , X̃

i
2k−1) the variables

which are at the input of the permutation π, i.e.

(Xi+1
0 , Xi+1

1 , . . . , Xi+1
2k−1) = π(X̃i

0, X̃
i
1, . . . , X̃

i
2k−1)

It is easy to see from Definition 1 that X1
π(0) depends on X0

0 and X0
1 . More generally, any

block X̃r
j depends on a certain number of blocks from the round 0, i.e. computing X̃r

j

requires some blocks {X0
j0
, . . . , X0

jl
}. Note that this does not depend on the size of the

functions Fi,j in the GFN. As in [SM10], we say in that case that any of these X0
ji

diffuses
to X̃r

j , and we focus our study on the number of rounds needed to reach full diffusion.

Definition 2. Let π be a permutation over 2k elements. We say that a block X0
j fully

diffuses after r rounds if for all i ∈ {0, . . . , 2k − 1}, X0
j diffuses to X̃r

i . We say that π
reaches full diffusion after r rounds if for all j ∈ {0, . . . , 2k − 1}, X0

j fully diffuses after r
rounds. The smallest r that verifies this property for the block X0

i is called the diffusion
round of the block X0

i .

Note that we need to study both the diffusion over the encryption and the decryption
process. Indeed, there is no guarantee that an encryption function with good diffusion
also keeps this property for its inverse. Since we have (GFN k

π)−1 = GFN k
π−1 , we need to

study both the diffusion of π and π−1. Naturally, we would like both π and π−1 to fully
diffuse as quickly as possible, which leads to the following definition.

Definition 3. Let π be a permutation over 2k elements. Denote by DRi(π) the minimum
number of rounds r such that X0

i fully diffuses after r rounds in GFNk
π .

The diffusion round of a permutation π is:

DRmax(π) = max
0≤i≤2k−1

{
DRi(π),DRi(π−1)

}
(1)

This definition gives the same importance to the total diffusion of both π and π−1.
Definition 3 defines a natural partial order on the permutations: a permutation π1 is
better (at diffusing) than a permutation π2 if DRmax(π1) ≤ DRmax(π2). Searching the
best permutations (for the diffusion) directly can be difficult. As a result the methodology
we adopt in this work is to search for permutations that diffuse totally in the forward
direction and then check if their respective inverse also diffuses totally.

222 Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks

2.3 Even-odd Permutations
A naive way to search for optimal permutation would be to simply go through all of them
and check the diffusion one permutation by one. However, there are (2k)! permutations,
which quickly grows beyond practical means. For example with 2k = 32, approximately
2117 permutations should be checked. To reduce the number of permutations that will be
tested, we will restrict ourselves to a specific class of permutations and give an equivalence
relation which further reduces the number of permutations to be considered.

In [SM10], Suzaki and Minematsu did an exhaustive search for 1 ≤ k ≤ 8, and made
the observation that every optimal permutation (for such k) mapped even-number input
blocks to odd-number output blocks and vice versa. We call such permutations even-odd.
In the rest of this paper, we will use the following notation for even-odd permutations.
An even-odd permutation π of size 2k will be denoted by the pair of permutations (p, q)
of size k verifying ∀i ∈ [0, k − 1], π(2i) = 2 · p(i) + 1 and π(2i+ 1) = 2 · q(i). The search
space is now reduced to (k!)2 permutations.

According to this, [SM10] gives the following lower-bound on the diffusion round of
even-odd permutations (p, q).

Proposition 1. Let Fi be the Fibonacci sequence, i.e. F0 = 0,F1 = 1 and Fi =
Fi−1 + Fi−2, i ≥ 2. Let π = (p, q) be an even-odd permutation over 2k elements, and i be
the smallest integer such that Fi ≥ k. Then DRmax(π) ≥ i+ 1.

For a given permutation π, if the inequality is tight, we say that π is tight. A proof of
this proposition already exists in both [SM10] and [CGT19]. According to our results, we
will give another proof of this proposition in Section 3. We will also show in Section 3 that
this bound is tight for the cases 2k = 28, 30, 32, 36 and strict for 2k = 34, 38, 40, 42.

2.4 Equivalence Classes of Even-odd Permutations
To further reduce the size of the search space, as in [CGT19], we use some equivalence
classes, given by the following definition.

Definition 4. Let π and π′ be two even-odd permutations over 2k elements. We say that
π and π′ are equivalent if there exists a permutation ϕ over 2k elements such that

π′ = ϕ ◦ π ◦ ϕ−1.

From [CGT19], we can then give a set of permutations Pk such that for any equivalence
class, there exists at least one π ∈ Pk which belongs to this class. This effectively gives us
a set of class representatives (in which a few of them are redundant), and this set can be
built from the following proposition, proven in [CGT19]. Recall that any permutation can
be decomposed into a composition of cycles. We call cycle structure the unordered set of
the length of these cycles, for example the permutation

(0 1 2 3)(4 5)(6 7)(8)

has a cycle structure of {4, 2, 2, 1}.

Proposition 2. Let Pk be a set of even-odd permutations π = (p, q) over 2k elements
constructed as follows. For each possible cycle structure c of a permutation over k elements,
pick one permutation p which has a cycle structure equal to c. Then, for every permutation q
over k elements, add (p, q) in the set Pk. By doing so, Pk contains at least one representative
of each equivalence class induced by Definition 4. Moreover, Pk contains exactly Nk.k!
elements, where Nk is the number of partitions of the integer k.

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Victor Mollimard 223

This allows us to only consider Nk.k! permutations instead of (k!)2. This is a significant
improvement, as for example with k = 16, there are only 231× 16! ' 252 permutations to
go through, instead of (16!)2 ' 288. However when k grows, it is still too big a number to
try an exhaustive search. As such, we propose in Section 4 an efficient search algorithm to
find all optimal even-odd permutations for a given k, without needing to do an exhaustive
search.

3 Characterization of Full Diffusion
In this section, we will explain our strategy to search for a tight even-odd permutation,
that is, a permutation with a diffusion round reaching the Fibonacci bound given in
Proposition 1. We will first give an algebraic characterization for a permutation to have
full diffusion, then give an algorithm to exploit this characterization and quickly search all
such permutations. Note that here we only focus on the diffusion round of the permutation
when considering encryption. That is, for a given permutation π, we focus only on
DR(π) = max

0≤i≤2k−1
{DRi(π)}. Then, once we found a permutation reaching the Fibonacci

bound, we can easily check if π−1 also reaches this bound, and if that is the case, we found
a tight permutation.

We describe here the main tools we used to design our search algorithm. Note that for
two permutations p, q, we denote the composition p ◦ q by pq for better reading. We first
begin by giving the following proposition.

Proposition 3. Let π = (p, q) be an even-odd permutation over 2k elements. Then π
achieves full diffusion after r rounds if and only if each block X0

j is diffused to at least
one block of each pair at the input of the (r − 1)-th round, i.e. diffused to either Xr−1

2j′ or
Xr−1

2j′+1 for each j′ ∈ {0, . . . , k − 1}.

Proof. Suppose that a given block X0
i has been fully diffused, i.e. to every block X̃r

2j and
X̃r

2j+1, j ∈ {0, . . . , k − 1}. Then X0
i must have diffused to at least Xr

2j+1 for every j, as it
is the only way to reach X̃r

2j+1. Thus, X0
i must have diffused to X̃r−1

2j′ with j′ = p−1(j),
which means that it has diffused to either Xr−1

2j′ or Xr−1
2j′+1.

On the other hand, suppose that a given block X0
i has diffused to an even block Xr−1

2j ,
then X0

i will be diffused to only X̃r−1
2j . If X0

i has diffused to an odd block Xr−1
2j+1, it will be

diffused to both X̃r−1
2j and X̃r−1

2j+1. In both cases, it will be diffused to X̃r−1
2j , then to Xr

2j′+1

with j′ = p(j), and finally to both X̃r
2j′ and X̃r

2j′+1. Thus, if for all j ∈ {0, . . . , k − 1}, X0
i

is diffused to any block of the j-th pair at the input of the (r − 1)-th round, it will be
diffused to every block X̃r

2p(j) and X̃r
2p(j)+1, and since p is a permutation, this means that

we have full diffusion for X0
i .

Corollary 1. Let π = (p, q) be an even-odd permutation over 2k elements. Then π
achieves full diffusion after r rounds if and only if each even block X0

2j , j ∈ {0, . . . , k − 1}
diffuses to every even block X̃r−1

2j′ , j
′ ∈ {0, . . . , k − 1}.

Proof. For the proof of the previous theorem, we can easily see that a block X0
j diffuses

to either Xr−1
2j′ or Xr−1

2j′+1 if and only if X0
j diffuses to X̃r−1

2j′ . Moreover, we can easily see
that if X0

2j is fully diffused, so is X0
2j+1. Indeed, X0

2j being fully diffused is the same as
X̃0

2j being fully diffused, and X0
2j+1 is always diffused to X̃0

2j .

Thus we only need to focus on the diffusion of each block X0
2j to each block X̃r−1

2j .
Now we can take a look a what would happen in an ideal scenario. Assume that we are

224 Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks

studying the diffusion of a block X0
2j . Then X0

2j is diffused to X̃0
2j1

0
with j1

0 = j. It is then
diffused to both X̃1

2j2
0
and X̃1

2j2
0 +1, with j

2
0 = p(j1

0). Then again :

• X̃1
2j2

0
is diffused to both X̃2

2j3
0
and X̃2

2j3
0 +1, with j

3
0 = p(j2

0).

• X̃1
2j2

0 +1 is diffused to X̃2
2j3

1
with j3

1 = q(j2
0)

Assuming an ideal scenario, we would have j3
0 6= j3

1 , i.e. X0
2j has diffused to two different

blocks after 4 rounds (minus the application of π on the fourth round). We can then keep
going and get a series of ji` which gives us the blocks on which X0

2j has diffused after i+ 1
rounds minus the last application of π, always assuming that we never have ji` = ji`′ for
` 6= `′. The propagation for up to 7 rounds is given in Figure 2 at the end of this section.

However, we cannot have ji` 6= ji`′ with ` 6= `′ forever. Indeed, since we only have k
blocks, we are bound at some point to have ji` = ji`′ and ` 6= `′. However, we can easily
compute the actual value of each ji`. Indeed, if we take for example j6

6 in Figure 2, then
we know that

j6
6 = (qppqp)(j1

0) = (qppqp)(j).

Denote by Jij the set of equations obtained by expressing every ji` that way. For
example, we would have

J6
j = {(ppppp)(j),

(qpppp)(j),
(pqppp)(j),
(ppqpp)(j),
(qpqpp)(j),
(pppqp)(j),
(qppqp)(j),
(pqpqp)(j)}

According to this, we can give a generic way to compute Jij . We start with J1
j = {j}

and J2
j = {p(j)}. To build Jij from Ji−1

j , we begin by adding p(x) to Jij for every term x

in Ji−1
j . Then, for every term x in Ji−1

j such that x can be written as x = p(y) for some
y ∈ Ji−2

j , we also add q(x) to Jij .
We can justify this construction as follows. Suppose that a given j′ belongs to Ji−2

j

because X0
2j diffuses to X̃i−2

2j′ . Then X0
2j diffuses to both X̃i−1

2j′′ and X̃
i−1
2j′′+1 with j′′ = p(j′).

Thus for the next round, X0
2j will diffuse to both Xi

2̃j+1
and Xi

2j̃′
, with j̃ = p(j′′) and

j̃′ = q(j′′).
On the other hand, suppose that j′ belongs to Ji−2

j because X0
2j diffuses to X̃i−2

2j′+1. In
that case, X0

2j will only diffuse to X̃i−1
2j′′ with j′′ = q(j′). For the next round, X0

2j only
diffuses to Xi

2̃j+1
with j̃ = p(j′′).

Thus in both cases, we need to have j̃ = p(j′′), but we only require j̃′ = q(j′′) in the
first case, which corresponds exactly to the case where the previous term started with a
composition by p.

Note that from this construction, we can deduce the following proposition.

Proposition 4. The size of Jij is exactly Fi where Fi is the i-th term of the Fibonacci
sequence.

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Victor Mollimard 225

Proof. We can prove this by induction. Both J1
j and J2

j are of size 1, which corresponds
to F1 and F2. We first add an element p(x) to Jij for every x ∈ Ji−1

j , thus Fi−1 elements.
Then, for every x in Ji−1

j such that x = p(y) with y ∈ Ji−2
j , we add q(x) to Jij . However,

according to our construction, Ji−1
j contains such an element x = p(y) for every term

y ∈ Ji−2
j . Thus, there are Fi−2 such terms. In the end, Jij contains Fi−1 + Fi−2 = Fi

elements, which concludes the induction.

We can now use those sets Jij to fully characterize the fact that a block fully diffuses
when using a given permutation.

Theorem 1. Let Jr−1
j be the set of equations as defined above. Then for a given permu-

tation π = (p, q) over 2k blocks, X0
2j is fully diffused after r rounds if and only if Jr−1

j

contains every number in {0, . . . , k − 1} at least once.

Proof. As Jr−1
j = {jr−1

0 , . . . , jr−1
`r−1
} is defined, it basically represents that X0

2j diffuses to
every X̃i

2ji
`

. Thus, if Jij contains every number in {0, . . . , k − 1} at least once, it exactly
means that X0

2j diffuses to each block X̃i
2j′ , j

′ ∈ {0, . . . , k − 1}. According to Corollary 1,
this means that X0

2j achieves full diffusion after i+ 1 rounds.

We can then easily deduce the following corollary.

Corollary 2. Let π = (p, q) be a permutation over 2k elements. Then we have DR(π) =
i + 1 if and only if i is the smallest integer such that for every j ∈ {0, . . . , k − 1}, Jij
contains every number in {0, . . . , k − 1} at least once.

This gives us another proof for the Fibonacci bound given in Proposition 1. Indeed,
for Jij to contain every number in {0, . . . , k − 1} at least once, Jij must contain at least k
terms. Thus, and since the size of Jij does not depend on j, the minimal number of rounds
needed to have full diffusion for every block must be such that

∣∣Jij∣∣ = Fi ≥ k. According
to the previous corollary, if i is the smallest integer such that Fi ≥ k, this exactly means
that DRmax(π) ≥ i+ 1

Note that from the construction of any Jij , each term starts with a composition by p.
Since p is a permutation, and we want full diffusion for every blocks, we can remove this
first p from every term to get a smaller representation. Essentially, this means that we
are considering the diffusion of the block p−1(j), but we will still write Jij . As such, J6

j for
example is thus rewritten as

J6
j = {(p4)(j),

(qp3)(j),
(pqp2)(j),
(p2qp)(j),
(qpqp)(j),
(p3q)(j),

(qp2q)(j),
(pqpq)(j)}

To illustrate the previous characterization, we introduce what we call the diffusion
table (of rank i) of an even-odd permutation (p, q) of size 2k. The columns are indexed
by the numbers from 0 to k − 1 and the row are indexed by the products of p and q
used to generate all sets Jij . Each cell of the table is the value obtained by applying the
permutation indexing the row to the value indexing the column of the cell. For example,

226 Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks

Table 1: Diffusion tables for the cyclical shift (left table) and one optimal permutation
proposed by [CGT19] (right table).

x 0 1 2 3 4 5 6 7
p5 3 4 5 6 7 0 1 2
p4q 4 5 6 7 0 1 2 3
p3qp 4 5 6 7 0 1 2 3
p2qp2 4 5 6 7 0 1 2 3
pqp3 4 5 6 7 0 1 2 3
qp4 4 5 6 7 0 1 2 3
p2qpq 5 6 7 0 1 2 3 4
pqp2q 5 6 7 0 1 2 3 4
qp3q 5 6 7 0 1 2 3 4
pqpqp 5 6 7 0 1 2 3 4
qp2qp 5 6 7 0 1 2 3 4
qpqp2 5 6 7 0 1 2 3 4
qpqpq 6 7 0 1 2 3 4 5
diff 4 4 4 4 4 4 4 4

x 0 1 2 3 4 5 6 7
p5 4 3 5 1 6 7 0 2
p4q 3 2 1 4 0 6 7 5
p3qp 2 6 7 5 1 3 4 0
p2qp2 6 7 4 0 5 2 3 1
pqp3 1 4 3 2 0 6 7 5
qp4 2 5 7 6 3 1 4 0
p2qpq 7 1 0 6 3 5 2 4
pqp2q 4 5 2 1 7 0 6 3
qp3q 5 0 6 2 4 3 1 7
pqpqp 5 0 6 3 2 4 1 7
qp2qp 0 3 1 7 6 5 2 4
qpqp2 3 1 2 4 7 0 5 6
qpqpq 1 6 4 3 5 7 0 2
diff 8 8 8 8 8 8 8 8

the cell indexed by pi and 0 contains pi(0). This provides a clear visualization of our
characterization, as the j-th column is exactly Jij .

Thus, we can easily illustrate Corollary 2 by verifying that every column of this table
contains every possible values. We thus add one more row at the end of diffusion table
called diff which contains the number of different values in a column. By construction,
this is exactly the number of elements of Jij where j is the index of the column. In tables
constructed as described, the full diffusion of a permutation corresponds to a diff row
containing only the value k.

For example, we give in Table 1 the diffusion tables for the cyclical shift (i.e. p =
(7, 0, 1, 2, 3, 4, 5, 6) and q = (0, 1, 2, 3, 4, 5, 6, 7)) and one of the optimal permutation proposed
by [CGT19] (i.e. p = (6, 3, 7, 1, 0, 2, 4, 5) and q = (3, 5, 1, 6, 4, 0, 2, 7)) for k = 8 and i = 7,
thus the optimal permutation clearly have a diffusion round of 8.

Finally, we can reformulate the problem of finding optimal even-odd permutations with
these tables. Indeed, it corresponds to finding the minimal i and even-odd permutations
of size 2k such that their diffusion table have their diff row containing only k.

Patrick
D
erbez,Pierre-A

lain
Fouque,B

aptiste
Lam

bin
and

V
ictor

M
ollim

ard
227

2j6
0 2j6

0 + 1 2j6
1 2j6

2 2j6
2 + 1 2j6

3 2j6
3 + 1 2j6

4 2j6
5 2j6

5 + 1 2j6
6 2j6

7 2j6
7 + 1

2j5
0 2j5

0 + 1

p q

2j5
1

p

2j5
2 2j5

2 + 1

p q

2j5
3 2j5

3 + 1

p q

2j5
4

p

2j4
0 2j4

0 + 1

p q

2j4
1

p

2j4
2 2j4

2 + 1

p q

2j3
0 2j3

0 + 1

p q

2j3
1

p

2j2
0 2j2

0 + 1

p q

2j1
0

p

2j

Figure 2: Propagation tree for 7 rounds (minus the last application of π)

228 Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks

4 Searching for an Optimal Permutation over 9 Rounds
4.1 Efficient Search Algorithm
First, we can see that our characterization can be very efficiently implemented, as testing
if π = (p, q) has full diffusion mostly requires only a few table lookups. An example of an
implementation for this test for 9 rounds is given in Appendix B, and its efficiency allowed
us to recover all optimal even-odd permutations for k ≤ 13 with a basic exhaustive search.
Especially, for k = 13, we were able to go through all N13.13! ' 239 permutations and
check them in about 410 minutes on a single core. While these optimal permutations were
already known, it shows that the sophisticated techniques introduced in [CGT19] were not
necessary for these cases.

However for k ≥ 14, it becomes too expensive to make this exhaustive search. We thus
focus on finding optimal even-odd permutations for 14 ≤ k ≤ 21, hence such permutations
would have a diffusion round of 9. Given a cycle structure for p, we can easily find a
permutation p with such structure and thus we need to search q such that π = (p, q) needs
9 rounds to reach full diffusion, i.e., such that each J8

j contains all numbers from 0 to k− 1.
Note that we cannot exploit J8

j directly. Indeed, one might want to guess parts of q
and check if J8

j does not contains too many duplicates. However, to fully compute J8
j , we

need to guess q in its entirety, which makes this strategy too expensive. We thus describe
an efficient way to exploit this characterization to find optimal even-odd permutations.

First for a given j, if we take a look at J6
j , we can see that we need to make only 7

guesses over the images of q to fully compute J6
j . Indeed, we need to know

q(j), (qp)(j), (qp2)(j), (qp3)(j), (qpq)(j), (qp2q)(j) and (qpqp)(j).

Let X6
j and Y6

j be two subsets of J6
j , such that X6

j ∪ Y6
j = J6

j , with

X6
j = {p4(j), (pqp2)(j), (p2qp)(j), (p3q)(j), (pqpq)(j)}

and Y6
j = {(qp3)(j), (qpqp)(j), (qp2q)(j)}.

According to the construction of J8
j , we can actually write

J8
j = p2(X6

j ∪ Y6
j) ∪ (pq)(X6

j) ∪ (qp)(X6
j ∪ Y6

j).

Assume that we made the 7 guesses mentioned above. In that case, we know the exact
values in both X6

j and Y6
j . Moreover, since p is known, we know exactly the values in

p2(X6
j ∪Y6

j). Finally, since we guessed 7 images of q, there might be some values in (pq)(X6
j)

and (qp)(X6
j ∪ Y6

j) that are known.
Hence, we create three sets Kj , X̃6

j and Ỹ6
j :

• Kj is the set of all known values of J8
j . Thus p2(X6

j ∪Y6
j) ⊂ Kj and there might be a

few elements from (pq)(X6
j) and (qp)(X6

j ∪ Y6
j) in Kj too.

• X̃6
j is the subset of X6

j such that for any x ∈ X̃6
j , the value of q(x) yet remains to be

determined.

• In the same way, Ỹ6
j is the subset of p(X6

j ∪ Y6
j) such that for any x ∈ Ỹ6

j , the value
of q(x) is not determined.

For j to be fully diffused, we thus have the constraint

Cj :
∣∣∣Kj ∪ q(Ỹ6

j) ∪ (pq)(X̃6
j)
∣∣∣ ≥ k.

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Victor Mollimard 229

We then check if this constraint is valid, i.e. if there exist some guesses for the remaining
images of q such that Cj holds, and this is described in the next section.

Now if we take a look at J6
j′ where j′ = p(j), we can see that we only need 3 more

guesses to compute it, instead of 7 as before. Indeed, we already guessed

(qp)(j) = q(j′)
(qp2)(j) = (qp)(j′)
(qp3)(j) = (qp2)(j′)

(qpqp)(j) = (qpq)(j′)

and thus it only remains to guess

(qp4)(j) = (qp3)(j′)
(qp2qp)(j) = (qp2q)(j′)
(qpqp2)(j) = (qpqp)(j′).

By doing these guesses, we can build the sets Kj′ ,X6
j′ and Y6

j′ as before, and thus get
another constraint that needs to be checked

Cj′ :
∣∣∣Kj′ ∪ q(Ỹ6

j′) ∪ (pq)(X̃6
j′)
∣∣∣ ≥ k.

However by making those three new guesses, we might be able to compute new values in
X̃6
j and Ỹ6

j . We thus need to update the constraint Cj according to these guesses, and
then check again if Cj is valid.

This can be repeated until we have fully guessed q, in which case we have a solution,
or show that no matter which guesses we made there is no solution which satisfies all
constraints. This is the core of our algorithm, which is described from a high-level point of
view in Algorithm 1.

Note however that the actual algorithm is a bit more sophisticated. Indeed, it might
occur at some point that p(j) was already processed, i.e. Cp(j) is already a constraint we
have. When this happens, we need to choose another starting block j, and re-apply the
algorithm, while still keeping all previously computed constraints. In practice, we found
that the most efficient strategy is to use an element from the shortest cycle of p as the
first starting block. Then, if we need to choose another starting block, we pick an element
in the next shortest cycle of p and so on. Moreover, when making some guesses for the
images of q, it might happen that we already made this guess. This is not a problem, as
this guess basically becomes free and does not add any more cost. Finally, except for the
first seven guesses, we update and check all constraints after each guess.

4.2 Checking the Constraints
We first give a naive way to check if a constraint is valid. We are given three sets K,X
and Y, resulting in the constraint

C : |K ∪ q(Y) ∪ (pq)(X)| ≥ k.

We know the full permutation p, and for any x ∈ X ∪ Y, q(x) is still unknown. Let A
denote the set of values a for which we still do not know the preimage of a through q, i.e.
for any a ∈ A, we do not know which x results in q(x) = a. Considering the guesses we
already made on q, we always know this set A, and thus have the following two relations
(pq)(X) ⊂ p(A) and q(Y) ⊂ A. According to this, we can write

|K ∪ q(Y) ∪ (pq)(X)| ≤ |K ∪ A ∪ p(A)| .

230 Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks

Algorithm 1 Searching for optimal even-odd permutations over 9 rounds
1.1

1: function nextGuess(p, q, j,C) C is the list of known constraints
2: if q is fully determined then
3: Print p, q
4: else
5: while all guesses are not made do
6: Guess (qp3)(j), (qp2q)(j) and (qpqp)(j)
7: Update every constraints in C according to those guesses
8: Deduce the new constraint Cj
9: C′ ← C ∪ {Cj}

10: if ∃ invalid constraint in C′ then
11: Make a new guess
12: else
13: nextGuess(p, q, p(j),C′)
14: end if
15: end while
16: end if
17: end function

18: p← chosen permutation with a given structure cycle
19: j ← an element from the smallest cycle of p
20: while all guesses are not made do
21: Guess q(j), (qp)(j), (qp2)(j), (qp3)(j), (qpq)(j), (qp2q)(j) and (qpqp)(j)
22: Deduce the constraint Cj
23: if Cj is a valid constraint then
24: C← {Cj}
25: nextGuess(p, q, p(j),C)
26: end if
27: end while

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Victor Mollimard 231

Hence if |K ∪ A ∪ p(A)| < k, we know that the constraint C cannot be valid. However, we
can actually go further and get more precise information by doing the following.

We can formulate our problem in the following generic way. We are given three sets
K,A, and B (= p(A)), and we search for two sets Ã ⊂ A and B̃ ⊂ B such that |K∪ Ã∪ B̃| is
maximal, with Ã = q(Y) and B̃ = (pq)(X). Note that, since p and q are permutations, we
have |Ã| = |X| and |B̃| = |Y|. Hence our idea is to determine whether there is at least one
such pair (Ã, B̃) satisfying |K∪ Ã∪ B̃| ≥ k. Indeed if no such pair exists then constraint C
does not hold. Note that if X ∩ Y 6= ∅ then it is possible for such pair to exist while C
does not hold. However we found this filter powerful enough for our need.

We can partition K ∪ A ∪ B into the following eight disjoint sets:

S0 = K ∩ A ∩ B S1 = Kc ∩ A ∩ B
S2 = K ∩ Ac ∩ B S3 = K ∩ A ∩ Bc
S4 = Kc ∩ Ac ∩ B S5 = Kc ∩ A ∩ Bc
S6 = K ∩ Ac ∩ Bc S7 = Kc ∩ Ac ∩ Bc

Let kA (resp. kB) denote the cardinality of Ã (resp. B̃), and kiA, kiB be such that

kiA = |Ã ∩ Si| ≤ min(|Si|, kA), kiB = |B̃ ∩ Si| ≤ min(|Si|, kB).

Since all Si are disjoint, Ã ⊂ A and B̃ ⊂ B, notice that we have

k2
A = k4

A = k6
A = k7

A = 0 and kA = k0
A + k1

A + k3
A + k5

A

k3
B = k5

B = k6
B = k7

B = 0 and kB = k0
B + k1

B + k2
B + k4

B .

By selecting the two sets Ã ∩ S1 and B̃ ∩ S1 as disjoint as possible we have:

|K ∪ Ã ∪ B̃| = |K|+ kA + kB − k0
A − k0

B − k2
B − k3

A

−max(k1
A + k1

B − |S1|, 0)

Indeed, first we have at most |K|+ kA + kB elements in K ∪ Ã ∪ B̃. However among all
those elements, some might be the same, which explains the remaining terms :

• Elements of Ã and B̃ included in S0, S2 or S3 are duplicates since they all belong to
K.

• We need to take k1
A (resp. k1

B) elements from A (resp. from B), where all those
elements belongs to S1. We thus have two cases. If k1

A + k1
B ≤ |S1|, we can freely

choose all those elements without having duplicates between Ã and B̃. Indeed for
example, if we have k1

A = k1
B = 1 and S1 = {0, 1, 2}, then we can put 0 in Ã and

1 in B̃, thus resulting in no duplicates between Ã and B̃ . However if we have
k1
A + k1

B > |S1|, then no matter what, we will have duplicates. Thus in the best case,
we have max(k1

A + k1
B − |S1|, 0) duplicates that we need to count out.

Hence, maximizing |K∪ Ã∪ B̃| is straightforward as there is one specific order in which
to find the values of kiA and kiB that always maximize the size of the union. We only give
the way to optimally build Ã since it is fully similar for B̃ :

• First, using elements from S5 to build Ã does not add any duplicate, thus we first
pull elements from S5 and k5

A = min(kA, |S5|).

• As mentioned above, using one element from S1 adds either zero or one duplicate,
thus we then pull elements from S1 and k1

A = min(kA − k5
A, |S1|).

232 Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks

Table 2: Results for optimal permutations with DRmax(π) = 9

k Time Structure of p Structure of q Number of solutions

14 180 min

(6, 6, 1, 1) (6, 6, 2) 144
(6, 6, 2) (6, 6, 1, 1) 144

(6, 3, 2, 2, 1) (6, 3, 2, 2, 1) 144
(12, 2) (12, 1, 1) 24

(12, 1, 1) (12, 2) 24
15 480 min (10, 2, 2, 1) (10, 2, 2, 1) 160

16 1023 min
(6, 6, 3, 1) (6, 6, 3, 1) 432
(6, 6, 2, 2) (6, 3, 3, 2, 1, 1) 288

(6, 3, 3, 2, 1, 1) (6, 6, 2, 2) 216
17 1700 min - - 0

18 2213 min (8, 8, 1, 1) (8, 8, 2) 256
(8, 8, 2) (8, 8, 1, 1) 256

19 1913 min - - 0
20 1116 min - - 0
21 400 min - - 0

• Finally, elements from either S0 and S3 necessarily add duplicates, so we freely choose
any k0

A ≤ |S0| and k3
A ≤ |S3| such that k0

A + k3
A = kA − k5

A − k1
A.

Finally, computing the maximal value for |K ∪ Ã ∪ B̃| only requires to compute |S1|,
|S4| and |S5| and we then check how it compares to k.

4.3 Results
We ran our algorithm for every k such that we need at least 9 rounds to have full diffusion,
according to Proposition 1. This corresponds to 14 ≤ k ≤ 21, and we were able to find
all optimal even-odd permutations for k ∈ {14, 15, 16, 18}. For k ∈ {17, 19, 20, 21}, our
algorithm allowed us to prove that there is no even-odd permutation leading to a full
diffusion after 9 rounds. Since 9 rounds correspond to the Fibonacci bound, we know
that for these cases, we need at least 10 rounds to have full diffusion, and we give later in
this section an optimal solution for k = 17 reaching full diffusion in 10 rounds, as well as
good permutations for k = 19, 20, 21 with a diffusion round of 11. We can thus give the
following theorem to summarize our results.

Theorem 2. To build a Generalized Feistel Network GFN k
π with full diffusion where π is

an even-odd permutation, we have :

• For k = 14, 15, 16 and 18, the optimal number of rounds for full diffusion is 9.

• For k = 17, the optimal number of rounds for full diffusion is 10.

• For k = 19, 20 and 21, the optimal number of rounds for full diffusion is at least 10
and at most 11.

We give in Table 2 an overview of our results. The first column gives the total time
needed for our algorithm to either exhaust all optimal even-odd permutations, or prove
that no such permutation exists. Note that this is the total CPU time, i.e. when using
a single CPU, however our algorithm is highly parallelizable and thus the real time can

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Victor Mollimard 233

Table 3: Optimal equivalence classes with k = 16

(p, q)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
q = (2, 6, 12, 10, 1, 13, 4, 15, 7, 9, 14, 5, 8, 3, 11, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
q = (5, 6, 13, 10, 4, 12, 9, 15, 2, 1, 14, 7, 11, 3, 8, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12, 15, 14)
q = (2, 1, 12, 8, 7, 14, 5, 4, 13, 11, 10, 15, 9, 3, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 6, 10, 11, 9, 13, 12, 14, 15)
q = (7, 6, 14, 9, 11, 15, 1, 12, 2, 13, 5, 4, 10, 8, 3, 0)

be drastically reduced.3 This shows that our algorithm is extremely efficient, as it can
quickly solve the case k = 16 for which [CGT19] were not able to give an optimal solution.
The second (resp. third) column gives the possible cycle structures of p (resp. q) in an
optimal permutation, and the last column gives the number of solutions which have this
structure. We can notice that not only the number of solutions is quite low, but also that
the number of possible cycle structures is also quite limited. Moreover, we always have a
fixed point in either p or q.

The most important result in this table is that there are actually even-odd permutations
which have full diffusion after 9 rounds for k = 16, while both [SM10] and [CGT19] could
only find a permutation with full diffusion after 10 rounds, leaving open the question of
whether the theoretical bound of 9 rounds (from Proposition 1) could be reached. Our
results shows that it is indeed possible, and thus this proves that our permutations are
optimal when considering even-odd permutations. We will see in the next section that we
can further regroup these permutations into more precise equivalence classes, leading for
the case k = 16 to four equivalence classes, given in Table 3.

4.4 Security Analysis

Recall that our search space Pk defined in Proposition 2 contains at least one representative
for each class. Hence, among all the permutations we found, some of them might actually
be in the same equivalence class. We can thus go further and regroup all representatives
that belong to the same class using the following proposition.

Proposition 5. Let π = (p, q) be a permutation over 2k elements. Then for any permu-
tation r such that r ◦ p ◦ r−1 = p, (p, q) and (p, r ◦ q ◦ r−1) are equivalent.

Proof. Let π = (p, q) and π′ = (p, r◦q◦r−1) where r is a permutation such that r◦p◦r−1 = p.
Recall that we have π(2i) = 2p(i) + 1 and π(2i+ 1) = 2q(i), for all i ∈ {0, . . . , k− 1}. Now
let ϕ be the permutation over 2k elements defined as

ϕ(2i) = 2r(i), ϕ(2i+ 1) = 2r(i) + 1, ∀i ∈ {0, . . . , k − 1}.

Then we have π′ = ϕ ◦ π ◦ ϕ−1. Indeed, if we look at the image of an even number 2i, we

3Less than one hour for each k using 72 threads.

234 Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks

have

ϕ ◦ π ◦ ϕ−1(2i) = ϕ ◦ π(2r−1(i))
= ϕ(2(p ◦ r−1)(i) + 1)
= 2(r ◦ p ◦ r−1)(i) + 1
= 2p(i) + 1 = π′(2i).

In the same way, the image of an odd number 2i+ 1 is

ϕ ◦ π ◦ ϕ−1(2i+ 1) = ϕ ◦ π(2r−1(i) + 1)
= ϕ(2(q ◦ r−1)(i))
= 2(r ◦ q ◦ r−1)(i)
= π′(2i+ 1)

We thus have π′ = ϕ ◦ π ◦ ϕ−1. Hence, π and π′ are conjugate and thus equivalent,
according to Definition 4.

This leads us to the equivalence classes given in Table 4 to 7 in Appendix A for
k = 14, 15, 18. The column (p, q) gives both permutations p and q. The column Imp. Diff.
gives the number of rounds for the longest Impossible Differential distinguisher. Note
that this is only considering structural Impossible Differentials, where we do not specify
neither the size of the blocks nor the definition of the S-boxes, such that contradictions
are obtained on blocks rather than bits. The columns Ss,δN give the minimal number of
rounds to get at least N active S-boxes, where each S-box is of size s and the highest
differential probability is 2−δ. We chose to only consider three cases : S4,2

N , S8,6
N and S8,7

N .
The first case represents the best case for 4-bit S-boxes. Indeed, we know that there is
no APN bijective S-boxes of size 4 (which would lead to a highest differential probability
of 2−3). As such, the best case is when the highest differential probability is 2−2. It is
still unknown whether 8-bit APN bijective S-boxes exist, so we consider both cases. If
such an APN 8-bit S-box exists, the column S8,7

N is relevant, otherwise it would be S8,6
N

(for example the AES S-box). The last thing is that N depends on the size of the key (as
well as δ). Indeed, if we have a key of size λ, then we want N to verify 2−δN < 2−λ, i.e.
N > λ

δ . As the evaluation of the minimal number of rounds to get at least N S-boxes can
be quite expensive, we limited ourselves to λ = 2ks, where k follows the notation in this
paper, i.e. we have 2k blocks of s bits and the key is of the same size as the state. Finally,
the last column N20 shows the minimal number of active S-boxes for 20 rounds, as both
[SM10] and [CGT19] also gave this metric for the permutations they found. It is worth
mentioning that while our permutations are optimal (w.r.t the diffusion round), for the
case k = 16, they have a minimal number of active S-boxes over 20 rounds which is lower
than for the permutations given in [CGT19] in the same case, where those permutations
have a diffusion round of 10 and at least 70 actives S-boxes over 20 rounds. However for
all our permutations, the longest Impossible Differentials distinguisher we can build is over
17 rounds, which is at least one round lower than for the permutations with k = 16 given
in [CGT19].

Note that we were still able to find the following optimal even-odd permutation for
k = 17, which thus has a diffusion round of 10 :

p = (7, 1, 4, 13, 8, 16, 2, 3, 12, 5, 0, 9, 15, 14, 10, 11, 6)
q = (8, 0, 9, 10, 3, 2, 16, 6, 14, 11, 7, 4, 1, 12, 5, 15, 13)

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Victor Mollimard 235

For this permutation, the longest Impossible Differential distinguisher is over 19 rounds,
and S4,2

69 , S
8,6
46 , S

8,7
39 , N20 are respectively 20, 16, 15 and 20. For k = 19, 20, 21, we easily

found permutations reaching full diffusion after 11 rounds with a random search, leaving
open the question to find one permutation with a diffusion round of 10. We give an
example for these cases below

k = 19 :
p = (18, 3, 5, 9, 13, 15, 10, 16, 11, 8, 6, 1, 0, 2, 14, 7, 17, 12, 4)
q = (9, 14, 2, 6, 3, 8, 16, 4, 0, 13, 18, 15, 5, 11, 7, 17, 12, 1, 10)

k = 20 :
p = (14, 5, 15, 1, 17, 3, 11, 8, 4, 0, 6, 13, 19, 10, 2, 9, 18, 12, 16, 7)
q = (1, 17, 5, 18, 12, 2, 0, 16, 13, 6, 3, 10, 14, 8, 11, 19, 9, 15, 7, 4)

k = 21 :
p = (19, 10, 7, 17, 2, 16, 20, 9, 6, 0, 3, 12, 18, 1, 4, 11, 15, 13, 14, 8, 5)
q = (20, 12, 0, 8, 7, 1, 4, 2, 10, 13, 5, 6, 11, 14, 19, 15, 9, 16, 3, 17, 18)

5 Conclusion
We solved a 10-year-old problem which was to find an optimal (w.r.t diffusion round)
even-odd permutation for a Generalized Feistel Network with 32 blocks. More specifically,
we showed that there exist permutations which have a diffusion round of 9, while the
best permutation found before had a diffusion round of 10. To do so, we give a precise
characterization for the permutation to have full diffusion after a given number of rounds.
This characterization allowed us to get a very efficient exhaustive search for k ≤ 13.
Even if optimal permutations were already known for these sizes, this shows that our
characterization is powerful, thus we have no need to use the elaborated techniques from
[CGT19] to treat all these cases. We then exploit this characterization to design a very
efficient algorithm that allows us to exhibit all optimal even-odd permutations for 32
blocks, as well as for 28, 30 and 36 blocks, which also have an optimal diffusion round of 9
and were not given in the previous literature. For 34, 38, 40 and 42 blocks, our algorithm
also allows us to prove that there is no even-odd permutation with a diffusion round of 9
(which is the lower bound), which is again a new result. However for these cases, we were
able to give better optimality bounds when considering even-odd permutations, namely
for 2k = 34 the optimal number of rounds for full diffusion is exactly 10 rounds and for
2k = 38, 40, 42, at most 11 rounds. We also give some security evaluation for Impossible
Differentials and Differentials (through the minimum number of active S-boxes). Especially
for Impossible Differentials, for the 32 blocks case, all our permutations have their longest
impossible differential distinguishers over 17 rounds, which is at least one round lower
than every permutation given in [CGT19] for this case.

References
[AIK+00] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho

Moriai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-Bit Block Cipher
Suitable for Multiple Platforms - Design and Analysis. In Selected Areas
in Cryptography, 7th Annual International Workshop, SAC 2000, Waterloo,
Ontario, Canada, August 14-15, 2000, Proceedings, pages 39–56, 2000.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced
to 31 Rounds Using Impossible Differentials. In Advances in Cryptology -
EUROCRYPT ’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding,
pages 12–23, 1999.

236 Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.

[CGT19] Victor Cauchois, Clément Gomez, and Gaël Thomas. General Diffusion
Analysis: How to Find Optimal Permutations for Generalized Type-II Feistel
Schemes. IACR Trans. Symmetric Cryptol., 2019(1), 2019.

[DES77] DES. Data Encryption Standard. FIPS PUB 46, Federal information processing
standards publication 46, 1977.

[GM16] Shay Gueron and Nicky Mouha. Simpira v2: A family of efficient permutations
using the AES round function. In Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, pages 95–125, 2016.

[HSH+06] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok
Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, Hyun Kim,
Jongsung Kim, and Seongtaek Chee. HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In Cryptographic Hardware and Embedded Systems -
CHES 2006, 8th International Workshop, Yokohama, Japan, October 10-13,
2006, Proceedings, pages 46–59, 2006.

[KPP+17] Daniel Kales, Léo Perrin, Angela Promitzer, Sebastian Ramacher, and Chris-
tian Rechberger. Improvements to the linear layer of lowmc: A faster picnic.
IACR Cryptology ePrint Archive, 2017:1148, 2017.

[LR88] Michael Luby and Charles Rackoff. How to Construct Pseudorandom Per-
mutations from Pseudorandom Functions. SIAM J. Comput., 17(2):373–386,
1988.

[Nyb96] Kaisa Nyberg. Generalized Feistel Networks. In Advances in Cryptology -
ASIACRYPT ’96, International Conference on the Theory and Applications
of Cryptology and Information Security, Kyongju, Korea, November 3-7, 1996,
Proceedings, pages 91–104, 1996.

[Pie90] Josef Pieprzyk. How to Construct Pseudorandom Permutations from Single
Pseudorandom Functions. In Advances in Cryptology - EUROCRYPT ’90,
Workshop on the Theory and Application of of Cryptographic Techniques,
Aarhus, Denmark, May 21-24, 1990, Proceedings, pages 140–150, 1990.

[Sha49] Claude E Shannon. Communication theory of secrecy systems. Bell system
technical journal, 28(4):656–715, 1949.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher. In
Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th Interna-
tional Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings,
pages 342–357, 2011.

[SKW+98] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and
Niels Ferguson. Twofish: A 128-bit block cipher. NIST AES Proposal, 15:23,
1998.

[SM10] Tomoyasu Suzaki and Kazuhiko Minematsu. Improving the generalized Feistel.
In International Workshop on Fast Software Encryption, pages 19–39. Springer,
2010.

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Victor Mollimard 237

[SMMK12] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE : A Lightweight Block Cipher for Multiple Platforms. In Selected
Areas in Cryptography, 19th International Conference, SAC 2012, Windsor,
ON, Canada, August 15-16, 2012, Revised Selected Papers, pages 339–354,
2012.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
The 128-Bit Blockcipher CLEFIA (Extended Abstract). In Fast Software
Encryption, 14th International Workshop, FSE 2007, Luxembourg, Luxembourg,
March 26-28, 2007, Revised Selected Papers, pages 181–195, 2007.

[ZMI89] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. On the Construction of
Block Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses.
In Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
pages 461–480, 1989.

238 Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks

A Results for Optimal Permutations

Table 4: Security evaluation for the best equivalence classes with k = 14

(p, q) Imp. Diff S4,2
57 S8,6

38 S8,7
33 N20

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 12, 13)
17 19 14 13 66

q = (10, 7, 13, 11, 9, 8, 4, 1, 12, 5, 3, 2, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 12, 13)
17 19 14 13 66

q = (8, 6, 13, 10, 7, 9, 1, 12, 5, 2, 4, 3, 11, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12)
17 19 14 13 66

q = (9, 1, 13, 5, 2, 10, 3, 7, 12, 11, 8, 4, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12)
17 19 14 13 66

q = (4, 1, 13, 5, 10, 9, 2, 11, 8, 12, 6, 3, 7, 0)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 13, 12)
17 22 14 13 52

q = (3, 5, 2, 13, 0, 10, 9, 11, 8, 12, 6, 4, 7, 1)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 13, 12)
17 22 14 13 52

q = (3, 1, 13, 11, 8, 10, 9, 7, 12, 5, 2, 4, 6, 0)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 12, 13)
17 22 14 13 52

q = (3, 11, 8, 13, 6, 10, 9, 5, 2, 12, 0, 4, 7, 1)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 12, 13)
17 22 14 13 52

q = (3, 7, 13, 5, 2, 10, 9, 1, 12, 11, 8, 4, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 6, 10, 9, 12, 11, 13)
17 23 19 18 46

q = (4, 9, 6, 11, 13, 12, 10, 2, 8, 1, 5, 3, 7, 0)

Table 5: Security evaluation for the best equivalence classes with k = 15

(p, q) Imp. Diff S4,2
61 S8,6

41 S8,7
35 N20

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 10, 13, 12, 14)
17 20 16 14 61

q = (12, 5, 10, 3, 11, 1, 13, 9, 14, 7, 4, 6, 2, 8, 0)

p = (1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 10, 13, 12, 14)
17 42 28 24 30

q = (13, 9, 10, 7, 11, 5, 12, 3, 14, 1, 4, 6, 8, 2, 0)

Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin and Victor Mollimard 239

Table 6: Security evaluation for the best equivalence classes with k = 16

(p, q) Imp. Diff S4,2
65 S8,6

43 S8,7
37 N20

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
17 33 22 19 40

q = (2, 6, 12, 10, 1, 13, 4, 15, 7, 9, 14, 5, 8, 3, 11, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 14, 12, 15)
17 33 22 19 40

q = (5, 6, 13, 10, 4, 12, 9, 15, 2, 1, 14, 7, 11, 3, 8, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11, 6, 13, 12, 15, 14)
17 50 33 29 26

q = (2, 1, 12, 8, 7, 14, 5, 4, 13, 11, 10, 15, 9, 3, 6, 0)

p = (1, 2, 3, 4, 5, 0, 7, 8, 6, 10, 11, 9, 13, 12, 14, 15)
17 50 33 29 26

q = (7, 6, 14, 9, 11, 15, 1, 12, 2, 13, 5, 4, 10, 8, 3, 0)

Table 7: Security evaluation for the best equivalence classes with k = 18

(p, q) Imp. Diff S4,2
73 S8,6

49 S8,7
42 N20

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 16, 17)
17 31 22 19 44

q = (10, 9, 14, 12, 15, 11, 13, 17, 2, 1, 6, 4, 7, 3, 5, 16, 8, 0)

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 16, 17)
17 56 38 32 26

q = (14, 8, 12, 15, 13, 10, 9, 17, 7, 6, 16, 3, 5, 1, 4, 2, 11, 0)

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 17, 16)
17 31 22 19 44

q = (2, 1, 6, 12, 15, 3, 13, 16, 10, 9, 14, 4, 7, 11, 5, 17, 8, 0)

p = (1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 15, 8, 17, 16)
17 56 38 32 26

q = (11, 5, 9, 12, 2, 7, 6, 16, 3, 13, 1, 4, 10, 15, 14, 17, 8, 0)

240 Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks

B Efficient Implementation to Test 9 Round Full Diffusion
We give an example of a C++ implementation of the characterization for a permutation to
have full diffusion over 9 rounds. This function takes powerp and q as parameters, which
are respectively, the precomputed values of each power of p, i.e. powerp[i][j] = pi(j),
and the permutation q.
bool checkDiffusion (vector <vector < unsigned int >> const & powerp ,

vector < unsigned int > const & q){

auto const & p6 = powerp [6];
auto const & p5 = powerp [5];
auto const & p4 = powerp [4];
auto const & p3 = powerp [3];
auto const & p2 = powerp [2];
auto const & p = powerp [1];

unsigned int sizeperm = q.size ();
for(unsigned int x = 0; x < sizeperm ; x++){

unsigned int qx = q[x];
unsigned int qpq = q[p[qx]];
unsigned int qp = q[p[x]];
unsigned int qp2 = q[p2[x]];
unsigned int qp3 = q[p3[x]];
unsigned int qp2q = q[p2[qx]]];
unsigned int qpqp = q[p[qp]];

unsigned int indicator = (1 <<p6[x]);
indicator |= (1 << p5[qx]);
indicator |= (1 << p4[qp]);
indicator |= (1 << p3[qp2]);
indicator |= (1 << p2[qp3]);
indicator |= (1 << p[q[p4[x]]]);
indicator |= (1 << q[p5[x]]);
indicator |= (1 << p3[qpq]);
indicator |= (1 << p2[qp2q]);
indicator |= (1 << p2[qpqp]);
indicator |= (1 << p[q[p3[qx]]]);
indicator |= (1 << p[q[p2[qp]]]);
indicator |= (1 << p[q[p[qp2]]]);
indicator |= (1 << q[p4[qx]]);
indicator |= (1 << q[p3[qp]]);
indicator |= (1 << q[p2[qp2]]);
indicator |= (1 << q[p[qp3]]);
indicator |= (1 << p[q[p[qpq]]]);
indicator |= (1 << q[p2[qpq]]);
indicator |= (1 << q[p[qp2q]]);
indicator |= (1 << q[p[qpqp]]);
if(__builtin_popcount (indicator) != sizeperm)

return false;
}
return true;

}

	Introduction
	Preliminaries
	Generalized Feistel Networks (GFN)
	Diffusion Round
	Even-odd Permutations
	Equivalence Classes of Even-odd Permutations

	Characterization of Full Diffusion
	Searching for an Optimal Permutation over 9 Rounds
	Efficient Search Algorithm
	Checking the Constraints
	Results
	Security Analysis

	Conclusion
	Results for Optimal Permutations
	Efficient Implementation to Test 9 Round Full Diffusion

