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Background and Motivation



Difference Distribution Table (DDT) of an S-box S
Let S be a Boolean function from Fn

2 into Fm
2

δ(a, b) =
∣∣{z ∈ Fn

2

∣∣S(z ⊕ a)⊕ S(z) = b}
∣∣ .



I S-box→ DDT: Easy

I DDT→ S-box: Difficult

I The ability to recover the S-box from the DDT of a secret
S-box can be used in cryptanalytic attacks.

I Boura et al. [BCJS19] proposed a straightforward guess and
determine (GD) algorithm to solve the problem.

I Using the well established relation between the DDT and the
linear approximation table (LAT), we devise a new approach
to reconstruct an S-box from its DDT.



Linear Approximation Table (LAT) of an S-box S

λ(a, b) =
∣∣{x ∈ Fn

2

∣∣a · x ⊕ b · S(x) = 0}
∣∣− 2n−1

=
1

2

∑
x∈Fn

2

(−1)a·x⊕b·S(x)



Walsh-Hadamard Transform
Let f : Fn

2 × Fm
2 → R be a function. f̂ denotes its

Walsh-Hadamard transform, which is equal to:

f̂ (a, b) =
∑
x ,y

f (x , y)(−1)a·x⊕b·y ,

where a ∈ Fn
2, b ∈ Fm

2 and a · x and b · y are the inner product over
the domains Fn

2 and Fm
2 , respectively.



Links between an S-box, its DDT and LAT



Lemma 1.
([CV95, Lemma 2]) For (a, b) ∈ Fn

2 × Fm
2 , let θ(a, b) be the

characteristic function of S , i.e., θ(a, b) = 1 if and only if
S(a) = b; otherwise θ(a, b) = 0. Then,

λ̂(a, b) = 2m+n−1θ(a, b).

Theorem 2.
([BN13, CV95, DGV95]) For all (a, b) ∈ Fn

2 × Fm
2 ,

1. δ̂(a, b) = 4λ2(a, b),

2. 4λ̂2(a, b) = 2m+nδ(a, b),

where λ̂2(a, b) is the Walsh-Hadamard transform of λ2(a, b), the
squared LAT.
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The Sign Determination Problem

Definition 3.
We define the † notion as follows:

~v † = (|v0|, . . . , |v`−1|)T ,

where ~v = (v0, . . . , v`−1)T and | · | is the absolute value of a
number.

Definition 4.
Given ~λ†b where 1 ≤ b < 2m, the sign determination problem of the

b-th column in an LAT is the problem of recovering ~λb from ~λ†b,
i.e., determining the signs of λ(a, b), 0 ≤ a < 2n.
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The Linear Relation between ~λb and ~sb

Theorem 5.
For any b-th column of the linear approximation table (for
0 ≤ b < 2m), the following formula holds

Hn~sb = 2~λb.

Definition 6.
Let H0 = (1), then the Hadamard matrix Hi can be represented as

Hi =

(
Hi−1 Hi−1

Hi−1 −Hi−1

)
, i ≥ 1.
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Solving the System of Linear Equations Hn~x = ~y

(Hn, ~y) =

(
Hn−1 Hn−1 ~y [0,2n−1−1]

Hn−1 −Hn−1 ~y [2n−1,2n−1]

)

⇒

(
Hn−1 0 (~y [0,2n−1−1] + ~y [2n−1,2n−1])/2

0 Hn−1 (~y [0,2n−1−1] − ~y [2n−1,2n−1])/2

)
...

⇒

 H0 · · · 0 ~x [0]
. . .

...
0 · · · H0 ~x [2n − 1]

 .

Apply the elementary transformation to the independent
subproblems by n times.



The Given DDT The Squared LAT The Sign Determination Problem

Improved GD AlgorithmThe Sbox

I The Linear Relation between ~λb and ~sb
I Solving the System of Linear Equations Hn~x = ~y

I Basic Algorithm

I Improved Algorithm



Basic Algorithm

       

       
2
[0] 1,1,1, 1 , 1, 1, 1,1 , 1,1, 1,1 , 1, 1,1, 1 ,

1, 1,1,1 , 1,1, 1, 1 , 1,1,1,1 , 1, 1, 1, 1

T         

       

        1
[1] 2,0 , 0,2 , 2,0 , 0, 2T   

 0
[0] 2T    0

[1] 2T    0
[2] 2T    0

[3] 2T  

        1
[0] 2,0 , 0,2 , 2,0 , 0, 2T   

 
†

1,1,1,1
b
  

Figure 1: The Tree Structure for n = 2

I Apply the idea of solving the system of linear equations
Hn~x = ~y to reduce the problem into two independent
subproblems.

I The possible i-th constraint of subproblems is stored as a
vector.

I A full set contains all the possible i-th constraints.



The size of the full sets in the intermediate layers
grows so fast!
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Improved Algorithm

 0 0 0 0
[4] [5] [6] [7] 4C C C C    0 0 0 0

[0] [1] [2] [3] 0C C C C   

  1 1 1 1
[0] [1] [2] [3] 2，-2C C C C   

  2 2
[0] [1] 2，0，-2，0C C 

  3
[0] 1，1，1，-1，-1，-1，-1，1C 

Figure 2: The Tree Structure for a Sign Determination Problem

I The symmetric structure of the full set

I Only record the representatives of the equivalence classes in
the compact set.

I The compact representation reduces both time and memory
complexity.



Algorithm 1: Constructing M~u,~w from ~u ∈ C`[i ] and ~w ∈ C`[i + 2n−`−1]

1: procedure ConstructSet(~u,[~w ]+, J)
2: M~u,~w = [~w ]+

3: for all integers j ∈ J do
4: Find π`

j0
, . . . , π`

jp−1
such that ~u = ±π`

jp−1
◦ · · · ◦ π`

j0
(~u)

5: for all the distinct vectors ~e, ~f in M~u,~w do

6: if ~e = ±π`
jp−1
◦ · · · ◦ π`

j0
(~f ) then

7: M~u,~w = M~u,~w\{~f }
8: end if
9: end for

10: end for
11: return M~u,~w

12: end procedure

In this way, the compact set C`+1[i ] is indeed constructed by
combining ~u ∈ C`[i ] and ~v in each M~u,~w .



Algorithm 2: Improved Algorithm for Solving the Sign Determination
Problem

1: Input: ~λ†b;

2: Output: F = {~u|Hn~u = 2~λb, ~u[0] = 1}
3: for each integer i ∈ [0, 2n − 1] do
4: C0[i ] = {2λ†(i , b)} . Initialization
5: end for
6: Cn[0] = Layer(C0, 0)
7: Construct the full set Fn[0] from Cn[0].
8: return F = {~u|~u ∈ Fn[0], ~u[0] = 1}.
9:

10: procedure Layer(C`, `);
11: for each integer i ∈ [0, 2n−`−1 − 1] do
12: if there are no vectors in C`[i ] or C`[i + 2n−`−1] then
13: return There exist no S-boxes corresponding to the given DDT!
14: end if
15: C`+1[i ] = ∅
16: Randomly pick a vector from C`[i ] and compute J = {j

∣∣C`[i ] is
j-symmetric, 0 ≤ j < `}

17: for each ~w in C`[i + 2n−`−1] do
18: for each ~u in C`[i ] do
19: M = ConstructSet(~u, [~w ]+, J)
20: for each ~v in M do



21: ~r = E`(~u, ~v)
22: if ` < n then
23: if every entry in ~r is even and [−2n−`−1, 2n−`−1] then
24: C`+1[i ] = C`+1[i ] ∪ {~r}
25: else
26: Discard ~r
27: end if
28: else
29: if every entry in ~r is 1 or −1 then . when ` = n
30: Cn[i ] = Cn[i ] ∪ {~r}
31: else
32: Discard ~r
33: end if
34: end if
35: end for
36: end for
37: end for
38: end for
39: if ` < n then
40: Layer(C`+1,`+ 1)
41: else
42: return Cn[0]
43: end if
44: end procedure



For some cases, the size of the compact sets still
grows very fast!



Heuristic Threshold

I A threshold H on the number of internal vectors can be preset
heuristically with respect to the accessible memory of the
attacker.

I We call a column in the absolute LAT good if it can be
recovered under the threshold H applying Algorithm 2;
otherwise bad.

I According to our experiments with input size n between 8 and
14, the solutions for the good columns contains at most two
equivalence classes.



Complexity Analysis of Algorithm 2

I The memory complexity of Algorithm 2 is O(H · n22n + n22n)
bits.

I The upper bound of the time complexity is O(H223n).
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The Matching Phase for k Independent Good Columns

Definition 7.
The c0-th, . . . , the ck−1-th columns in the LAT where
0 ≤ c0 < · · · < ck−1 < 2m are independent columns if the binary
representations of c0, . . . , ck−1 are linearly independent over Fm

2 .



Theorem 8.
For any 0 ≤ b, c < 2n,

~λb⊕c = 2Hn · ~sb � ~sc ,

where ~sb � ~sc is the Hadamard product of these vectors, i.e.
~sb � ~sc = (~sb[0] · ~sc [0], . . . , ~sb[2n − 1] · ~sc [2n − 1])T .



Algorithm 3: The Matching Phase Given k Good Columns

1: Input: the index set of the good columns C = {c0, . . . , ck−1}, the corresponding
solution sets V0, . . . ,Vk−1 and the squared LAT;

2: Output: c0S(x), . . . , ck−1S(x);
3: for each i ∈ [0, k − 2] do
4: if i = 0 then
5: for each ~u ∈ {~u0, . . . , ~up} and ~v ∈ V1 do
6: ~w = 1/2Hn · (~u � ~v)

7: if ~w† = ~λ†ci⊕ci+1
then

8: ~p0 = ~u, ~p1 = ~v
9: break . this line is to be removed if the DDT-equivalence class is

nontrivial.
10: end if
11: end for
12: else
13: for each ~v ∈ Vi+1 do
14: ~w = 1/2Hn · (~pi � ~v)

15: if ~w† = ~λ†ci⊕ci+1
then

16: ~pi+1 = ~v
17: break . this line is to be removed if the DDT-equivalence class is

nontrivial.
18: end if
19: end for



20: end if
21: end for
22: Deduce c0S(x), . . . , ck−1S(x) from ~p0, . . . , ~pk−1

23: return c0S(x), . . . , ck−1S(x).
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Algorithm 4: Improved Guess-and-determine Algorithm

1: Input: c0, . . . , ck−1, c0S(x), · · · , ck−1S(x) and the given DDT
2: Output: one representative in the DDT-equivalence class
3: ~s is initialized as a vector of 2m zeros.
4: ImprovedGD(~s, 1)
5: return ~s
6: procedure ImprovedGD(~s,i)
7: if i < 2m then
8: L =

⋂
0≤j<i

{x ⊕ ~s [j]|x ∈ Ri⊕j , c0S(i) = c0 · x , · · · , ck−1S(i) = ck−1 · x}

9: else
10: if the DDT of ~s matches the given DDT then
11: return ~s
12: end if
13: end if
14: if L 6= ∅ then
15: for each x ∈ L do
16: ~s [i ] = x
17: ImprovedGD(~s,i + 1)
18: end for
19: else
20: return There exist no S-boxes corresponding to the given DDT!
21: end if
22: end procedure



Complexity Analysis of the GD Phase

The expected time complexity of Algorithm 4 is

Tn,m(k) = 2m+1PDDT
n,m

2n−2∑
i=0

Wi (k),

Wi =

{
2(m−k)i (PDDT

n,m )
i2+i

2 ,0 ≤ i ≤ K ,

1 ,K < i < 2n,

where K is the smallest positive integer such that

2(m−k)i (PDDT
n,m )

i2+i
2 < 1.
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Figure 3: log2 T8,m(0) for 8-bit input S-box with different sizes of output

I Increasing the size of the output of the S-box (i.e., m) makes
the reconstruction process easier.
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Figure 4: log2 Tn,n(k) for random n-bit S-box with different k

I The original GD algorithm (k = 0) quickly becomes
impractical with the size of S-box growing.

I To optimize the original GD algorithm, the attacker should
find at least two independent good columns.

I When the number of good columns grows, the effect of
reducing the search space of the GD phase becomes less
significant.



Experiment Results

Three types of Boolean functions:

I Random S-boxes

I Specific S-boxes of Existing Ciphers

I 4-differential uniformity S-boxes and APN functions

A single core of an Intel(R) Xeon(R) E5-2620 v3 CPU @ 2.40GHz of 64GB

memory.



Random S-boxes

n k Min (s) Max (s) Average (s) Median (s) Standard Deviation Method

8 0 8.01× 10−4 0.07 0.01 0.01 0.01 GD algorithm
8 2 0.03 0.11 0.05 0.05 0.01 Our Approach
9 0 0.01 1.70 0.49 0.05 0.42 GD algorithm
9 3 0.39 0.70 0.50 0.49 0.06 Our Approach

10 0 0.88 159.94 45.80 38.83 36.0 GD algorithm
10 3 4.98 6.74 5.48 5.45 0.32 Our Approach

11 0 86.97 2.56× 104 8.20× 103 7.00× 103 6.26× 103 GD algorithm
11 4 43.61 94.68 58.23 57.00 11.34 Our Approach

12 0 3.88× 104 8.73× 106 3.66× 106 4.17× 106 2.17× 106 GD algorithm
12 4 584.22 1437.26 962.33 925.08 167.38 Our Approach

13 0 5.72× 107 3.90× 109 1.83× 109 1.96× 109 9.90× 108 GD algorithm

13 6 6.68× 103 1.22× 104 8.07× 103 8.04× 103 878.56 Our Approach

14 0 1.90× 108 1.09× 1012 4.79× 1011 4.78× 1011 2.88× 1011 GD algorithm

14 6 6.93× 104 8.81× 104 7.52× 104 7.39× 104 4.07× 103 Our Approach

Table 1: The Statistical Data for The Instances

I 4.79× 1011s are approximately 15178.9 years and 7.52× 104s
are less than one day.
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n k Min (s) Max (s) Average (s) Median (s) Standard Deviation Method

8 0 8.01× 10−4 0.07 0.01 0.01 0.01 GD algorithm
8 2 0.03 0.11 0.05 0.05 0.01 Our Approach
9 0 0.01 1.70 0.49 0.05 0.42 GD algorithm
9 3 0.39 0.70 0.50 0.49 0.06 Our Approach

10 0 0.88 159.94 45.80 38.83 36.0 GD algorithm
10 3 4.98 6.74 5.48 5.45 0.32 Our Approach

11 0 86.97 2.56× 104 8.20× 103 7.00× 103 6.26× 103 GD algorithm
11 4 43.61 94.68 58.23 57.00 11.34 Our Approach

12 0 3.88× 104 8.73× 106 3.66× 106 4.17× 106 2.17× 106 GD algorithm
12 4 584.22 1437.26 962.33 925.08 167.38 Our Approach

13 0 5.72× 107 3.90× 109 1.83× 109 1.96× 109 9.90× 108 GD algorithm

13 6 6.68× 103 1.22× 104 8.07× 103 8.04× 103 878.56 Our Approach

14 0 1.90× 108 1.09× 1012 4.79× 1011 4.78× 1011 2.88× 1011 GD algorithm

14 6 6.93× 104 8.81× 104 7.52× 104 7.39× 104 4.07× 103 Our Approach

Table 2: The Statistical Data for The Instances

I Our approach is much more stable than GD algorithm.
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Figure 5: The Running Time on Random S-boxes

I The advantage of our approach over the GD algorithm sharply
increases when the size of the S-box grows.
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Figure 6: The Running Time on Random S-boxes

I When the input size of S-boxes is larger than 11, our
approach is better in all cases.
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Figure 7: The Running Time on Specific S-boxes

I No good column is found in the S-box S0 of CLEFIA.

I Our approach is better: AES, ARIA, SEED, Camellia, and S1
of CLEFIA.

I GD algorithm is better: Streebog, Skipjack and S0 of CLEFIA.



4-differential uniformity S-boxes and APN functions

I It is difficult to find good columns in the absolute LAT of the
S-boxes with low differential uniformity.

I It is also hard to find good columns in the absolute LAT of
APN functions.



Conclusion and Open Problem



I We presented a new algorithm for reconstructing an S-box
from its DDT. The new algorithm is more efficient than the
guess-and-determine algorithm proposed by Boura et al. in
[BCJS19], for random S-boxes starting at the size of 10 bits,
it outperforms the previous GD algorithm by several orders of
magnitude.

I The new algorithm can be useful to explore problems related
to DDTs.

I Another related open problems are the problems of
reconstructing an S-box from its Boomerang Connectivity
Table, introduced in [CHP+18] and its Differential-Linear
Connectivity Table, introduced in [BODKW19], respectively.



Thank you for your attention!
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