
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2019, No. 2, pp. 169–192. DOI:10.13154/tosc.v2019.i2.169-192

Classification of Balanced Quadratic Functions
Lauren De Meyer and Begül Bilgin

imec - Computer Security and Industrial Cryptography (COSIC) research group, Department of
Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium

firstname.lastname@esat.kuleuven.be

Abstract. S-boxes, typically the only nonlinear part of a block cipher, are the heart
of symmetric cryptographic primitives. They significantly impact the cryptographic
strength and the implementation characteristics of an algorithm. Due to their simplic-
ity, quadratic vectorial Boolean functions are preferred when efficient implementations
for a variety of applications are of concern. Many characteristics of a function stay
invariant under affine equivalence. So far, all 6-bit Boolean functions, 3- and 4-bit
permutations have been classified up to affine equivalence. At FSE 2017, Bozoliv et
al. presented the first classification of 5-bit quadratic permutations. In this work,
we propose an adaptation of their work resulting in a highly efficient algorithm to
classify n × m functions for n ≥ m. Our algorithm enables for the first time a com-
plete classification of 6-bit quadratic permutations as well as all balanced quadratic
functions for n ≤ 6. These functions can be valuable for new cryptographic algorithm
designs with efficient multi-party computation or side-channel analysis resistance
as goal. In addition, we provide a second tool for finding decompositions of length
two. We demonstrate its use by decomposing existing higher degree S-boxes and
constructing new S-boxes with good cryptographic and implementation properties.
Keywords: Affine Equivalence · S-box · Boolean functions · Classification · Decom-
position

1 Introduction
For a variety of applications, such as multi-party computation, homomorphic encryption and
zero-knowledge proofs, linear operations are considered to have minimal cost. Nonlinear
operations on the other hand cause a rapid growth of implementation requirements.
Therefore, it becomes important to create cryptographically strong algorithms with minimal
nonlinear components. A recent study in this direction called MiMC [AGR+16], which
is based on some relatively old observations [NK95], uses the simple quadratic function
x3 in different fields as the only nonlinear block of the algorithm. Another work that
minimizes the number of multiplications is the LowMC design [ARS+15], where a quadratic
3-bit permutation is used as the only nonlinear component of a Substitution-Permutation-
Network (SPN).

We also see the importance of minimizing the nonlinear components in the field of
secure implementations against side-channel analysis. Efforts to decompose the S-boxes of
existing algorithms, such as the DES and AES S-boxes, into a minimum number of lower
degree nonlinear components (AND-gates, field multiplications or other quadratic or cubic
functions), have produced more than a handful of papers. Some of these decomposition
tools are generic and work heuristically [CGP+12, RV13, CRV14, CPRR15, GR16, PV16]
whereas others focus on enumerating decompositions of all permutations for a certain
size [BNN+12, KNP13]. In general, they all make it clear that there is a significant
advantage in considering side-channel security during the design process and hence using
low degree nonlinear components. As a reaction to this line of research, a variety of novel

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-03-01, Accepted: 2019-05-01, Published: 2019-06-11

https://doi.org/10.13154/tosc.v2019.i2.169-192
mailto:firstname.lastname@esat.kuleuven.be
http://creativecommons.org/licenses/by/4.0/

170 Classification of Balanced Quadratic Functions

symmetric-key designs use simply a quadratic permutation [ABB+14, BDP+14, BDP+15,
DEMS15]. Examples include Keccak [BDPA13], one instance of which is the new hash
function standard, and several candidates of the CAESAR competition. Generating strong,
higher degree S-boxes using quadratic functions has also been shown useful in [BGG+16].
These works demonstrate the relevance of our research, which focuses on enumerating
quadratic n×m functions for n < 7.

A valuable tool for the analysis of vectorial Boolean functions, which are typically
used as S-boxes, is the concept of affine equivalence (AE). AE allows the entire space of
n×m functions to be classified into groups with the same cryptographic properties. These
properties include the algebraic degree, the differential uniformity and the linearity of both
the function and its possible inverse in addition to multiplicative complexity. Moreover,
the randomness cost of a first-order masked implementation is also invariant within a
class if countermeasures such as threshold implementations are used [Bil15]. With similar
concerns in mind, our research relies on this affine equivalence classification.

1.1 Classification of (Vectorial) Boolean Functions
The classification of Boolean functions dates back to the fifties [Gol59]. The equivalence
classes for functions of up to five inputs were identified by 1972 [BW72] and Maio-
rana [Mai91] was the first to classify all 6-bit Boolean functions in 1991. Fuller [Ful03]
confirmed in 2003 that this classification was complete.

For vectorial Boolean functions, only n-bit permutations for n ≤ 4 have been completely
classified so far [Can07, Saa11, BNN+15]. Most of these classifications use the affine
equivalence (AE) tool introduced by Biryukov et al. in [BCBP03]. This algorithm computes
a representative of the affine equivalence class for any n-bit permutation. In [Can07], De
Cannière classifies all 4-bit permutations by transversing a graph of permutations connected
by single transpositions and reducing them to their affine equivalence class representative.
As this method is unpractical for larger dimensions (n > 4), no classification of the
complete space of 5-bit bijective permutations exists. A classification of the APN classes
(which have the best cryptographic properties) does exist by Brinkmann et al. [BL08].
The authors build a tree of LUTs of 5-bit permutations, in which each level of the tree
specifies one more output of the function. The tree is pruned using on the one hand an
APN filter function and on the other hand an affine equivalence filter, which is also based
on the algorithm of [BCBP03]. The quadratic 5-bit permutations have been classified by
Bozilov et al. [BBS17]. Their approach consists of two stages: First, they generate an
exhaustive list of 5-bit permutations from quadratic ANF’s. Then, they use the affine
equivalence algorithm of Biryukov et al. [BCBP03] to find the affine representatives of all
the candidates in this list. Eliminating the doubles results in 75 quadratic classes. This
approach uses the AE algorithm ≈ 223 times, resulting in a runtime of a couple of hours,
using 16 threads. Again, extending this approach to higher dimensions is not feasible.

Vectorial Boolean functions from n to m < n bits have been used as S-boxes as well
(e.g. the 6× 4 DES S-boxes), yet their classification has been largely ignored. They are
also used in the construction of larger 8-bit S-boxes by Boss et al. [BGG+16].

1.2 Decompositions of Higher-Degree Functions
The authors of [BNN+12, KNP13] decompose all 4-bit permutations in order to provide
efficient implementations against side-channel analysis. The decompositions in both works
benefit from the affine equivalence classification of permutations. The main difference
between them is that [BNN+12] only focuses on decompositions using quadratic and
cubic components. It is shown that not all cubic 4-bit permutations can be composed
from quadratics. This work has been extended in [KNP13], in which decomposition of
all permutations is enabled by including additions and compositions with non-bijective

Lauren De Meyer and Begül Bilgin 171

quadratic functions. The decompositions provided in both these papers have been proven
to have the smallest length with the given structure. A possible decomposition for all
6× 4 DES S-boxes jointly using 4-bit permutations is also provided as an output of the
aforementioned research [BKNN15].

A complementary work which decomposes a function into other quadratic and cubic
functions is [CPRR15]. This work starts from a randomly chosen low-degree function.
They iteratively enlarge their set of functions using addition and composition. Finally,
the generated set of functions is used to get a decomposition for a target function. This
approach is not unlike the logic minimization technique of [BP10]. The tool is heuristic and
the decompositions provided do not necessarily have the smallest length. The theoretical
lower bounds are not necessarily achieved for a randomly selected function decomposition
for bigger sizes. However, it performs well for small functions.

1.3 Our Contribution
In this work, we explore the extension of Biryukov’s AE algorithm to non-bijective n×m
functions with m < n and analyse its performance. We propose an algorithm that does not
only classify all n-bit permutations, but also all balanced n×m-bit functions for m ≤ n.
Our complexity is significantly lower than that of previous algorithms known to date. This
allows us to generate all quadratic vectorial Boolean functions with five inputs in merely
six minutes, which makes the search for even 6-bit quadratic functions feasible. We also
provide the cryptographic properties of these functions and their inverses if possible.

Our work focuses on quadratic functions, since they tend to have low area requirements
in hardware, especially for masked implementations. We also introduce a tool for finding
length-two quadratic decompositions of higher degree permutations and we use it to
decompose the 5-bit AB and APN permutations. Furthermore, we find a set of high quality
5-bit permutations of degree 4 with small decomposition length that can be efficiently
implemented.

Our list of quadratic 6-bit permutations is an important step towards decomposing the
only known 6-bit APN permutation class as an alternative to [PUB16].

2 Preliminaries
We consider an n ×m (vectorial) Boolean function F (x) = y from Fn2 to Fm2 . The bits
of x and the coordinate functions of F are denoted by small letter subscripts, i.e. x =
(x0, . . . , xn−1) where xi ∈ F2 and F (x) = (f0(x), . . . , fm−1(x)) where fi(x) is from Fn2 to F2.
We use ’◦’ to denote the composition of two or more functions, e.g. F1 ◦F2(x) = F1(F2(x))
where F1 : Fm2 → Fl2 and F2 : Fn2 → Fm2 . We use |.| and · for absolute value and inner
product respectively.

2.1 (Vectorial) Boolean Function Properties
In this paper, we focus on balanced vectorial Boolean functions F (x) = y, i.e. each output
y ∈ Fm2 is equiprobable for all inputs x ∈ Fn2 . When n = m, F is thus bijective and
typically called an n-bit permutation.

A Boolean function f : Fn2 → F2 can be uniquely represented by its algebraic normal
form (ANF)

f(x) =
⊕
j∈Fn

2

αjx
j where xj =

n−1∏
i=0

xji

i .

172 Classification of Balanced Quadratic Functions

The algebraic degree of f is

Degr(f) = max
j∈Fn

2 ,αj 6=0
HW(j) with HW(j) =

n−1∑
i=0

ji.

The algebraic degree of a function F = (f0, f1, . . . , fm−1) is simply the largest degree
of its coordinate functions, i.e. Degr(F) = max0≤i<m Degr(fi).

Definition 1 (Component [NK95]). The components of a vectorial Boolean function F are
the nonzero linear combinations β · F of the coordinate functions of F , with β ∈ Fm2 \ {0}.

Definition 2 (DDT [BS90, Nyb93]). We define the Difference Distribution Table (DDT)
δF of F with its entries

δF (α, β) = #{x ∈ Fn2 : F (x⊕ α) = F (x)⊕ β}

for α ∈ Fn2 and β ∈ Fm2 . The differential uniformity Diff(F) is the largest value in the
DDT for α 6= 0, β:

Diff(F) = max
α6=0,β

δF (α, β)

An n-bit permutation F is said to be almost perfect nonlinear (APN) if ∀α 6= 0, β ∈ Fn2 ,
the DDT element δF (α, β) is equal to either 0 or 2. The DDT frequency distribution or
differential spectrum ∆F of F is a histogram of the elements occuring in the DDT:

∆F (δ) = #{(α, β) ∈ Fn2 × Fm2 : δF (α, β) = δ}

Definition 3 (LAT and Walsh Spectrum [O’C94, CV94]). We define the Linear Approxi-
mation Table (LAT) λF of F with its entries

λF (α, β) = #{x ∈ Fn2 : α · x = β · F (x)} − 2n−1

for α ∈ Fn2 and β ∈ Fm2 . The Walsh spectrum of a Boolean function f : Fn2 → F2 is defined
as

f̂(ω) =
∑
x∈Fn

2

(−1)f(x) · (−1)ω·x.

A function’s LAT is directly related to its two-dimensional Walsh transform F̂ (α, β) =∑
x∈Fn

2
(−1)α·x · (−1)β·F (x) as follows:

λF (α, β) = F̂ (α, β)
2

Any column in a function’s LAT (λF (α, β̄) for β̄ fixed) is thus the scaled Walsh spectrum
of a component of F . The linearity Lin(F) is the largest value in the LAT for β 6= 0, α:

Lin(F) = max
β 6=0,α

|λF (α, β)|

An n-bit permutation F is said to be almost bent (AB) if ∀β 6= 0, α ∈ Fn2 , the LAT
element λF (α, β) is equal to either 0 or ±2(n−1)/2. It is known that all AB permutations
are also APN. The LAT frequency distribution ΛF of F is a histogram of the absolute
values occuring in the LAT:

ΛF (λ) = #{(α, β) ∈ Fn2 × Fm2 : |λF (α, β)| = λ}

Remark 1. In some works, the linearity is expressed in terms of the Walsh spectrum instead
of the LAT table as L(F) = maxβ 6=0,α |F̂ (α, β)|. The two definitions differ by a factor of
two, i.e. L(F) = 2 · Lin(F).

Lauren De Meyer and Begül Bilgin 173

2.2 Affine Equivalence
Functions with algebraic degree 1 are called affine. We use them to define affine equivalence
relations that classify the space of all n×m functions.

Definition 4 (Extended Affine Equivalence [CCZ98]). Two n×m functions F1(x) and
F2(x) are extended affine equivalent if and only if there exists a pair of n-bit and m-
bit invertible affine permutations A and B and an n × m linear mapping L such that
F1 = B ◦ F2 ◦A⊕ L.

The algebraic degree and DDT and LAT frequency distributions are invariant over
extended affine equivalence.

Definition 5 (Affine Equivalence [CCZ98]). Two n×m functions F1(x) and F2(x) are
affine equivalent (F1 ∼ F2) if and only if there exists a pair of n-bit and m-bit invertible
affine permutations A and B such that F1 = B ◦ F2 ◦A.

Clearly, affine equivalent functions are always extended affine equivalent but not vice
versa. Note that the affine equivalence relation also covers linear equivalence, where A
and B are linear permutations (i.e. A(0) = B(0) = 0). Moreover, also affine equivalence
preserves algebraic degree and DDT and LAT frequency distributions. In the case of
Boolean functions (m = 1), affine equivalence and extended affine equivalence are the
same.

It is common practice to take the lexicographically smallest function in an affine
equivalence class as the representative, which we denote by R. An efficient algorithm
for finding the affine equivalent (AE) representative of any n-bit permutation S was
proposed by Biryukov et al. in [BCBP03]. In short, it computes the linear representatives
of S(x⊕ a)⊕ b for all a, b ∈ Fn2 and chooses the lexicographically smallest among them as
affine equivalent representative. Since, we rely on this algorithm and modify it according
to our needs, we provide a detailed description below.

2.3 Finding the Representative of a Permutation
This recursive algorithm described in [BCBP03] finds for a given permutation S the
smallest affine equivalent R = B−1 ◦ S ◦A by guessing some of the output values of the
affine permutations A and B and determining the others using the linearity property.
Throughout the algorithm, the numbers nA and nB record logarithmically for how many
input values the outputs of A and B have been defined. For example, A(x) is defined for
all x < 2nA−1. It is possible to fix A(0) (resp. B(0)) at the beginning of the algorithm
which implies nA (resp. nB) being initialized to 1. The number of defined values for R(x)
is NR, i.e. R(x) will be defined for all x < NR.

The computation starts with x = y = 0 from the ForwardSweep described in
Algorithm 1, which serves as the outer loop of the algorithm. The ForwardSweep
enumerates all inputs x for which affine transformation A(x) has already been defined and
determines the representative output y = R(x). Either there already exists an output y
such that S ◦A(x) = B(y) or we choose y as the next smallest unused power of 2. When
the ForwardSweep is complete, we continue with the BackwardSweep in Algorithm 2.
Note that when nA = 0 (the very first iteration), there are no inputs to enumerate yet and
the computation actually starts with a BackwardSweep.

At the start of Algorithm 2, x is typically a power of 2 which means A(x) cannot be
determined from linear combinations and can be chosen freely. If the BackwardSweep
is successful (i.e. it finds a suitable A(x) such that S ◦A(x) = B ◦R(x)), we recurse on
the ForwardSweep. If the BackwardSweep fails, we need to guess A(x). This is for
example the case in the very first iteration when nB = 0.

174 Classification of Balanced Quadratic Functions

Algorithm 1: ForwardSweep(x, y, nA, nB)
while x < 2nA−1 do

Determine y′ s.t. B(y′) = S ◦A(x);
if y′ not yet defined then

Pick y′ = 2nB−1;
Set B(y′) = S ◦A(x);
nB = nB + 1;

end
if SetR(x, y′) then

x = x+ 1;
else

Dead end: Stop forward sweep;
end

end
if x < 2n then

BackwardSweep(x, y, nA, nB);
end

Algorithm 2: BackwardSweep(x, y, nA, nB) for invertible S
while y < 2nB−1 do

Determine x′ s.t. A(x′) = S−1 ◦B(y);
if x′ < x then

y = y + 1;
else

if SetR(x, y) then
Set A(x) = S−1 ◦B(y);
ForwardSweep(x, y + 1, nA + 1, nB);
Return;

end
end

end
Guess(x, y, nA, nB);

Algorithm 3: Guess(x, y, nA, nB)
SetR(x, y);
for all guesses g for A(x) do

Set A(x) = g;
Set B(y) = S ◦A(x);
ForwardSweep(x, y, nA +
1, nB + 1);

end

Algorithm 4: SetR(x, y)
if R(x) already defined (i.e.
x < NR) then
if y > R(x) then

Return False;
end
if y = R(x) then

Return True;
end

end
Set R(x) = y and NR = x+ 1;
Return True;

The Guess function is described by Algorithm 3. It fixes R(x) using Algorithm 4 to
the smallest unused y and then loops over all available assignments of A(x). For each

Lauren De Meyer and Begül Bilgin 175

guess, we try recursion on the ForwardSweep. We need to try all because any guess can
result in a lexicographically smaller representative R.

Algorithm 4 builds the representative R and only changes previously determined
outputs if they are smaller than the current one.

a 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(a) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

x→ A(x) S→ B(y)← y

Guess 0→ 0 → 1← 0

Guess 1→ 1 → B← 1 or
Guess 2→ 2 → 9← 2

Fwd 3→ 3 → C← 4

Bwd 4→ 7 ← 3← 3

Fwd 5→ 6 → F← 8

Fwd 6→ 5 → 6← 5

x→ A(x) S→ B(y)← y

Guess 1→ 5 → 6← 1

Guess 2→ A → 7← 2

Fwd 3→ F → 0← 3

Guess 4→ 4 → D← 4

Fwd 5→ 1 → B← 6

Fwd 6→ E → 5← 8

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
R(x) 0 1 2 3 4 6 8

Figure 1: Example of finding the linear representative for a 4-bit bijective S

This whole procedure of finding the representative of an n-bit permutation is exemplified
in Figure 1 for clarification. Note that even though the S-box we use and the one
in [BCBP03] are the same, the representative we obtain is different since we focus on the
lexicographically smallest one by assigning, for example, R(0) = 0. Moreover, for the same
reason, the representative on the right side of Figure 1 is favored over the left side.

3 Finding the Representative of a Non-invertible Function
It has been suggested in [BCBP03] that the algorithm in Section 2.3 can be extended to
find representatives for non-bijective functions S : Fn2 → Fm2 , but that this is only efficient
when n−m is small. When S is not invertible (but still balanced), instead of one single
solution to the equation S(x) = y, there are 2n−m possible x candidates for each y. The
additional complexity of enumerating these candidates during BackwardSweep grows
larger as m decreases. Therefore, in [BCBP03] the total complexity of finding the affine
representative for an n×m function where n > m is estimated as:

n3 · 2n · (2n−m!)
n

2n−m

Figure 2 depicts how the predicted complexity (for fixed n = 5) increases monotonously as
m decreases.

In what follows, we describe an extension of the algorithm in Section 2.3 which has
a non-monotonous complexity behavior as m decreases as can be observed in Figure 3.
Note that Figure 3 depicts experimental runtimes whereas Figure 2 depicts an asymptotic
complexity estimation. Their scales are thus very different and should not be compared
in magnitude. Instead, we are considering only the difference in trends. For m = n, the
algorithm is identical to [BCBP03]. The runtimes are calculated using a random selection
of 500 5×m functions for each m. Note that since no pseudo-code is provided in [BCBP03]

176 Classification of Balanced Quadratic Functions

1 2 3 4 5
m

Figure 2: Asymptotic Complexity
from [BCBP03] for 5×m functions.

1 2 3 4 5
m

Figure 3: Our experimental runtimes for
random 5×m functions.

and the description is very brief, we can not conclude whether this is due to a complexity
estimation error or having a slightly different algorithm. Moreover, the real runtimes might
approximate the asymptotic complexity better for n→∞.

One of the changes caused by the non-invertability of S is that we can no longer compute
the inverse S−1 and thus we cannot obtain x′ in Algorithm 2. We propose Algorithm 5 as
an alternative in which we loop over all possible x′ for which S ◦A(x′) = B(y).

Algorithm 5: BackwardSweep(x, y, nA, nB) for non-invertible S
while y < 2nB−1 do

for all x′ s.t. S ◦A(x′) = B(y) do
if x′ < x then

Try next x′;
else

if Set R(x, y) then
Set A(x) = S−1 ◦B(y);
ForwardSweep(x, y, nA + 1, nB) ;

end
end

end
if no x′ found then

y = y + 1;
else

Return;
end

end
Guess(x, y, nA, nB);

Another difference is in the assignment of y which is the smallest element in Fm2 that
does not yet have a corresponding input x such that R(x) = y. Note that y decides the
representative output R(x) in the BackwardSweep and Guess runs. The representative
R of a balanced function S has the same output distribution as S, which implies each
y = R(x) can only occur once in a bijective permutation. This is why Algorithm 2
immediately increments y after using it. In a non-bijective function on the other hand, y
can be reused 2n−m times. Algorithm 5 therefore does not immediately increase y after each
BackwardSweep but only when it runs out of candidates x′ for which S ◦A(x′) = B(y).
The complete procedure for finding the representative of a balanced non-injective function

Lauren De Meyer and Begül Bilgin 177

is illustrated in Figure 4.
This second feature actually makes the new algorithm very efficient in finding the

smallest representative when n−m is not too large. Instead of guessing A(x), which implies
a loop over approximately 2n guesses, now the list of 2n−m candidates x′ immediately
gives us the guesses A(x′) that result in the smallest output value R(x). The more often
we can reuse an output value y, the less often we need to guess. This can also be observed
by comparing the examples in Figure 1 and 4. As a result, the algorithm to find a
representative becomes more efficient for n×m functions with m < n. If m becomes very
small, the complexity increases again since the enumeration of 2n−m candidates, which is
used also in [BCBP03], becomes the dominant factor. That the complexity first decreases
and then increases with m corresponds to our initial observation in Figure 3.

a 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(a) 1 3 1 0 1 2 3 3 2 0 3 0 2 2 1 0

x→ A(x) S→ B(y)← y

Guess 0→ 0 → 1← 0

Bwd 1→ 2 ← 1← 0

Bwd 2→ 4 ← 1← 0

Fwd 3→ 6 → 3← 1

Bwd 4→ E ← 1← 0

Fwd 5→ C → 2← 2

Fwd 6→ A → 3← 1

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
R(x) 0 0 0 1 0 2 1

Figure 4: Example for 4-bit non-bijective S

4 Classifying Balanced 5 ×m Quadratic Functions
In this section, we first describe how all 5×m balanced quadratic functions can be classified
iteratively using our algorithm. Even though all 5-bit quadratic Boolean functions and
permutations have already been classified in [BW72] and [BBS17] respectively, this is the
first time such an analysis is performed for m /∈ {1, 5}. Moreover, we introduce novel
optimizations using the (non-)linearity of the components to perform this classification
much faster. We then compare the performances of finding all quadratic permutations
using the method in [BBS17] with ours.

4.1 Naive Iteration
There exist 215 different 5-bit quadratic Boolean functions. Since we target balanced
functions, we consider only the balanced 18 259 out of 215 as candidate coordinate functions
fi : F5

2 → F2. In iterative stages for m = 1 to 5, we systematically augment all balanced
5× (m− 1) functions with these 18 259 candidates to form a set of 5×m functions. We
then use the adapted AE algorithm to reduce these functions to their affine equivalent
representative. This reduction step is the key feature of the classification algorithm, since

178 Classification of Balanced Quadratic Functions

it not only provides us with all 5 ×m representatives, but also significantly lowers the
workload of the next stage. The search procedure is described by Algorithm 6.

Algorithm 6: Generate Quadratic Functions
Initialize R = {0}, S = ∅ and m = 1;
Let F contain all balanced quadratic Boolean functions;
while m < 5 do

for all S = (S1, . . . , Sm−1) ∈ R do
for all candidates f ∈ F do

if S′ = (S, f) is balanced then
S ← S ∪ {S′};

end
end

end
R ← ∅;
for all S ∈ S do

Find affine equivalent representative R of S;
R ← R∪R;

end
Sort and eliminate doubles from R.
S ← ∅;
m← m+ 1;

end

Table 1 shows the number of representatives we obtain for m = 1, . . . , 51. Our results
for m ∈ {1, 5} align with those from previous works and require 50 minutes of computation
time, using 4 threads on a Linux machine with an Intel Core i5-6500 processor at 3.20GHz.
The comparison of this timing alone with a couple of hours, using 16 threads given
in [BBS17] shows the impact of using an iterative approach, made possible by the new AE
algorithm of Section 3. Nevertheless, in this section we will describe two ways to further
optimize the complexity.

Table 1: Number of affine equivalence classes for 5×m functions for m = 1, . . . , 5

5× 1 5× 2 5× 3 5× 4 5× 5
classes 3 12 80 166 76

4.2 Impact of the Order of Coordinate Functions on Efficiency
Optimizing our classification algorithm comes down to reducing as much as possible the
number of functions to which the AE algorithm must be applied. Ideally, given two
intermediate functions F1 and F2 which are affine equivalent (F1 ∼ F2), we only want to
find the representative of one of them. Affine equivalence is not so easily detected in all
cases. However, we can focus on a simpler case. If F1 and F2 have the same coordinate
functions, but in a different order, then they are naturally affine equivalent. Hence, we will
try to fix the order of the coordinate functions of each intermediate function F and in that
way eliminate all functions that are equal to F up to a reordering of the coordinates. To
do this, we need a property to base the ordering on. Consider the three Boolean quadratic

1The exact listing of the representatives and their cryptographic properties can be found on http:
//homes.esat.kuleuven.be/~ldemeyer/ > Miscellaneous.

http://homes.esat.kuleuven.be/~ldemeyer/
http://homes.esat.kuleuven.be/~ldemeyer/

Lauren De Meyer and Begül Bilgin 179

function classes Q(5,1)
0 , Q

(5,1)
1 and Q(5,1)

2 for which representative ANF’s and nonzero Walsh
coefficient distributions are provided in Table 2.

Table 2: 5-bit Boolean functions

Class Representative #|ω : f̂(ω) = ξ|
ξ = 32 ξ = 16 ξ = 8

Q
(5,1)
0 x0 1 0 0

Q
(5,1)
1 x0 ⊕ x1x2 0 4 0

Q
(5,1)
2 x0 ⊕ x1x2 ⊕ x3x4 0 0 16

Lemma 1. Every n×m function F = (f0, f1, . . . , fm−1) is affine equivalent to an n×m
function G(x) = (g0, g1, . . . , gm−1) with max ĝ0(ω) ≤ max ĝ1(ω) ≤ . . . ≤ max ĝm−1(ω),
where ĝi(ω) is the Walsh spectrum of gi(x).

Since this property is unique for each class of Boolean functions, we will use it to fix
the order of coordinate functions during the classification algorithm. Using Lemma 1, in
each intermediate step m, we will only allow new coordinate functions fm for which the
linearity is not smaller than the linearity of fm−1.

4.3 Impact of Linear Components on Efficiency
The runtime for finding the affine representative of a function depends on the accuracy of
guesses. That is, the algorithm searches the smallest representative for each guess of A(x).
As a result, we notice that, the more nonlinear components the function has, the more
dead ends the algorithm encounters and the more quickly it finishes. On the other hand,
the more linear components the function exhibits, the more valid solutions for the affine
transforms and thus the longer the algorithm needs to search through them. Therefore,
the algorithm for finding the linear representative becomes less efficient as the number of
linear components of the function increases.

In order to illustrate this significant difference, we choose five 5-bit representatives
with a different number of linear components. We use the same class enumeration as
in [BBS17] and represent the ith quadratic permutation with Q(5,5)

i . From each class, we
randomly choose 100 permutations and observe the average runtime of the AE algorithm.
The results of this experiment are shown in Table 3.

Table 3: Average runtimes of the AE algorithm [BCBP03] for some 5-bit representatives

Class # Linear Components Av. Runtime (s.)

Q
(5,5)
1 15 1.36

Q
(5,5)
2 7 0.39

Q
(5,5)
37 3 0.017

Q
(5,5)
49 1 0.0083

Q
(5,5)
75 0 0.0053

Moreover, we further analyze the runtime of the AE algorithm by removing coordinates
to derive n×m functions with less linear components. The result is illustrated in Figure 5.

We introduce the following definition of a linear extension in order to define our
optimization for the classification.

180 Classification of Balanced Quadratic Functions

1 2 3 4 5
m

10−3

10−2

10−1

100

Ave Runtime (s)

Q1

Q2

Q37

Q49

Q75

Figure 5: Actual runtimes observed for some 5-bit functions

Definition 6 (Linear Extension). An n-bit permutation F = (f0, . . . , fn−1) is called the
linear extension of an n×m function G = (f0, . . . , fm−1) if ∀m ≤ i < n, fi is linear.

Any balanced n×m function can be linearly extended with n−m linear components
into a balanced n-bit permutation. Correspondingly, each balanced n-bit permutation
with 2n−m − 1 linear components can be generated as a linear extension of some balanced
n ×m function with zero linear components. We therefore initially eliminate all linear
coordinate functions from our search, generating 5 × m functions with only nonlinear
coordinates in each step. In the very last stage, we obtain a list of 5-bit bijections without
linear components. Finally, we add to this list all the linear extensions of the 5 × m
representatives found so far (for m = 1, . . . , 4) to also obtain the 5-bit bijections with
2n−m − 1 linear components. This optimization increases the efficiency of the search in
three ways. Firstly, it reduces the number of fi candidates inserted in each stage (|F| ↘).
Secondly, it discards functions for which finding the AE representative is slow. Finally, it
reduces the number of n×m representatives that each stage starts from (|R| ↘).

4.4 Performance Comparison
Table 4 summarizes the results of the optimized search that takes a mere 6 minutes, using
4 threads. This significant increase of performance enables us to classify for the first time
also all 6-bit functions, which is described in Section 6. Note that the first column of
Table 4 (m = 0) corresponds to the classes of affine 5× i functions. The last column holds
the total number of 5 × i functions, which is the sum of each row and corresponds to
Table 1.

Each column starts with the number of “purely nonlinear” 5×m representatives (only
nonlinear coordinates). The rows below the diagonal hold the number of classes that result
from linearly extending the classes in previous rows. The last row shows the number of
linear components in the corresponding 5× 5 bijections and is equal to 25−m − 1. We find
22 quadratic 5-bit equivalence classes without any linear components. Adding to this the
linear extensions of smaller functions, we obtain all the 75 quadratic and the one affine
5-bit representatives.

Note that the number of classes obtained from linearly extending all 5×m functions
can be much smaller than the number of 5 ×m classes itself (for example 23 � 93 for
m = 4). This can be explained by the fact that linearly extending two extended affine but
not affine equivalent functions can result in affine equivalent permutations (i.e. a collision
in the linear extension). Consider for example the following two 5× 3 functions that are

Lauren De Meyer and Begül Bilgin 181

Table 4: Number of affine equivalence classes for 5 × i functions for i = 1, . . . , 5 with
2i−m − 1 linear components.

5× i representatives m Tot. #0 1 2 3 4 5
5× 1 1 2 - - - - 3
5× 2 1 3 8 - - - 12
5× 3 1 5 19 55 - - 80
5× 4 1 3 17 52 93 - 166
5× 5 1 2 6 22 23 22 76
Linear Components: 31 15 7 3 1 0

extended affine equivalent but not affine equivalent:
x0 ⊕ x1x2

x1 ⊕ x2x3

x4 ⊕ x0x1

6∼

x0 ⊕ x3 ⊕ x1x2

x1 ⊕ x3 ⊕ x2x3

x4 ⊕ x0x1

It is straightforward to verify that linearly extending both functions with coordinate
functions x2 and x3 results in two affine equivalent 5-bit permutations.

x0 ⊕ x1x2

x1 ⊕ x2x3

x4 ⊕ x0x1

x2

x3

∼

x0 ⊕ x3 ⊕ x1x2

x1 ⊕ x3 ⊕ x2x3

x4 ⊕ x0x1

x2

x3

5 Decomposing and Generating Higher Degree Permuta-
tions

We now adapt our algorithm to (de)compose higher degree functions into/from quadrat-
ics. This leads to area efficient implementations especially in the context of side-channel
countermeasures and masking, where the area grows exponentially with the degree of a func-
tion. Below we describe length-two decompositions and constructions of cryptographically
interesting permutations.

5.1 Length-two Decomposition
We are trying to decompose a higher degree function H : Fn2 → Fn2 . If a quadratic
decomposition of length two exists, then we can state that H = B ◦ R1 ◦ A ◦ R2 ◦ C
with A,B,C affine permutations and R1, R2 representatives of n-bit quadratic classes.
Alternatively, we can state that H is affine equivalent to R1 ◦A ◦R2. Suppose we fix R2
(to one of the known n-bit representatives) and we want to find the representative R1 and
the affine permutation A such that

H ∼ R1 ◦A ◦R2. (1)

As with the classification of Boolean functions, we perform this search iteratively, starting
from n× 1 Boolean functions f for which f ◦R2 : Fn2 → F2 is extended affine equivalent
to a component function of H. We thus select the candidates for f using the following
criteria:

182 Classification of Balanced Quadratic Functions

(C1) f is balanced

(C2) ∃β ∈ Fm2 \ {0} s.t. Degr(f ◦R2) = Degr(β ·H)

(C3) ∃β ∈ Fm2 \ {0} s.t. (∆f◦R2 ,Λf◦R2) = (∆β·H ,Λβ·H)

Starting from this list of candidates, we proceed in a similar manner as in Algorithm 6.
We only slightly have to tweak this algorithm to obtain the decomposition Algorithm 7.
Each time we augment an n× (m−1) function with one of the Boolean function candidates

Algorithm 7: Find decompositions of length two
for all quadratic n-bit representatives R2 do

Initialize R = {0}, S = ∅ and m = 1;
F ← all quadratic Boolean functions f satisfying above criteria (C1-C3);
while m < n do
D ← {(∆L◦H ,ΛL◦H)}L∈L (Fn

2→Fm
2);

for all S ∈ R do
for all candidates f ∈ F do

if S′ = (S, f) is balanced and (∆S′◦R2 ,ΛS′◦R2) ∈ D then
S ← S ∪ {S′};

end
end

end
R ← ∅;
for all S ∈ S do

Find left affine equivalent representative RL of S;
R ← R∪RL;

end
Sort and eliminate doubles from R.
S ← ∅;
m← m+ 1;

end
if R 6= ∅ then

Decomposition of length 2 found;
end

end

f to a balanced n×m function F , we verify that the DDT and LAT of F ◦R2 have the
same frequency distributions as those of some function H ′ : Fn2 → Fm2 , that has as its
coordinate functions a subset of the components of H. Let L (Fn2 → Fm2) be the set of all
balanced linear mappings from Fn2 to Fm2 . Then, we can describe H ′ as L ◦H for some
L ∈ L (Fn2 → Fm2). In order to eliminate false candidates as early as possible, we verify for
each intermediate n×m candidate F if the composition F ◦R2 can be affine equivalent to
some subfunction H ′. In particular, we check that

(∆F◦R2 ,ΛF◦R2) ∈ {(∆L◦H ,ΛL◦H)}L∈L (Fn
2→Fm

2)

The quadratic function classification algorithm (Algorithm 6) is very efficient because
it reduces the lists of intermediate functions to their affine equivalent representatives at
each step m. However, we cannot do that in this case as this would change the affine
transformation A in the decomposition (see Eqn. (1)). Let S1 = B ◦R1 ◦A be a candidate
for which S1 ◦R2 ∼ H and let R1 be its affine representative. Reducing S1 to R1 would
discard the affine transformation A. In that case, we would only be able to decompose

Lauren De Meyer and Begül Bilgin 183

functions that are affine equivalent to the composition of two representatives: R1 ◦R2. In
other words, if there is another candidate S′1 affine equivalent to S1, we do not want to
discard it as it will not necessarily result in affine equivalent compositions.

S′1 ∼ S1 ⇒/ S′1 ◦R2 ∼ S1 ◦R2

However, without any reductions in the intermediate steps of the algorithm, the search
becomes very inefficient as the list of candidate functions grows exponentially. There is
still a redundancy in our search because of the affine output transformation B that is
included in S1. If S′1 is only left affine equivalent to S1, then their compositions are affine
equivalent:

S′1 = B′ ◦ S1 ⇒ S′1 ◦R2 ∼ S1 ◦R2

We therefore adapt the AE algorithm to find the lexicographically smallest function RL1
that is left affine equivalent to S1: RL1 = B−1 ◦ S1 = R1 ◦ A. We call this function RL1
the left affine representative of S1. The algorithm to find RL1 is identical to finding the
affine equivalent representative with the input affine transformation constrained to the
identity function. This constraint removes the need for guesses and makes the algorithm
very efficient. An example is shown in Figure 6. Algorithm 7 summarizes the resulting
decomposition method.

a 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(a) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

x→ A(x) S→ B(y)← y

Fwd 0→ 0 → 1← 0

Fwd 1→ 1 → B← 1

Fwd 2→ 2 → 9← 2

Fwd 3→ 3 → C← 4

Fwd 4→ 4 → D← 8

Fwd 5→ 5 → 6← 5

Fwd 6→ 6 → F← 7

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
RL(x) 0 1 2 4 8 5 7

Figure 6: Example for finding the left representative RL of S. Input transformation A is
fixed to the identity function: A(x) = x

5.2 Almost Bent Permutations
There are five APN 5× 5 permutations up to affine equivalence [BL08], all corresponding
to a power map over F25 . Two of these are quadratic and AB and correspond to classes
Q(5,5)

74 (∼ x3) and Q(5,5)
75 (∼ x5). We demonstrate Algorithm 7 by decomposing the inverses

of these classes (resp. x11 and x7), which are cubic and (naturally) also AB. The algorithm
is very efficient in this case because the properties of AB’s are so well defined: Firstly, all
components of the cubic AB’s have the same algebraic degree (=3). We also know that
the DDT of an AB function contains only zeros and twos and its LAT contains only zeros

184 Classification of Balanced Quadratic Functions

and elements with absolute value 4. It immediately follows that also the Walsh transform
of each coordinate function of the AB is equal to either 0 or ±8.

Moreover, when we look at all 5 ×m subfunctions H ′ = L ◦H, ∀L ∈ L (Fn2 → Fm2),
there is only one permitted differential spectrum and LAT frequency distribution for
each m. It is indeed known that all coordinate functions of the AB are (extended) affine
equivalent.

We enumerate all 75 candidates for R2 and perform the search for S1 = R1 ◦A using
Algorithm 7. When R2 is the representative of classes Q(5,5)

1 to Q(5,5)
74 , the algorithm

finds no 5-bit bijections that compose with R2 to a cubic AB. The search only ends with
non-empty R when we perform it with R2 the representative of Q(5,5)

75 , which is itself the
quadratic AB permutation x5. The resulting R1 is equal to R2 and their composition
forms the AB class that holds the inverse of Q(5,5)

75 (corresponding to power map x7). This
decomposition is easily verified using power maps. Indeed, x5 ◦ x5 ◦ x5 = x125 = x1 mod 31.

Without the constraint that the AB needs to be cubic, we also find a decomposition
for class Q(5,5)

75 itself with R1 = R2 = Q
(5,5)
74 . A length-two decomposition for the odd

cubic AB permutations (x11) is not found. Since the algorithm is exhaustive, this means
it does not exist. Indeed, it is shown in [NNR19] that the shortest decomposition of x11

has length three.

Table 5: Look-up-tables for the even cubic AB function F and its decomposition F = S1◦R2
with S1 ∼ R2

F 0,1,2,8,4,17,30,13,10,18,5,19,6,20,11,26,16,15,9,23,3,7,29,21,14,12,25,31,28,27,22,24
S1 0,1,2,4,8,10,16,21,17,28,18,24,23,25,14,7,30,6,19,12,20,15,3,31,9,29,5,22,13,26,27,11
R2 0,1,2,4,3,8,16,28,5,10,26,18,17,20,31,29,6,21,24,12,22,15,25,7,14,19,13,23,9,30,27,11

5.3 The Keccak χ Inverse
The nonlinear transformation χ used in the Keccak [BDPA13] sponge function family χ
(Figure 7) is a quadratic 5-bit permutation from class Q(5,5)

68 with a cubic inverse. For the
possibility of implementing an algorithm using χ−1, we decompose this cubic permutation
(see Table 6).

Figure 7: The nonlinear transformation χ from Keccak [BDPA13]

Table 6: Look-up-tables for the Keccak permutation χ and its inverse χ−1

χ 0,9,18,11,5,12,22,15,10,3,24,1,13,4,30,7,20,21,6,23,17,16,2,19,26,27,8,25,29,28,14,31
χ−1 0,11,22,9,13,4,18,15,26,1,8,3,5,12,30,7,21,20,2,23,16,17,6,19,10,27,24,25,29,28,14,31

The Keccak inverse does not have the same strong properties as the AB permutations.
Each coordinate function is still cubic but the differential and linear properties are naturally

Lauren De Meyer and Begül Bilgin 185

weaker. Firstly, apart from zeros we find both ±4 and ±8 in the LAT. For the DDT, there
are multiple differential spectra for the intermediate 5×m sub functions. As explained
above, we generate the list of possible DDT and LAT frequency distributions for each
m = 1, . . . , 4 and feed this as input to the search algorithm. We filter out all intermediate
functions F : Fn2 → Fm2 for which the DDT and LAT frequency distributions of F ◦R2 do
not occur in this list.

While the search finds many classes with the same cryptographic properties as the
Keccak inverse, a decomposition of length 2 for χ−1 itself does not appear to exist.

5.4 Towards Higher-Degree Permutations
When it comes to choosing a nonlinear permutation for use in a cryptographic primitive, the
designer will sooner go to those with higher degree as they provide more resilience against
higher-order differential and algebraic attacks [DEM15]. With masked implementations
in mind, we thus want to find strong n-bit permutations with high algebraic degree for
which a decomposition into quadratic blocks exists. Our decomposition algorithm can be
used for this purpose. If instead of searching for specific functions H, we define a set of
more general but strong criteria, we can use the algorithm 7 to generate a list of favorable
permutations. In particular, we use the following criteria to perform a search for 5-bit
permutations S with optimal algebraic degree and near-optimal cryptographic properties:

- S is balanced
- Degr(S) = 4
- Lin(S) ≤ 6
- Diff(S) ≤ 4
The first three criteria are easily translated for intermediate 5 × m functions (the

bound on the LAT table stays the same). As we are not looking for a known class, this is
more difficult for the bound on the DDT. We use the fact that the upperbound on the
values in the DDT at most doubles every time we discard one output bit (see Theorem 1).
This upperbound is not tight, but can be used to filter some of the unusable intermediate
functions F .
Theorem 1 ([Nyb94, Thm. 12]). Let S = (f0, f1, . . . , fn−1) : Fn2 → Fn2 be an n-bit
bijection with Diff(S) the maximal value in its DDT. Then, for any function F : Fn2 → Fm2
with m < n, composed from a subset of the coordinate functions of S, F = (fi1 , fi2 , . . . , fim)
with i1, . . . , im ∈ {0, . . . , n− 1}, the values in its DDT are upperbounded by Diff(S) · 2n−m.

Our search delivers 17 quartic affine equivalence classes with very good cryptographic
properties, shown in Table 7. One of those is the APN class, which contains the permutation
formed by the inversion x−1 in F25 . Indeed, it was shown in [NNR19] that this permutation
has decomposition length two. Each of these very strong 5-bit S-boxes have an efficient
masked implementation, as they can be decomposed into only two quadratic components.
This list is only a sample of the functions that can be found using this method.

6 Classifying 6 ×m Quadratic Functions
The efficiency of Algorithm 6 makes it feasible to extend the search for quadratic permu-
tations to n = 6 bits for the first time. There are 221 different 6-bit quadratic Boolean
functions, of which there are 914 004 nonlinear balanced ones. This is our list F of
candidate coordinate functions fi : F6

2 → F2. Generating all classes of 6 ×m functions
for m < 6 without linear components takes 8.5 hours on 24 cores. The total number of
classes found for each m is shown in Table 82. Tables 9 to 12 show histograms of the

2The exact listing of the representatives and their cryptographic properties can be found on http:
//homes.esat.kuleuven.be/~ldemeyer/ > Miscellaneous.

http://homes.esat.kuleuven.be/~ldemeyer/
http://homes.esat.kuleuven.be/~ldemeyer/

186 Classification of Balanced Quadratic Functions

Table 7: Strong quartic (degree 4) 5-bit permutations with decomposition length two

Cl. Representative Diff Lin R1 R2

1: 0,1,2,3,4,6,7,8,5,9,16,12,21,26,29,30,10,18,24,13,27,17,20,31,14,11,23,19,22,28,15,25 4 6 Q
(5,5)
52 Q

(5,5)
57

2: 0,1,2,3,4,6,7,8,5,12,16,26,28,18,29,13,9,21,30,25,10,27,20,22,14,19,23,31,17,24,11,15 4 6 Q
(5,5)
71 Q

(5,5)
62

3: 0,1,2,3,4,6,7,8,5,16,18,29,9,15,28,26,10,30,20,19,23,31,24,11,12,22,27,17,13,21,14,25 4 6 Q
(5,5)
53 Q

(5,5)
67

4: 0,1,2,3,4,6,8,11,5,9,16,18,12,17,28,23,7,31,21,19,10,26,14,29,30,25,27,22,24,13,15,20 4 6 Q
(5,5)
71 Q

(5,5)
75

5: 0,1,2,3,4,6,8,11,5,12,16,24,15,21,17,20,7,23,9,18,14,19,25,30,31,10,28,22,13,26,27,29 4 6 Q
(5,5)
69 Q

(5,5)
71

6: 0,1,2,3,4,6,8,12,5,7,16,27,26,15,28,18,9,14,22,17,20,31,24,21,13,29,10,19,25,23,11,30 4 6 Q
(5,5)
33 Q

(5,5)
70

7: 0,1,2,3,4,6,8,12,5,9,16,24,31,10,17,20,7,21,28,22,15,29,14,27,25,19,11,23,13,26,30,18 4 6 Q
(5,5)
74 Q

(5,5)
74

8: 0,1,2,3,4,6,8,12,5,9,16,31,18,17,15,23,7,24,10,29,21,27,11,28,25,30,14,22,26,19,20,13 4 6 Q
(5,5)
74 Q

(5,5)
75

9: 0,1,2,3,4,6,8,12,5,10,16,27,25,19,22,11,7,18,30,13,24,21,28,15,31,9,26,29,23,17,20,14 4 6 Q
(5,5)
74 Q

(5,5)
68

10: 0,1,2,3,4,6,8,12,5,11,16,25,18,10,19,29,7,17,30,21,31,24,13,14,27,22,26,9,20,23,28,15 4 6 Q
(5,5)
75 Q

(5,5)
74

11: 0,1,2,3,4,6,8,12,5,11,16,24,22,26,9,19,7,23,10,13,31,18,20,29,27,30,28,15,14,17,21,25 4 6 Q
(5,5)
74 Q

(5,5)
68

12: 0,1,2,3,4,6,8,12,5,13,16,23,17,18,24,11,7,29,21,27,25,9,22,10,31,14,15,20,19,30,28,26 4 6 Q
(5,5)
72 Q

(5,5)
68

13: 0,1,2,3,4,6,8,12,5,14,16,26,10,27,23,31,7,24,11,28,20,17,9,18,25,21,13,30,15,22,29,19 4 6 Q
(5,5)
10 Q

(5,5)
72

14: 0,1,2,3,4,6,8,12,5,16,13,23,25,21,26,14,7,17,20,28,29,19,11,9,15,10,31,24,27,18,30,22 4 6 Q
(5,5)
72 Q

(5,5)
74

15: 0,1,2,3,4,6,8,12,5,16,21,26,31,22,18,10,7,24,17,13,30,14,19,27,20,9,23,25,11,29,15,28 4 6 Q
(5,5)
74 Q

(5,5)
74

16: 0,1,2,3,4,6,8,16,5,10,20,29,7,31,27,13,9,25,15,18,19,14,22,26,21,17,11,12,30,28,23,24 4 6 Q
(5,5)
10 Q

(5,5)
75

17: 0,1,2,4,3,6,8,16,5,10,15,27,19,29,31,20,7,18,25,21,12,14,24,28,26,11,23,13,30,9,17,22 2 6 Q
(5,5)
75 Q

(5,5)
74

classes’ cryptographic properties. It is interesting to note that the two best 6× 5 classes in
Table 12 correspond to the two AB 5× 5 classes Q(5,5)

74 and Q(5,5)
75 , extended with a sixth

unused input bit.

Table 8: Number of affine equivalence classes with/without linear components for quadratic
6×m functions for m = 1, . . . , 5

6× 1 6× 2 6× 3 6× 4 6× 5
classes without 2 19 604 10 480 7 458
classes with 3 24 670 11 891 12 647

Table 9: Number of quadratic 6× 2 classes with cryptographic properties (Diff,Lin)

Lin = 8 Lin = 16 Lin = 32
Diff = 32 5 3 0
Diff = 64 2 9 5

Table 10: Number of quadratic 6× 3 classes with cryptographic properties (Diff,Lin)

Lin = 8 Lin = 16 Lin = 32
Diff = 16 57 7 0
Diff = 32 128 252 19
Diff = 64 11 149 47

Lauren De Meyer and Begül Bilgin 187

Table 11: Number of quadratic 6× 4 classes with cryptographic properties (Diff,Lin)

Lin = 8 Lin = 16 Lin = 32
Diff = 8 10 1 0
Diff = 16 1935 845 64
Diff = 32 618 5013 740
Diff = 64 42 2016 607

Table 12: Number of quadratic 6× 5 classes with cryptographic properties (Diff,Lin)

Lin = 8 Lin = 16 Lin = 32
Diff = 4 2 0 0
Diff = 8 111 3 4
Diff = 16 124 1028 424
Diff = 32 0 3343 2993
Diff = 64 4 2843 1768

In order to complete the final stage of the search for all 6-bit quadratic permutations, we
generate the list of candidates for the AE algorithm by extending the 6× 5 representatives
with the Boolean function candidates fi ∈ F and we add the linear extensions of all other
6×m functions. We split this list into 100 parts and complete the rest of the algorithm
on 100 cores. In the end, we find 2 263 classes of 6-bit quadratic permutations (not
including the one linear permutation)3. Table 13 shows how these classes are distributed
among even and odd permutations or how many of them have quadratic/cubic inverses.
Table 14 depicts the histogram of cryptographic properties. There are eight classes with
Diff = 4 and Lin = 8. These are shown in Table 15. One of those permutations is odd.
Finally, Figure 8 shows the total number of affine equivalence classes of quadratic n× n
permutations. While it was already clear that this number grows fast with n, the figure
demonstrates how difficult it was before this work to predict just how fast.

Table 13: Number of quadratic 6× 6 classes with certain properties

Even/Odd 2258 5
Inverse = quadratic/cubic 70 2193

Table 14: Number of quadratic 6× 6 classes with cryptographic properties (Diff,Lin)

Lin = 8 Lin = 16 Lin = 32
Diff = 4 8 0 0
Diff = 8 0 0 12
Diff = 16 0 49 100
Diff = 32 0 49 1067
Diff = 64 0 200 779

3The exact listing of the representatives and their cryptographic properties can be found on http:
//homes.esat.kuleuven.be/~ldemeyer/ > Miscellaneous.

http://homes.esat.kuleuven.be/~ldemeyer/
http://homes.esat.kuleuven.be/~ldemeyer/

188 Classification of Balanced Quadratic Functions

Table 15: Strong quadratic 6-bit permutations

Cl. Representative Diff Lin Parity

2256: 0,1,2,3,4,6,7,5,8,12,16,20,32,39,57,62,9,17,21,13,40,51,53,46,50,47,52,41,63,33,56,38,10,45, 4 8 Even27,60,43,15,59,31,58,24,49,19,55,22,61,28,29,35,18,44,25,36,23,42,30,37,11,48,54,14,34,26

2257: 0,1,2,3,4,6,7,5,8,12,16,20,32,39,57,62,9,17,21,13,41,50,52,47,40,53,46,51,36,58,35,61,10,25, 4 8 Even37,54,33,49,15,31,45,59,24,14,42,63,30,11,29,23,44,38,18,27,34,43,19,28,56,55,48,60,26,22

2258: 0,1,2,3,4,6,7,5,8,12,16,20,32,39,57,62,9,17,21,13,41,50,52,47,55,42,49,44,59,37,60,34,10,25, 4 8 Even38,53,35,51,14,30,61,43,11,29,56,45,15,26,22,28,36,46,27,18,40,33,23,24,63,48,54,58,31,19

2259: 0,1,2,3,4,6,8,10,5,11,16,30,32,45,59,54,7,20,41,58,47,63,15,31,48,44,9,21,57,38,14,17,12,25, 4 8 Even24,13,34,52,56,46,40,50,43,49,39,62,42,51,35,36,27,28,33,37,23,19,53,61,26,18,22,29,55,60

2260: 0,1,2,3,4,6,8,10,5,11,16,30,32,45,59,54,7,24,40,55,48,44,17,13,9,25,49,33,31,12,41,58,14,27, 4 8 Even26,15,57,47,35,53,61,39,62,36,43,50,38,63,46,37,23,28,42,34,29,21,22,18,56,60,51,52,19,20

2261: 0,1,2,3,4,6,8,10,5,11,16,30,32,45,59,54,7,34,21,48,13,43,17,55,56,18,61,23,19,58,24,49,9,52, 4 8 Even20,41,31,33,12,50,46,28,36,22,25,40,29,44,62,39,51,42,38,60,37,63,35,53,57,47,26,15,14,27

2262: 0,1,2,3,4,6,8,10,5,12,16,25,32,42,59,49,7,20,14,29,52,36,51,35,53,46,43,48,39,63,55,47,9,58, 4 8 Even44,31,22,38,61,13,19,40,33,26,45,21,17,41,54,23,24,57,30,60,62,28,27,50,34,11,18,56,37,15

2263: 0,1,2,3,4,8,16,28,5,12,32,41,10,14,57,61,6,62,23,47,33,20,38,19,43,27,29,45,7,58,39,26,9,22, 4 8 Odd55,40,11,25,35,49,44,59,53,34,37,63,42,48,21,51,56,30,52,31,15,36,24,54,18,60,50,17,46,13

Figure 8: Number of quadratic n× n classes for growing n

7 Conclusion
This work studies the classification of quadratic vectorial Boolean functions under affine
equivalence. It extends Biryukov’s Affine Equivalence algorithm to non-bijective functions
for use in a new classification tool that provides us with the complete classification of
balanced n ×m quadratic vectorial Boolean functions for m ≤ n and n < 7. We also
introduce a tool for finding length-two quadratic decompositions of higher degree functions.

New cryptographic algorithms should be designed with resistance against side-channel
attacks in mind. When it comes to choosing S-boxes, designers can use our classification
to pick quadratic components and use our (de)composition tool to create cryptographically
strong S-boxes with efficient masked implementations. After the classifications of 4-
and 5-bit permutations in previous works, this work expands the knowledge base on
both classification and decomposition, bringing us one step closer to classifying 8-bit
functions and decomposing the AES S-box using permutations instead of tower field or
square-and-multiply approaches.

Acknowledgments
The authors thank Dusan Bozilov for the insights into his algorithm and Prof. Vincent
Rijmen for fruitful discussion and helpful comments. This work was supported by the
Research Council KU Leuven: C16/15/058. Lauren De Meyer is funded by a PhD
fellowship (aspirant) of the Fund for Scientific Research - Flanders (FWO). Begül Bilgin
was a postdoctoral fellow of the FWO during this research. Currently, she is working at
Rambus Cryptography Research.

Lauren De Meyer and Begül Bilgin 189

References
[ABB+14] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel,

Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. CAESAR sub-
mission: PRIMATEs v1.02, March 2014. http://primates.ae/wp-content/
uploads/primatesv1.02.pdf.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. Mimc: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume
10031 of Lecture Notes in Computer Science, pages 191–219, 2016.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume
9056 of Lecture Notes in Computer Science, pages 430–454. Springer, 2015.

[BBS17] Dusan Bozilov, Begül Bilgin, and Haci Ali Sahin. A note on 5-bit quadratic
permutations’ classification. IACR Trans. Symmetric Cryptol., 2017(1):398–404,
2017.

[BCBP03] Alex Biryukov, Christophe De Cannière, An Braeken, and Bart Preneel. A
toolbox for cryptanalysis: Linear and affine equivalence algorithms. In Eli
Biham, editor, Advances in Cryptology - EUROCRYPT 2003, International
Conference on the Theory and Applications of Cryptographic Techniques, War-
saw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture Notes in
Computer Science, pages 33–50. Springer, 2003.

[BDP+14] Guido Bertoni, Joan Daemon, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. CAESAR submission: Ketje v1, March 2014. https:
//competitions.cr.yp.to/round1/ketjev1.pdf.

[BDP+15] Guido Bertoni, Joan Daemon, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. CAESAR submission: Keyak v2, August 2015. https:
//competitions.cr.yp.to/round2/keyakv2.pdf.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of LNCS, pages
313–314. Springer, 2013.

[BGG+16] Erik Boss, Vincent Grosso, Tim Güneysu, Gregor Leander, Amir Moradi, and
Tobias Schneider. Strong 8-bit sboxes with efficient masking in hardware. In
Gierlichs and Poschmann [GP16], pages 171–193.

[Bil15] Begül Bilgin. Threshold Implementations: As Countermeasure Against Higher-
Order Differential Power Analysis. PhD thesis, KU Leuven, Belgium & UTwente,
The Netherlands, 2015.

[BKNN15] Begül Bilgin, Miroslav Knezevic, Ventzislav Nikov, and Svetla Nikova. Compact
implementations of multi-sbox designs. In Naofumi Homma and Marcel Medwed,

http://primates.ae/wp-content/uploads/primatesv1.02.pdf
http://primates.ae/wp-content/uploads/primatesv1.02.pdf
https://competitions.cr.yp.to/round1/ketjev1.pdf
https://competitions.cr.yp.to/round1/ketjev1.pdf
https://competitions.cr.yp.to/round2/keyakv2.pdf
https://competitions.cr.yp.to/round2/keyakv2.pdf

190 Classification of Balanced Quadratic Functions

editors, Smart Card Research and Advanced Applications - 14th International
Conference, CARDIS 2015, Bochum, Germany, November 4-6, 2015. Revised
Selected Papers, volume 9514 of Lecture Notes in Computer Science, pages
273–285. Springer, 2015.

[BL08] Marcus Brinkmann and Gregor Leander. On the classification of APN functions
up to dimension five. Des. Codes Cryptography, 49(1-3):273–288, 2008.

[BNN+12] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg Stütz.
Threshold implementations of all 3x3 and 4x4 s-boxes. In Emmanuel Prouff and
Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems -
CHES 2012 - 14th International Workshop, Leuven, Belgium, September 9-12,
2012. Proceedings, volume 7428 of Lecture Notes in Computer Science, pages
76–91. Springer, 2012.

[BNN+15] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, Natalia N.
Tokareva, and Valeriya Vitkup. Threshold implementations of small s-boxes.
Cryptography and Communications, 7(1):3–33, 2015.

[BP10] Joan Boyar and René Peralta. A new combinational logic minimization tech-
nique with applications to cryptology. In Paola Festa, editor, Experimental
Algorithms, 9th International Symposium, SEA 2010, Ischia Island, Naples,
Italy, May 20-22, 2010. Proceedings, volume 6049 of Lecture Notes in Computer
Science, pages 178–189. Springer, 2010.

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems.
In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology -
CRYPTO ’90, 10th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11-15, 1990, Proceedings, volume 537 of Lecture Notes
in Computer Science, pages 2–21. Springer, 1990.

[BW72] Elwyn R. Berlekamp and Lloyd R. Welch. Weight distributions of the cosets of
the (32, 6) reed-muller code. IEEE Trans. Information Theory, 18(1):203–207,
1972.

[Can07] Christophe De Cannière. Analysis and Design of Symmetric Encryption Algo-
rithms. PhD thesis, Katholieke Universiteit Leuven, 2007.

[CCZ98] Claude Carlet, Pascale Charpin, and Victor A. Zinoviev. Codes, bent functions
and permutations suitable for des-like cryptosystems. Des. Codes Cryptography,
15(2):125–156, 1998.

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and
Matthieu Rivain. Higher-order masking schemes for s-boxes. In Anne Canteaut,
editor, Fast Software Encryption - 19th International Workshop, FSE 2012,
Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, volume
7549 of Lecture Notes in Computer Science, pages 366–384. Springer, 2012.

[CPRR15] Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Alge-
braic decomposition for probing security. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Pro-
ceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
742–763. Springer, 2015.

Lauren De Meyer and Begül Bilgin 191

[CRV14] Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek. Fast evaluation of poly-
nomials over binary finite fields and application to side-channel countermeasures.
In Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware and
Embedded Systems - CHES 2014 - 16th International Workshop, Busan, South
Korea, September 23-26, 2014. Proceedings, volume 8731 of Lecture Notes in
Computer Science, pages 170–187. Springer, 2014.

[CV94] Florent Chabaud and Serge Vaudenay. Links between differential and linear
cryptanalysis. In Alfredo De Santis, editor, Advances in Cryptology - EU-
ROCRYPT ’94, Workshop on the Theory and Application of Cryptographic
Techniques, Perugia, Italy, May 9-12, 1994, Proceedings, volume 950 of Lecture
Notes in Computer Science, pages 356–365. Springer, 1994.

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Higher-order
cryptanalysis of lowmc. In Soonhak Kwon and Aaram Yun, editors, Information
Security and Cryptology - ICISC 2015 - 18th International Conference, Seoul,
South Korea, November 25-27, 2015, Revised Selected Papers, volume 9558 of
Lecture Notes in Computer Science, pages 87–101. Springer, 2015.

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
CAESAR submission: ASCON v1.1, August 2015. https://competitions.
cr.yp.to/round2/asconv11.pdf.

[Ful03] Joanne Elizabeth Fuller. Analysis of affine equivalent boolean functions for
cryptography. PhD thesis, Queensland University of Technology, 2003.

[Gol59] Solomon W. Golomb. On the classification of boolean functions. IRE Trans.
Information Theory, 5(5):176–186, 1959.

[GP16] Benedikt Gierlichs and Axel Y. Poschmann, editors. Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science. Springer, 2016.

[GR16] Dahmun Goudarzi and Matthieu Rivain. On the multiplicative complexity
of boolean functions and bitsliced higher-order masking. In Gierlichs and
Poschmann [GP16], pages 457–478.

[KNP13] Sebastian Kutzner, Phuong Ha Nguyen, and Axel Poschmann. Enabling 3-
share threshold implementations for all 4-bit s-boxes. In Hyang-Sook Lee and
Dong-Guk Han, editors, Information Security and Cryptology - ICISC 2013 -
16th International Conference, Seoul, Korea, November 27-29, 2013, Revised
Selected Papers, volume 8565 of Lecture Notes in Computer Science, pages
91–108. Springer, 2013.

[Mai91] James A. Maiorana. A classification of the cosets of the Reed-Muller Code
R(1, 6). Mathematics of Computation, 57(195):403–414, 1991.

[NK95] Kaisa Nyberg and Lars R. Knudsen. Provable security against a differential
attack. J. Cryptology, 8(1):27–37, 1995.

[NNR19] Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. Decomposition of
permutations in a finite field. Cryptography and Communications, 11(3):379–
384, 2019.

https://competitions.cr.yp.to/round2/asconv11.pdf
https://competitions.cr.yp.to/round2/asconv11.pdf

192 Classification of Balanced Quadratic Functions

[Nyb93] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Tor
Helleseth, editor, Advances in Cryptology - EUROCRYPT ’93, Workshop on
the Theory and Application of of Cryptographic Techniques, Lofthus, Norway,
May 23-27, 1993, Proceedings, volume 765 of Lecture Notes in Computer
Science, pages 55–64. Springer, 1993.

[Nyb94] Kaisa Nyberg. S-boxes and round functions with controllable linearity and
differential uniformity. In Preneel [Pre95], pages 111–130.

[O’C94] Luke O’Connor. Properties of linear approximation tables. In Preneel [Pre95],
pages 131–136.

[Pre95] Bart Preneel, editor. Fast Software Encryption: Second International Workshop.
Leuven, Belgium, 14-16 December 1994, Proceedings, volume 1008 of Lecture
Notes in Computer Science. Springer, 1995.

[PUB16] Léo Perrin, Aleksei Udovenko, and Alex Biryukov. Cryptanalysis of a theorem:
Decomposing the only known solution to the big APN problem. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes
in Computer Science, pages 93–122. Springer, 2016.

[PV16] Jürgen Pulkus and Srinivas Vivek. Reducing the number of non-linear mul-
tiplications in masking schemes. In Gierlichs and Poschmann [GP16], pages
479–497.

[RV13] Arnab Roy and Srinivas Vivek. Analysis and improvement of the generic higher-
order masking scheme of FSE 2012. In Guido Bertoni and Jean-Sébastien
Coron, editors, Cryptographic Hardware and Embedded Systems - CHES 2013 -
15th International Workshop, Santa Barbara, CA, USA, August 20-23, 2013.
Proceedings, volume 8086 of Lecture Notes in Computer Science, pages 417–434.
Springer, 2013.

[Saa11] Markku-Juhani O. Saarinen. Cryptographic analysis of all 4 x 4-bit s-boxes.
In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography - 18th
International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12, 2011,
Revised Selected Papers, volume 7118 of Lecture Notes in Computer Science,
pages 118–133. Springer, 2011.

	Introduction
	Classification of (Vectorial) Boolean Functions
	Decompositions of Higher-Degree Functions
	Our Contribution

	Preliminaries
	(Vectorial) Boolean Function Properties
	Affine Equivalence
	Finding the Representative of a Permutation

	Finding the Representative of a Non-invertible Function
	Classifying Balanced 5 m Quadratic Functions
	Naive Iteration
	Impact of the Order of Coordinate Functions on Efficiency
	Impact of Linear Components on Efficiency
	Performance Comparison

	Decomposing and Generating Higher Degree Permutations
	Length-two Decomposition
	Almost Bent Permutations
	The Keccak Inverse
	Towards Higher-Degree Permutations

	Classifying 6 m Quadratic Functions
	Conclusion

