
Reconstructing an S-box
from its Difference Distribution Table

Orr Dunkelman, Senyang Huang

Department of Computer Science, University of Haifa, Haifa, Israel

2020 . 11 . 5

Background and Motivation

Difference Distribution Table (DDT) of an S-box S
Let S be a Boolean function from Fn

2 into Fm
2

δ(a, b) =
∣∣{z ∈ Fn

2

∣∣S(z ⊕ a)⊕ S(z) = b}
∣∣ .

I S-box→ DDT: Easy

I DDT→ S-box: Difficult

I The ability to recover the S-box from the DDT of a secret
S-box can be used in cryptanalytic attacks.

I Boura et al. [BCJS19] proposed a straightforward guess and
determine (GD) algorithm to solve the problem.

I Using the well established relation between the DDT and the
linear approximation table (LAT), we devise a new approach
to reconstruct an S-box from its DDT.

Linear Approximation Table (LAT) of an S-box S

λ(a, b) =
∣∣{x ∈ Fn

2

∣∣a · x ⊕ b · S(x) = 0}
∣∣− 2n−1

=
1

2

∑
x∈Fn

2

(−1)a·x⊕b·S(x)

Walsh-Hadamard Transform
Let f : Fn

2 × Fm
2 → R be a function. f̂ denotes its

Walsh-Hadamard transform, which is equal to:

f̂ (a, b) =
∑
x ,y

f (x , y)(−1)a·x⊕b·y ,

where a ∈ Fn
2, b ∈ Fm

2 and a · x and b · y are the inner product over
the domains Fn

2 and Fm
2 , respectively.

Links between an S-box, its DDT and LAT

Lemma 1.
([CV95, Lemma 2]) For (a, b) ∈ Fn

2 × Fm
2 , let θ(a, b) be the

characteristic function of S , i.e., θ(a, b) = 1 if and only if
S(a) = b; otherwise θ(a, b) = 0. Then,

λ̂(a, b) = 2m+n−1θ(a, b).

Theorem 2.
([BN13, CV95, DGV95]) For all (a, b) ∈ Fn

2 × Fm
2 ,

1. δ̂(a, b) = 4λ2(a, b),

2. 4λ̂2(a, b) = 2m+nδ(a, b),

where λ̂2(a, b) is the Walsh-Hadamard transform of λ2(a, b), the
squared LAT.

The Given DDT The Squared LAT
Theorem 2

The S-box The Real LAT
Lemma 1

The Given DDT The Squared LAT
Theorem 2

The S-box The Real LAT
Lemma 1

The Given DDT The Squared LAT The Sign Determination Problem

m Columns Recoverd?Improved GD Algorithm

The Real LAT

The Sbox
No

Yes

The Sign Determination Problem

Definition 3.
We define the † notion as follows:

~v † = (|v0|, . . . , |v`−1|)T ,

where ~v = (v0, . . . , v`−1)T and | · | is the absolute value of a
number.

Definition 4.
Given ~λ†b where 1 ≤ b < 2m, the sign determination problem of the

b-th column in an LAT is the problem of recovering ~λb from ~λ†b,
i.e., determining the signs of λ(a, b), 0 ≤ a < 2n.

The Given DDT The Squared LAT The Sign Determination Problem

Improved GD AlgorithmThe Sbox

I The Linear Relation between ~λb and ~sb
I Solving the System of Linear Equations Hn~x = ~y

I Basic Algorithm

I Improved Algorithm

The Linear Relation between ~λb and ~sb

Theorem 5.
For any b-th column of the linear approximation table (for
0 ≤ b < 2m), the following formula holds

Hn~sb = 2~λb.

Definition 6.
Let H0 = (1), then the Hadamard matrix Hi can be represented as

Hi =

(
Hi−1 Hi−1

Hi−1 −Hi−1

)
, i ≥ 1.

The Given DDT The Squared LAT The Sign Determination Problem

Improved GD AlgorithmThe Sbox

I The Linear Relation between ~λb and ~sb
I Solving the System of Linear Equations Hn~x = ~y

I Basic Algorithm

I Improved Algorithm

Solving the System of Linear Equations Hn~x = ~y

(Hn, ~y) =

(
Hn−1 Hn−1 ~y [0,2n−1−1]

Hn−1 −Hn−1 ~y [2n−1,2n−1]

)

⇒

(
Hn−1 0 (~y [0,2n−1−1] + ~y [2n−1,2n−1])/2

0 Hn−1 (~y [0,2n−1−1] − ~y [2n−1,2n−1])/2

)
...

⇒

 H0 · · · 0 ~x [0]
. . .

...
0 · · · H0 ~x [2n − 1]

 .

Apply the elementary transformation to the independent
subproblems by n times.

The Given DDT The Squared LAT The Sign Determination Problem

Improved GD AlgorithmThe Sbox

I The Linear Relation between ~λb and ~sb
I Solving the System of Linear Equations Hn~x = ~y

I Basic Algorithm

I Improved Algorithm

Basic Algorithm

2
[0] 1,1,1, 1 , 1, 1, 1,1 , 1,1, 1,1 , 1, 1,1, 1 ,

1, 1,1,1 , 1,1, 1, 1 , 1,1,1,1 , 1, 1, 1, 1

T

 1
[1] 2,0 , 0,2 , 2,0 , 0, 2T

 0
[0] 2T 0

[1] 2T 0
[2] 2T 0

[3] 2T

 1
[0] 2,0 , 0,2 , 2,0 , 0, 2T

†

1,1,1,1
b

Figure 1: The Tree Structure for n = 2

I Apply the idea of solving the system of linear equations
Hn~x = ~y to reduce the problem into two independent
subproblems.

I The possible i-th constraint of subproblems is stored as a
vector.

I A full set contains all the possible i-th constraints.

The size of the full sets in the intermediate layers
grows so fast!

The Given DDT The Squared LAT The Sign Determination Problem

Improved GD AlgorithmThe Sbox

I The Linear Relation between ~λb and ~sb
I Solving the System of Linear Equations Hn~x = ~y

I Basic Algorithm

I Improved Algorithm

Improved Algorithm

 0 0 0 0
[4] [5] [6] [7] 4C C C C 0 0 0 0

[0] [1] [2] [3] 0C C C C

 1 1 1 1
[0] [1] [2] [3] 2，-2C C C C

 2 2
[0] [1] 2，0，-2，0C C

 3
[0] 1，1，1，-1，-1，-1，-1，1C

Figure 2: The Tree Structure for a Sign Determination Problem

I The symmetric structure of the full set

I Only record the representatives of the equivalence classes in
the compact set.

I The compact representation reduces both time and memory
complexity.

Algorithm 1: Constructing M~u,~w from ~u ∈ C`[i] and ~w ∈ C`[i + 2n−`−1]

1: procedure ConstructSet(~u,[~w]+, J)
2: M~u,~w = [~w]+

3: for all integers j ∈ J do
4: Find π`

j0
, . . . , π`

jp−1
such that ~u = ±π`

jp−1
◦ · · · ◦ π`

j0
(~u)

5: for all the distinct vectors ~e, ~f in M~u,~w do

6: if ~e = ±π`
jp−1
◦ · · · ◦ π`

j0
(~f) then

7: M~u,~w = M~u,~w\{~f }
8: end if
9: end for

10: end for
11: return M~u,~w

12: end procedure

In this way, the compact set C`+1[i] is indeed constructed by
combining ~u ∈ C`[i] and ~v in each M~u,~w .

Algorithm 2: Improved Algorithm for Solving the Sign Determination
Problem

1: Input: ~λ†b;

2: Output: F = {~u|Hn~u = 2~λb, ~u[0] = 1}
3: for each integer i ∈ [0, 2n − 1] do
4: C0[i] = {2λ†(i , b)} . Initialization
5: end for
6: Cn[0] = Layer(C0, 0)
7: Construct the full set Fn[0] from Cn[0].
8: return F = {~u|~u ∈ Fn[0], ~u[0] = 1}.
9:

10: procedure Layer(C`, `);
11: for each integer i ∈ [0, 2n−`−1 − 1] do
12: if there are no vectors in C`[i] or C`[i + 2n−`−1] then
13: return There exist no S-boxes corresponding to the given DDT!
14: end if
15: C`+1[i] = ∅
16: Randomly pick a vector from C`[i] and compute J = {j

∣∣C`[i] is
j-symmetric, 0 ≤ j < `}

17: for each ~w in C`[i + 2n−`−1] do
18: for each ~u in C`[i] do
19: M = ConstructSet(~u, [~w]+, J)
20: for each ~v in M do

21: ~r = E`(~u, ~v)
22: if ` < n then
23: if every entry in ~r is even and [−2n−`−1, 2n−`−1] then
24: C`+1[i] = C`+1[i] ∪ {~r}
25: else
26: Discard ~r
27: end if
28: else
29: if every entry in ~r is 1 or −1 then . when ` = n
30: Cn[i] = Cn[i] ∪ {~r}
31: else
32: Discard ~r
33: end if
34: end if
35: end for
36: end for
37: end for
38: end for
39: if ` < n then
40: Layer(C`+1,`+ 1)
41: else
42: return Cn[0]
43: end if
44: end procedure

For some cases, the size of the compact sets still
grows very fast!

Heuristic Threshold

I A threshold H on the number of internal vectors can be preset
heuristically with respect to the accessible memory of the
attacker.

I We call a column in the absolute LAT good if it can be
recovered under the threshold H applying Algorithm 2;
otherwise bad.

I According to our experiments with input size n between 8 and
14, the solutions for the good columns contains at most two
equivalence classes.

Complexity Analysis of Algorithm 2

I The memory complexity of Algorithm 2 is O(H · n22n + n22n)
bits.

I The upper bound of the time complexity is O(H223n).

The Given DDT The Squared LAT The Sign Determination Problem

Improved GD AlgorithmThe Sbox

I The Matching Phase for k Independent Good Columns

I Improved Guess-and-determine Algorithm

The Matching Phase for k Independent Good Columns

Definition 7.
The c0-th, . . . , the ck−1-th columns in the LAT where
0 ≤ c0 < · · · < ck−1 < 2m are independent columns if the binary
representations of c0, . . . , ck−1 are linearly independent over Fm

2 .

Theorem 8.
For any 0 ≤ b, c < 2n,

~λb⊕c = 2Hn · ~sb � ~sc ,

where ~sb � ~sc is the Hadamard product of these vectors, i.e.
~sb � ~sc = (~sb[0] · ~sc [0], . . . , ~sb[2n − 1] · ~sc [2n − 1])T .

Algorithm 3: The Matching Phase Given k Good Columns

1: Input: the index set of the good columns C = {c0, . . . , ck−1}, the corresponding
solution sets V0, . . . ,Vk−1 and the squared LAT;

2: Output: c0S(x), . . . , ck−1S(x);
3: for each i ∈ [0, k − 2] do
4: if i = 0 then
5: for each ~u ∈ {~u0, . . . , ~up} and ~v ∈ V1 do
6: ~w = 1/2Hn · (~u � ~v)

7: if ~w† = ~λ†ci⊕ci+1
then

8: ~p0 = ~u, ~p1 = ~v
9: break . this line is to be removed if the DDT-equivalence class is

nontrivial.
10: end if
11: end for
12: else
13: for each ~v ∈ Vi+1 do
14: ~w = 1/2Hn · (~pi � ~v)

15: if ~w† = ~λ†ci⊕ci+1
then

16: ~pi+1 = ~v
17: break . this line is to be removed if the DDT-equivalence class is

nontrivial.
18: end if
19: end for

20: end if
21: end for
22: Deduce c0S(x), . . . , ck−1S(x) from ~p0, . . . , ~pk−1

23: return c0S(x), . . . , ck−1S(x).

The Given DDT The Squared LAT The Sign Determination Problem

Improved GD AlgorithmThe Sbox

I The Matching Phase for k Independent Good Columns

I Improved Guess-and-determine Algorithm

Algorithm 4: Improved Guess-and-determine Algorithm

1: Input: c0, . . . , ck−1, c0S(x), · · · , ck−1S(x) and the given DDT
2: Output: one representative in the DDT-equivalence class
3: ~s is initialized as a vector of 2m zeros.
4: ImprovedGD(~s, 1)
5: return ~s
6: procedure ImprovedGD(~s,i)
7: if i < 2m then
8: L =

⋂
0≤j<i

{x ⊕ ~s [j]|x ∈ Ri⊕j , c0S(i) = c0 · x , · · · , ck−1S(i) = ck−1 · x}

9: else
10: if the DDT of ~s matches the given DDT then
11: return ~s
12: end if
13: end if
14: if L 6= ∅ then
15: for each x ∈ L do
16: ~s [i] = x
17: ImprovedGD(~s,i + 1)
18: end for
19: else
20: return There exist no S-boxes corresponding to the given DDT!
21: end if
22: end procedure

Complexity Analysis of the GD Phase

The expected time complexity of Algorithm 4 is

Tn,m(k) = 2m+1PDDT
n,m

2n−2∑
i=0

Wi (k),

Wi =

{
2(m−k)i (PDDT

n,m)
i2+i

2 ,0 ≤ i ≤ K ,

1 ,K < i < 2n,

where K is the smallest positive integer such that

2(m−k)i (PDDT
n,m)

i2+i
2 < 1.

8 9 10 11 12

16

17

18

19

20

21

22

Figure 3: log2 T8,m(0) for 8-bit input S-box with different sizes of output

I Increasing the size of the output of the S-box (i.e., m) makes
the reconstruction process easier.

● ●

●
●

● ● ● ● ●

○
○

○

○
○ ○ ○ ○ ○ ○

◆
◆

◆

◆

◆
◆ ◆ ◆ ◆ ◆ ◆

◇
◇

◇

◇

◇

◇
◇ ◇ ◇ ◇ ◇ ◇

▲
▲

▲

▲

▲

▲

▲
▲ ▲ ▲ ▲ ▲ ▲

▼
▼

▼

▼

▼

▼

▼
▼

▼ ▼ ▼ ▼ ▼ ▼

2 4 6 8 10 12 14

0

20

40

60

●

○

◆

◇

▲

▼

Figure 4: log2 Tn,n(k) for random n-bit S-box with different k

I The original GD algorithm (k = 0) quickly becomes
impractical with the size of S-box growing.

I To optimize the original GD algorithm, the attacker should
find at least two independent good columns.

I When the number of good columns grows, the effect of
reducing the search space of the GD phase becomes less
significant.

Experiment Results

Three types of Boolean functions:

I Random S-boxes

I Specific S-boxes of Existing Ciphers

I 4-differential uniformity S-boxes and APN functions

A single core of an Intel(R) Xeon(R) E5-2620 v3 CPU @ 2.40GHz of 64GB

memory.

Random S-boxes

n k Min (s) Max (s) Average (s) Median (s) Standard Deviation Method

8 0 8.01× 10−4 0.07 0.01 0.01 0.01 GD algorithm
8 2 0.03 0.11 0.05 0.05 0.01 Our Approach
9 0 0.01 1.70 0.49 0.05 0.42 GD algorithm
9 3 0.39 0.70 0.50 0.49 0.06 Our Approach

10 0 0.88 159.94 45.80 38.83 36.0 GD algorithm
10 3 4.98 6.74 5.48 5.45 0.32 Our Approach

11 0 86.97 2.56× 104 8.20× 103 7.00× 103 6.26× 103 GD algorithm
11 4 43.61 94.68 58.23 57.00 11.34 Our Approach

12 0 3.88× 104 8.73× 106 3.66× 106 4.17× 106 2.17× 106 GD algorithm
12 4 584.22 1437.26 962.33 925.08 167.38 Our Approach

13 0 5.72× 107 3.90× 109 1.83× 109 1.96× 109 9.90× 108 GD algorithm

13 6 6.68× 103 1.22× 104 8.07× 103 8.04× 103 878.56 Our Approach

14 0 1.90× 108 1.09× 1012 4.79× 1011 4.78× 1011 2.88× 1011 GD algorithm

14 6 6.93× 104 8.81× 104 7.52× 104 7.39× 104 4.07× 103 Our Approach

Table 1: The Statistical Data for The Instances

I 4.79× 1011s are approximately 15178.9 years and 7.52× 104s
are less than one day.

Random S-boxes

n k Min (s) Max (s) Average (s) Median (s) Standard Deviation Method

8 0 8.01× 10−4 0.07 0.01 0.01 0.01 GD algorithm
8 2 0.03 0.11 0.05 0.05 0.01 Our Approach
9 0 0.01 1.70 0.49 0.05 0.42 GD algorithm
9 3 0.39 0.70 0.50 0.49 0.06 Our Approach

10 0 0.88 159.94 45.80 38.83 36.0 GD algorithm
10 3 4.98 6.74 5.48 5.45 0.32 Our Approach

11 0 86.97 2.56× 104 8.20× 103 7.00× 103 6.26× 103 GD algorithm
11 4 43.61 94.68 58.23 57.00 11.34 Our Approach

12 0 3.88× 104 8.73× 106 3.66× 106 4.17× 106 2.17× 106 GD algorithm
12 4 584.22 1437.26 962.33 925.08 167.38 Our Approach

13 0 5.72× 107 3.90× 109 1.83× 109 1.96× 109 9.90× 108 GD algorithm

13 6 6.68× 103 1.22× 104 8.07× 103 8.04× 103 878.56 Our Approach

14 0 1.90× 108 1.09× 1012 4.79× 1011 4.78× 1011 2.88× 1011 GD algorithm

14 6 6.93× 104 8.81× 104 7.52× 104 7.39× 104 4.07× 103 Our Approach

Table 2: The Statistical Data for The Instances

I Our approach is much more stable than GD algorithm.

Random S-boxes

8 9 10 11 12 13 14
n

-5

0

5

10

lg T HsL

Our Approach

The GD Algorithm

Figure 5: The Running Time on Random S-boxes

I The advantage of our approach over the GD algorithm sharply
increases when the size of the S-box grows.

Random S-boxes

8 9 10 11 12 13 14
n

-5

0

5

10

lg T HsL

Our Approach

The GD Algorithm

Figure 6: The Running Time on Random S-boxes

I When the input size of S-boxes is larger than 11, our
approach is better in all cases.

Specific S-boxes of Existing Ciphers

1.8 1.88

2.47

0.004

3.27

1.59

9.19

0.021 0.0490.07 0.085 0.188 0.29 0.15 0.23 0.063 0.051

AES ARIA CAMELLIACLEFIA_S0CLEFIA_S1 SEED-1 SEED-2 SKIPJACK STREEBOG

the GD algorithm Our Approach

Figure 7: The Running Time on Specific S-boxes

I No good column is found in the S-box S0 of CLEFIA.

I Our approach is better: AES, ARIA, SEED, Camellia, and S1
of CLEFIA.

I GD algorithm is better: Streebog, Skipjack and S0 of CLEFIA.

4-differential uniformity S-boxes and APN functions

I It is difficult to find good columns in the absolute LAT of the
S-boxes with low differential uniformity.

I It is also hard to find good columns in the absolute LAT of
APN functions.

Conclusion and Open Problem

I We presented a new algorithm for reconstructing an S-box
from its DDT. The new algorithm is more efficient than the
guess-and-determine algorithm proposed by Boura et al. in
[BCJS19], for random S-boxes starting at the size of 10 bits,
it outperforms the previous GD algorithm by several orders of
magnitude.

I The new algorithm can be useful to explore problems related
to DDTs.

I Another related open problems are the problems of
reconstructing an S-box from its Boomerang Connectivity
Table, introduced in [CHP+18] and its Differential-Linear
Connectivity Table, introduced in [BODKW19], respectively.

Thank you for your attention!

Christina Boura, Anne Canteaut, Jérémy Jean, and Valentin Suder.

Two Notions of Differential Equivalence on Sboxes.
Des. Codes Cryptography, 87(2-3):185–202, 2019.

Céline Blondeau and Kaisa Nyberg.

New links between differential and linear cryptanalysis.
In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013,
volume 7881 of Lecture Notes in Computer Science, pages 388–404. Springer Berlin Heidelberg, 2013.

Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman.

DLCT: A New Tool for Differential-Linear Cryptanalysis.
In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, volume 11476 of
Lecture Notes in Computer Science, pages 313–342, Cham, 2019. Springer Berlin Heidelberg.

Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song.

Boomerang Connectivity Table: A New Cryptanalysis Tool.
In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, volume
10821 of Lecture Notes in Computer Science, pages 683–714, Cham, 2018. Springer Berlin Heidelberg.

Florent Chabaud and Serge Vaudenay.

Links between Differential and Linear Cryptanalysis.
In Alfredo De Santis, editor, Advances in Cryptology — EUROCRYPT’94, volume 950 of Lecture Notes in
Computer Science, pages 356–365. Springer Berlin Heidelberg, 1995.

Joan Daemen, René Govaerts, and Joos Vandewalle.

Correlation matrices.
In Bart Preneel, editor, Fast Software Encryption, volume 1008 of Lecture Notes in Computer Science,
pages 275–285. Springer Berlin Heidelberg, 1995.

