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Abstract.
In this paper we study the problem of recovering a secret S-box from its difference
distribution table (DDT). While being an interesting theoretical problem on its own,
the ability to recover the S-box from the DDT of a secret S-box can be used in
cryptanalytic attacks where the attacker can obtain the DDT (e.g., in Bar-On et al.’s
attack on GOST), in supporting theoretical analysis of the properties of difference
distribution tables (e.g., in Boura et al.’s work), or in some analysis of S-boxes with
unknown design criteria (e.g., in Biryukov and Perrin’s analysis) .
We show that using the well established relation between the DDT and the linear
approximation table (LAT), one can devise an algorithm different from the straight-
forward guess-and-determine (GD) algorithm proposed by Boura et al. Moreover, we
show how to exploit this relation, and embed the knowledge obtained from it in the
GD algorithm. We tested our new algorithm on random S-boxes of different sizes,
and for random 14-bit bijective S-boxes, our results outperform the GD attack by
several orders of magnitude.
Keywords: S-box · DDT · LAT · the sign determination problem

1 Introduction
Differential cryptanalysis, introduced by Biham and Shamir [BS91], has transformed the
field of cryptanalysis and offered attacks against multiple symmetric-key primitives (and a
few public-key ones). An essential component in estimating the probability of a differential
characteristic is the Difference Distribution Table of an S-box. This table is easy to
compute when the S-box is given (in time O(22n) for an n-bit S-box). However, the inverse
problem of deducing the S-box from a given DDT, was mostly left unstudied.

At first, this problem looks like a theoretical problem of very limited practical interest.
However, efficient reconstruction of the S-box from the DDT is a useful tool in several cases.
First, several cryptanalytic attacks on secret S-boxes constructions (such as GOST [GOS98]
and Blowfish [Sch94]) may have access to the difference distribution table rather than
the S-box itself. For example, in Bar-On et al.’s slide attack on GOST [BOBDK18], the
attacker can learn the DDT, and needs to deduce the secret S-box from it.

Another line of research that will enjoy such efficient reconstruction algorithms is the
study of the theoretical properties of DDTs. A recent work by Boura et al. [BCJS19]
studied a theoretical question — can two different S-boxes, that do not satisfy some trivial
relation, share the same DDT. As part of this work, a guess-and-determine (GD) algorithm
for the reconstruction of the S-box was introduced and used.1 While being practical for

1We note that a related algorithm that accepts a DDT and finds an S-box that conforms to the high
values of the DDT, was proposed in [BP15]
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small S-boxes, this algorithm’s running time was not analyzed for the general case, and it
seems that for large S-boxes it may be impractical.

In this paper we tackle the reconstruction problem using a different approach. We
rely on the well-established relation between the DDT of an S-box and the S-box’s LAT
[BLN17, BN13, CV95]. We show that using this relation, it is possible to transform the
DDT into multiple linear approximation tables,2 each of which is offering an S-box (that
can be easily computed relying on the Walsh-Hadamard transform).

More precisely, we first use this relation to reconstruct as many of the Boolean functions
ci ·S(x) as we can (and need to) use this relation. For m-bit output S-boxes, reconstructing
m such independent Boolean functions, i.e., ci · S(x) where 0 ≤ i < m and 0 ≤ ci < 2m, is
sufficient to trivially and efficiently reconstruct the S-box S(x).

After analyzing the process of the reconstruction of a single ci · S(x), we show how to
use the knowledge obtained to improve the GD algorithm. We offer a heuristic analysis of
the running time of both the GD algorithm (which may be of independent interest) and of
our approach, suggesting that the combination offers superior results to the previous ones.
More precisely, for many types of S-boxes, it is expected that our algorithm outperforms
the GD algorithm.

Finally, we test different types of S-boxes, checking the time complexities of the actual
reconstruction for different sizes of S-boxes. We compare our method with the simple GD
algorithm and discuss in which cases our new method provides better performance than
the simple guess and determine attack. For example, for 8-bit to 8-bit S-boxes, it seems
that our algorithm is fairly comparable to the standard GD one. However, as the S-box
size increases, our approach becomes significantly better – for 10-bit S-boxes, our approach
is on average 10 times faster (and also the median is about 10 times better), for 12-bit
S-boxes, our approach is about 4,500 times faster on average, and for 14-bit S-boxes, the
speed-up is by a factor of 6.8 · 106.

This paper is organized as follows. In Section 2, we discuss the preliminary of the
reconstruction problem, including the DDT and LAT, the previous works on the relation
between an S-box, its DDT and its LAT. The notations used in this paper are also
introduced. In Section 3, the problem of recovering the Boolean function ci · S(x) is
solved by introducing a new problem which we call the sign determination problem. With
the knowledge obtained by solving the new problem, the GD algorithm of [BCJS19] is
improved in Section 4. Then, our approach is tested on different S-boxes and some special
Boolean functions. In Section 5 we compare the performances of our method with the GD
algorithm of [BCJS19]. In Section 6, we conclude this paper.

2 Background and Notations

Throughout the paper we discuss S-boxes with n-bit inputs and m-bit outputs, i.e., n×m
S-boxes. When m = n, we refer to the S-box simply as an n-bit S-box. We treat the
S-box as a vectorial Boolean function, i.e., S(x) = (Sm−1(x), . . . , S0(x)), with m Boolean
functions Si : Fn

2 → F2 for 0 ≤ i < m.
After recalling the definitions of the difference distribution table and the linear ap-

proximation table, the previous work on the relation between them is revisited. We then
introduce additional notations which are used in this paper. We then quickly recall some
properties of Hadamard matrices.

2As we later discuss in Section 2.2, this relation allows for recovering the absolute values of the entries
of the LAT, and the signs of the different entries are to be determined.
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2.1 Difference Distribution Table and Linear Approximation Table
The difference distribution table (DDT) of an S-box counts the number of cases when the
input difference of a pair is a and the output difference is b (see [BS91]).3 For an input
difference a ∈ Fn

2 and an output difference b ∈ Fm
2 , the entry δ(a, b) of the S-box’s DDT is:

δ(a, b) =
∣∣{z ∈ Fn

2
∣∣S(z ⊕ a)⊕ S(z) = b}

∣∣ .
In [O’C94, O’C95], O’Connor discussed the DDT of a random bijective n-bit S-box, showing
that for a, b 6= 0, δ(a, b) = 2t, where t ∼ Poi(1/2). Later, Daemen and Rijmen investigated
n×m S-boxes, reaching related conclusions in Corollary 2 of [DR07], that suggests the
probability that a random entry of the DDT is non-zero is

PDDT
n,m = Pr[δ(a, b) 6= 0, a ∈ Fn

2 \ {0n}, b ∈ Fm
2 ] ≈ 1− e−2n−m−1

.

We follow the work of Boura et al. in [BCJS19] and call two S-boxes S0(x) and S1(x)
DDT-equivalent if they have the same DDT. We also call an element a ∈ Fn

2 a linear
structure of the S-box S(x) if S(x)⊕S(x⊕a) is constant. In [BCJS19], a DDT-equivalence
class is called trivial when its size matches the lower-bound given in Property 1:

Property 1. ([BCJS19]) Let S be a function from Fn
2 into Fm

2 and let ` denote the
dimension of its linear space, i.e., of the space formed by all linear structures of S. Then,
the DDT-equivalence class of S necessarily contains the 2m+n−` distinct functions of the
form

x→ S(x⊕ c)⊕ d, c ∈ Fn
2 , d ∈ Fm

2 .

The differential uniformity is an important characteristic for analysing the resistance
to differential cryptanalysis (see [Nyb94]). The differential uniformity of an S-box S(x) is
defined as

max
a∈Fn

2 \{0n},b∈Fm
2

δ(a, b).

The lowest possible value for the differential uniformity of a function from Fn
2 into itself

is two and functions with differential uniformity two are called almost perfect nonlinear
(APN). As we discuss in Section 5, it is harder to reconstruct APN functions with input
dimension between 7 and 11 from their DDT compared to random S-boxes, using our
technique.

The linear approximation table (LAT) of an S-box is used to derive approximate linear
relations between input bits and output bits of the S-box [Mat94]. For any input mask
a ∈ Fn

2 and any output mask b ∈ Fm
2 , the LAT entry is defined as

λ(a, b) =
∣∣{x ∈ Fn

2
∣∣a · x⊕ b · S(x) = 0}

∣∣− 2n−1 = 1
2
∑

x∈Fn
2

(−1)a·x⊕b·S(x) (1)

where a ·x and b ·S(x) are the inner product over F2, e.g. a ·x =
∑n−1

i=0 ai ·xi. In Corollary
6 of [DR07], Daemen and Rijmen also discuss the LAT of a random n×m S-box, showing
that the probability that a random entry of the LAT is non-zero is

PLAT
n,m = Pr[λ(a, b) 6= 0, a ∈ Fn

2 \ {0n}, b ∈ Fm
2 ] ≈ 1− 1√

2π · 2(n−2)/2
.

3We note that [BS91] also discusses DDTs that store these pairs. However, for the sake of this work we
use the common DDT that stores only the number of pairs.
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The nonlinearity of a Boolean function f from Fn
2 to F2 is the minimal number of truth

table entries that must be changed in order to become an affine function. In our case, for
each b ∈ Fm

2 , the nonlinearity of b · S(x) is

n`(b · S(x)) = 2n−1 − max
a∈Fn

2 \{0n}
|λ(a, b)|.

Let f be a Boolean function on n variables, where n is even. f is a bent function if its
nonlinearity is 2n. When for all a, |λ(a, b)| in the b-th column is equal to 2n/2−1, b · S(x)
is a bent function [Car10].

2.2 Links between an S-box, its Difference Distribution Table and its
Linear Approximation Table

We now revisit the relation between the DDT and the LAT of an S-box observed in
[BLN17, BN13, CV95]. To do so, we start with the Walsh-Hadamard transform. Let
f : Fn

2 × Fm
2 → R be a function. f̂ denotes its Walsh-Hadamard transform, which is equal

to:
f̂(a, b) =

∑
x,y

f(x, y)(−1)a·x⊕b·y, (2)

where a ∈ Fn
2 , b ∈ Fm

2 and a · x and b · y are the inner product over the domains Fn
2 and

Fm
2 , respectively. Note that the sum in Equation 2 is evaluated over the reals. Lemma 1

shows that given the S-box’s LAT, the attacker can reconstruct the underlying S-box by
solving a system of 2m+n-variable linear equations.

Lemma 1. ([CV95, Lemma 2]) For (a, b) ∈ Fn
2 × Fm

2 , let θ(a, b) be the characteristic
function of S, i.e., θ(a, b) = 1 if and only if S(a) = b; otherwise θ(a, b) = 0. Then,

λ̂(a, b) = 2m+n−1θ(a, b).

Theorem 1 obtained in [BN13, CV95, DGV95] shows that the entries of the DDT and
the LAT are linked to each other through the Walsh-Hadamard transform.

Theorem 1. ([BN13, CV95, DGV95]) For all (a, b) ∈ Fn
2 × Fm

2 ,

1. δ̂(a, b) = 4λ2(a, b),
2. 4λ̂2(a, b) = 2m+nδ(a, b),

where λ̂2(a, b) is the Walsh transform of λ2(a, b), the squared LAT.

The first conclusion from the above theorem is that given the DDT, one can deduce
the squared LAT as follows:

λ2(a, b) = 1
4
∑
x,y

(−1)a·x⊕b·yδ(x, y). (3)

Hence, in order to recover the S-box from the DDT and reconstruct the S-box from
the squared LAT, we need to determine the signs of the entries in the squared LAT
and reconstruct the S-box from the squared LAT. One can apply a trivial algorithm to
reconstruct the S-box by testing all the 2P LAT

n,m ·2
(n−1)(m−1)

possibilities for the signs of the
non-zero λ(a, b) coefficients to recover the LAT. As discussed in Section 3, we introduce a
new, and more efficient method, to reconstruct the S-box.
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2.3 Notations
We denote the b-th column of the LAT by ~λb, where 0 ≤ b < 2m. In addition, we use
λ†(a, b) to denote the absolute value of the element λ(a, b) of the LAT following Equation 3.
We extend the † notion to vectors as follows:

~v † = (|v0|, . . . , |v`−1|)T ,

where ~v = (v0, . . . , v`−1)T and | · | is the absolute value of a number. We define the
absolute LAT of the vectorial Boolean function S as (~λ†0, · · · , ~λ

†
2m−1)T . We also define ~sb

as ((−1)b·S(0), . . . , (−1)b·S(2n−1))T . We define for a vector ~v = (v0, . . . , v`−1)T , a partial
vector ~v [x,y] = (vx, . . . , vy)T , 0 ≤ x < y < `. Finally, let ~u = (u0, . . . , u`−1)T and
~v = (v0, . . . , v`−1)T be two vectors. Then, the Hadamard product of these vectors is
denoted by ~u� ~v = (u0 · v0, . . . , u`−1 · v`−1)T .

2.4 Hadamard Matrices
Let Hn be a 2n × 2n Hadamard matrix such that the element in the i-th row, j-th column
of Hn is (−1)i·j , where i · j is the inner product of i and j for any 0 ≤ i, j < 2n. We show
the recursive definition of these Hadamard matrices as follows:

Definition 1. Let H0 = (1), then the Hadamard matrix Hi can be represented as

Hi =
(
Hi−1 Hi−1
Hi−1 −Hi−1

)
, i ≥ 1.

3 The Sign Determination Problem
As suggested in Section 2.2, given the DDT, we can easily compute λ†(a, b). To recover the
S-box we just need to determine the signs of the entries. We define the sign determination
problem as follows:

Definition 2. Given ~λ†b where 1 ≤ b < 2m, the sign determination problem of the b-th
column in an LAT is the problem of recovering ~λb from ~λ†b, i.e., determining the signs of
λ(a, b), 0 ≤ a < 2n.

To solve the sign determination problem, we study the linear relation between ~λb and ~sb

in Section 3.1. Based on this relation, a basic algorithm for solving the sign determination
problem is presented in Section 3.2. In Section 3.3, we observe some interesting properties
of the solution space. We use these observations in developing a new and improved
algorithm in Section 3.4. We give a tight upper bound of the complexity of the new
algorithm in Section 3.5.

3.1 The Linear Relation between ~λb and ~sb
Property 2. For any b-th column of the linear approximation table (for 0 ≤ b < 2m), the
following formula holds

Hn~sb = 2~λb. (4)

Proof. For all 0 ≤ p < 2n,∑
a∈Fn

2

2(−1)a·pλ(a, b) =
∑

a∈Fn
2

∑
x∈Fn

2

(−1)a·p · (−1)a·x⊕b·S(x)

=
∑

x∈Fn
2

∑
a∈Fn

2

(−1)b·S(x)(−1)a·x⊕a·p.
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From Proposition 7 in [Car10], if x = p,
∑

a∈Fn
2

(−1)a·x⊕a·p = 2n; otherwise the sum is zero.

∑
a∈Fn

2

2(−1)a·pλ(a, b) = (−1)b·S(p)2n, 0 ≤ p < 2n. (5)

⇒ Hn
~λb = 2n−1~sb (6)

As Hn ·Hn = 2nI2n , this formula can also be written as Hn~sb = 2~λb. Note that when
p = 0 in Equation 5, it follows that

∑
a∈Fn

2

λ(a, b) = ±2n−1.

The assignments of the b-th column are related to the linear combination of the
components of S(x). Let b = bm−1 . . . b0 be the binary representation of b. It implies that

b · S(x) =
m−1⊕
i=0

biS
i(x).

Definition 3. The c0-th, . . . , the cj-th columns in the LAT where 0 ≤ c0 < · · · < cj < 2m

are independent columns if the binary representations of c0, . . . , cj are linearly independent
over Fm

2 .

If the attacker solves the sign determination problem for m independent columns,
then the attacker can easily recover the S-box. The attacker takes (c0, . . . , cm−1) as
an m × m matrix on F2, denoted as C. For each S(i), 1 ≤ i < 2n, let ~s ′i be the
vector (c0S(i), . . . , cm−1S(i))T over Fm

2 , which is known from the solutions of the sign
determination problems. The binary representation of S(i), i.e., (S0(i), . . . , Sm−1(i)), is
obtained immediately by computing C−1~s ′i . Then the S-box can be reconstructed by
computing C−1 in time O(m3) and computing C−1~s ′i for 0 ≤ i < 2n in time O(2n ·m2).
Thus, the total running time of recovering S from m independent columns is O(m3 +m2 ·
2n) ≈ O(m22n).

If the attacker applies an exhaustive search to solving the sign determination problem
of m independent columns, the complexity of reconstructing the S-box is still very high,
which is O(2m·2nP LAT

n,m +m22n) as there are m columns of PLAT
n,m 2n non-zero elements each.

We propose a basic method for solving this problem of one column in Section 3.2 and
improve it with a significantly more efficient manner in Section 3.3 and Section 3.4.

3.2 Basic Algorithm for Solving the Sign Determination Problem
3.2.1 Solving the System of Linear Equations Hn~x = ~y

With Definition 1 and the fast Walsh-Hadamard transform [MS77], we can solve the system
of linear equations Hn~x = ~y recursively. By elementary transformation:

(Hn, ~y) =
(
Hn−1 Hn−1 ~y[0,2n−1−1]

Hn−1 −Hn−1 ~y[2n−1,2n−1]

)

⇒

(
Hn−1 0 (~y[0,2n−1−1] + ~y[2n−1,2n−1])/2

0 Hn−1 (~y[0,2n−1−1] − ~y[2n−1,2n−1])/2

)
.

It is easy to see that the original problem is divided into two independent subproblems as
follows:

Hn−1~x
[0,2n−1−1] = (~y[0,2n−1−1] + ~y[2n−1,2n−1])/2

Hn−1~x
[2n−1,2n−1] = (~y[0,2n−1−1] − ~y[2n−1,2n−1])/2.
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We can recursively apply the above process to the problems in the `-th step. At the
beginning of the `-th step, there are 2`−1 problems with 2n−`+1 constraints, denoted as:

Hn−`+1~x
[0,2n−`+1−1] = ~β0,

...

Hn−`+1~x
[2n−2n−`+1,2n−1] = ~β2`−1−1,

(7)

where ~β0, . . . , ~β2`−1−1 are the vectors obtained from the last step and 1 ≤ ` ≤ n. Each
problem in Equation 7 is divided into two subproblems as follows:

Hn−`~x
[0,2n−`−1] = ~γ0, Hn−`~x

[2n−`,2n−`+1−1] = ~γ1,

...

Hn−`~x
[2n−2n−`+1,2n−2n−`−1] = ~γ2`−2, Hn−`~x

[2n−2n−`,2n−1] = ~γ2`−1.

(8)

where,

~γ0 =
(
~β

[0,2n−`−1]
0 + ~β

[2n−`,2n−`+1−1]
0

)
/2 , ~γ1 =

(
~β

[0,2n−`−1]
0 − ~β

[2n−`,2n−`+1−1]
0

)
/2

...
~γ2`−2 =

(
~β

[0,2n−`−1]
2`−1−1 + ~β

[2n−`,2n−`+1−1]
2`−1−1

)
/2 , ~γ2`−1 =

(
~β

[0,2n−`−1]
2`−1−1 − ~β

[2n−`,2n−`+1−1]
2`−1−1

)
/2

The total number of subproblems after the `-th step is 2` and the number of constraints in
each subproblem is 2n−`. At the n-th step, the coefficient matrix in the subproblems is
H0 = 1. Thus, the entries of ~x are directly obtained.

3.2.2 The Main Idea

We propose to solve the sign determination problem using a recursive procedure. In each
layer, the algorithm combines the linear equations in the problem of the current layer,
apply the idea of solving the system of linear equations Hn~x = ~y to reduce the problem
into two independent subproblems and check the consistency of the subproblems. That
is the algorithm works on the systems of linear equations with the size reduced by half
compared to the ones in the previous layer. Finally, when it reaches the n-th layer, the
algorithm returns the solutions to the sign determination problem.

The algorithm can be represented by a tree structure. For ease of explanation we denote
the `-th layer of the recursive tree by T`. The algorithm is initialized by guessing the signs
of λ(i, b) if λ(i, b) 6= 0. Thus, the leaf node T0[i] is assigned with {2λ†(i, b),−2λ†(i, b)}, for
0 ≤ i < 2n. At the beginning of the `-th layer, the subproblems in Equation 7 are recorded in
T`−1. The i-th constraint in Equation 7 is stored in a vector as ~v T = (~β0[i], . . . , ~β2`−1−1[i]),
0 ≤ i < 2n−`+1. We call the set a full set which contains all the possible i-th constraints in
Equation 7, denoted by F`−1[i], for 0 ≤ i < 2n−`+1, 1 ≤ ` ≤ (n+1). In the basic algorithm,
we record the full set F`−1[i] in the internal node T`−1[i]. (This strategy will be replaced
by a more effective manner described in Section 3.3 and Section 3.4.)

In the `-th layer, the i-th possible constraints of the new subproblems in Equation 8
are deduced from Equation 7 to construct F`[i], 0 ≤ i < 2n−`. To do so, for each vector in
~p ∈ F`−1[i] and ~q ∈ F`−1[i+ 2n−`], a new vector which is defined as E`−1(~p, ~q) is computed
as described below:

E`−1(~p, ~q)T =((p0 + q0)/2, (p0 − q0)/2, . . . ,
(p2`−1−1 + q2`−1−1)/2, (p2`−1−1 − q2`−1−1)/2),
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       

       
2
[0] 1,1,1, 1 , 1, 1, 1,1 , 1,1, 1,1 , 1, 1,1, 1 ,

1, 1,1,1 , 1,1, 1, 1 , 1,1,1,1 , 1, 1, 1, 1

T         

       

        1
[1] 2,0 , 0,2 , 2,0 , 0, 2T   

 0
[0] 2T    0

[1] 2T    0
[2] 2T    0

[3] 2T  

        1
[0] 2,0 , 0,2 , 2,0 , 0, 2T   

 
†

1,1,1,1
b
  

Figure 1: The Tree Structure for n = 2

where pj and qj are the j-th entries with respect to ~p and ~q and 0 ≤ j < 2`−1.
It can be seen from Equation 8 that each entry of the vector in F`[i] is an even number

in the range of −2n−` and 2n−` when 1 ≤ ` < n. As the components of ~sb are 1 or −1,
then in the n-th layer, the entries of the vectors in Fn[0] take their values from the set
{1,−1}. If the constraints over the elements of the vectors in F`[i] are satisfied for the
vector E`−1(~p, ~q), the new vector is a possible i-th constraint of the new subproblems in
Equation 8; otherwise, it should be discarded. When it reaches the n-th layer, the solutions
of the sign determination problem are the vectors in the root node Tn[0].

To illustrate our idea more intuitively, we refer to the recursive tree for n = 2 in
Figure 1 and show an example when ~λ†b = (1, 1, 1, 1) and the corresponding LAT column
~λb is (1, 1, 1,−1) and ~sb = (1, 1, 1,−1).4 The nodes in T0 are initialized by T0[0] = T0[1] =
T0[2] = T0[3] = {±2}. As shown in Figure 1, T1[0] is constructed from T0[0] and T0[2]
and T1[1] is from T0[1] and T0[3]. T1[0] = T1[1] = {(2, 0), (0, 2), (−2, 0), (0,−2)}. Similarly,
T2[0] is built from T1[0] and T1[1]. For each ~p ∈ T1[0] and ~q ∈ T1[1], we compute E1(~p, ~q).
For example, when ~p = ~q = (2, 0), E1(~p, ~q) = (2, 0, 0, 0) /∈ T2[0]. In the end, there are
eight vectors in T2[0], which are (1, 1, 1,−1), (−1,−1,−1, 1), (1, 1,−1, 1), (−1,−1, 1,−1),
(1,−1, 1, 1), (−1, 1,−1,−1), (−1, 1, 1, 1) and (1,−1,−1,−1). It can be seen that ~sb ∈ T2[0].
We give the pseudo code of the basic algorithm in Algorithm 1.

Similarly to the GD algorithm, we fix S(0) to 0 (or any other constant) to find
one representative of the DDT-equivalence class and other DDT-equivalent S-boxes can
be obtained applying simple linear transformations based on Property 1. Therefore,
Algorithm 1 only returns the vectors with the first element as (−1)b·S(0) = 1.

3.3 Observing the Structure in the Full Set and Introducing the Com-
pact Set

When we examine the full set F`[i], we notice that its vectors are related. We can use this
relation to offer a more compact representation of F`[i] without losing any solutions. This
new compact representation reduces both the time and memory complexities of the search
algorithm. In the following, we discuss the structure of the full set first. Then, we improve
the basic algorithm of Section 3.2 using the compact representation of the full set.

3.3.1 The Structure of the Full Set

Before presenting the structure of F`[i], we define a set of symmetric permutations.

Definition 4. Let ~v T be (v0, . . . , v2`−1). For 0 ≤ j < `, we define π`
j as follows:

π`
j(~v) = (v2j , . . . , v2j+1−1, v0, . . . , v2j−1, . . . ,

v2`−2j , . . . , v2`−1, v2`−2j+1 , . . . , v2`−2j−1)T .
4The entry of the LAT can be odd because of the coefficient 1

2 of Equation 1.
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Algorithm 1 Basic Algorithm for Solving the Sign Determination Problem
1: Input: ~λ†b;
2: Output: F = {~u|Hn~u = 2~λb, ~u[0] = 1}
3: for each integer i ∈ [0, 2n − 1] do
4: F0[i] = {2λ†(i, b),−2λ†(i, b)} .Initial phase
5: end for
6: Fn[0] = Layer(F0, 0)
7: return F = {~u|~u ∈ Fn[0], ~u[0] = 1}.
8:
9: procedure Layer(F`, `);
10: for each integer i ∈ [0, 2n−`−1 − 1] do
11: if there are no vectors in F`[i] or F`[i+ 2n−`−1] then
12: return There exist no S-boxes corresponding to the given DDT!
13: end if
14: F`+1[i] = ∅
15: for each ~u in F`[i] and each ~v in F`[i+ 2n−`−1] do
16: Compute ~w = E`(~u,~v)
17: if ` < n then
18: if every entry in ~w is even and ranges from −2n−`−1 to 2n−`−1 then
19: F`+1[i] = F`+1[i] ∪ {~w}
20: end if
21: else
22: if every entry in ~w is 1 or −1 then . when ` = n
23: Fn[i] = Fn[i] ∪ {~w}
24: end if
25: end if
26: end for
27: end for
28: if ` < n then
29: Layer(F`+1,`+ 1)
30: else
31: return Fn[0]
32: end if
33: end procedure

Note that the permutation π`
j swaps every two consecutive blocks of 2j elements in

~v pairwise. Let Π` be a set of symmetric permutations π`
0, . . . , π

`
`−1. It can be easily

verified that each permutation in Π` is of order two and that π`
0, . . . , π

`
`−1 are pairwise

commutative. Suppose that ~v = E`−1(~p, ~q), the vectors which generate π`
j(~v) for 0 ≤ j < `

in the (`− 1)-th layer are shown in Lemma 2, .

Lemma 2. When 0 < j < `, π`
j(~v) = E`−1(π`−1

j−1(~p), π`−1
j−1(~q)); when j = 0, π`

0(~v) =
E`−1(~p,−~q).

Proof. By the definition of operation E`−1,

~p T = (v0 + v1, v2 + v3, . . . , v2`+1−2 + v2`+1−1)
~q T = (v0 − v1, v2 − v3, . . . , v2`+1−2 − v2`+1−1).
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When 1 ≤ j < `, the vectors that generate π`
j(~v) are

~p′ = (v2j + v2j+1, . . . , v2j+1−2 + v2j+1−1, v0 + v1, . . . , v2j−2 + v2j−1, . . . ,

v2`−2j + v2`−2j+1, . . . , v2`−2 + v2`−1,

v2`−2j+1 + v2`−2j+1+1, . . . , v2`−2j−2 + v2`−2j−1)T ,

~q′ = (v2j − v2j+1, . . . , v2j+1−2 − v2j+1−1, v0 − v1, . . . , v2j−2 − v2j−1, . . . ,

v2`−2j − v2`−2j+1, . . . , v2`−2 − v2`−1,

v2`−2j+1 − v2`−2j+1+1, . . . , v2`−2j−2 − v2`−2j−1)T .

It follows from the definition of π`
j that ~p′ = π`−1

j−1(~p) and ~q′ = π`−1
j−1(~q). Thus, π`

j(~v) =
E`−1(π`−1

j−1(~p), π`−1
j−1(~q)). For the case when j = 0, it can be easily verified that π`

0(~v) =
E`−1(~p,−~q).

Now, we define a j-symmetric relation between two vectors ~u and ~v with respect to
the permutations in Π` that helps in capturing the structure of the full set F`[i].

Definition 5. For each 0 ≤ j < `, the vector ~u is j-symmetric to the vector ~v if there
exist p ≥ 1 permutations π`

j0
, . . . , π`

jp−1
∈ Π` such that

~u = ±π`
jp−1

◦ . . . ◦ π`
j0

(~v),

where 0 ≤ j0 < · · · < jp−1 = j. For the special case when j = `, the `-symmetric vectors
to ~u are defined as ~u and −~u. If ~u = π`

jp−1
◦ . . . ◦ π`

j0
(~v), ~u is positive j-symmetric to ~v.

We say that ~u is symmetric-equivalent to ~v if for some j, ~u is j-symmetric to ~v. It
can be easily verified that the symmetric-equivalent relation is an equivalence relation.
Moreover, the set of vectors that are positive j-symmetric to ~u for some j is denoted by
[~u]+. For any 0 ≤ j ≤ `, we denote the set of vectors that are j-symmetric to ~u as [~u]j .

Thus, for each vector ~u ∈ F`[i], the equivalence class of ~u is [~u] =
⋃̀
j=0

[~u]j . In Theorem 2,

we present the symmetric structure of F`[i].

Theorem 2. For any vector ~u ∈ F`[i] and for any 0 ≤ i < 2n−` and 0 ≤ j ≤ `, if a vector
~v is j-symmetric to ~u, then ~v ∈ F`[i].

Proof. Let us consider the case when a vector ~v is j-symmetric to ~u, 0 ≤ j < l. For the
positive case in Definition 5, we first prove inductively that for each j′ ≤ j, π`

j′(~v) ∈ F`[i].
The negative case in Definition 5 can be proved with a similar method.

The statement is true when j′ = 0. It follows from Lemma 2 that if ~v = E`−1(~p, ~q), then
π`

0(~v) = E`−1(~p,−~q). As −~q ∈ F`−1[i+ 2n−`+1], π`
0(~v) ∈ F`[i]. Assume that when j′ = k,

π`
k(~v) ∈ F`[i]. When j′ = k+ 1, it can be seen that π`

k+1(~v) ∈ F`[i]. From Lemma 2, if ~v =
E`−1(~p, ~q), π`

k+1(~v) = E`−1(π`−1
k (~p), π`−1

k (~q)). As ~p ∈ F`−1[i] and ~q ∈ F`−1[i+ 2n−`+1], it
follows from the assumption directly that π`−1

k (~p) ∈ F`−1[i] and π`−1
k (~q) ∈ F`−1[i+2n−`+1].

It can be concluded that π`
k+1(~v) is in F`[i]. Therefore, it can be observed that if ~v ∈ F`[i],

π`
jp−1

◦ . . . ◦ π`
j0

(~v) ∈ F`[i], for any 0 ≤ j0 < · · · < jp−1 = j, p ≥ 1.
For the case when j = `, the positive case is trivial as ~u = ~v. The negative case is proved

inductively. When ` = 0, the statement is true: if λ†(i, b) 6= 0, F0[i] = {λ†(i, b),−λ†(i, b)};
otherwise, F0[i] = {0}. Assume that the proposition holds when ` = k. When ` takes
k + 1, if ~v = Ek(~p, ~q), then −~v = Ek(−~p,−~q), where ~p ∈ Fk[i] and ~q ∈ Fk[i+ 2n−k]. From
the assumption, −~p is in Fk[i] and −~q is in Fk[i+ 2n−k]. Thus, −~v is in Fk+1[i].

Now we define the self-j-symmetric vector and the self-j-symmetric set, respectively.
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Definition 6. A vector ~u ∈ F`[i] is self-j-symmetric if ~u is j-symmetric to itself, 0 ≤ i <
2n−`, 0 ≤ j < `; a set F`[i] is self-j-symmetric if all the vectors in F`[i] are self-j-symmetric.

It is not necessary to check all the vectors in the full set F`[i] to detect whether F`[i] is
j-symmetric. We show in Theorem 3 that one can detect whether F`[i] is self-j-symmetric
by testing an arbitrary vector in F`[i].

Theorem 3. For all 1 ≤ ` ≤ n, 0 ≤ j < ` and 0 ≤ i < 2n−`, ~u ∈ F`[i] is self-j-symmetric
if and only if F`[i] is self-j-symmetric.

Proof. We define the statement of Theorem 3 as D(j, `). We only prove the positive case
in Definition 5 inductively for j and `. The negative case can also be proved using a similar
method. Let ~p ∈ F`−1[i] and ~q ∈ F`−1[i+ 2n−`] be the vectors such that ~u = E`(~p, ~q).

We claim that D(0, `) is true for j = 0 and 1 ≤ ` ≤ n. If ~u ∈ F`[i] is a self-0-symmetric
vector, it indicates that ~u = (u0, u0, . . . , u2`−1−1, u2`−1−1). The vector in F`−1[i+ 2n−`+1]
that generate ~u is the zero vector. Let us trace back to the initial values in the 0-th layer
which generate the zero vector in F`−1[i+ 2n−`+1]. These initial values are zero and the
zero vector is the only vector in F`−1[i + 2n−`+1]. It can be seen that for each vector
~v ∈ F`[i], ~v can be presented as E`−1(~p,~0), where ~p is in F`−1[i]. It can be verified that ~v
is a self-0-symmetric vector.

Suppose that the statement D(r, k) holds for each r < k. Then, it can be proved that
for D(r + 1, k + 1) is also true. In this case ~u ∈ Fk+1[i] is an self-(r + 1)-symmetric vector.
There are two scenarios in this situation.

The first scenario is when there exist p permutations in Πk+1 such that πk+1
jp−1

◦ . . . ◦

πk+1
j1

◦ πk+1
j0

(~u) = ~u, where p ≥ 1 and 0 = j0 < j1 < · · · < jp−1 = r + 1. Then,
πk

r ◦ . . . ◦ π
k
j1−1(~p) = ~p and πk

r ◦ . . . ◦ π
k
j1−1(~q) = −~q, which indicates that ~p and ~q are

self-r-symmetric vectors. It can be concluded that each vector in Fk[i] and Fk[i+ 2n−k+1]
are self-r-symmetric. Thus, each vector in Fk+1[i] is self-(r + 1)-symmetric vector.

The second scenario is when there exist p permutations in Πk+1 such that πk+1
jp−1

◦ . . . ◦

πk+1
j1

◦ πk+1
j0

(~u) = ~u, where p ≥ 1 and 0 < j0 < j1 < · · · < jp−1 = r + 1. It can be seen
that πk

r ◦ . . . ◦ π
k
j0−1(~p) = ~p and πk

r ◦ . . . ◦ π
k
j0−1(~q) = ~q. It can also be concluded that the

vectors in Fk+1[i] are self-(r + 1)-symmetric vectors.
As mentioned above, the statement is true for j = 0 and each 1 ≤ ` ≤ n. For each j

and ` such that 0 ≤ j < ` ≤ n, starting from the statement D(0, ` − j), D(j, `) can be
proved by applying the inductive process above.

3.3.2 Compact Set

Based on Theorem 2, we define a compact set C`[i] to be a compact representation of
the full set F`[i]. C`[i] is a set of representatives of the equivalence classes in F`[i]. The
relation between the full set F`[i] and its compact set C`[i] is thus:

F`[i] =
⋃

~u∈C`[i]

[~u]. (9)

For each vector ~u ∈ C`[i], any vector ~v ∈ [~u] can be constructed using Definition 5. The full
set F`[i] can thus be obtained by applying Equation 9 to all ~u ∈ C`[i], i.e., by computing
[~u] from ~u. The compact set C`[i] thus allows rebuilding F`[i] efficiently.

The basic algorithm in Section 3.2 can be optimized by storing the compact set C`[i]
instead of the full set F`[i] in the intermediate node T`[i]. By doing this, the repeated
computation is avoided and the memory consumption is greatly reduced compared to the
basic algorithm, as we will show in Section 3.4.

We now propose a technique to construct the compact set C`+1[i] from C`[i] and
C`[i+ 2n−`−1], 0 ≤ i < 2n−`−1. To build the compact set C`+1[i], we construct a middle
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set M~u, ~w for each ~u ∈ C`[i] and ~w ∈ C`[i + 2n−`−1] such that {~w} ⊆ M~u, ~w ⊆ [~w]. In
this way, the compact set C`+1[i] is indeed constructed by computing E`(~u,~v) for each
~u ∈ C`[i] and ~v in each M~u, ~w such that every two elements in C`+1[i] are not j-symmetric
to each other, 0 ≤ j ≤ `.

The process of building the middle set M~u, ~w is shown in Algorithm 2. The structure of
the middle set M~u, ~w is related to the symmetric property of the compact set C`[i]. Let
J = {j

∣∣C`[i] is self-j-symmetric, 0 ≤ j < `}. Note that when J is empty, M~u, ~w = [~w]+.

Algorithm 2 Constructing M~u, ~w from ~u ∈ C`[i] and ~w ∈ C`[i+ 2n−`−1]
1: procedure ConstructSet(~u,[~w]+, J)
2: M~u, ~w = [~w]+
3: for all integers j ∈ J do
4: Find π`

j0
, . . . , π`

jp−1
such that ~u = ±π`

jp−1
◦ . . . ◦ π`

j0
(~u)

5: for all the distinct vectors ~e, ~f in M~u, ~w do
6: if ~e = ±π`

jp−1
◦ . . . ◦ π`

j0
(~f) then

7: M~u, ~w = M~u, ~w\{~f}
8: end if
9: end for
10: end for
11: return M~u, ~w

12: end procedure

It can be seen from Algorithm 2 that the middle set M~u, ~w is constructed by discarding
the irrelevant elements from the set [~w]+, i.e., the vectors in [~w]+ that generate j-symmetric
vectors for some j are carefully selected. Next, we discuss in which form the vectors need
to be removed from the set [~w]+ to build the middle set M~u, ~w. Now we show in Lemma 3
that M~u, ~w ⊆ [~w]+.

Lemma 3. For each non-zero vector ~v ∈M~u, ~w, it holds that −~v /∈M~u, ~w.

Proof. Assume that −~v ∈M~u, ~w. Let ~q = E`(~u,~v). From Lemma 2, E`(~u,−~v) = π`+1
0 (q) ∈

C`+1[i], which reaches a contradiction that each two vectors in C`+1[i] are not 0-symmetric.
Thus, −~v /∈ M~u, ~w. Let [~w]+ be the set which contains the vectors that are positive
j-symmetric to ~w for all 0 ≤ j ≤ `. It can be concluded that M~u, ~w ⊆ [~w]+.

The structure of M~u, ~w is also related to the symmetric property of the vector ~u.
Suppose that ~u is self-j-symmetric, then there exist p permutations π`

j0
, . . . , π`

jp−1
such

that ~u = π`
jp−1

◦ . . . ◦ π`
j0

(~u).5 For a vector ~v ∈ M~u, ~w, let ~e denote the vector E`(~u,~v),
which is in C`+1[i]. Suppose that ~d = ±π`

jp−1
◦ . . . ◦ π`

j0
(~v) ∈ M~u, ~w and ~d 6= ~v, then ~f =

E`(~u, ~d) ∈ C`+1[i]. It can be seen from Lemma 2 that ~f = π`+1
jp−1+1 ◦ . . . ◦ π

`+1
j0+1(E`(~u,±~v)),

which is self-(j + 1)-symmetric to ~e. This contradicts the fact that each two vectors in
C`+1[i] are not (j + 1)-symmetric. Thus, for each ~v ∈M~u, ~w, ±π`

jp−1
◦ . . . ◦ π`

j0
(~v) /∈M~u, ~w.

3.4 Improved Sign Determination Algorithm
We can now run a variant of the basic algorithm using the compact sets. In the initial
phase of the improved algorithm, the leaf nodes are assigned C0[i] = {2λ†(i, b)} as F0[i] =
{±2λ†(i, b)}, 0 ≤ i < 2n. In the next layer, C1[i] = {(λ†(i, b) + λ†(i+ 2n−1, b), λ†(i, b)−
λ†(i + 2n−1, b))}, 0 ≤ i < 2n. In the (` + 1)-th layer, C`+1[i] is constructed from C`[i]
and C`[i + 2n−`−1], 1 ≤ ` < n and 0 ≤ i < 2n−`−1. After n iterations, the solutions to

5We only analyze the positive case. The arguments for the negative case are similar.



Orr Dunkelman and Senyang Huang(�) 205

 0 0 0 0
[4] [5] [6] [7] 4C C C C    0 0 0 0

[0] [1] [2] [3] 0C C C C   

  1 1 1 1
[0] [1] [2] [3] 2，-2C C C C   

  2 2
[0] [1] 2，0，-2，0C C 

  3
[0] 1，1，1，-1，-1，-1，-1，1C 

Figure 2: The Tree Structure for a Sign Determination Problem

the sign determination problem are the vectors in the full set Fn[0], which can be easily
reconstructed from the compact set Cn[0] by Equation 9. The search process of the sign
determination problem using compact sets is stated in Algorithm 3.

We show an example with ~λ†b = (0, 0, 0, 0, 2, 2, 2, 2)T to contrast the basic algorithm
with the improved strategy. We apply Algorithm 3 to solve the sign determination
problems and show the tree structure involved in solving the sign determination problem
in Figure 2. Note that the compact sets in each layer are stored in the corresponding
leaf nodes. The compact set technique is shown by constructing C3[0] from C2[0] =
C2[1] = {(2, 0,−2, 0)}. We denote ~v = (2, 0,−2, 0). It can be seen that C2[0] is 1-
symmetric, i.e., J = {1}. Algorithm 2 is applied to construct M~v,~v, where M~v,~v =
{(2, 0,−2, 0), (0, 2, 0,−2)}. To build C3[0], we compute E2((2, 0,−2, 0), (2, 0,−2, 0)) =
(2, 0, 0, 0,−2, 0, 0, 0) and E2((2, 0,−2, 0), (0, 2, 0,−2)) = (1, 1, 1,−1,−1,−1,−1, 1). It is
obvious that C3[0] = {(1, 1, 1,−1,−1,−1,−1, 1)}.

Note that when the basic algorithm is applied, the full set F3[0] is constructed from the
full sets F2[0] and F2[1], where F2[0] = F2[1] = {(2, 0,−2, 0), (−2, 0, 2, 0), (0, 2, 0,−2), (0,−2,
0,−2)}. For each ~u ∈ F2[0] and ~v ∈ F2[1], we compute E2(~u,~v) and obtain 16 elements in
the full set F3[0], whereas the compact set C3[0] contains only one element. To obtain the
full set F3[0], we only apply simple permutations on the elements of C3[0], which avoids
repeated computations. Thus, it can be concluded that applying the compact sets in
the reconstruction procedure can save both time and memory complexity compared with
the basic algorithm. We note that the advantage of applying the compact sets is more
significant as the size of the full set is larger.

The number of the solutions of its sign determination problem is equal to the size of
the Boolean functions which are DDT-equivalent to b · S(x), 1 ≤ b < 2m. The Boolean
functions corresponding to the solutions of its sign determination problem share the same
squared LAT with b ·S(x), i.e., (~λ†0, ~λ

†
b). These Boolean functions are DDT-equivalent with

b · S(x). When b · S(x) has nontrivial DDT-equivalence classes, Tn[0] contains multiple
vectors.

Given enough memory, Algorithm 3 can solve all the sign determination problems.
However, for some instances, the amount of vectors in the internal layer grows sharply,
which demands too much memory. In this situation, a threshold H on the number of
internal vectors can be preset heuristically with respect to the accessible memory of the
attacker. In the `-th layer, if the size of C`[i] rises above the threshold H, the search
process is interrupted, where 0 ≤ ` < n and 0 ≤ i < 2n−`.

We call a column in the absolute LAT good if it can be recovered under the threshold
H applying Algorithm 3; otherwise bad. In some cases, there exist both good columns
and bad columns in the absolute LAT. For example, the S-boxes of CAST-256 [Ada99],
like S0, are 8× 32 S-boxes, which are constructed by choosing 32 distinct bent functions
as the components (see [Ada97] for details). It indicates that each entry of the columns
{~λ†2i |0 ≤ i < 32} is 28/2−1 = 8, i.e., all the entries of the LAT columns are ±8. It has
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Algorithm 3 Improved Algorithm for Solving the Sign Determination Problem
1: Input: ~λ†b;
2: Output: F = {~u|Hn~u = 2~λb, ~u[0] = 1}
3: for each integer i ∈ [0, 2n − 1] do
4: C0[i] = {2λ†(i, b)} . Initialization
5: end for
6: Cn[0] = Layer(C0, 0)
7: Construct the full set Fn[0] from Cn[0].
8: return F = {~u|~u ∈ Fn[0], ~u[0] = 1}.
9:
10: procedure Layer(C`, `);
11: for each integer i ∈ [0, 2n−`−1 − 1] do
12: if there are no vectors in C`[i] or C`[i+ 2n−`−1] then
13: return There exist no S-boxes corresponding to the given DDT!
14: end if
15: C`+1[i] = ∅
16: Randomly pick a vector from C`[i] and compute J = {j

∣∣C`[i] is j-symmetric,
0 ≤ j < `} . Theorem 3

17: for each ~w in C`[i+ 2n−`−1] do
18: for each ~u in C`[i] do
19: M = ConstructSet(~u, [~w]+, J)
20: for each ~v in M do
21: ~r = E`(~u,~v)
22: if ` < n then
23: if every entry in ~r is even and [−2n−`−1, 2n−`−1] then
24: C`+1[i] = C`+1[i] ∪ {~r}
25: else
26: Discard ~r
27: end if
28: else
29: if every entry in ~r is 1 or −1 then . when ` = n
30: Cn[i] = Cn[i] ∪ {~r}
31: else
32: Discard ~r
33: end if
34: end if
35: end for
36: end for
37: end for
38: end for
39: if ` < n then
40: Layer(C`+1,`+ 1)
41: else
42: return Cn[0]
43: end if
44: end procedure



Orr Dunkelman and Senyang Huang(�) 207

been proven by Langevin and Leander in [LL11] that the number of bent functions in
dimension eight is approximately 2106. Thus, the sign determination problem for the
columns {~λ†2i |0 ≤ i < 32} is too computationally expensive to be solved, i.e., these columns
are bad columns. However, there are still some good columns in the absolute LAT of CAST-
256’s S0 if the attacker sets the threshold to 2000. For example, ~λ†6 and ~λ†7 corresponding
to the 6th and 7th columns of its LAT.

According to our experiments with input size n between 8 and 14, the number of
solutions for the good columns is no more than 2n+2, i.e., Tn[0] contains at most two
vectors. We note that determining the size of the DDT-equivalence classes of a Boolean
function from Fn

2 to F2 is still an open problem and determining a suitable H, or even
telling in advance whether a column is good, is also an open problem.

3.5 Heuristic Analysis of Time and Memory Complexities
We now analyze the memory complexity of Algorithm 3. In the `-th layer, there are 2n−`

nodes in the tree structure, 0 ≤ ` ≤ n. Each node contains at most H vectors of length 2`

and the entry of the vector ranges from 2n−` to −2n−`. The memory complexity of storing
the nodes in the `-th layer is O(H · (n− `+ 1) · 2n) bits. For each 0 ≤ i < 2n−`−1, when
constructing C`+1[i], M~u, ~w contains at most 2` vectors with length of 2`, where ~u ∈ C`[i]
and ~w ∈ C`[i+ 2n−`−1]. Thus, O((n− `+ 1)22`) bits of memory are needed to store M~u, ~w,
To conclude, the memory complexity of Algorithm 3 is O(H · n22n + n22n) bits.

Similarly, we analyze the time complexity of Algorithm 3. To construct C`+1[i], the
attacker needs to apply Algorithm 2 for constructing M~u, ~w first for each ~u ∈ C`[i] and
~w ∈ C`[i + 2n−`−1]. Note that the complexity of this step is negligible as the attacker
only applies permutations on vectors. Then, the attacker computes E`(~u,~v) for each
vector ~u ∈ C`[i] and ~v in M~u, ~w. The complexity of constructing C`+1[i] is thus at most
O(H · H2n−` · 2n−`) = O(H222(n−`)). The time complexity of constructing C`+1 is no
more than O(H223(n−`)). Thus, the upper bound of the time complexity is O(H223n).

4 Applying Algorithm 3 for Reconstructing the S-box
The procedure of reconstructing an n×m S-box is related to the number of good columns
defined in Section 3.4. We suppose that the attacker has solved the sign determination
problem for k independent good columns, 1 ≤ k ≤ m. In the sign determination problem for
the ci-th column, the possible candidates for the Boolean function ciS(x) are recovered by
Algorithm 3. We call it the matching phase for the k good columns when the combination
of these candidates is searched with respect to the squared LAT, 1 < k ≤ m.

After the matching phase for the k good columns, the Boolean functions c0S(x), · · · ,
ck−1S(x) are obtained. As mentioned before, when k = m, the attacker can reconstruct
the S-box using linear algebra. When k < m, applying the knowledge of c0S(x), · · · ,
ck−1S(x), we propose a new technique that improves the guess-and-determine algorithm
of [BCJS19].

4.1 The Matching Phase for the k Good Columns
Let Vi be the set which contains the output vectors from Algorithm 3 with respect to the
ci-th squared LAT column, where 0 ≤ i < k. In the matching phase, the Boolean functions
c0S(x), · · · , ck−1S(x) are obtained by searching the vectors in Vi to match the squared
LAT applying a basic property of the Hadamard product.

Property 3. For any 0 ≤ b, c < 2n,

1. ~sb⊕c = ~sb � ~sc.
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2. πn
j (~sb⊕c) = πn

j (~sb)� πn
j (~sc), 0 ≤ j < n.

Property 3 is obvious from the definition of ~sb and the Hadamard product. Combining
the first formula in Property 3 with Property 2, we obtain that the (b⊕ c)-th column ~λb⊕c

in the LAT can be deduced by 1/2Hn · ~sb⊕c = 1/2Hn · (~sb � ~sc). For each two vectors
~u ∈ Vi and ~v ∈ Vj , the attacker computes a new vector ~w = 1/2Hn · (~u � ~v). Then,
the attacker can easily detect whether ~u and ~v are consistent with the squared LAT by
verifying whether ~w† = ~λ†b⊕c. We call ~u and ~v a matching vector pair if they are consistent
with the absolute LAT column ~λ†b⊕c.

Now we discuss the matching phase of the ci-th column and the cj-th column, 0 ≤
i < j < k. It should be noted that it is not necessary to verify the match for every
pair of vectors from Vi and Vj . In the reconstruction problem, our purpose is to find a
representative S(x) in the equivalence class {S(x⊕ c)⊕ d|c ∈ Fn

2 , d ∈ Fm
2 }. For example,

when the matching phase begins with the c0-th and c1-th columns, let us assume that
there are q distinct symmetric-equivalence classes in the solution of the sign determination
problem of the c0-th column, i.e., V0 = {~v|~v ∈ [~up], 0 ≤ p < q}. The set of vector pairs
which needs to be tested is {(~up, ~w)|0 ≤ p < q, ~w ∈ V1}. When the attacker finds the
representatives of matching vector pairs in V0 × V1 that are consistent with the squared
LAT, i.e., {(~up0 , ~w)|0 ≤ p0 < q, ~w ∈ V1}, the other matching vector pairs in V0 × V1 can
be constructed by the second formula in Property 3. Similarly, once the attacker obtains
c0S(x) and c1S(x) corresponding to the matching vector pairs, all other Boolean functions
can be recovered by the translation c0S(x⊕ c)⊕ d and c1S(x⊕ c)⊕ d following Property 1.

The number of the matching vector pairs between Vi and Vj is related to the number
of the Boolean functions which are DDT-equivalent to (ciS(x), cjS(x)). More precisely,
the matching phase over Vi and Vj finds the vectorial Boolean function G(x) from Fn

2 to
F2

2, whose absolute LAT is (~λ†0, ~λ†ci
, ~λ†cj

, ~λ†ci⊕cj
). Thus, G(x) shares the same DDT with

(ciS(x), cjS(x)). Note that the problem of determining the size of DDT-equivalence class
of a Boolean function from Fn

2 to F2
2 is also an open issue.

As the size of DDT-equivalence class is unknown, we restrict the prescribed DDT to
be a family of S-boxes for which the DDT-equivalence class is trivial according to the
following conjecture proposed in [BCJS19].

Conjecture 1. Suppose that S is a permutation over Fn
2 and the rows of the DDT of S

are pairwise distinct. Then, the DDT-equivalence class of S is trivial, i.e., only contains
the permutations of the form S(x⊕ c)⊕ d, where c, d ∈ Fn

2 .

The matching phase for k good columns is shown in Algorithm 4 repeating the matching
phase of the i-th good column and the (i + 1)-th good column, 0 ≤ i ≤ k − 2. For the
S-boxes with trivial DDT-equivalence class, one combination is expected to be returned
from Algorithm 4. If Conjecture 1 does not hold when the DDT-equivalence class of S is
nontrivial, lines 9 and 17 in Algorithm 4 should be removed and the search continues with
a set of the match vector pairs.

In our case, the number of solutions for good columns is O(2n). The time complexity of
Algorithm 4 is O((|V1|+ · · ·+ |Vk−1|)22n) = O(k23n). The memory complexity is negligible.

4.2 The Improved Guess-and-Determine Algorithm
Now we suppose that the attacker has obtained k (1 ≤ k < m) Boolean functions, i.e.,
c0S(x), . . . , ck−1S(x), using Algorithm 4. We present an improved GD algorithm that
takes the DDT table and the k Boolean functions as its inputs and returns a representative
of the DDT-equivalence class.

The improved GD algorithm implements the tree-traversal structure of [BCJS19]. The
improved GD algorithm begins by fixing S(0) to be zero in the initial layer. In the i-th layer,
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Algorithm 4 The Matching Phase Given k Good Columns
1: Input: the index set of the good columns C = {c0, . . . , ck−1}, the corresponding

solution sets V0, . . . , Vk−1 and the squared LAT;
2: Output: c0S(x), . . . , ck−1S(x);
3: for each i ∈ [0, k − 2] do
4: if i = 0 then
5: for each ~u ∈ {~u0, . . . , ~up} and ~v ∈ V1 do
6: ~w = 1/2Hn · (~u� ~v)
7: if ~w† = ~λ†ci⊕ci+1

then
8: ~p0 = ~u, ~p1 = ~v
9: break . this line is to be removed if the DDT-equivalence class is

nontrivial.
10: end if
11: end for
12: else
13: for each ~v ∈ Vi+1 do
14: ~w = 1/2Hn · (~pi � ~v)
15: if ~w† = ~λ†ci⊕ci+1

then
16: ~pi+1 = ~v
17: break . this line is to be removed if the DDT-equivalence class is

nontrivial.
18: end if
19: end for
20: end if
21: end for
22: Deduce c0S(x), . . . , ck−1S(x) from ~p0, . . . , ~pk−1
23: return c0S(x), . . . , ck−1S(x).

the algorithm determines the possible assignments for S(i), i = 1, . . . , 2n − 1, by checking
the constraints imposed by the DDT. We follow the notations from [BCJS19] by denoting
the set of possible values for S(i) by Ri = {y

∣∣δ(i, y) 6= 0} imposed by the given DDT. It
implies that S(i) is in the set L = {x⊕ S(0)|x ∈ Ri} ∩ · · · ∩ {x⊕ S(i− 1)|x ∈ Ri⊕(i−1)}.

In our approach, the knowledge of c0S(x), . . . , and ck−1S(x) reduces the size of the set
L. For every element x ∈ L, if any of the equalities c0x = c0S(i), · · · , ck−1x = ck−1S(i)
does not hold, x is removed from L. Then the guess and determine of [BCJS19] is applied
with the reduced lists. The reconstruction process is illustrated in a recursive way in
Algorithm 5.

Next, we analyze the time complexity of Algorithm 5 on a random S-box for 1 ≤ k < m.
The analysis of the original GD algorithm when k = 0 is presented in Appendix A. In
the first layer, after discarding the non-consistent values of S(1) based on the DDT, there
are 2mPDDT

n,m possible values on average. Similarly, after checking the constraints imposed
by c0S(x), · · · , and ck−1S(x), there are 2m−kPDDT

n,m possible values left for S(1). By
the i-th layer, the above process is repeated and the number of the possible assignments
S(1), · · · , S(i) on average is

Wi =
{

2(m−k)i(PDDT
n,m )

i2+i
2 ,0 ≤ i ≤ K,

1 ,K < i < 2n,

where K is the smallest positive integer such that 2(m−k)i(PDDT
n,m ) i2+i

2 < 1.
In the (i+1)-th layer, there are 2mPDDT

n,m possible assignments for S(i+1), where i < K.
For each possible assignment, the attacker checks whether S(i+1)⊕S(1), . . . , S(i+1)⊕S(i)
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Algorithm 5 The Improved Guess-and-Determine Algorithm
1: Input: the indices of good columns c0, . . . , ck−1, the Boolean functions
c0S(x), · · · , ck−1S(x) and the given DDT

2: Output: one representative in the DDT-equivalence class
3: ~s is initialized as a vector of 2m zeros.
4: ImprovedGD(~s, 1)
5: return ~s
6:
7: procedure ImprovedGD(~s,i)
8: if i < 2m then
9: L =

⋂
0≤j<i

{x⊕ ~s [j]|x ∈ Ri⊕j , c0S(i) = c0 · x, · · · , ck−1S(i) = ck−1 · x}

10: else
11: if the DDT of ~s matches the given DDT then
12: return ~s
13: end if
14: end if
15: if L 6= ∅ then
16: for each x ∈ L do
17: ~s [i] = x
18: ImprovedGD(~s,i+ 1)
19: end for
20: else
21: return There exist no S-boxes corresponding to the given DDT!
22: end if
23: end procedure

are consistent with the DDT. The expected complexity of this process is 1 + PDDT
n,m +

· · · + (PDDT
n,m )i < 2 tests. There are (PDDT

n,m )i+1 · 2mWi(k) possible assignments for
S(1), · · · , S(i + 1) at this stage. Each assignment should be tested with respect to the
constraints c0S(i+ 1), · · · , and ck−1S(i+ 1). The number of checks on each assignment
is also no more than 2. Thus, the time complexity of this layer is 2m+1PDDT

n,m ·Wi(k) +
2m+1(PDDT

n,m )i+1Wi(k) ≈ 2m+1 · PDDT
n,m ·Wi(k).

From the K-th layer, Wi(k) = 1 and the time complexity of each layer is no more than
2m+1PDDT

n,m . Thus, the expected time complexity of Algorithm 5 is

Tn,m(k) = 2m+1PDDT
n,m

2n−2∑
i=0

Wi(k).

We evaluate the time complexity for the original guess and determine algorithm for n = 8
with different values of m, which is shown in Table 1. It should be noted that increasing
the size of the output of the S-box (i.e., n) makes the reconstruction process easier. Thus,
an n×m S-box with m� n is not a significantly secure option when designing a secret
non-linear layer for a cryptographic primitive.

Recall that from Equation 3, the time complexity of deducing a column of the absolute
LAT from the DDT of an 8-bit S-box is about 224PDDT

n,m ≈ 223.28, which is greater than
the complexity of the original GD algorithm of 222.34. Thus, for a random 8-bit S-box, it is
better to apply the original GD algorithm when reconstructing the S-box from its DDT.

Table 1: log2 Tn,m(0) for random S-box n = 8 with different m

m 8 9 10 11 12
log2 Tn,m(0) 22.34 17.12 16.11 15.99 15.98
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We also evaluate the time complexity for the GD phase for n-bit S-box with different
k, where 9 ≤ n ≤ 14. The results are shown in Table 2. It is obvious that to optimize the
original GD algorithm, the attacker should find at least two independent good columns. It
should be noted that from Table 2, the original GD algorithm (k = 0) quickly becomes
impractical with the size of S-box growing. For example, reconstructing a 14-bit S-box
with the original GD algorithm is infeasible with the expected time complexity of about
268.37; whereas for k ≥ 9 it is no more than 227.68. Hence, given enough good columns,
our technique improves the original GD algorithm and makes the reconstruct procedure
practical to be implemented.

Table 2: log2 Tn,n(k) for random S-box 9 ≤ n ≤ 13 with Different k

n
k 0 1 2 3 4 5 6

9 28.14 29.98 24.91 20.75 18.34 17.75 17.67
10 34.7 36.79 30.98 25.92 21.91 20.04 19.71
11 42 44.35 37.79 31.97 26.94 23.18 21.86
12 50.05 52.65 45.35 38.8 32.98 27.98 24.61
13 58.84 61.7 53.66 46.35 39.8 33.98 29.05
14 68.37 71.49 62.7 54.66 47.35 40.79 34.99

n
k 7 8 9 10 11 12 13

9 17.65 17.65 - - - - -
10 19.66 19.66 19.65 - - - -
11 21.68 21.66 21.65 21.65 - - -
12 23.76 23.67 23.66 23.65 23.65 - -
13 26.21 25.71 25.66 25.66 25.65 25.65 -
14 30.18 27.96 27.68 27.66 27.65 27.65 27.65

5 Experiments
We verify our results by implementing our reconstruction technique on random S-boxes,
the S-boxes of some existing block ciphers, 4-differential uniform permutations, and APN
functions. Our experiments are implemented in C++ using a g++ compiler with -O2
optimization with a single core of an Intel(R) Xeon(R) E5-2620 v3 CPU @ 2.40GHz of 64GB
memory. The related codes are available at https://github.com/xiaohuangthu/sbox.

5.1 Random S-boxes
For each 8 ≤ n ≤ 14, we compare the performance of the GD algorithm and our approach
by implementing the two methods on 100 random n-bit S-boxes. For 8 ≤ n ≤ 12, we set
the threshold H to be 2000. The necessary memory for 8 ≤ n ≤ 12 is 4.2MB, 10.4MB,
26.9MB, 67.7MB, and 172.6MB, respectively according to our analysis in Section 3.5. For
the 13-bit instances, when H = 2000, there are not enough good columns found. Thus, the
threshold is increased to 6000 for the random 13-bit S-boxes, which costs 1.2GB memory
at most. We set H = 12000 for the same reason when reconstructing 14-bit cases, which
needs 5.3GB memory at most. We also note that as shown in Table 2 when the number of
good columns grows, the effect of reducing the search phase of the GD phase becomes less
significant. In the experiments, we set the value of k to make the complexity of the GD
phase practical, e.g., k = 6 for n = 14.

The running time of the GD algorithm and our approach is shown in Figure 3. We
denote the running time as T . The time measurements of our approach include finding
sufficient number of good columns and using them for recovering the S-box. The statistical
data of the running time on the instances is presented in Table 3. The running time of the
original GD algorithm for larger S-boxes (i.e., 12-, 13-, and 14-bit) is estimated based on
the following approach:

https://github.com/xiaohuangthu/sbox
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Figure 3: The Running Time on Random S-boxes

Table 3: The Statistical Data for The Instances
n k Min (s) Max (s) Average (s) Median (s) Standard Deviation Method
8 0 8.01× 10−4 0.07 0.01 0.01 0.01 GD algorithm
8 2 0.03 0.11 0.05 0.05 0.01 Our Approach
9 0 0.01 1.70 0.49 0.05 0.42 GD algorithm
9 3 0.39 0.70 0.50 0.49 0.06 Our Approach

10 0 0.88 159.94 45.80 38.83 36.0 GD algorithm
10 3 4.98 6.74 5.48 5.45 0.32 Our Approach
11 0 86.97 2.56× 104 8.20× 103 7.00× 103 6.26× 103 GD algorithm
11 4 43.61 94.68 58.23 57.00 11.34 Our Approach
12 0 3.88× 104 8.73× 106 3.66× 106 4.17× 106 2.17× 106 GD algorithm
12 4 584.22 1437.26 962.33 925.08 167.38 Our Approach
13 0 5.72× 107 3.90× 109 1.83× 109 1.96× 109 9.90× 108 GD algorithm
13 6 6.68× 103 1.22× 104 8.07× 103 8.04× 103 878.56 Our Approach
14 0 1.90× 108 1.09× 1012 4.79× 1011 4.78× 1011 2.88× 1011 GD algorithm
14 6 6.93× 104 8.81× 104 7.52× 104 7.39× 104 4.07× 103 Our Approach

As mentioned, the time complexity of the GD algorithm on random 14-bit S-boxes is
about 268.27. Obviously, we have not run an experiment for that long. Indeed we estimate
the running time of the GD algorithm using the following methodology: first, we fix S(1),
· · · , S(4), and S(5) to the correct values and apply the GD algorithm on the remaining
values, denoting the running time to be t0. Then, we repeat the procedure with wrong
assignments for S(1), · · · , S(4), and S(5) for 100 times. We denote the average running
time for a wrong guess by t1. Thus, if there are C assignments to check before the correct
one for S(1), · · · , S(4), and S(5), then the estimated running time is t0 + C · t1.

It can be seen from Figure 3 that the advantage of our approach over the GD algorithm
sharply increases when the size of the S-box grows. Among 100 random 8-bit S-boxes, our
approach is better than the GD algorithm in 2 cases. For the random 9-bit S-boxes, our
approach is better in 44 cases. For the random 10-bit S-boxes, our approach is better in 87
instances. When the input size of S-boxes is larger than 11, our approach is better in all
cases. For example, as shown in Table 3, the average running time of the GD algorithm on
the random 14-bit S-boxes is approximately 15178.9 years. The average running time of
our approach is 7.52× 104s, which is less than one day. It can be seen from the standard
deviation in Table 3 that the running time of our approach is more stable than the GD
algorithm.

5.2 Specific S-boxes of Existing Ciphers
We also run experiments on the 8-bit S-boxes of several block ciphers, including AES [DR02],
Camellia [AIK+01], SEED [IA], ARIA [KKP+04], SKIPJACK [Age], CLEFIA [SSA+07],
and Streebog [oTRM]. In these experiments, Algorithm 3 is applied to solve the sign
determination problems with the threshold preset to be 2000 and the number of good
columns is set to 2. While for many of the tested S-boxes, we have found good columns; for
the S-box S0 of CLEFIA, there exists no good column in its absolute LAT. The running
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Table 4: The Running Time for Existing S-boxes

AES ARIA Camellia CLEFIA-S0 CLEFIA-S1
GD Algorithm 1.8s 1.88s 2.47s 0.004s 3.27s

Our Approach (k = 2) 0.07s 0.085s 0.188s - 0.29s
SEED-S0 SEED-S1 Skipjack Streebog

GD Algorithm 1.59s 9.19s 0.021s 0.049s
Our Approach (k = 2) 0.15s 0.23s 0.063s 0.051s

time of the experiments is shown in Table 4.
It can be seen from Table 4 that it is more effective to reconstruct the S-boxes of

AES, ARIA, SEED, Camellia, and S1 of CLEFIA from their DDT by solving the sign
determination problem of two independent columns and applying Algorithm 5 with the
knowledge of two Boolean functions related to the S-box. For example, using the GD
algorithm, the reconstruction procedure takes 9.19s to recover the S1 in SEED from its
DDT. However, when the attacker solves the sign determination problem of two independent
columns, the reconstruction costs only 0.23s. It should be noted that the S-boxes of AES,
ARIA, SEED, Camellia and S1 of CLEFIA are of 4-differential uniformity.

For other 8-bit S-boxes in our experiments, i.e., the S-boxes of Streebog, Skipjack and
S0 of CLEFIA, it is more effective to reconstruct the S-box from its DDT with the original
GD algorithm of [BCJS19]. It should be noted that the S-boxes of Streebog, Skipjack and
S0 in CLEFIA are 8-, 12-, and 10-differential uniformity, respectively.

5.3 4-differential uniformity S-boxes and APN functions
We applied our algorithms on some 4-differential uniformity permutations in Table 1 of
[BCC10] for the input size between 9 and 14. The threshold is set to 12000. Although
it is difficult to reconstruct the S-boxes with low differential uniformity according to
our experiments, we can still find good columns in the absolute LAT of the 10-bit and
14-bit inverse functions, respectively. For example, there are 3 good columns found in
the absolute LAT of the 14-bit inverse function, which reduce the searching space of
guess-and-determine algorithm sharply.

It is hard to find good columns in the absolute LAT of APN functions. We applied our
technique to the 7-bit S-box S7 and 9-bit S-box S9 in the block ciphers KASUMI [KAS],
MISTY1 [Mat97], which are designed to be the APN permutations. We found no good
columns in the absolute LATs of KASUMI’s S7 and S9 and MISTY1’s S7 and S9 even
when we set the threshold H = 12000. Then, with the same threshold, we applied our
technique to the APN functions of the input size between 6 and 11 listed in Table 3
of [Sun17]. It is interesting to note that we find good columns only in the 6-bit APN
functions, the 8-bit Kasami function and the inverse functions with 7-bit, 9-bit and 11-bit
input, respectively. Hence for such functions it seems that the standard GD algorithm in
[BCJS19] is better than ours.

6 Conclusions
In this paper we presented a new algorithm for reconstructing an S-box from its DDT.
The new algorithm is more efficient than the guess-and-determine algorithm proposed by
Boura et al. in [BCJS19], for random S-boxes starting at the size of 10 bits, it outperforms
the previous GD algorithm by several orders of magnitude.

Most notably, the new algorithm can be useful to explore problems related to DDTs.
This includes theoretical explorations (e.g., whether there are two DDT-equivalent bijective
S-boxes which are not linearly equivalent) or even the ability to construct an S-box from a
“made up” DDT (i.e., picking the DDT and then constructing an S-box out of it), thus
extending the analysis of Biryukov and Perrin in [BP15] for partial DDT constraints. We
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note that this capability may be used for designing stronger S-boxes with a 0 in selected
places of the DDT. This would allow, for example, to make sure that differences which are
optimal with respect to the linear layers (e.g., activate less S-boxes in non-full diffusion
layers) cannot “co-exist” through the S-box itself.

Another related open problems are the problems of reconstructing an S-box from
its Boomerang Connectivity Table, introduced in [CHP+18] and its Differential-Linear
Connectivity Table, introduced in [BODKW19], respectively. These two tables are useful
for evaluating the boomerang attack [Wag99] and the differential-linear attack [LH94],
respectively. Both tables are related to the DDT. Hence, while at the moment there are
no attacks that recover the BCT and DLCT of an unknown S-box, requiring the ability of
reconstructing an S-box from them, this ability to reconstruct may help in exploring the
properties of BCTs and DLCTs.
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A The Time Complexity of the Original Guess-and-Determine
Algorithm

The original guess-and-determine algorithm in [BCJS19] also returns a representative S in
the set {S(x⊕ c)⊕ d

∣∣c ∈ Fn
2 , d ∈ Fm

2 }. To achieve so, the attacker can fix S(0) to be zero
and fix S(1) to be any value in Ri. Thus, there is one possible case after the first layer.
Similar to the analysis in Section 4.2, the number of the possible cases at the end of the
i-th layer is

Wi =


1 ,i = 1,

2m(i−1)(PDDT
n,m )

i2+i−2
2 ,2 ≤ i ≤ K,

1 ,K < i < 2n,

where K is smallest positive integer such that 2m(i−1)(PDDT
n,m ) i2+i−2

2 < 1. In the (i+ 1)-th
layer, the attacker need to check the consistency of 2mPDDT

n,m Wi cases with respect to
the DDT. The complexity of the (i+ 1)-th layer is no more than 2m+1PDDT

n,m Wi. As the
algorithm starts from searching the assignment of S(2), the time complexity of the original
guess-and-determine algorithm is

Tn,m(0) = 2m+1PDDT
n,m

2n−2∑
i=1

Wi.
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