On Beyond-Birthday-Bound Security: Revisiting the Development of ISO/IEC 9797-1 MACs

Yaobin Shen and Lei Wang

Shanghai Jiao Tong University

November 09, FSE 2020

Outline

1 ISO/IEC 9797-1

2 Our Contributions

3 Attacks & Patches

Message Authentication Code (MAC)

- Provide integrity and authenticity of messages
- Three ways to build a MAC
 - blockcipher-based
 - universal-hash-function-based
 - hash-function-based
- Blockcipher-based MACs
 - CBC-MAC, CMAC, PMAC, LightMAC

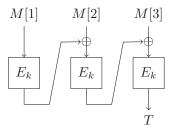


Illustration of CBC-MAC

ISO/IEC 9797-1:2011

ISO/IEC 9797-1:2011, an international standard for blockcipher-based MAC:

Reference number ISO/IEC 9797-1:2011(E)

Licensee=University of British Columbia/5911922001
Not for Resale. 04/03/2013 14:52:20 MDT

© ISO/IEC 2011

- Specifies 6 different variants of CBC MACs
- Provides with four padding schemes

ISO/IEC 9797-1:2011

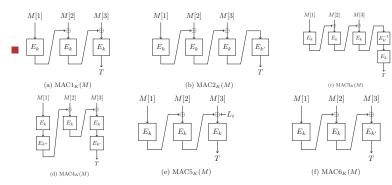


Illustration of the ISO/IEC 9797-1:2011 MACs.

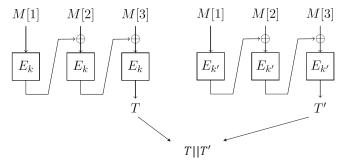
■ Padding schemes:

pad1: $X \parallel 0^*$ (insecure)

■ pad2: X || 10*

pad3: $bin_n(|X|) \parallel X \parallel 0^*$

pad4: X if $|X| \mod n = 0$, otherwise $X \parallel 10^*$ (only MAC5)


Birthday Bound Security

- Single-pass CBC-like MAC structures
 - suffer from birthday attacks [PvO95, PvO99]
 - capped at the birthday bound security
- Birthday-bound security is not always enough
 - lightweight blockciphers (HIGHT, PRESENT, PRINCE), TDES
 - $n = 64, 2^{n/2} = 2^{32}$ is somewhat small
 - two practical attacks exploit collision on short blockcipher [BL16]

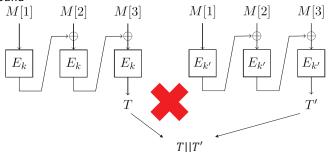
ISO/IEC 9797-1:2011's Recommendation

■ ISO/IEC 9797-1:2011 Annex C:

if a MAC algorithm with a higher security level is needed, it is recommended to perform two MAC calculations with independent keys and concatenate the results (rather than XORing them).

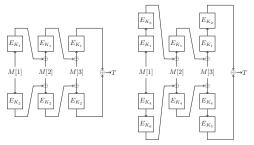
The concatenation combiner of two MACs

Outline


1 ISO/IEC 9797-1

2 Our Contributions

3 Attacks & Patches


Forgery Attack on the Concatenation Combiner

- Our attacks:
 - birthday-bound forgery attack on the concatenation combiner of any two MACs in ISO/IEC 9797-1:2011
 - Notably, 3 queries attack on the concatenation combiner of two MAC algorithm 1 with pad2
- Invalidate the suggestion in ISO/IEC 9797-1:2011
 - the concatenation combiner cannot be secure beyond birthday bound

Look for Patches

- Development of ISO/IEC 9797-1
 - ISO/IEC 9797-1:1999 used XOR combiner: MAC₅, MAC₆
 - \blacksquare Joux et al.'s [JPS03] birthday forgery on MAC5 with $\mathbf{pad}2$
 - Yasuda [Yas10] proved MAC₆ achieves beyond-birthday-bound (BBB) security
 - Provable-security analysis is absent, for MAC₅ with pad3 or even with pad2

MAC₅ and MAC₆ in ISO/IEC 9797-1:1999

Our Patches

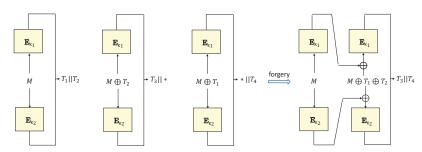
- Revisit the impact of the XOR combiner of two MACs on ISO/IEC 9797-1:2011
 - XOR combiner of two MAC1 (MAC₅ in v1999) is BBB secure with **pad**3
 - XOR combiner of two MAC5 is BBB secure
 - XOR combiner of two MAC1 is birthday-bound secure with pad2 ¹

Algorithm	#keys	BBB	Ref
\mathtt{MAC}_6	6	✓	[Yas10]
SUM-ECBC	4	✓	[Yas10]
3kf9	3	✓	[ZWSW12]
XMAC1 with pad3	2	✓	this paper
XMAC5	2	✓	this paper

XMAC1, XMAC5 and other CBC-type MACs with BBB security

¹Concatenation of two MAC1 with pad2 can be broken with just 3 queries

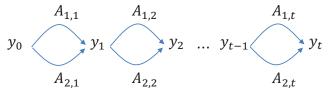
Outline


1 ISO/IEC 9797-1

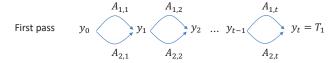
2 Our Contributions

3 Attacks & Patches

Attack on the Concatenation of two MAC1


- $MAC1_{K_1}(M) \parallel MAC1_{K_2}(M)$ with $pad2 (M \parallel 10^*)$
- Forgery attack:

■ 3 queries, succeeds with probability 1


Attack on the Concatenation of any two MACs

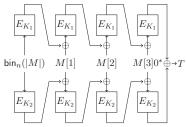
- lacksquare MAC $i_{K_1}(M) \parallel \mathrm{MAC} j_{K_2}(M)$ with pad2 or pad4
- Multi-collision attack for iterated hash function [Jou04]
 - \blacksquare if find one collision with complexity $2^{n/2}$, then
 - find 2^t messages colliding to one value with complexity $t2^{n/2}$

Attack on the Concatenation of any two MACs

- $MACi_{K_1}(M) \parallel MACj_{K_2}(M)$ with pad2 or pad4
- Our attack

- There exists a collision for the second pass among these 2^t messages $(t \ge n/2)$
- Complexity $O(n2^{n/2})$

Attack on the Concatenation of any two MACs


- $MACi_{K_1}(M) \parallel MACj_{K_2}(M)$ with pad3
- $\mathbf{pad}3$: $\mathrm{bin}_n(|M|) \parallel M \parallel 0^*$, length padded at the first block
- \blacksquare Append zeros to each of 2^t messages to have the same bit-length ℓ

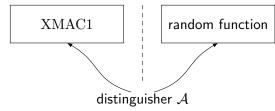
$$MACi_{K_{1}}(|\ell|_{n} || a_{1,1} || r_{1,1} || 0^{n} || \dots || 0^{n})$$

= $MACi_{K_{1}}(|\ell|_{n} || a_{2,1} || r_{2,1} || 0^{n} || \dots || 0^{n})$

■ The same procedure as before

Our Patches

■ XOR combiner of two MAC1 with pad3


Theorem 1

With pad3, one has

$$\mathbf{Adv}^{\mathrm{prf}}_{\mathrm{XMAC1}[E]}(\mathcal{A}) \leq \frac{844\sigma q^2 \ell}{2^{2n}} + \mathbf{Adv}^{\mathrm{prp}}_E(\mathcal{B}),$$

when $\ell \leq 2^{n/3}$, where q is the number of queries, ℓ is the largest block length, σ is the total number of blocks.

■ Indistinguishability of two systems

- Game-playing technique by Bellare and Rogaway [BR06]
- Fundamental lemma of game-playing [BR06] Let G_0 and G_1 be identical-until-bad games and let $\mathcal A$ be a distinguisher. Then

$$\mathbf{Adv}(\mathcal{A}^{G_0}, \mathcal{A}^{G_1}) \leq \Pr[\mathcal{A}^{G_1} \text{ sets bad}]$$

■ A framework by [Yas10] for SUM-ECBC

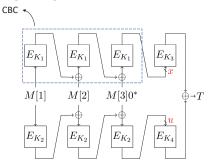


Illustration of SUM-ECBC

- Classify bad events according to whether the collision happens
 - \blacksquare neither x nor u collides with previous CBC outputs
 - \blacksquare only one of x and u collides with previous CBC outputs
 - **both** of x and u collide with previous CBC outputs

Our proof for XMAC1

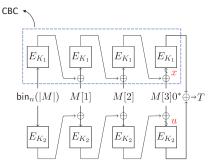
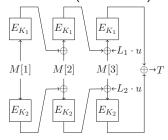



Illustration of XMAC1

- only use two keys instead of four keys
- analyze the impact of the last blockcipher call
- more involved internal collisions in CBC instead of only considering the outputs of CBC

Our Patches

■ XOR combiner of two MAC5 (aka CMAC)

Theorem 2

For $\ell \leq 2^{n/3}$, one has

$$\mathbf{Adv}^{\mathrm{prf}}_{\mathrm{XMAC5}[E]}(\mathcal{A}) \leq \frac{4}{2^n} + \frac{58\sigma^2q}{2^{2n}} + \frac{841\sigma q^2\ell}{2^{2n}} + 2\mathbf{Adv}^{\mathrm{prp}}_E(\mathcal{B}),$$

where q is the number of queries, ℓ is the largest block length, σ is the total number of blocks.

 \blacksquare XMAC5 uses masks $L_1=E_{K_1}(0^n)$ and $L_2=E_{K_2}(0^n)$ to keep messages to be prefix-free

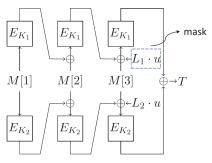


Illustration of XMAC5

■ The proof for XMAC5 is similar to that for XMAC1, except to bound the probability when masks do not work

Outline

1 ISO/IEC 9797-1

2 Our Contributions

3 Attacks & Patches

- Our attacks:
 - birthday-bound forgery attack on the concatenation combiner of any two MACs in ISO/IEC 9797-1:2011
 - 3 queries attack on the concatenation combiner of two MAC algorithm 1 with **pad**2
- Invalidate the suggestion in ISO/IEC 9797-1:2011
 - the concatenation combiner cannot be beyond birthday bound (BBB) secure
- Our patches: the XOR combiner can be BBB secure
 - the XOR combiner of two MAC1 is BBB secure with pad3
 - the XOR combiner of two MAC5 is BBB secure

Thanks for your attention!