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Abstract. ISO/IEC 9797-1 is an international standard for block-cipher-based Message
Authentication Code (MAC). The current version ISO/IEC 9797-1:2011 specifies
six single-pass CBC-like MAC structures that are capped at the birthday bound
security. For a higher security that is beyond-birthday bound, it recommends to use
the concatenation combiner of two single-pass MACs. In this paper, we reveal the
invalidity of the suggestion, by presenting a birthday bound forgery attack on the
concatenation combiner, which is essentially based on Joux’s multi-collision. Notably,
our new forgery attack for the concatenation of two MAC Algorithm 1 with padding
scheme 2 only requires 3 queries. Moreover, we look for patches by revisiting the
development of ISO/IEC 9797-1 with respect to the beyond-birthday bound security.
More specifically, we evaluate the XOR combiner of single-pass CBC-like MACs,
which was used in previous version of ISO/IEC 9797-1.
Keywords: ISO/IEC 9797-1 · Beyond Birthday Bound Security · XOR Combiner

1 Introduction
A Message Authentication Code (MAC) is a fundamental symmetric-key primitive to
provide integrity and authenticity of messages between two parties. A MAC is usually
proven to be Pseudo-Random-Function (PRF), which in turn implies its unforgeability
security. The advantage of PRF-security is often measured by n the block size, q the total
number of queries, ` the length of the longest message and σ the total number of blocks of
all queries. There are several approaches to build a MAC, among which a popular way is to
iterate a block cipher [BKR00]. A block-cipher-based MAC is typically proven or analyzed
under the assumption that underlying block ciphers are Pseudo-Random Permutations
(PRP). Most block cipher-based MACs achieve the so-called birthday security, i.e., against
up to O(q2/2n) adversarial queries.

It is not always sufficient for block-cipher-based MACs with just a birthday-bound
security. An example is that a lightweight block cipher such as PRESENT [BKL+07] and
PRINCE [BCG+12] has a short block size, e.g. n = 64. In such case, the birthday bound
becomes 232 and is vulnerable in certain practical applications. For instance, Bhargavan
and Leurent [BL16] have demonstrated two practical attacks called Sweet32 that exploit
collision on short block ciphers. Hence, performing MACs with beyond birthday security
in practical devices is of great importance.

ISO/IEC 9797-1 is an international standard that specifies MACs based on a block
cipher. ISO/IEC 9797-1:2011 [ISO11] provides six different mechanisms of CBC MACs,
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Table 1: Comparison of XMAC1, XMAC5 and other CBC-type MACs with beyond
birthday security. XMAC1 resp. XMAC5 denotes the XORing of two MAC Algorithm 1
resp. 5 in ISO/IEC 9797-1:2011. n denotes the input size of the blockcipher, q denotes
the total number of queries, ` denotes the maximum number of blocks among these q
queries, σ denotes the total number of blocks of these q queries. The security bounds of
SUM-ECBC, XMAC1 with pad3, XMAC5 with pad4 are conditioned on ` ≤ 2n/3.
Algorithm #keys Security Ref.
SUM-ECBC 4 O(q3`3/22n) [Yas10]
3kf9 3 O(q3`3/22n + q`/2n) [ZWSW12]
XMAC1 with pad3 2 O(σq2`/22n) Sect. 5
XMAC1 with pad2 2 O(σ2/2n) App.A
XMAC5 with pad4 2 O(σq2`/22n) Sect. 6

called MAC Algorithm 1-6. Each MAC is defined by specifying the final iteration and
output transformation. These MACs have been widespread implemented in practical
devices and thus are of great importance. Since each of these MACs uses single CBC-MAC
pass, they all suffer from birthday forgery attacks as explained in [PvO95, PvO99]. It is
suggested to improve the security level by concatenating outputs of two MACs in Annex
C, C.2 Rationale, ISO/IEC 9797-1:2011:

if a MAC algorithm with a higher security level is needed, it is recommended
to perform two MAC calculations with independent keys and concatenate the
results (rather than XORing them).

Our contributions. Firstly, we reveal that the suggestion is unfortunately wrong. More
precisely, we present a forgery attack with a complexity of birthday bound on the con-
catenation combiner of two CBC-like MACs. More surprisingly, our forgery attack for the
concatenation of two MAC Algorithm 1 with padding scheme 2 only requires 3 queries.
These attacks well demonstrate that the recommended combiner in ISO/IEC 9797-1:
2011 [ISO11] provides a security of at most birthday bound, and cannot amplify the
security of underlying single-pass CBC-like MAC for a higher security bound.

Secondly, for finding a patch, we revisit the development of this standard. Surprisingly
the last version ISO/IEC 9797-1: 1999 [ISO99] suggests XORing two single-pass MACs.
More precisely, it recommends two MACs claiming beyond birthday bound security, which
are named as MAC5 and MAC6 in the standard document. Moreover, each MAC may use
one of three padding algorithms denoted as Pad1, Pad2 and Pad3. Hence there are in
total 6 dedicated MACs in ISO/IEC 9797-1:1999 claiming beyond-birthday bound security.
Joux et al. published a birthday-bound forgery attack on MAC5 with Pad1, which is simply
XORing two plain CBC MACs. This is the only known birthday-bound attack on XOR
combiner of CBC-like MACs back then [JPS03], which might be the main reason that
ISO/IEC 97971-1:2011 explicitly object to XORing two single-pass CBC-like MACs for
beyond-birthday bound security. On the other hand, Yasuda proved that MAC6 with any
of the three padding indeed achieves beyond-birthday-bound security [Yas10]. Thus, the
security of MAC5 with Pad2 or with Pad3 leaves unsolved, which is highlighted by Rogaway
in his report for CRYPTOREC.

We revisit the impact of XORing of two MACs on ISO/IEC 9797-1:2011 and show this
operation can lift up the security level. We give the first two provable-security bounds for
XORing of two MAC Algorithm 1 denoted as XMAC1 (i.e., MAC5 in ISO/IEC 9797-1:1999)
in ISO/IEC 9797-1:2011 with either padding scheme 2 or 3. We prove that XMAC1 with
padding scheme 3 is secure beyond birthday bound with O(σq2`/22n). Note that our
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result implies that this is the first CBC-type MAC that provably goes beyond birthday
barrier with only two secret keys. When instantiated with padding scheme 2, we prove
that XMAC1 is secure with birthday bound O(σ2/2n). Illustrated with Joux et al.’s attack,
this bound is tight up to a constant factor.

Moreover, compared with previous version, MAC Algorithm 5 in ISO/IEC 9797-1:2011
is a new introduced single-pass CBC-like MAC, often referred to as CMAC. We also prove
that XORing of two MAC Algorithm 5 with padding scheme 4 denoted as XMAC5 is
secure with a beyond birthday bound O(σq2`/22n).

Organization. In Sect. 2, we give essential notations and definitions. We give birthday
forgery attacks on concatenations of two MACs of ISO/IEC 9797-1:2011 in Sect. 3. We
present our main results on XMAC1, XMAC5 in Sect. 4. Then we give proofs of XMAC1
with padding scheme 3, XMAC1 with padding scheme 2, and XMAC5 with padding scheme
4 in Sect. 5, Appendix A, Sect. 6 respectively. Finally we conclude this paper in Sect. 7.

2 Preliminaries
2.1 Notation
If X is a set, then X

$← X denotes the operation of drawing X from X uniformly at
random. {0, 1}∗ denotes all bit strings including the empty string. The bit length of a
string X is written by |X|. Concatenation of strings X and Y is written as either X‖Y or
simply XY . We denote X ⊕ Y the bitwise exclusive-or of two equal-length strings. For
a string X ∈ {0, 1}n` with ` ≥ 1, we divide X into n-bit blocks as X = X[1]‖ . . . ‖X[`]
where |X[1]| = · · · = |X[`]| = n. If ` is a non-negative integer such that ` < 2n, we write
binn(`) for the n-bit binary representation of `.

We write Perm(n) for the set of all permutations over {0, 1}n, and Rand(n) for the set
of all functions mapping {0, 1}∗ to {0, 1}n. We often perform lazy sampling for specifying
a random permutation P $← Perm(n). We denote Dom(P ) and Ran(P ) the sets of already-
defined domain points and range points of P respectively, and Dom(P ) and Ran(P ) for
the complementary sets. A block cipher E is a family of permutations {EK : K ∈ K},
where EK(·) = E(K, ·) is a permutation over {0, 1}n specified by a key K. K is the key
space and n is the block length.

A MAC is an algorithm that takes two inputs a key K and a message M then outputs
a fixed-length tag T . K,M and T are all binary strings. The CBC MAC is built from
cipher block chaining some underlying block cipher. Let Mi = Mi[1]‖Mi[2]‖ · · · ‖Mi[mi]
be a message, where |Mi[1]| = |Mi[2]| = · · · = |Mi[mi]| = n and mi is the block length.
Then CBC[EK ](Mi), the CBC MAC of Mi, is defined as yimi

, where

yij = EK(Mi[j]⊕ yij−1)

for j = 1, . . . ,mi and yi0 = 0n.
There are total four padding schemes specified in ISO/IEC 9797-1:2011. As padding

scheme 1 allows a trivial forgery, we only consider padding scheme 2, 3 and 4 in this paper.
Note that MAC Algorithm 5 shall only be used with padding scheme 4 as mandated by
the standard.

pad2 the message M is always right-padded with a single ’1’ bit then right-padded with i
bits ’0’ where i is the least non-negative integer such that |M |+ i+ 1 is a positive
multiple of n.

pad3 the messageM is mapped to binn(|M |)‖M0i where i is the least non-negative integer
such that |M |+ i is a positive multiple of n.
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pad4 if the message has length that is positive multiple of n, then no padding shall be
applied. Otherwise, the message shall be right-padded with a single ’1’ bit then right-
padded with i bits ’0’ where i is the least non-negative integer such that |M |+ i+ 1
is a positive multiple of n.

After padded via padding scheme 3, the messages list would become prefix-free, meaning
that for any two messages Mi and Mj , Mi is not a prefix of Mj . We simply denote
pad2(M), pad3(M) and pad4(M) the operations of mapping M to a sequence of n-bit
blocks with padding scheme 2, 3 and 4 respectively.

In MAC Algorithm 5, there are two masking values L1 and L2 that are computed by
the operation multx(L). For an n-bit string L, multx(L) is defined as L · x, where L is
treated as an element in the Galois field GF(2n) and is multiplied by the monomial x in
GF(2n). It can be processed as follows:

multx(L) =
{
L� 1, if msb(L) = 0
(L� 1)⊕ const if msb(L) = 1

where msb(L) denotes the most significant bit of L, � denotes the one-bit left shift
operation, and const is some constant specified in the standard ISO/IEC 9797-1:2011.
Then L1 = multx(EK(0n)) and L2 = multx(L1).

2.2 Security Notions
An adversary A is an algorithm that always outputs a bit. We write AO(·) ⇒ 1 to denote
the event that A outputs 1 after interacting with oracle O(·). We focus on the information-
theoretic setting, namely, all keyed block ciphers are replaced with random permutations.
Throughout this paper, an adversary A is allowed to unbounded computational power and
assumed to be deterministic without loss of generality. Its complexity is measured by the
number of queries, the maximum block length of messages, the total number of blocks of
messages. Recalling that any pseudo-random function (PRF) is a secure MAC [BKR00],
our goal is to prove F [P ] is a secure PRF, where F [P ] is an interested function based on
random permutations. We say that F [P ] is a secure PRF if it is indistinguishable from a
random function R $← Rand(n). Formally, we define

Advprf
F [P ](A) def= Pr[P $← Perm(n) : AF [P ](·) ⇒ 1]− Pr[R $← Rand(n) : AR(·) ⇒ 1].

Note that the probabilities are taken over P,R, and A′s coins.

3 Forgery Attacks on The Concatenation of Two MACs in
ISO/IEC 9797-1:2011

In this section, we present forgery attacks on the concatenation of the MACs in the
standard ISO/IEC 9797-1:2011, which are depicted in Fig. 1. We only present the attack
for the concatenation of a MAC Algorithm with two independent keys here and the attacks
for the concatenation of two different MAC Algorithms is the same. Significantly, the
forgery attack for the concatenation of two MAC Algorithm 1 only requires 3 queries with
padding scheme 2, while forgery attacks for other MACs need a complexity of birthday
bound. We detail our attacks as follows. We denote MACiK(M) the MAC for a message
M computed using the MAC Algorithm i specified in ISO/IEC 9797-1:2011 for 1 ≤ i ≤ 6.
We denote MACiK1(M)‖MACiK2(M) the concatenation of two MAC Algorithms i with
independent keys K1,K2. Since padding scheme 1 allows trivial forgery attack, we only
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Figure 1: Illustration of the six ISO/IEC MACs. The message M has been padded
with specific padding scheme. For MAC1K(M) and MAC5K(M), the underlying key is
K = k. For MAC2K(M), MAC3 and MAC6K(M), the underlying key is K = (k, k′). For
MAC4K(M), the underlying key is K = (k, k′, k′′). For MAC5K(M), if the message M
before padded has length (in bits) that is positive multiple of n, then Li = L1, otherwise
Li = L2.

consider padding scheme 2, 3 and 4 here. In addition, MAC Algorithm 5 shall only be
used with padding scheme 4 as mandated by the standard.

At first, we consider the attack when messages are padded with scheme 2. For
MAC1K1(M)‖MAC1K2(M), i.e., the concatenation of two MAC Algorithm 1, we first
query a single block message M1 and obtain MAC1K1(M1)‖MAC1K2(M1). Then we query
two strings M1 ⊕ MAC1K1(M1) and M1 ⊕ MAC1K2(M1), and receive MAC1K2(M1 ⊕
MAC1K1(M1)) (the right half of concatenation) and MAC1K1(M1 ⊕MAC1K2(M1)) (the
left half of concatenation) respectively. In this stage, we can forge a MAC of the message
M1‖M1⊕MAC1K1(M1)⊕MAC1K2(M1) with probability 1 without querying this message
since

MAC1K1(M1‖M1 ⊕MAC1K1(M1)⊕MAC1K2(M1)) = MAC1K1(M1 ⊕MAC1K2(M1))
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and

MAC1K2(M1‖M1 ⊕MAC1K1(M1)⊕MAC1K2(M1)) = MAC1K2(M1 ⊕MAC1K1(M1)).

This attack only requires 3 queries.
For i ∈ {2, 3, 4, 6}, we adopt the idea of multicollisions attack in iterated hash functions

proposed by Joux [Jou04]. For any i ∈ {2, 3, 4, 6}, we first focus on collisions of the left half
of concatenation, i.e., MACiK1(M). Because two blocks are needed to produce a collision
in CBC-like MACs, we first search two two-block messages a1,1‖r1,1 and a2,1‖r2,1 such that
MACiK1(a1,1‖r1,1) = MACiK1(a2,1‖r2,1). This requires about 2n/2 MAC computations
due to birthday paradox. Fixing a1,1‖r1,1 and a2,1‖r2,1, we then search a1,2‖r1,2 and
a2,2‖r2,2 such that

MACiK1(a1,1‖r1,1‖a1,2‖r1,2) = MACiK1(a2,1‖r2,1‖a2,2‖r2,2).

This also requires about 2n/2 MAC computations. We do this until we find two 2t-block
(t ≥ n/2) messages a1,1‖r1,1‖ . . . ‖a1,t‖r1,t and a2,1‖r2,1‖ . . . ‖a2,t‖r2,t such that

MACiK1(a1,1‖r1,1‖ . . . ‖a1,t‖r1,t) = MACiK1(a2,1‖r2,1‖ . . . ‖a2,t‖r2,t).

This yields 2t different messages ai1,1‖ri1,1‖ . . . ‖ait,t‖rit,t for i1, . . . , it ∈ {1, 2} with the
same MAC value on the left half of concatenation. Assume t ≥ n/2, then with high
probability there exists a collision among these 2t elements such that the MAC value on
the right half are also equal. Assume the collided messages are M1 and M2. Then the two
MAC values for M1‖A and M2‖A are also a collision for any n-bit block A. This attack
requires in total about (1 + n) · 2n/2 MAC computations.

Secondly, we consider messages after padded with scheme 3 for i ∈ {1, 2, 3, 4, 6}. For
any i ∈ {1, 2, 3, 4, 6}, we first focus on collisions of the left half of concatenation, i.e.,
MACiK1(M). Let t ≥ n/2 and each message has same block-length 2t. We search two
2t-block messages a1,1‖r1,1‖0n‖ . . . ‖0n and a2,1‖r2,1‖0n‖ . . . ‖0n (the last 2t− 2 blocks are
all zero) such that

MACiK1(binn(2t)‖a1,1‖r1,1‖0n‖ . . . ‖0n) = MACiK1(binn(2t)‖a2,1‖r2,1‖0n‖ . . . ‖0n).

This requires about 2n/2 MAC computations due to birthday paradox. Fixing a1,1‖r1,1
and a2,1‖r2,1, we then search a1,2‖r1,2 and a2,2‖r2,2 such that

MACiK1(binn(2t)‖a1,1‖r1,1‖a1,2‖r1,2‖0n‖ . . . ‖0n)
= MACiK1(binn(2t)‖a2,1‖r2,1‖a2,2‖r2,2‖0n‖ . . . ‖0n).

This also requires about 2n/2 MAC computations. We do this until find two 2t-block
(t ≥ n/2) messages a1,1‖r1,1‖ . . . ‖a1,t‖r1,t and a2,1‖r2,1‖ . . . ‖a2,t‖r2,t such that

MACiK1(binn(2t)‖a1,1‖r1,1‖ . . . ‖a1,t‖r1,t) = MACiK1(binn(2t)‖a2,1‖r2,1‖ . . . ‖a2,t‖r2,t).

This yields 2t different messages ai1,1‖ri1,1‖ . . . ‖ait,t‖rit,t for i1, . . . , it ∈ {1, 2} with the
same MAC value on the left half of concatenation. Assume t ≥ n/2, then with high
probability there exists a collision among these 2t elements such that the MAC value on
the right half are also equal. Assume the collided messages are ai1,1‖ri1,1 . . . ‖ait,t‖rit,t and
aj1,1‖rj1,1 . . . ‖ajt,t‖rjt,t, then the two MAC values for ai1,1‖ri1,1 . . . ‖ait,t‖rit,t ⊕ A and
aj1,1‖rj1,1 . . . ‖ajt,t‖rjt,t⊕A are also a collision for any n-bit block A. This attack requires
in total about (1 + n) · 2n/2 MAC computations. The forgery attack for the concatenation
of two MAC Algorithm 5 with padding scheme 4 is exactly the same as above and hence
we omit the details here.
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4 Main Results on XMAC1 and XMAC5
In the information-theoretic setting, we simply denote XMAC1[P ] the XORing of two MAC
Algorithm 1 based on random permutations. Similarly, we denote XMAC5[P ] the XORing
of two MAC Algorithm 5 based on random permutations. We consider an adversary A
that makes at most q queries to its oracle, each query being at most ` blocks, and the
total number of blocks of all queries being at most σ.

As for XMAC1, we have the following two results.

Theorem 1. With padding scheme 3, if ` ≤ 2n/3, one has

Advprf
XMAC1[P ](A) ≤ 844σq2`

22n .

Theorem 2. With padding scheme 2, one has

Advprf
XMAC1[P ](A) ≤ 2σ2

2n + 2σq
2n + 0.5q2

2n .

As for XMAC5, we have

Theorem 3. For ` ≤ 2n/3, one has

Advprf
XMAC5[P ](A) ≤ 4

2n + 58σ2q

22n + 841σq2`

22n .

The proof of Theorem 1 is given in Sec. 5, the proof of Theorem 2 is given in Appendix
A, and the proof of Theorem 3 is given in Sec. 6.

5 Security of XMAC1 with Padding Scheme 3

binn(|M |)

P

P ′

M [1] M [2] M [3]0∗
⊕

P

⊕

P ′

⊕

P

⊕

P ′

⊕

P

⊕

P ′

⊕ T

Figure 2: Illustration of XMAC1[P ] with padding scheme 3 for M = M [1]‖M [2]‖M [3],
where |M [1]| = |M [2]| = n and 1 ≤ |M [3]| ≤ n.

In this section, we adopt the framework used in proofs for SUM-ECBC [Yas10] and
PMAC_Plus [Yas11], and prove that XMAC1[P ] instantiated with padding scheme 3
(described in Fig. 2) is an O(22n/3)-secure PRF. Note that in the rest of this section, we
always consider the messages list after padded with padding scheme 3, i.e., Mi = pad3(Mi)
and denote by mi = |pad3(Mi)| the length of message for 1 ≤ i ≤ q. This messages list is
easily seen to be prefix-free.
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5.1 Main Ideas
We focus on the last input of random permutations P and P ′ at each query, denoted
by ximi

and uimi
for 1 ≤ i ≤ q. We consider an adversary A that aims at distinguishing

XMAC1[P ] from a random function R : {0, 1}∗ → {0, 1}n. A is allowed to unlimited
computational power but can make at most q queries to its oracle, each query being at
most ` blocks, and the total number of blocks of all queries being at most σ. Without loss
of generality, A is assumed to be deterministic and never to repeat a query. The main
game is presented in Fig. 3 and codes of the four cases are given in Fig. 4, Fig. 5 and Fig. 6
respectively. Depending on the behavior after bad events, this game can simulate either
XMAC1[P ] or a random function R. These two games are identical until bad events occur,
so by the fundamental lemma of game-playing [BR06] we have

Pr[AXMAC1[P ](·) ⇒ 1]− Pr[AR(·) ⇒ 1] ≤ Pr[AR(·) sets bad].

Note that in the game simulating random function R, the respond returning to the
adversary is always a random n-bit string, unrelated to adversary’s query or the setting
of bad. Thus even if A prepares all of its queries M1, . . . ,Mq in advance, the probability
that A sets a bad flag is not made smaller, therewith the interaction being vacuous in
this game. We write bad events in more detail:

Pr[A sets bad]

=
q∑
i=1

(
Pr[ximi

/∈ Dom(P ) ∧ uimi
/∈ Dom(P ′)] · Pr[A sets bad | Case A]

+ Pr[ximi
∈ Dom(P ) ∧ uimi

/∈ Dom(P ′)] · Pr[A sets bad | Case B]
+ Pr[ximi

/∈ Dom(P ) ∧ uimi
∈ Dom(P ′)] · Pr[A sets bad | Case C]

+ Pr[ximi
∈ Dom(P ) ∧ uimi

∈ Dom(P ′)] · Pr[A sets bad | Case D]
)

≤
q∑
i=1

Pr[A sets bad | Case A] +
q∑
i=1

Pr[ximi
∈ Dom(P )] · Pr[A sets bad | Case B]

+
q∑
i=1

Pr[uimi
∈ Dom(P ′)] · Pr[A sets bad | Case C]

+
q∑
i=1

Pr[ximi
∈ Dom(P ) ∧ uimi

∈ Dom(P ′)].

These four terms are relevant to four cases and will be bounded in following subsections.

5.2 Analysis of Case A
We handle this case via the technique of fair sets developed by Lucks [Luc00], which has
also been used in proofs of SUM-ECBC [Yas10] and PMAC_Plus [Yas11].

Lemma 1. In Case A, we have

q∑
i=1

Pr[A sets bad | Case A] ≤ 4σ2q

22n ,

for σ ≤ 2n−1.
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1: for i = 1 to q do
2: ximi

← P (ximi−1)⊕Mi[mi]
3: uimi

← P ′(uimi−1)⊕Mi[mi]
4: if ximi

/∈ Dom(P ) and uimi
/∈ Dom(P ′) then

5: go to Case A
6: end if
7: if ximi

∈ Dom(P ) and uimi
/∈ Dom(P ′) then

8: go to Case B
9: end if

10: if ximi
/∈ Dom(P ) and uimi

∈ Dom(P ′) then
11: go to Case C
12: end if
13: if ximi

∈ Dom(P ) and uimi
∈ Dom(P ′) then

14: go to Case D
15: end if
16: end for
Figure 3: We omit the internal computations and present the computation on the last
input of permutation P and P ′ at each query. ximi

and uimi
respectively denote the last

input to P and P ′ at i-th query. ximi−1 and uimi−1 respectively denote (mi − 1)-th input
to P and P ′ at i-th query.

1: Choose a fair set U ⊂ Ran(P )× Ran(P ′) XMAC1[P ]/ R
2: (yimi

, wimi
) $← Ran(P )× Ran(P ′)

3: if (yimi
, wimi

) /∈ U then

4: bad←true (yimi
, wimi

) $← U

5: end if
6: Ti ← yimi

⊕ wimi

7: return Ti

Figure 4: Case A

Proof. We consider the game as described in Fig. 4. The code without the boxed statement
faithfully simulates P (ximi

)⊕ P ′(uimi
) for 1 ≤ i ≤ q, while the code with boxed statement

always returns a n-bit random string Ti. We choose a fair set U as follows. Enumerate
Ran(P ) as {y1, . . . , yα} and Ran(P ′) as {w1, . . . , wβ}. For each yi ∈ {y1, . . . , yα} and
wj ∈ {w1, . . . , wβ}, we choose arbitrarily representatives (y′i, w′j) ∈ Ran(P ) × Ran(P ′)
such that y′i ⊕ w′j = yi ⊕ wj for 1 ≤ i ≤ α and 1 ≤ j ≤ β. We remove these αβ pairs
(y′i, w′j) from Ran(P )× Ran(P ′) and obtain U . For each value T ∈ {0, 1}n, we have

|{(y, w) ∈ U | y ⊕ w = T}| = 2n − α− β,

i.e., the chance to induce T from U is equal. Let αi and βi respectively denote the number
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of new defined domain points of P and P ′ at i-th query. Then

q∑
i=1

Pr[A sets bad | Case A]

≤
q∑
i=1

|(Ran(P )× Ran(P ′)) \ U |
|Ran(P )× Ran(P ′)|

=
q∑
i=1

(α1 + · · ·+ αi − 1)(β1 + · · ·+ βi − 1)
(2n − α1 − · · · − αi + 1)(2n − β1 − · · · − βi + 1)

≤
q∑
i=1

σ2

(2n − σ)2 ≤
4σ2q

22n

under the condition σ ≤ 2n−1 and concludes the proof of Lemma 1.

5.3 Analysis of Case B
In this case, ximi

collides with previous inputs to P . The output string is Ti = yimi
⊕ wimi

.
That is, either yimi

or wimi
being random may make Ti a random string. Our goal is to

bound the probability that ximi
collides with previous inputs of P and subsequently wimi

deviates from a random n-bit string.
We first use the following full collision probability lemma proved in [BPR05b, BPR05a,

JN16] to bound the probability of ximi
colliding with previous inputs of P . For any

two prefix-free messages Mi and Mj , the full collision probability FCPn(Mi,Mj) is the
probability of the event xjmj

∈ {xi1, . . . , ximi
,

xj1, . . . , x
j
mj−1} where for each b ∈ {i, j}, we have xbk = P (xbk−1)⊕Mb[k] for 2 ≤ k ≤ mb

and xb1 = Mb[1].

Lemma 2 (Full Collision Probability). For any two prefix-free messages Mi ∈ {0, 1}min

and Mj ∈ {0, 1}mjn, we have

FCPn(Mi,Mj) ≤
3(mi +mj)

2n −mi −mj
+ (mi +mj)4

22n .

Remark on This Lemma. The full collision probability lemma is first proved by
Bellare et al. in [BPR05b] and then refined in its full version [BPR05a]. Recently Jha and
Nandi [JN16] pointed out a flaw in the previous proof.

We denote by FCPn(∅,M1) the probability of the special case x1
m1
∈ {x1

1, . . . , x
1
m1−1}

and it is easily seen that FCPn(∅,M1) ≤ 3m1
2n−m1

+ m4
1

22n . Then at i-th query, we have

Pr[ximi
∈ Dom(P )] ≤

i−1∑
j=1

FCPn(Mj ,Mi).

We next utilize game-playing techniques to examine the randomness of string wimi
.

Note that if we pick wimi
as wimi

$← {0, 1}n, then the distribution of Ti = yimi
⊕wimi

would
be uniformly random. We consider the game presented in Fig. 5. The code with the boxed
statement is the simulation of P (ximi

)⊕ P ′(uimi
) while the code without boxed statement

corresponds to a random function. Without a bad event occurring, the responses that A
receives from the oracle are uniform and independent binary strings. We see that the bad
event occurs with a probability of |Ran(P ′)|/2n for each sampling operation, which is at
most σ/2n.
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1: yimi
← P (ximi

) XMAC1[P ] /R

2: wimi

$← {0, 1}n
3: if wimi

∈ Ran(P ′) then

4: bad←true wimi

$← Ran(P ′)
5: end if
6: Ti ← yimi

⊕ wimi

7: return Ti

Figure 5: Case B

Let M1,M2, . . . ,Mq be a sequence of messages, then

q∑
i=1

Pr[ximi
∈ Dom(P )] · Pr[A sets bad | Case B]

≤
q∑
i=1

Pr[ximi
∈ Dom(P )] · |Ran(P ′)|

2n

≤ σ

2n ·

FCPn(∅,M1) +
q∑
i=2

i−1∑
j=1

FCPn(Mj ,Mi)


≤ σ

2n ·

6m1

2n + m4
1

22n +
q∑
i=2

i−1∑
j=1

(6(mi +mj)
2n + (mi +mj)4

22n )


≤ σ

2n ·
(

12σq
2n + 16σq`3

22n

)
≤ 28σ2q

22n ,

if ` ≤ 2n/3.

5.4 Analysis of Case C

The analysis of Case C is identical to Case B since P and P ′ are two independent random
permutations. We obtain the same upper bound in this case:

q∑
i=1

Pr[uimi
∈ Dom(P ′)] · Pr[A sets bad | Case C] ≤ 28σ2q

22n ,

if ` ≤ 2n/3.

5.5 Analysis of Case D

In this case, yimi
and wimi

both have appeared before and Ti is not a random string anymore.
As shown in Fig.6, we always set bad flag in this case. The code with boxed statements
simulates P (ximi

)⊕ P ′(uimi
) for 1 ≤ i ≤ q while the code without boxed statements is the

simulation of a random function.
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1: Ti
$← {0, 1}n XMAC1[P ] /R

2: bad←true
yimi
← P (ximi

)
wimi

← P (uimi
)

Ti ← yimi
⊕ wimi

3: return Ti

Figure 6: Case D

Let M1, . . . ,Mq be a sequence of messages, then by using Lemma 2, we have

q∑
i=1

Pr[ximi
∈ Dom(P ) ∧ uimi

∈ Dom(P ′)]

≤FCPn(∅,M1)2 +
q∑
i=2

i−1∑
j=1

i−1∑
k=1

FCPn(Mj ,Mi) · FCPn(Mk,Mi)

≤
(

6m1

2n + m4
1

22n

)2

+
q∑
i=2

i−1∑
j=1

i−1∑
k=1

(
6(mi +mj)

2n + (mi +mj)4

22n

)
·
(

6(mi +mk)
2n + (mi +mk)4

22n

)

≤144σq2`

22n + 384σq2`4

23n + 256σq2`7

24n ≤ 784σq2`

22n ,

if ` ≤ 2n/3.

5.6 Summation
Finally we sum up the probabilities over above four cases and obtain

Pr[AR(·) sets bad]

≤4σ2q

22n + 28σ2q

22n + 28σ2q

22n + 784σq2`

22n

≤844σq2`

22n

under the condition ` ≤ 2n/3, which completes the proof of Theorem 1.

6 Security of XMAC5
The proof of XMAC5 is similar to the proof of XMAC1 with padding scheme 3 and we
only outline their main differences here. We use exactly the same main game except that
we need to set bad flag in following additional events:

• L1 · u = 0n, L2 · u = 0n, L1 · u2 = 0n, L2 · u2 = 0n, i.e., L1 = 0n or L2 = 0n.
Pr[L1 = 0n ∨ L2 = 0n] = Pr[P, P ′ $← Perm(n) : P (0n) = 0n ∨ P ′(0n) = 0n] = 2

2n ;

• L1 · u = L1 · u2, L2 · u = L2 · u2, i.e., L1 = constant1, L2 = constant2. Pr[L1 =
constant1 ∨ L2 = constant2] = Pr[P, P ′ $← Perm(n) : P (0n) = constant1 ∨ P ′(0n) =
constant2] = 2

2n .

These account to a term 4
2n . The definitions of four cases (A,B,C,D) are the same as

in Section 5. Note that P (0n) and P ′(0n) have been defined at the beginning and thus
P (0n) ∈ Ran(P ) and P ′(0n) ∈ Ran(P ′). We always consider a padded sequence of
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M [1]

P

P ′

M [2] M [3]

⊕

P

⊕

P ′

⊕

P

⊕

P ′

L1 · u

L2 · u

⊕ T M [1]

P

P ′

M [2] M [3]10∗
⊕

P

⊕

P ′

⊕

P

⊕

P ′

L1 · u2

L2 · u2

⊕ T

Figure 7: Illustration of XMAC5[P ]. The left is the case where the message length is a
positive multiple of n while the right is the case where the message length is not a positive
multiple of n. L1 = P (0n) and L2 = P ′(0n), u is some non-zero constant, and · is field
multiplication.

messages M1, . . . ,Mq, that is, each message has been padded with 10∗ when the length is
not a positive multiple of n and further the last block of each message has been bitwise
exclusive-or with either Li · u or Li · u2 depending on the length, and i = 1 when analyzing
P , i = 2 when analyzing P ′.

• In the Case A, we have
q∑
i=1

Pr[A sets bad | Case A]

≤
q∑
i=1

|(Ran(P )× Ran(P ′)) \ U |
|Ran(P )× Ran(P ′)|

=
q∑
i=1

(α1 + · · ·+ αi)(β1 + · · ·+ βi)
(2n − α1 − · · · − αi)(2n − β1 − · · · − βi)

≤
q∑
i=1

σ2

(2n − σ)2 ≤
4σ2q

22n

under the condition σ ≤ 2n−1.

• In the Case B, the probability that ximi
collides with the values in Dom(P ) would

be slightly enlarged as Mi may be a prefix of previous messages (we consider the
messages list that after padded with 10∗ when the length is not a positive multiple
of n and further the last block of each message has been bitwise exclusive-or with
either L1 · u or L1 · u2 depending on the length of message). The probability of Mi

being a prefix of previous messages or Mi = 0n is at most i
2n , as if Mi is a prefix of

Mj for 1 ≤ j ≤ i− 1 or Mi = 0n:

– mi = mj , then we have Mi[mi] ⊕ L1 · u = Mj [mj ] ⊕ L1 · u2, which happens
with probability of 1

2n ;
– if mi < mj , then we have Mi[1]‖ . . . ‖Mi[mi − 1] = Mj [1]‖ . . . ‖Mj [mi − 1] and
Mi[mi]⊕ L1 · u = Mj [mi] (or Mi[mi]⊕ L1 · u2 = Mj [mi]), which happens with
probability of 1

2n ;
– if mi > mj , then it is impossible;
– if Mi = 0n, then Mi[1]⊕ L1 · u = 0n (or Mi[1]⊕ L1 · u2 = 0n), which happens

with probability of 1
2n .
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Let M0 = 0n and M1, . . . ,Mq be a sequence of messages, then

q∑
i=1

Pr[ximi
∈ Dom(P )] · Pr[A sets bad | Case B]

≤
q∑
i=1

Pr[ximi
∈ Dom(P )] · |Ran(P ′)|

2n

≤ σ

2n ·

 q∑
i=2

Pr[Mi is a prefix ∨Mi = 0n] +
q∑
i=1

i−1∑
j=0

FCPn(Mj ,Mi)


≤ σ

2n ·

 q∑
i=1

i

2n +
q∑
i=1

i−1∑
j=0

(6(mi +mj)
2n + (mi +mj)4

22n )


≤ σ

2n ·
(
q(q + 1)

2n+1 + 12σq
2n + 16σq`3

22n

)
≤ 29σ2q

22n ,

if ` ≤ 2n/3.

• In the Case C, the analysis is exactly the same as in the Case B, and thus

q∑
i=1

Pr[uimi
∈ Dom(P ′)] · Pr[A sets bad | Case C] ≤ 29σ2q

22n ,

if ` ≤ 2n/3.

• In the Case D, we have

q∑
i=1

Pr[ximi
∈ Dom(P ) ∧ uimi

∈ Dom(P ′)]

≤
q∑
i=1

 i

2n +
i−1∑
j=0

FCPn(Mj ,Mi)

 ·( i

2n +
i−1∑
k=0

FCPn(Mk,Mi)
)

≤
q∑
i=1

i−1∑
j=0

i−1∑
k=0

FCPn(Mj ,Mi) · FCPn(Mk,Mi)

+ 2q
2n

q∑
i=1

i−1∑
j=0

FCPn(Mj ,Mi) +
q∑
i=1

i2

22n

≤
q∑
i=1

i−1∑
j=0

i−1∑
k=0

(
6(mi +mj)

2n + (mi +mj)4

22n

)
·
(

6(mi +mk)
2n + (mi +mk)4

22n

)

+ 2q
2n

q∑
i=1

i−1∑
j=0

(6(mi +mj)
2n + (mi +mj)4

22n ) + q(q + 1)2

3 · 22n

≤784σq2`

22n + 2q
2n ·

(
12σq
2n + 16σq`3

22n

)
+ q(q + 1)2

3 · 22n ≤ 841σq2`

22n

if ` ≤ 2n/3.
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Summing up the above possibilities, the PRF-security bound of XMAC5 can be bounded
by

Advprf
XMAC5[P ](q, `, σ) ≤ 4

2n + 58σ2q

22n + 841σq2`

22n .

7 Conclusion
In this paper, we present forgery attacks for the concatenation of MACs in the standard
ISO/IEC 9797-1:2011. More concretely, we give a 3-queries forgery attack for the concate-
nation of MAC Algorithm 1 with padding scheme 2, and give birthday-bound-complexity
forgery attacks for other concatenating MACs. We then turn to consider how to lift the
security bound of these MACs to a higher level. We prove that XMAC1 can achieve beyond
birthday bound security with padding scheme 3, and achieve birthday bound security
with padding scheme 2. We also prove that XMAC5 can achieve 2n/3-bit security. Our
results imply that XORing of any two CBC-like MACs in ISO/IEC 9797-1:2011 can lift
up the security bound to a higher level while the previous suggestion by concatenating
two MACs in this standard does not. It seems unlikely that O(22n/3) is a tight bound
for either XMAC1 or XMAC5. A future work is to further improve the provable-security
bounds of these constructions.
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A Security of XMAC1 with Padding Scheme 2

M [1]

P

P ′

M [2] M [3] M [4]10∗
⊕

P

⊕

P ′

⊕

P

⊕

P ′

⊕

P

⊕

P ′

⊕ T

Figure 8: Illustration of XMAC1[P ] with padding scheme 2 for M =
M [1]‖M [2]‖M [3]‖M [4], where |M [1]| = |M [2]| = |M [3]| = n and 0 ≤ |M [4]| ≤ n− 1.

We always consider the messages list after padded with padding scheme 2, i.e., Mi =
pad2(Mi) and denote the message length mi = |pad2(Mi)|. Note that padding scheme 2
is not a prefix-free encoding, and if the adversary asks a long message M1 = M2‖∗ then
asks M2 a prefix of M1, the internal values during computing M2 have all been defined
before. Hence we cannot use the same proof methods in section 5 or section 6. In this
section, we resort to the well-known H-coefficient technique [CS14, Pat08] and prove that
XMAC1[P ] with padding scheme 3 is a O(2n/2)-secure PRF.

A.1 Double Collision Attack
For the sake of completeness, we sketch the double collision attack [JPS03] here for XMAC1
with padding scheme 2. First we search for two one-block messages M1 and M2 that yield
the same tag T = EK1(M1)⊕ EK2(M1) = EK1(M2)⊕ EK2(M2). Then we compute the
tag values for two one block longer messages of the form M1‖A and M2‖B for random
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A,B. If it holds that A⊕B = EK1(M1)⊕EK1(M2) = EK2(M1)⊕EK2(M2), then we get
collisions for both the upper chain and lower chain and thus a collision on the MAC values
of these two extended messages. We can check this kind of double collisions by adding a
same block at the end of both extended messages and the resulting messages still collide.
This attack requires about 21+n/2 MAC computations. However, such a attack does not
work out for either XMAC5 or XMAC1 with padding scheme 3, as the padded messages
list is always prefix-free except with a negligible probability.

A.2 The H-coefficient Technique
We briefly introduce the H-coefficient technique [CS14, Pat08] here as the following part
of this section adopts this method. A view ν is the query-response tuples that A receives
when interacting with either F [P ] (real world) or R (ideal world). We denote Xre, resp.
Xid, the probability distribution of the ν when A interacts with F [P ], resp. R. We also
denote Θ = {ν |Pr[Xid = ν] > 0} the set of all attainable views ν while A interacting with
R. The H-coefficient technique evaluates the upper bound of Advprf

F [P ](A) by using the
following lemma. The proof of this lemma can be found in [CLL+14, CS14].

Lemma 3. Let Θgood and Θbad be two disjoint subsets of Θ satisfying Θ = Θgood tΘbad.
If there exists ε1 such that Pr[Xid ∈ Θbad] ≤ ε1 and for each view ν ∈ Θgood, it has

Pr[Xre = ν]
Pr[Xid = ν] ≥ 1− ε2.

Then Advprf
F [P ](A) ≤ ε1 + ε2.

A.3 Preparations for the H-coefficient Technique
We replace P and P ′ in XMAC1[P ] by random functions F and F ′, respectively. We write
the resulting algorithm as XMAC1[R]. Using the PRP/PRF switching lemma [BR06], we
obtain

Advprf
XMAC1[P ](q, `, σ) ≤ σ2

2n + Advprf
XMAC1[R](q, `, σ).

We define the following functions from F, F ′, randi and rand′i, where randi, rand′i
$← {0, 1}n

for 1 ≤ i ≤ `− 1:

Q1,1(X) = F (X)⊕ rand1
Q1,i(X) = F (X ⊕ randi−1)⊕ randi for 2 ≤ i ≤ `− 1
Q1,`(X) = F (X ⊕ rand`−1)
Q2,1(X) = F ′(X)⊕ rand′1
Q2,i(X) = F ′(X ⊕ rand′i−1)⊕ rand′i for 2 ≤ i ≤ `− 1
Q2,`(X) = F ′(X ⊕ rand′`−1)

We write Q for the set of these functions. Let Gi,j be 2` independent random functions,
for 1 ≤ i ≤ 2 and 1 ≤ j ≤ `. We write G for the set of these functions. For an adversary B,
we define

Advprf
Q (B) def= Pr[BQ(·) ⇒ 1]− Pr[BG(·) ⇒ 1],

where in the right-hand side of the equation, the first probability is taken over F, F ′, randi, rand′i
and B’s coin, and the second one is over random functions in G and B’s coin. B makes
queries of the form (i, j,X) ∈ {1, 2} × {1, 2, · · · , `} × {0, 1}n, and receives Qi,j(X) or
Gi,j(X). We prove that Q is indistinguishable from G by the following lemma.

Lemma 4. Let B be an adversary that makes at most q queries. Then we haveAdvprf
Q (B) ≤

0.5q2/2n.
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Initialization: Oracle G/ Oracle Q
1: bad←false; I1, I2 ← ∅
Procedure: O(i, j,X):

2: Ti,j
$← {0, 1}n

3: if i = 1 then
4: if j = 1 then
5: if X ∈ I1 then
6: bad←true ,Ti,j ← Q1,1(X)
7: else
8: I1 ← I1 ∪ {X}
9: end if

10: else
11: if X ⊕ randj ∈ I1 then
12: bad←true ,Ti,j ← Q1,j(X)
13: else
14: I1 ← I1 ∪ {X ⊕ randj}
15: end if
16: end if
17: end if
18: if i = 2 then
19: if j = 1 then
20: if X ∈ I2 then
21: bad←true ,Ti,j ← Q2,1(X)
22: else
23: I2 ← I2 ∪ {X}
24: end if
25: else
26: if X ⊕ rand′j ∈ I2 then
27: bad←true ,Ti,j ← Q2,j(X)
28: else
29: I2 ← I2 ∪ {X ⊕ rand′j}
30: end if
31: end if
32: end if
33: return Ti,j

Figure 9: Game used to prove Lemma 4

Proof. When B interacts with the oracle Q, we define two sets. I1 is the set of input values
of F in Q1,i and I2 is the set of input values of F ′ in Q2,i, for 1 ≤ i ≤ `. We set a bad
flag if I1 has a collision or I2 has a collision. The code with boxed statements simulates
Q while the code without boxed statements simulates G. By the fundamental lemma of
game-playing [BR06], we have

Advprf
Q (B) ≤ Pr[BG(·) sets bad].

Before bad event occurs, B learns nothing from the values returned by the oracle except
a random n-bit string. Hence We only need to consider a fixed sequence of queries made
by B. Suppose that B makes total q1 queries to Q1,i and makes total q2 queries to Q2,i for
1 ≤ i ≤ `. I1 has a collision if and only if X = X ′ ⊕ randi or X ⊕ randi = X ′ ⊕ randj for
1 ≤ i, j ≤ `− 1. Since randi is a random string, we have Pr[I1 has a collision] ≤ 0.5q2

1/2n.
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1: Mi[1]‖ . . . ‖Mi[mi]
n← pad2(Mi)

2: yi0 ← 0n
3: wi0 ← 0n
4: for j = 1 to mi do
5: yij = Q1,j(yij−1 ⊕Mi[j])
6: wij = Q2,j(wij−1 ⊕Mi[j])
7: end for
8: Ti ← yimi

⊕ wimi

9: return Ti

Figure 10: Definition of XMAC1[Q](Mi)

Similarly, Pr[I2 has a collision] ≤ 0.5q2
2/2n. Therefore, we can bound the overall probability

of bad event occurring as

Pr[BG(·) sets bad] ≤ 0.5q2
1

2n + 0.5q2
2

2n ≤ 0.5q2

2n ,

which concludes the proof.

We consider an algorithm XMAC1[Q], manipulating messages based on Q. Its definition
is presented in Fig. 10. We can see that XMAC1[Q] is exactly the same as XMAC1[R]
since all the internal values randi and rand′i are canceled during the computation. We next
consider another algorithm XMAC1[G] based on G. Its definition is presented in Fig. 11.
It is obtained from XMAC1[Q] by replacing Qi,j with Gi,j , for i ∈ {1, 2} and 1 ≤ j ≤ `.
By using the Lemma 4, we have

Advprf
XMAC1[R](q, `, σ) = Advprf

XMAC1[Q](q, `, σ) ≤ Advprf
XMAC1[G](q, `, σ) + σ2

2n .

To upper bound Advprf
XMAC1[G](q, `, σ), we next resort to the H-coefficient technique [CS14,

Pat08], which has been briefly introduced in Sect. A.2.

M [1]

G1,1

G2,1

M [2] M [3] M [4]10∗
⊕

G1,2

⊕

G2,2

⊕

G1,3

⊕

G2,3

⊕

G1,4

⊕

G2,4

⊕ T

Figure 11: Definition of XMAC1[G], Gi,j are independent random functions for i ∈ {1, 2}
and 1 ≤ j ≤ 4.

A.4 Analysis of Bad Views
In the real world, the corresponding oracle is XMAC1[G] while in the ideal world it is a
random function. We note that the adversary A can make at most q queries to its oracle,
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each query being at most ` blocks, the total number of blocks of queries being at most σ,
and outputs a single bit. Let a view

ν = ((M1, T1), . . . , (Mq, Tq))

be a list of queries and corresponding answers. We start by defining bad views and good
views.

Definition 1. A bad view is an attainable view ν = ((M1, T1), . . . , (Mq, Tq)) that there
exists a collision in ν such that

Ti = Tj , where 1 ≤ i < j ≤ q.

Otherwise, we call it a good view. We denote Θbad the set of bad views and Θgood the set
of good views.

Now we upper bound the probability to get a bad view in the ideal world.

Lemma 5. For any integer q, we have

Pr[Xid ∈ Θbad] ≤ 0.5q2

2n .

Proof. In the ideal world, Ti is simply a random n-bit string and Pr[Ti = Tj ] = 1
2n for any

i 6= j. Thus,

Pr[Xid ∈ Θbad] ≤
(
q

2

)
1
2n ≤

0.5q2

2n .

A.5 Analysis of Good Views
We now analyze good views and prove the following lemma.

Lemma 6. For any good view ν, we have

Pr[Xre = ν]
Pr[Xid = ν] ≥ 1− 2σq

2n .

Proof. Let ν = ((M1, T1), . . . , (Mq, Tq)) be a good view. Since in the ideal world the oracle
is a random function, we simply have

Pr[Xid = ν] = 1
2qn . (1)

Now we proceed to lower bound the probability of obtaining ν in the real world. The key
point is to count the number of functions that induce ν. From the definition, we have

Pr[Xre = ν] = #functions inducing ν
#total functions .

For a message Mi = Mi[1]‖ · · · ‖Mi[mi], we denote xij and yij the input and corresponding
output of G1,j , uij and wij the input and corresponding output of G2,j in XMAC1[G] for
1 ≤ i ≤ mi. Since our goal is to compute the lower bound of Pr[Xre = ν], we can ignore
some troublesome functions and merely count the number of ones that induce ν and satisfy
the following condition to ease the analysis:

if Mi[1]‖ · · · ‖Mi[t] 6= Mj [1]‖ · · · ‖Mj [t], then xit 6= xjt and uit 6= ujt .
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We denote σi the number of messages that have block length at least i. We first compute
the probability of G1,1 and G2,1 satisfying the requirements. We divide these q messages
into several groups according to the first block. Messages in each group have the identical
first block. After such a classification, we will obtain r groups. Assume the ith group
contains qi messages and denote M i

j(1 ≤ j ≤ qi) the jth message in ith group, then we
have q1 + q2 + · · ·+ qr = σ1. By abusing notation, in the ith group, we denote xi1 and yi1
the input and output of G1,1, ui1 and wi1 the input and output of G2,1. We note that if
there exists a message in the ith group outputting a tag Ti after computation of the first
block, then there is a relation between yi1 and wi1 as yi1 ⊕ wi1. Note that each group has at
most one relation, otherwise this group has a pair of identical messages. Then we count
the number of choices yi1 and wi1 in ith group for 1 ≤ i ≤ r in turn, which will be affected
by whether there exists a relation in this group or not:

• For the first group,

– no relation: there are both 2n possibilities for y1
1 and w1

1, thus total (2n)2;

– a relation: there are 2n possibilities for y1
1 and once y1

1 is determined so does
w1

1 as w1
1 = T1 ⊕ y1

1 .

• For the 2nd group, once y1
1 and w1

1 are fixed,

– no relation: due to the additional condition, we have y2
1 ⊕M2

j [2] 6= y1
1 ⊕M1

i [2]
and w2

1 ⊕M2
j [2] 6= w1

1 ⊕M1
i [2] for 1 ≤ i ≤ q1 and 1 ≤ j ≤ q2. Therefore,

there are both at least 2n − q1q2 possibilities for y2
1 and w2

1, thus total at lest
(2n − q1q2)2.

– a relation: there are at least 2n − 2q1q2 possibilities for y2
1 as y2

1 ⊕M2
j [2] 6=

y1
1 ⊕M1

i [2] and y2
1 ⊕T2⊕M2

j [2] = w2
1 ⊕M2

j [2] 6= w1
1 ⊕M1

i [2] for 1 ≤ i ≤ q1 and
1 ≤ j ≤ q2.

• . . .

• For the k-th group, once y1
1 , . . . , y

k−1
1 and w1

1, . . . , w
k−1
1 are fixed,

– no relation: due to the additional condition, we have yk1 ⊕Mk
j [2] 6= yt1⊕M t

i [2]
and wk1 ⊕Mk

j [2] 6= wt1 ⊕M t
i [2] for 1 ≤ t ≤ k − 1, 1 ≤ i ≤ qt and 1 ≤ j ≤ qk.

Therefore, there are both at least 2n − qk(q1 + q2 + · · ·+ qk−1) possibilities for
yk1 and wk1 , thus total at least (2n − qk(q1 + q2 + · · ·+ qk−1))2.

– a relation: there are at least 2n − 2qk(q1 + q2 + · · ·+ qk−1) possibilities for yk1
since yk1 ⊕Mk

j [2] 6= yt1⊕M t
i [2] and yk1 ⊕Tk⊕Mk

j [2] = wk1 ⊕Mk
j [2] 6= wt1⊕M t

i [2]
for 1 ≤ t ≤ k − 1, 1 ≤ i ≤ qt and 1 ≤ j ≤ qk.

Hence, the number of tuples (y1
1 , w

1
1, . . . , x

r
1, w

r
1) is at least

r∏
i=1

Ci

where for 1 ≤ i ≤ r, either Ci = (2n − qi(q1 + · · ·+ qi−1))2 ≥ (2n − qiq)2 ≥ 2n(2n − 2qiq)
without a relation, or Ci = 2n−2qi(q1 + · · ·+ qi−1) ≥ 2n−2qiq with a relation. We denote
s the total number of relations among these r groups, then the probability that G1,1 and
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G2,1 meet the requirements is at least

r∏
i=1

Ci((2n)2n−r)2

((2n)2n)2 =
r∏
i=1

Ci

22n

≥ 1
2ns

r∏
i=1

(1− 2qiq
2n )

≥ 1
2ns (1− 2σ1q

2n ).

Then we proceed to analyze the remaining blocks and apply the same analysis to the rest
of random functions G1,i and G2,i as they are independent from each other for 1 ≤ i ≤ `.
There are at most ` pairs of (G1,i, G2,i), so the probability of inducing ν in the real world
can be bounded by

Pr[Xre = ν] ≥
∏̀
i=1

1
2ns (1− 2σiq

2n )

= 1
2nq

∏̀
i=1

(1− 2σiq
2n )

≥ 1
2nq (1− 2σq

2n ). (2)

Combining (1) and (2) together, we obtain

Pr[Xre = ν]
Pr[Xid = ν] ≥ 1− 2σq

2n , (3)

and this completes the proof of Lemma 6.

Following Lemma 3 and using the results of Lemma 5 and Lemma 6, we have

Advprf
XMAC1[G](q, `, σ) ≤ 2σq

2n + 0.5q2

2n . (4)

Finally we obtain the claimed bound in Theorem 2 as

Advprf
XMAC1[P ](q, `, σ) ≤ σ2

2n + σ2

2n + 2σq
2n + 0.5q2

2n

≤ 2σ2

2n + 2σq
2n + 0.5q2

2n . (5)

We emphasize that this bound is tight up to a constant factor due to the double collision
attack as mentioned in Appendix A.1 for XMAC1 with padding scheme 2.
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