Reconstructing an S-box from its Difference Distribution Table

Orr Dunkelman, Senyang Huang

Department of Computer Science, University of Haifa, Haifa, Israel

2020.11.5

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Background and Motivation

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

Difference Distribution Table (DDT) of an S-box S Let S be a Boolean function from \mathbb{F}_2^n into \mathbb{F}_2^m

$$\delta(a,b) = \left| \{z \in \mathbb{F}_2^n | S(z \oplus a) \oplus S(z) = b \} \right|.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- ► S-box→ DDT: Easy
- ► DDT→ S-box: Difficult
- The ability to recover the S-box from the DDT of a secret S-box can be used in cryptanalytic attacks.
- Boura et al. [BCJS19] proposed a straightforward guess and determine (GD) algorithm to solve the problem.
- Using the well established relation between the DDT and the linear approximation table (LAT), we devise a new approach to reconstruct an S-box from its DDT.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Linear Approximation Table (LAT) of an S-box S

$$\begin{aligned} \lambda(a,b) &= \left| \left\{ x \in \mathbb{F}_2^n \middle| a \cdot x \oplus b \cdot S(x) = 0 \right\} \right| - 2^{n-1} \\ &= \frac{1}{2} \sum_{x \in \mathbb{F}_2^n} (-1)^{a \cdot x \oplus b \cdot S(x)} \end{aligned}$$

Walsh-Hadamard Transform

Let $f : \mathbb{F}_2^n \times \mathbb{F}_2^m \to \mathbb{R}$ be a function. \hat{f} denotes its Walsh-Hadamard transform, which is equal to:

$$\hat{f}(a,b) = \sum_{x,y} f(x,y)(-1)^{a \cdot x \oplus b \cdot y},$$

where $a \in \mathbb{F}_2^n$, $b \in \mathbb{F}_2^m$ and $a \cdot x$ and $b \cdot y$ are the inner product over the domains \mathbb{F}_2^n and \mathbb{F}_2^m , respectively.

Links between an S-box, its DDT and LAT

Lemma 1.

([CV95, Lemma 2]) For $(a, b) \in \mathbb{F}_2^n \times \mathbb{F}_2^m$, let $\theta(a, b)$ be the characteristic function of S, i.e., $\theta(a, b) = 1$ if and only if S(a) = b; otherwise $\theta(a, b) = 0$. Then,

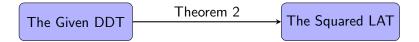
$$\hat{\lambda}(a,b) = 2^{m+n-1}\theta(a,b).$$

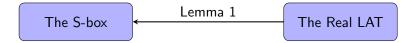
Theorem 2. ([BN13, CV95, DGV95]) For all $(a, b) \in \mathbb{F}_2^n \times \mathbb{F}_2^m$,

1.
$$\hat{\delta}(a,b) = 4\lambda^2(a,b),$$

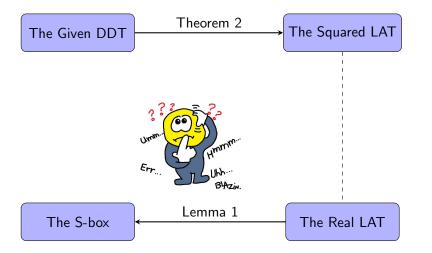
2. $4\lambda^2(a,b) = 2^{m+n}\delta(a,b),$

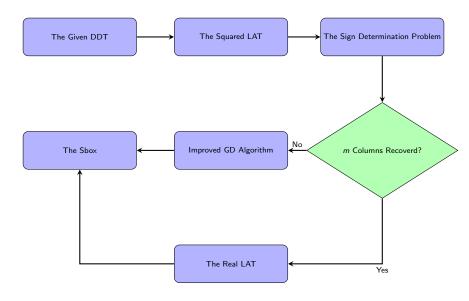
where $\widehat{\lambda^2}(a, b)$ is the Walsh-Hadamard transform of $\lambda^2(a, b)$, the squared LAT.





▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ





▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Sign Determination Problem

Definition 3.

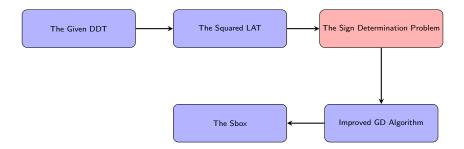
We define the † notion as follows:

$$\vec{v}^{\dagger} = (|v_0|, \dots, |v_{\ell-1}|)^T,$$

where $\vec{v} = (v_0, \dots, v_{\ell-1})^T$ and $|\cdot|$ is the absolute value of a number.

Definition 4.

Given $\vec{\lambda}_{b}^{\dagger}$ where $1 \leq b < 2^{m}$, the sign determination problem of the *b*-th column in an LAT is the problem of recovering $\vec{\lambda}_{b}$ from $\vec{\lambda}_{b}^{\dagger}$, i.e., determining the signs of $\lambda(a, b), 0 \leq a < 2^{n}$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The Linear Relation between $\vec{\lambda}_b$ and \vec{s}_b
- Solving the System of Linear Equations $H_n \vec{x} = \vec{y}$
- Basic Algorithm
- Improved Algorithm

The Linear Relation between $\vec{\lambda}_b$ and \vec{s}_b

Theorem 5.

For any b-th column of the linear approximation table (for $0 \le b < 2^m$), the following formula holds

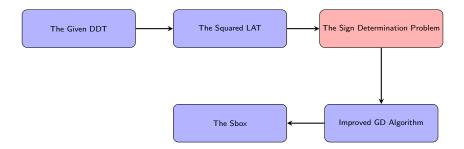
$$H_n \vec{s}_b = 2\vec{\lambda}_b.$$

Definition 6.

Let $H_0 = (1)$, then the Hadamard matrix H_i can be represented as

$$H_i = \begin{pmatrix} H_{i-1} & H_{i-1} \\ H_{i-1} & -H_{i-1} \end{pmatrix}, i \ge 1.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

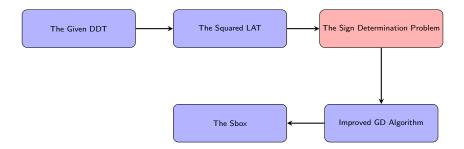


▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The Linear Relation between $\vec{\lambda}_b$ and \vec{s}_b
- Solving the System of Linear Equations $H_n \vec{x} = \vec{y}$
- Basic Algorithm
- Improved Algorithm

Solving the System of Linear Equations $H_n \vec{x} = \vec{y}$

Apply the elementary transformation to the independent subproblems by n times.



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- The Linear Relation between $\vec{\lambda}_b$ and \vec{s}_b
- Solving the System of Linear Equations $H_n \vec{x} = \vec{y}$

Basic Algorithm

Improved Algorithm

Basic Algorithm

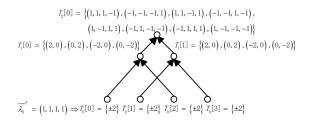


Figure 1: The Tree Structure for n = 2

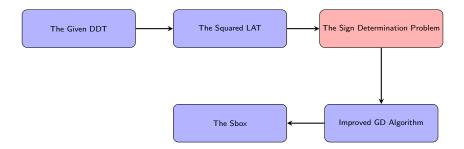
- Apply the idea of solving the system of linear equations $H_n \vec{x} = \vec{y}$ to reduce the problem into two independent subproblems.
- The possible *i*-th constraint of subproblems is stored as a vector.

ロト (四) (三) (三) (三) (三) (三) (三)

► A *full set* contains all the possible *i*-th constraints.

The size of the full sets in the intermediate layers grows so fast!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The Linear Relation between $\vec{\lambda}_b$ and \vec{s}_b
- Solving the System of Linear Equations $H_n \vec{x} = \vec{y}$
- Basic Algorithm
- Improved Algorithm

Improved Algorithm

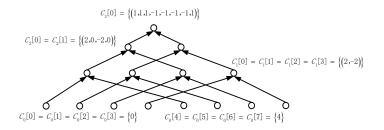


Figure 2: The Tree Structure for a Sign Determination Problem

- The symmetric structure of the full set
- Only record the representatives of the equivalence classes in the *compact set*.
- The compact representation reduces both time and memory complexity.

Algorithm 1: Constructing $M_{\vec{u},\vec{w}}$ from $\vec{u} \in C_{\ell}[i]$ and $\vec{w} \in C_{\ell}[i+2^{n-\ell-1}]$

```
1:
        procedure CONSTRUCTSET(\vec{u}, [\vec{w}]^+, J)
 2:
               M_{\vec{u},\vec{w}} = [\vec{w}]^+
 3:
              for all integers i \in J do
                     Find \pi_{i_0}^{\ell}, \ldots, \pi_{i_{n-1}}^{\ell} such that \vec{u} = \pm \pi_{i_{n-1}}^{\ell} \circ \cdots \circ \pi_{i_0}^{\ell}(\vec{u})
 4:
 5:
                     for all the distinct vectors \vec{e}, \vec{f} in M_{\vec{u}, \vec{w}} do
                           if \vec{e} = \pm \pi_{i_0}^{\ell} \circ \cdots \circ \pi_{i_0}^{\ell}(\vec{f}) then
 6:
                                  M_{\vec{u},\vec{w}} = M_{\vec{u},\vec{w}} \setminus \{\vec{f}\}
 7:
 8:
                            end if
 9:
                     end for
              end for
10:
11:
               return M_{\vec{n},\vec{n}}
12: end procedure
```

In this way, the compact set $C_{\ell+1}[i]$ is indeed constructed by combining $\vec{u} \in C_{\ell}[i]$ and \vec{v} in each $M_{\vec{u},\vec{w}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algorithm 2: Improved Algorithm for Solving the Sign Determination Problem

1: Input: $\vec{\lambda}_{h}^{\dagger}$; 2: **Output:** $F = \{\vec{u} | H_n \vec{u} = 2\vec{\lambda}_b, \vec{u}[0] = 1\}$ 3: for each integer $i \in [0, 2^n - 1]$ do 4: $C_0[i] = \{2\lambda^{\dagger}(i, b)\}$ Initialization 5: end for 6: $C_n[0] = \text{LAYER}(C_0, 0)$ 7: Construct the full set $F_n[0]$ from $C_n[0]$. 8: return $F = \{\vec{u} | \vec{u} \in F_n[0], \vec{u}[0] = 1\}.$ 9: 10: procedure LAYER(C_{ℓ} , ℓ); for each integer $i \in [0, 2^{n-\ell-1}-1]$ do 11: if there are no vectors in $C_{\ell}[i]$ or $C_{\ell}[i+2^{n-\ell-1}]$ then 12: 13: return There exist no S-boxes corresponding to the given DDT! 14: end if 15: $C_{\ell+1}[i] = \emptyset$ Randomly pick a vector from $C_{\ell}[i]$ and compute $J = \{j | C_{\ell}[i] \}$ is 16: *j*-symmetric, $0 \le j < \ell$ 17: for each \vec{w} in $C_{\ell}[i+2^{n-\ell-1}]$ do for each \vec{u} in $C_{\ell}[i]$ do 18: 19: $M = \text{CONSTRUCTSET}(\vec{u}, [\vec{w}]^+, J)$ 20: for each \vec{v} in M do

21:	$ec{r}={\sf E}_\ell(ec{u},ec{v})$
22:	if $\ell < n$ then
23:	if every entry in \vec{r} is even and $[-2^{n-\ell-1}, 2^{n-\ell-1}]$ then
24:	$C_{\ell+1}[i] = C_{\ell+1}[i] \cup \{\vec{r}\}$
25:	else
26:	Discard \vec{r}
27:	end if
28:	else
29:	if every entry in \vec{r} is 1 or -1 then \triangleright when $\ell = n$
30:	$C_n[i] = C_n[i] \cup \{\vec{r}\}$
31:	else
32:	Discard \vec{r}
33:	end if
34:	end if
35:	end for
36:	end for
37:	end for
38:	end for
39:	if $\ell < n$ then
40:	$L_{AYER}(C_{\ell+1}, \ell+1)$
41:	else
42:	return $C_n[0]$
43:	end if
44:	end procedure

For some cases, the size of the compact sets still grows very fast!

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Heuristic Threshold

- A threshold H on the number of internal vectors can be preset heuristically with respect to the accessible memory of the attacker.
- We call a column in the absolute LAT good if it can be recovered under the threshold H applying Algorithm 2; otherwise bad.
- According to our experiments with input size *n* between 8 and 14, the solutions for the good columns contains at most two equivalence classes.

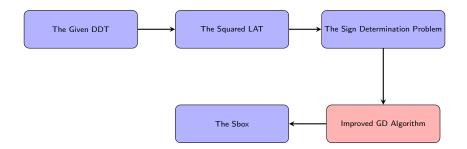
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Complexity Analysis of Algorithm 2

• The memory complexity of Algorithm 2 is $O(H \cdot n^2 2^n + n2^{2n})$ bits.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The upper bound of the time complexity is $O(H^2 2^{3n})$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ The Matching Phase for *k* Independent Good Columns

Improved Guess-and-determine Algorithm

The Matching Phase for k Independent Good Columns

Definition 7.

The c_0 -th, ..., the c_{k-1} -th columns in the LAT where $0 \le c_0 < \cdots < c_{k-1} < 2^m$ are *independent columns* if the binary representations of c_0, \ldots, c_{k-1} are linearly independent over \mathbb{F}_2^m .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem 8.

For any $0 \leq b, c < 2^n$,

$$\vec{\lambda}_{b\oplus c} = 2H_n \cdot \vec{s}_b \odot \vec{s}_c,$$

where $\vec{s}_b \odot \vec{s}_c$ is the Hadamard product of these vectors, i.e. $\vec{s}_b \odot \vec{s}_c = (\vec{s}_b[0] \cdot \vec{s}_c[0], \dots, \vec{s}_b[2^n - 1] \cdot \vec{s}_c[2^n - 1])^T$.

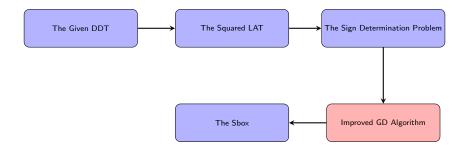
Algorithm 3: The Matching Phase Given k Good Columns

1: **Input:** the index set of the good columns $C = \{c_0, \ldots, c_{k-1}\}$, the corresponding solution sets V_0, \ldots, V_{k-1} and the squared LAT; 2: **Output:** $c_0 S(x), \ldots, c_{k-1} S(x);$ 3: for each $i \in [0, k - 2]$ do 4: if i = 0 then 5: for each $\vec{u} \in \{\vec{u}_0, \ldots, \vec{u}_n\}$ and $\vec{v} \in V_1$ do 6: $\vec{w} = 1/2H_n \cdot (\vec{u} \odot \vec{v})$ if $\vec{w}^{\dagger} = \vec{\lambda}_{c_i \oplus c_{i+1}}^{\dagger}$ then 7: 8: $\vec{p}_0 = \vec{u}, \vec{p}_1 = \vec{v}$ 9. **break** > this line is to be removed if the DDT-equivalence class is nontrivial. 10: end if 11: end for 12: else 13: for each $\vec{v} \in V_{i+1}$ do $\vec{w} = 1/2H_n \cdot (\vec{p}_i \odot \vec{v})$ 14: if $\vec{w}^{\dagger} = \vec{\lambda}_{c_i \oplus c_{i+1}}^{\dagger}$ then 15: 16: $\vec{p}_{i+1} = \vec{v}$ 17: **break** > this line is to be removed if the DDT-equivalence class is nontrivial 18: end if 19: end for

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

20: end if 21: end for 22: Deduce $c_0 S(x), \ldots, c_{k-1}S(x)$ from $\vec{p}_0, \ldots, \vec{p}_{k-1}$ 23: return $c_0 S(x), \ldots, c_{k-1}S(x)$.

(ロ)、(型)、(E)、(E)、 E) の(()



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

► The Matching Phase for *k* Independent Good Columns

Improved Guess-and-determine Algorithm

Algorithm 4: Improved Guess-and-determine Algorithm

- 1: Input: $c_0, \ldots, c_{k-1}, c_0 S(x), \cdots, c_{k-1} S(x)$ and the given DDT
- 2: Output: one representative in the DDT-equivalence class
- 3: \vec{s} is initialized as a vector of 2^m zeros.
- 4: IMPROVEDGD(\vec{s} , 1)
- 5: return s
- **6**: **procedure** IMPROVEDGD(\vec{s} ,i)
- 7: if $i < 2^m$ then
- 8: $\mathcal{L} = \bigcap_{0 \le j < i} \{ x \oplus \vec{s} \ [j] | x \in \mathcal{R}_{i \oplus j}, c_0 S(i) = c_0 \cdot x, \cdots, c_{k-1} S(i) = c_{k-1} \cdot x \}$

```
9: else

10: if the DDT of \vec{s} matches the given DDT then

11: return \vec{s}

12: end if

13: end if

14: if L \neq \emptyset then
```

15: for each $x \in \mathcal{L}$ do 16: $\vec{s}[i] = x$

```
IMPROVEDGD(\vec{s}, i+1)
```

- 18: end for
- 19: else

17:

20: return There exist no S-boxes corresponding to the given DDT!

21: end if

22: end procedure

Complexity Analysis of the GD Phase

The expected time complexity of Algorithm 4 is

$$T_{n,m}(k) = 2^{m+1} P_{n,m}^{DDT} \sum_{i=0}^{2^n-2} W_i(k),$$

$$W_{i} = \begin{cases} 2^{(m-k)i} (P_{n,m}^{DDT})^{\frac{i^{2}+i}{2}} & , 0 \leq i \leq K, \\ 1 & , K < i < 2^{n}, \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where *K* is the smallest positive integer such that $2^{(m-k)i}(P_{n,m}^{DDT})^{\frac{i^2+i}{2}} < 1.$

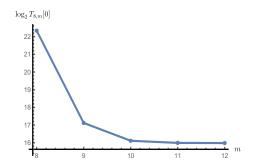


Figure 3: $\log_2 T_{8,m}(0)$ for 8-bit input S-box with different sizes of output

Increasing the size of the output of the S-box (i.e., m) makes the reconstruction process easier.

(日) (四) (日) (日) (日)

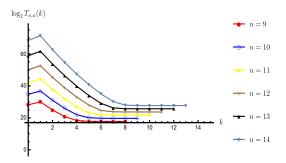


Figure 4: $\log_2 T_{n,n}(k)$ for random *n*-bit S-box with different k

- The original GD algorithm (k = 0) quickly becomes impractical with the size of S-box growing.
- To optimize the original GD algorithm, the attacker should find at least two independent good columns.
- When the number of good columns grows, the effect of reducing the search space of the GD phase becomes less significant.

Experiment Results

Three types of Boolean functions:

- Random S-boxes
- Specific S-boxes of Existing Ciphers
- 4-differential uniformity S-boxes and APN functions

A single core of an Intel(R) Xeon(R) E5-2620 v3 CPU @ 2.40GHz of 64GB memory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

n	k	Min (s)	Max (s)	Average (s)	Median (s)	Standard Deviation	Method
8	0	8.01×10^{-4}	0.07	0.01	0.01	0.01	GD algorithm
8	2	0.03	0.11	0.05	0.05	0.01	Our Approach
9	0	0.01	1.70	0.49	0.05	0.42	GD algorithm
9	3	0.39	0.70	0.50	0.49	0.06	Our Approach
10	0	0.88	159.94	45.80	38.83	36.0	GD algorithm
10	3	4.98	6.74	5.48	5.45	0.32	Our Approach
11	0	86.97	2.56×10^{4}	8.20×10^{3}	7.00×10^{3}	6.26×10^{3}	GD algorithm
11	4	43.61	94.68	58.23	57.00	11.34	Our Approach
12	0	3.88×10^{4}	8.73×10^{6}	$3.66 imes 10^{6}$	4.17×10^{6}	2.17×10^{6}	GD algorithm
12	4	584.22	1437.26	962.33	925.08	167.38	Our Approach
13	0	5.72×10^{7}	3.90×10^{9}	$1.83 imes 10^9$	$1.96 imes 10^9$	9.90×10^{8}	GD algorithm
13	6	$6.68 imes 10^3$	1.22×10^{4}	$8.07 imes10^3$	$8.04 imes 10^3$	878.56	Our Approach
14	0	$1.90 imes 10^8$	$1.09 imes 10^{12}$	$4.79 imes10^{11}$	$4.78 imes 10^{11}$	2.88×10^{11}	GD algorithm
14	6	$6.93 imes 10^4$	$8.81 imes 10^4$	$7.52 imes 10^4$	$7.39 imes 10^4$	4.07×10^{3}	Our Approach

Table 1: The Statistical Data for The Instances

4.79 × 10¹¹s are approximately 15178.9 years and 7.52 × 10⁴s are less than one day.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

n	k	Min (s)	Max (s)	Average (s)	Median (s)	Standard Deviation	Method
8	0	8.01×10^{-4}	0.07	0.01	0.01	0.01	GD algorithm
8	2	0.03	0.11	0.05	0.05	0.01	Our Approach
9	0	0.01	1.70	0.49	0.05	0.42	GD algorithm
9	3	0.39	0.70	0.50	0.49	0.06	Our Approach
10	0	0.88	159.94	45.80	38.83	36.0	GD algorithm
10	3	4.98	6.74	5.48	5.45	0.32	Our Approach
11	0	86.97	2.56×10^{4}	$8.20 imes 10^3$	7.00×10^{3}	$6.26 imes 10^3$	GD algorithm
11	4	43.61	94.68	58.23	57.00	11.34	Our Approach
12	0	3.88×10^{4}	$8.73 imes 10^{6}$	$3.66 imes 10^{6}$	4.17×10^{6}	2.17×10^{6}	GD algorithm
12	4	584.22	1437.26	962.33	925.08	167.38	Our Approach
13	0	$5.72 imes 10^7$	3.90×10^{9}	1.83×10^{9}	1.96×10^{9}	$9.90 imes 10^8$	GD algorithm
13	6	6.68×10^{3}	1.22×10^{4}	$8.07 imes 10^3$	$8.04 imes 10^3$	878.56	Our Approach
14	0	1.90×10^{8}	$1.09 imes 10^{12}$	$4.79 imes 10^{11}$	4.78×10^{11}	2.88×10^{11}	GD algorithm
14	6	$6.93 imes 10^4$	$8.81 imes 10^4$	$7.52 imes 10^4$	$7.39 imes 10^4$	$4.07 imes 10^3$	Our Approach

Table 2: The Statistical Data for The Instances

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

Our approach is much more stable than GD algorithm.

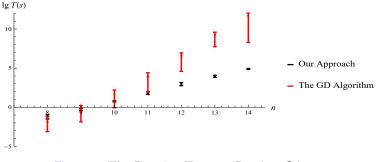


Figure 5: The Running Time on Random S-boxes

The advantage of our approach over the GD algorithm sharply increases when the size of the S-box grows.

イロト 不得 トイヨト イヨト

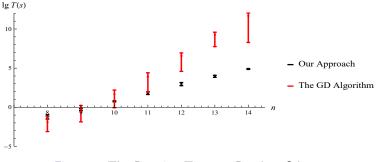


Figure 6: The Running Time on Random S-boxes

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

When the input size of S-boxes is larger than 11, our approach is better in all cases.

Specific S-boxes of Existing Ciphers

Figure 7: The Running Time on Specific S-boxes

- ▶ No good column is found in the S-box S0 of CLEFIA.
- Our approach is better: AES, ARIA, SEED, Camellia, and S1 of CLEFIA.
- GD algorithm is better: Streebog, Skipjack and S0 of CLEFIA.

4-differential uniformity S-boxes and APN functions

It is difficult to find good columns in the absolute LAT of the S-boxes with low differential uniformity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It is also hard to find good columns in the absolute LAT of APN functions.

Conclusion and Open Problem

- We presented a new algorithm for reconstructing an S-box from its DDT. The new algorithm is more efficient than the guess-and-determine algorithm proposed by Boura et al. in [BCJS19], for random S-boxes starting at the size of 10 bits, it outperforms the previous GD algorithm by several orders of magnitude.
- The new algorithm can be useful to explore problems related to DDTs.
- Another related open problems are the problems of reconstructing an S-box from its *Boomerang Connectivity Table*, introduced in [CHP⁺18] and its *Differential-Linear Connectivity Table*, introduced in [BODKW19], respectively.

Thank you for your attention!

Christina Boura, Anne Canteaut, Jérémy Jean, and Valentin Suder. Two Notions of Differential Equivalence on Sboxes.

Des. Codes Cryptography, 87(2-3):185-202, 2019.

Céline Blondeau and Kaisa Nyberg.

New links between differential and linear cryptanalysis.

In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 388–404. Springer Berlin Heidelberg, 2013.

Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman.

DLCT: A New Tool for Differential-Linear Cryptanalysis.

In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, volume 11476 of Lecture Notes in Computer Science, pages 313–342, Cham, 2019. Springer Berlin Heidelberg.

Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song.

Boomerang Connectivity Table: A New Cryptanalysis Tool.

In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, volume 10821 of Lecture Notes in Computer Science, pages 683–714, Cham, 2018. Springer Berlin Heidelberg.

Florent Chabaud and Serge Vaudenay.

Links between Differential and Linear Cryptanalysis.

In Alfredo De Santis, editor, Advances in Cryptology — EUROCRYPT'94, volume 950 of Lecture Notes in Computer Science, pages 356–365. Springer Berlin Heidelberg, 1995.

Joan Daemen, René Govaerts, and Joos Vandewalle.

Correlation matrices.

In Bart Preneel, editor, Fast Software Encryption, volume 1008 of Lecture Notes in Computer Science, pages 275–285. Springer Berlin Heidelberg, 1995.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで