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Abstract. PMAC is a rate-1, parallelizable, block-cipher-based message authentication
code (MAC), proposed by Black and Rogaway (EUROCRYPT 2002). Improving the
security bound is a main research topic for PMAC. In particular, showing a tight bound
is the primary goal of the research, since Luykx et al.’s paper (EUROCRYPT 2016).
Regarding the pseudo-random-function (PRF) security of PMAC, a collision of the
hash function, or the difference between a random permutation and a random function
offers the lower bound Ω(q2/2n) for q queries and the block cipher size n. Regarding
the MAC security (unforgeability), a hash collision for MAC queries, or guessing a
tag offers the lower bound Ω(q2

m/2n + qv/2n) for qm MAC queries and qv verification
queries (forgery attempts). The tight upper bound of the PRF-security O(q2/2n)
of PMAC was given by Gaži et el. (ToSC 2017, Issue 1), but their proof requires a
4-wise independent masking scheme that uses 4 n-bit random values. Open problems
from their work are: (1) find a masking scheme with three or less random values with
which PMAC has the tight upper bound for PRF-security; (2) find a masking scheme
with which PMAC has the tight upper bound for MAC-security.
In this paper, we consider PMAC with two powering-up masks that uses two random
values for the masking scheme. Using the structure of the powering-up masking
scheme, we show that the PMAC has the tight upper bound O(q2/2n) for PRF-security,
which answers the open problem (1), and the tight upper bound O(q2

m/2n + qv/2n)
for MAC-security, which answers the open problem (2). Note that these results deal
with two-key PMACs, thus showing tight upper bounds of PMACs with single-key
and/or with one powering-up mask are open problems.
Keywords: PMAC · powering-up · message-length influence · PRF-security · MAC-
security · tight security

1 Introduction
A MAC (Message Authentication Code) is a fundamental symmetric-key primitive that
produces a tag to authenticate a message. MACs are often realized by using a block cipher
so that these become secure MACs (unforgeable under chosen message attacks) or secure
PRFs (Pseudo-Random Functions) under the standard assumption that the underlying
keyed block ciphers are secure PRPs (Pseudo-Random Permutations).

Block-cipher-based MACs are mainly categorized into CBC such as [BKR94, BR00,
IK03, KI03, PR00] and PMAC such as [BR02, Rog04, GPR16]. PMAC was introduced by
Black and Rogaway [BR02]. Although PMAC is slightly less efficient than the CBC MACs
due to the masking scheme, unlike the CBC MACs, it allows to process the message blocks
fully in parallel. Under parallel implementation, PMAC can outperform the CBC MACs.

For n-bit input message blocks M1‖M2‖ . . . ‖Mm, the output of the hash function
PHASH1, using keyed block ciphers P, P ′ over {0, 1}n, r n-bit random values L ∈ {0, 1}rn,

1PHASH was named by Minematsu and Matsushima [MM07]. Whereas our definition includes the last
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and a masking scheme φ : {0, 1}rn × N→ {0, 1}n, is computed as

PHASH[L, P ] (M1‖M2‖ . . . ‖Mm) =
(
m−1⊕
i=1

P (φ(L, i)⊕Mi)
)
⊕Mm , (1)

and the output of PMAC is computed as

PMAC[L, P, P ′] (M1‖M2‖ . . . ‖Mm) = P ′ (PHASH[L, P ] (M1‖M2‖ . . . ‖Mm)) . (2)

Figure 1 shows the PMAC construction. The masking scheme is realized by e.g., Gray
code [BR02], the powering-up scheme [Rog04], LFSR-based schemes [CS08], or a com-
bination of powering-up and LFSR [GJMN16]. Note that PMAC defined in (1), (2) is a
simplified version of the original PMACs [BR02, Rog04], and follows the definitions given
in [LPSY16a, LPTY16]. The original versions are single-key MACs and the last keyed
block cipher P ′ is realized by using P of which input is defined by XORing a last message
block with a masking value differently from masking values in PHASH.

The PMAC schemes were designed to become secure PRFs (and thus secure MACs).
As mentioned below, the upper bounds of the PRF-security have mainly been improved.
In particular, showing a tight upper bound is the primary goal of the research, since
Luykx et al.’s paper [LPSY16a, LPSY16b].

Regarding an upper bound of PMAC, the first PRF-security proof was given by Black
and Rogaway [BR02], where the masking scheme is based on Gray code φ(L, i) = γi · L
for the i-th Gray codeword γi and an n-bit random value L. The derived upper bound is
O(σ2/2n) where σ is the total number of message blocks by all queries. Rogaway [Rog04]
gave the same upper bound for PMAC with the powering-up scheme φ(L, i) = 2i · L for an
n-bit random value L, where the multiplication is done over GF (2n)∗. Later, the security
bounds were improved to O(mmaxq

2/2n) by Minematsu and Matsushima [MM07], and
then to O(qσ/2n) by Nandi [Nan10], for q queries and the maximum message block length
mmax. Note that these proofs deal with the original PMACs.

The lower bound of the PRF-security of PMAC is Ω(q2/2n) by a hash collision or by the
difference between a random permutation and a random function. For the MAC-security,
the lower bound is Ω(q2

m/2n + qv/2n) for qm MAC queries and qv verification queries
(forgery attempts). A hash collision for MAC queries offers the lower bound Ω(q2

m/2n),
and guessing tags offers the one Ω(qv/2n). These lower bounds do not match the upper
bounds mentioned above.

Gaži et al. [GPR16] filled the gap for the PRF-security of the Gray-code-based PMAC.
They gave the lower bound Ω(mmaxq

2/2n), and showed that the lower bound holds even
with two Gray-code masks that use two n-bit random values.2 Thus, the existing upper
bound of the PRF-security of the PMAC is tight. However, their result does not imply
that the same lower bound holds for other masking schemes. They considered a 4-wise
independent masking scheme that requires 4 n-bit secret random values, and proved that
PMAC with the masking scheme has the tight upper bound O(q2/2n) regarding PRF-
security, as long as mmax ≤ 2n/2, where two block cipher keys are independently drawn,
i.e., P and P ′ are independent, and the last block is absent, i.e., Mm = 0n. Note that the
PRF-security bound O(q2/2n) offers the MAC-security one O((qm + qv)2/2n), but there is
a gap between the lower and upper bounds.

1.1 Open Problems
Open problems from Gaži et al.’s work [GPR16] are listed below.

message block in PHASH, the original definition does not include the last message block Mm.
2Note that their result holds even when two block cipher keys are independently drawn, i.e., P and P ′

are independent.
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• The first open problem is to find a masking scheme with three or less random values
with which PMAC has the tight upper bound O(q2/2n) regarding PRF-security.

• The second open problem is to find a masking scheme with which PMAC has the
tight upper bound O(q2

m/2n + qv/2n) regarding MAC-security.

1.2 Our Results
In this paper, we consider PMAC with two powering-up masks, i.e., the masking scheme
uses two n-bit random values L = (L1, L2). The masking scheme is defined as

φ(L, i) = 2i · L1 ⊕ 23i · L2 . (3)

In Section 4, regarding PRF-security, we show that the PMAC has the tight upper bound
O(q2/2n), as long as mmax ≤ 2n/2, and P and P ′ are independent. Hence, the masking
scheme ensures that at most two random values are sufficient for PMAC to achieve the
O(q2/2n) PRF-security, although the Gray-code-based PMAC fails to achieve the security
level. The main difficulty of the proof is to show that the collision probability of PHASH
is O(q2/2n). In particular, we need to carefully analyze the influence of input collisions to
P in PHASH. In our proof, using the structure of the masking scheme defined in (3), the
number of pairs (L1, L2) are upper bounded by roughly 2n. As (L1, L2) ∈ {0, 1}n×{0, 1}n,
the probability that the hash collision occurs from the input collisions is upper bounded
by O(q2/2n). Consequently, the tight upper bound is obtained.3

In Section 5, regarding MAC-security, we show that the PMAC has the tight upper
bound O(q2

m/2n + qv/2n), as long as mmax ≤ 2n/2, and P and P ′ are independent.
As [CS16], our proof is based on the coefficient H technique [Pat08] and mainly considers
the indistinguishability between the real oracles (PMAC and the verification oracle) and the
ideal oracles (a random function and a reject oracle). Roughly speaking, for MAC queries,
if no collision occurs for PHASH, then PMAC can be regarded as a random function. Using
the hash collision analysis of the PRF-security of the PMAC, the collision probability is
at most O(q2

m/2n). Under the condition that PMAC behaves like a random function for
MAC queries, there are two strategies of forging a tag. The first strategy is to use a hash
collision between MAC and verification queries: when making a verification query with the
tag obtained by the previous MAC query, if the hash collision occurs, then the verification
query is accepted. The second strategy is to guess a tag randomly. The success probability
of each strategy is O(qv/2n). Thus, the tight upper bound is obtained.

Finally, open problems from our paper are listed below: (1) show a tight upper bounds
of the PRF-security and/or of the MAC-security of PMAC of which masking scheme uses
only one random value (the problem for the PRF-security of PMAC with one powering-up
mask was posed by Luykx et al. [LPSY16a, LPSY16b]); (2) show a tight upper bounds of
the PRF-security and/or of the MAC-security of single-key PMAC, i.e., P = P ′.

1.3 Other Related Works
Several works show that by modifying the PMAC construction, the upper bound of the
PRF-security is improved.

• PMAC with Parity [Yas12], PMACX [Zha15] and LightMAC [LPTY16] achieve O(q2/2n)
PRF-security.

• PMAC_Plus [Yas11] and 2K-PMAC_Plus [DDNP18] achieve O(m2
maxq

3/22n) PRF-
security.

3Note that PMAC_Plus [Yas11] uses two powering-up masks distinct from the masking scheme (3).
The masking scheme is φ(L, i) = 2i · L1 ⊕ 22i · L2, which might not give the tight upper bound. See
Section 6.3 for the detail.
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• 1k-PMAC_Plus [DDN+17] achieves O(qσ2/22n) PRF-security.

• LightMAC_Plus [Nai17] achieves O(q3/22n) PRF-security.

• 2K-LightMAC_Plus [DDNP18] achieves O(q3/22n + q/2n) PRF-security.

Note that these MACs have different structures from PMAC defined in (1), (2).
Before Gaži et al.’s work [GPR16], Luykx et al. [LPSY16a, LPTY16] showed that for

two distinct messages, the collision probability of the Gray-code-based PHASH depends on
the message lengths. As the PRF-security of PMAC depends on the collision security of the
hash collision, their result implies that the PMAC cannot achieve O(q2/2n) PRF-security.

1.4 Organization
The rest of the paper is organized as follows. In Section 2, the basic notations and the
security definition are introduced. In Section 3, PMAC is defined, and the lower bounds
of the PRF-security and of the MAC-security and the proofs are given. In Section 4, the
tight upper bound of the PRF-security of the PMAC and the proof are given. In Section 5,
the tight upper bound of the MAC-security of the PMAC and the proof are given. In
Section 6, several modifications of the PMAC are discussed. Finally, in Section 7, the
multi-user security of the PMAC is discussed (note that the previous sections consider the
single-user security).

2 Preliminaries
2.1 Basic Notations
Let λ be an empty string and {0, 1}∗ the set of all bit strings. For an integer n ≥ 0, let
{0, 1}n the set of all n-bit strings, {0, 1}n∗ the set of all bit strings whose lengths are
multiples of n, and 0n resp. 1n the bit string of n-bit zeroes resp. ones. For integers
0 < j ≤ i, (i)j = i(i− 1) · · · (i− j + 1) denotes the falling factorial. For an integer i ≥ 1,
let [i] := {1, 2, . . . , i}. For a non-empty set T , T $←− T means that an element is chosen
uniformly at random from T and is assigned to T . The concatenation of two bit strings X
and Y is written as X‖Y or XY when no confusion is possible. For integers i and j with
0 ≤ i < 2j , let strj(i) be the j-bit binary representation of i. For sets X and Y, Perm(X )
denotes the set of all permutations on X , and Func(X ,Y) denotes the set of all functions
from X to Y.

2.2 Binary Fields
Let GF (2n) be the field with 2n elements and GF (2n)∗ the multiplication subgroup of
this field which contains 2n − 1 elements. We interchangeably think of an element a
in GF (2n) in any of the following ways: as an n-bit string an−1 · · · a1a0 ∈ {0, 1}n and
as a formal polynomial an−1xn−1 + · · · + a1x + a0 ∈ GF (2n). Hence we need to fix a
primitive polynomial a(x) = xn + an−1xn−1 + · · ·+ a1x + a0. This paper uses a primitive
polynomial with the property that the element 2 = x generates the entire multiplication
group GF (2n)∗ of order 2n− 1. Examples of primitive polynomials for n = 64 and n = 128
are a(x) = x64 + x4 + x3 + x + 1 and a(x) = x128 + x7 + x2 + x + 1.

2.3 Definition for Block Cipher
A block cipher is a set of permutations indexed by a key. Let a non-empty set K be a
key space and an integer n the input/output-block size. A block cipher is denoted by
E : K × {0, 1}n → {0, 1}n, and a block cipher E having a key K ∈ K is denoted by EK .
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In our security proofs, keyed block ciphers are assumed to be secure pseudo-random
permutations (PRPs). In the PRP-security game, an adversary A has access to either
the keyed block cipher EK for K $←− K or a random permutation P $←− Perm({0, 1}n), and
returns a decision bit y ∈ {0, 1} after the interaction. An output of A with access to O is
denoted by AO. The PRP-security advantage function of A is defined as

Advprp
EK

(A) := Pr
[
K

$←− K; AEK = 1
]
− Pr

[
P

$←− Perm({0, 1}n); AP = 1
]
,

where the probabilities are taken over K,P and A. The maximum over all adversaries
that run in time at most t and make at most σ queries is denoted by

Advprp
EK

(σ, t) := max
A

Advprp
EK

(A) .

2.4 Definition for MAC
Let F : K ×X → {0, 1}n be a MAC function for an integer n > 0, a key space K and an
input space X . The MAC function having a key K ∈ K is denoted by FK .

2.4.1 PRF-Security

In the pseudo-random function (PRF) security game of FK , an adversary A has access to
either FK for K $←− K or a random function R $←− Func(X , {0, 1}n), and returns a decision
bit y ∈ {0, 1} after the interaction. An output of A with access to O is denoted by AO.
The PRF-security advantage function of A is defined as

Advprf
FK

(A) := Pr
[
K

$←− K; AFK = 1
]
− Pr

[
R $←− Func(X , {0, 1}τ ); AR = 1

]
,

where the probabilities are taken over K,R and A. The maximum over all adversaries
that run in time at most t and make at most q queries of each message length at most
mmax blocks is denoted by

Advprf
FK

((q,mmax), t) := max
A

Advprf
FK

(A) .

2.4.2 MAC-Security

The MAC-security of FK is defined in terms of unforgeability under a chosen-message
attack. In the MAC-security game, an adversary A has access to FK for K $←− K and
the verification function Verif[FK ], where for a query (M,T ) ∈ X × {0, 1}n to Verif[FK ],
Verif[FK ](M,T ) = accept if FK(M) = T , and Verif[FK ](M,T ) = reject otherwise. We
call a query to FK “a MAC query” and a query to Verif[FK ] “a verification query.” The
MAC-security advantage function of A is defined as

Advmac
FK (A) := Pr

[
K

$←− K; AFK ,Verif[FK ] forges
]
,

where the probabilities are taken over P and A. “A forges” means that A makes a
verification query (M,T ) such that the message M has not been made by the previous
MAC queries and accept is returned. The maximum over all adversaries that run in time
at most t, and make at most qm MAC queries and at most qv verification queries of each
message length at most mmax blocks is denoted by

Advmac
FK ((qm, qv,mmax), t) := max

A
Advmac

FK (A) .
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Note that

Advmac
FK ((qm, qv,mmax), t) ≤ Advprf

FK
((q,mmax), t′) + qv

2n ,

where q = qm + qv and t′ = t+O(σ) for σ the total number of message lengths in blocks
by all queries.

2.5 Collision Security
Consider the collision security of a keyed hash function H : K ×X → {0, 1}n with a key
space K, an input space X , and an output length n > 0. The keyed function is denoted by
HK for a key K ∈ K. The advantage function of the collision security of HK is defined as

Advcoll
HK (q,mmax) := max

M1,...,Mq
Pr
[
K

$←− K;∃i, j s.t. i 6= j and HK

(
M i
)

= HK

(
M j
)]

,

where the maximum goes over all q tuples of distinct messages of each message length at
most mmax blocks.

3 PMAC with Two Powering-Up Masks
Let r be the number of n-bit random values used in a masking scheme and φ : {0, 1}nr×N→
{0, 1}n a masking scheme in PMAC. For random values L ∈ {0, 1}nr and a keyed block
cipher EK : {0, 1}n → {0, 1}n, we define PHASH[L, EK ] : {0, 1}n∗ → {0, 1}n the hash
function of PMAC as

PHASH[L, EK ] (M1‖M2‖ · · · ‖Mm) =
(
m−1⊕
i=1

EK (φ(L, i)⊕Mi)
)
⊕Mm ,

where the length of each message block Mi is n bits. In the following analysis, the i-th
input and output of EK are denoted by

Xi = φ(L, i)⊕Mi, and Yi = EK (Xi) .

PMAC[L, EK , EK′ ] : {0, 1}n∗ → {0, 1}n is derived from PHASH by additionally en-
crypting the hash value using a keyed block cipher EK′ :

PMAC[L, EK , EK′ ](M) = EK′ (PHASH[L, EK ] (M)) .

Figure 1 shows the PMAC construction.
In this paper, we mainly analyze the security of PMAC where K and K ′ are indepen-

dently drawn, and two powering-up masks are used: r = 2, L = (L1, L2) $←− {0, 1}2n, and,
the masking scheme is defined as

φ(L, i) = 2i · L1 ⊕ 23i · L2 . (4)

The well known attacks on PMAC (more generally, hash-then-encrypt-type MACs)
use a hash collision [PvO95]. Precisely, a collision of PHASH implies a collision of PMAC,
which offers a distinguishing attack and a forgery. Thus, the attack offers the upper bounds
of the PRF-security Ω(q2/2n) for q queries, and of the MAC-security Ω(q2

m/2n + qv/2n) for
qm MAC queries and qv verification queries. Another distinguishing attack is to use the
difference between a random permutation and a random function, which offers the lower
bound of the PRF-security Ω(q2/2n). Another forgery is to guess a tag, which offers the
lower bound Ω(qv/2n). These attacks are existing ones, but for the sake of completeness,
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Figure 1: PMAC. P := EK and P ′ := EK′ .

these attacks are given in Sections 3.1 (PRF-security) and 3.2 (MAC-security). Note that
these attacks are not new.

On the other hand, proving the tight upper bounds of PMAC with the masking
scheme (4) is non-trivial. In Section 4, we give the tight upper boundO(q2/2n) regarding the
PRF-security of the PMAC. In Section 5, we give the tight upper bound O(q2

m/2n + qv/2n)
regarding the MAC-security of the PMAC.

3.1 Lower Bound of the PRF-Security of PMAC
The lower bound of the PRF-security of PMAC is given in the following theorem, where
the underlying block ciphers EK , EK′ are assumed to be random permutations P $←−
Perm({0, 1}n), P ′ $←− Perm({0, 1}n).

Theorem 1. There exists an adversary A making q queries such that

Advprf
PMAC[L,P,P ′](A) ≥ Ω

(
q2

2n

)
.

Proof. (PRF-attack 1) Let O be either PMAC[L, P, P ′] or a random function R, where
P

$←− Perm({0, 1}n), P ′ $←− Perm({0, 1}n), and R $←− Func({0, 1}n). A PRF adversary that
uses a collision of PHASH is defined below.

1. For i = 1, . . . , q − 2, make a query M i = strn(2i − 1)‖strn(2i)‖0n and receive the
response T i = O(M i).

2. If ∃i1, i2 ∈ [q − 2] s.t. i1 6= i2 ∧ T i1 = T i2 , then

(a) make queriesM ′ = strn(2i1−1)‖strn(2i1)‖1n andM∗ = strn(2i2−1)‖strn(2i2)‖1n,
and receive the responses T ′ = O(M ′) and T ∗ = O(M∗).

(b) If T ′ = T ∗, then return 1.

3. Return 0.

If O = PMAC[L, P, P ′], then as shown Figure 2, the tag collision at the step 2 offers
the internal state (hash) collision occurs. Thus, even when modifying the last blocks as
0n → 1n at the step (2a), the collision occurs, and the probability that the adversary
returns 1 at the step (2b) is 1. On the other hand, if O = R, the probability that the
adversary returns 1 at the step (2b) is negligible. By the birthday analysis, the collision
probability is Ω(q2/2n), and thus the lower bound in Theorem 1 is obtained.

(PRF-attack 2) Next, an adversary using the difference between P ′ and R is defined
below.
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Figure 2: An internal state collision from a tag collision.

1. For i = 1, . . . , q, make a query str(i) to O, and receive the response T i = O(str(i)).

2. If ∃i1, i2 ∈ [q] s.t. T i1 = T i2 , then return 0.

3. Otherwise return 1.

As the messages are all one block and all distinct, if O = PMAC[L, P, P ′], then A returns
1. On the other hand, if O = R, then an output collision occurs with probability Ω(q2/2n)
by the birthday analysis. Thus, the lower bound in Theorem 1 is obtained.

3.2 Lower Bound of the MAC-Security of PMAC
The lower bound of the MAC-security of PMAC is given in the following theorem, where
the underlying keyed block ciphers EK , EK′ are assumed to be random permutations
P

$←− Perm({0, 1}n), P ′ $←− Perm({0, 1}n).

Theorem 2. There exists an adversary A making q queries such that

Advmac
PMAC[L,P,P ′](A) ≥ Ω

(
q2
m

2n + qv
2n

)
.

Proof. (MAC-attack 1) The first term q2
m/2n is obtained by using a collision of PHASH,

as the proof of Theorem 1. The adversarial procedure is given below.

1. For i = 1, . . . , q − 2, make a MAC queries M i = strn(2i− 1)‖strn(2i)‖0n and receive
the response T i = PMAC[L, P, P ′](strn(2i− 1)‖strn(2i)‖0n).

2. If ∃i1, i2 ∈ [q − 2] s.t. T i1 = T i2 , then

(a) make a MAC queries M ′ = strn(2i1 − 1)‖strn(2i1)‖1n, receive the response T ,
and



Yusuke Naito 133

(b) define M∗ = strn(2i2 − 1)‖strn(2i2)‖1n and make a verification query (M∗, T ).

If a hash collision occurs at the step 2, the tag collision occurs PMAC[L, P, P ′](M ′) =
PMAC[L, P, P ′](M∗). Hence, at the step (2b), accept is returned, even when modifying
the last block as 0n → 1n. By the birthday analysis, the collision probability is Ω(q2

m/2n).
Thus, the first term is obtained.

(MAC-attack 2) The second term qv/2n is obtained from an adversary that makes
verification queries whose tags are chosen uniformly at random from {0, 1}n.

(MAC-attack 3) The second term qv/2n is also obtained from a hash collision
between MAC and verification queries: firstly, an adversary makes a MAC query M∗

and obtains the response T ∗; secondly, makes verification queries (M̂1, T ∗), . . . , (M̂qv , T ∗).
If for some i the hash collision PHASH[L, P ](M∗) = PHASH[L, P ](M̂ i) occurs, then
PMAC[L, P, P ′](M̂ i) = T ∗, and thus the i-th response is accept. The collision probability
is Ω(qv/2n), and thus the second term is obtained.

4 PRF-Security of PMAC with Two Powering-Up Masks
Regarding the PRF-security of PMAC where the masking scheme is defined in (4) and
K,K ′ are independently drawn, we give the tight upper bound O(q2/2n) for q queries.

Theorem 3. Assume that 4 ≤ n, and the maximum length in blocks mmax is at most 2n/2.
Then, we have

Advprf
PMAC[L,EK ,EK′ ]((q,mmax), t) ≤ 3.5q2

2n + 2 ·Advprp
E (σ, t′) ,

where t′ = t+O(σ) for σ the total number of message blocks by all queries.

4.1 The High-Level Structure of the Security Proof
The high-level structure of the proof is given below, which is based on the existing proof
of PMAC given in [GPR16].

4.1.1 The PRF-Security from the Collision Security

Firstly, the underlying keyed block ciphers EK , EK′ are replaced with random permutations
P

$←− Perm({0, 1}n), P ′ $←− Perm({0, 1}n), respectively. The replacement introduces the
PRP-advantages of the keyed block ciphers. Secondly, a random permutation P ′ is replaced
with a random function g. By the PRP-PRF switch, the replacement introduces the term
q2/2n+1. Thirdly, the PRF-security of the resultant MAC g ◦ PHASH[L, P ] is considered.
As the MAC returns fresh random values as long as no hash collision occurs, the PRF-
security of the MAC is reduced to the collision security of PHASH[L, P ]. Putting these
steps together offers the following lemma which is given in Lemma 1 in [GPR16] (and also
given in several papers).

Lemma 1.

Advprf
PMAC[L,EK ,EK′ ]((q,mmax), t) ≤ Advcoll

PHASH[L,P ](q,mmax) + q2

2n+1 + 2 ·Advprp
E (σ, t′) ,

where t′ = t+O(σ) for σ the total number of message blocks by all queries.

The collision advantage Advcoll
PHASH[L,P ](q,mmax) is upper bounded by summing the

collision probabilities of any two messages. Thus, the following lemma is satisfied.
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Lemma 2.

Advcoll
PHASH[L,P ](q,mmax) ≤

(
q

2

)
·Advcoll

PHASH[L,P ](2,mmax) .

4.1.2 Analysis of the Collision Advantage Advcoll
PHASH[L,P ](2, mmax)

The collision advantage Advcoll
PHASH[L,P ](2,mmax), which is equal to the following probability,

is considered:

max
Mα 6=Mβ

Pr
[
L $←− {0, 1}2n, P $←− Perm({0, 1}n); PHASH[L, P ] (Mα) = PHASH[L, P ]

(
Mβ

)]
.

Outline

In order to upper bound the probability, two events are considered. The first event E1
is that some output of P is not trivially canceled out. The second event E2 is that all
outputs of P are trivially canceled out. Whereas the analysis for E1 is not new, the one
for E2 is new.

• For the hash collision with the event E1, the randomness of an output, which is
not trivially canceled out, can be used, and thus the collision probability is upper
bounded by O(1/2n) (as the output is chosen uniformly at random from roughly 2n
values).

• For the hash collision with the event E2, we need to analyze the collision probability
for inputs to P . The analysis uses the structure of the masking scheme defined in (4).
We show that the collision probability is upper bounded by O(1/2n).

Detail

For two distinct messages Mα,Mβ , without loss of generality, assume that |Mα| ≥ |Mβ |.
For γ ∈ {α, β}, let mγ be the block length of Mγ , and variables/values corresponding with
Mγ are denoted by using the superscript character of γ such as Xγ

i , Y
γ
i , etc. Regarding

Xβ
i and Y βi , if mβ < i, then Xβ

i := λ and Y βi := λ. Let

I 6=1 (Mα,Mβ) :=
{
i ∈ [mα − 1]

∣∣∣Xα
i 6= Xβ

i

}
,

I 6=2 (Mα,Mβ) :=
{

(i, γ) ∈ I 6=1 (Mα,Mβ)× {α, β}
∣∣∣Xγ

i 6= λ
}

.

Note that the above sets depend only on Mα,Mβ and do not depend on random values L.
Let Y := {Y γi |(i, γ) ∈ I 6=2 (Mα,Mβ)} be the multiset of outputs of P that are not trivially
canceled out.

The hash collision has the form of

PHASH[L, P ](Mα) = PHASH[L, P ](Mβ)⇔
mα−1⊕
i=1

Y αi ⊕
mβ−1⊕
i=1

Y βi = Mα
mα ⊕M

β
mβ

⇔
⊕
Y ∈Y

Y︸ ︷︷ ︸
=:A

= Mα
mα ⊕M

β
mβ︸ ︷︷ ︸

=:B

.

A = B is satisfied if one of the following events occurs.

• E1: Y includes an odd multiplicity element.

• E2: Y includes only even multiplicity elements.
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α
β

1 2     3     4     5

Figure 3: Graphical representation of inputs to P .

We then have

Advcoll
PHASH[L,P ](2,mmax) = max

Mα 6=Mβ
Pr
[
L $←− {0, 1}2n, P $←− Perm({0, 1}n);A = B ∧ E1

]
︸ ︷︷ ︸

=:p1
coll

+ max
Mα 6=Mβ

Pr
[
L $←− {0, 1}2n, P $←− Perm({0, 1}n);A = B ∧ E2

]
︸ ︷︷ ︸

=:p2
coll

.

Regarding p1
coll, under the event E1, some output Y ∈ Y used in A is not canceled out,

and thus the number of possibilities of A is at least 2n − (mα +mβ). Hence, we have

p1
coll ≤ max

Mα 6=Mβ
Pr
[
L $←− {0, 1}2n, P $←− Perm({0, 1}n);A = B

∣∣∣E1

]
≤ 1

2n − (mα +mβ) ≤
1

2n − 2mmax
≤ 2

2n ,

as mmax ≤ 2n−2 from the assumption.
Regarding p2

coll, the analysis is given in Section 4.2. The upper bound is 4/2n given in
Equation (6).

Hence, we have

Advcoll
PHASH[L,P ](2,mmax) = p1

coll + p2
coll ≤

6
2n . (5)

4.1.3 Conclusion of the Proof

The upper bound in Theorem 3 is obtained by putting Lemmas 1, 2 and the upper bound (5)
together.

4.2 Upper Bounding p2
coll

The probability p2
coll is upper bounded, where |Mα| ≥ |Mβ | (assumed above). In this

analysis, inputs are graphically depicted. Figure 3 is an example for inputs with mα = 5,
mβ = 3, I 6=2 (Mα,Mβ) = {(2, α), (4, α), (5, α), (2, β)}: for γ ∈ {α, β}, i ∈ [5], a dot at a
row with γ and an i-th column represents Xγ

i . Dots connected with each other (1-, 3-th
columns in Figure 3) are inputs that are trivially canceled out.

Let
L :=

{
(L1, L2) ∈ {0, 1}2n

∣∣A = B ∧ E2
}

be the set of pairs (L1, L2) that offer hash collisions and satisfy the event E2. As
(L1, L2) ∈ {0, 1}2n,

p2
coll ≤

|L|
22n .

The following analyses show that |L| ≤ 4 · 2n, and thus we have

p2
coll ≤

4 · 2n

22n = 4
2n . (6)
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α
β

i1 i2

mα = mβ

mα = mβ+1

mα = mβ+2

α
β

i1 mα-1

α
β

mα-2  mα-1

Figure 4: Inputs from the type-3 messages. Inputs that are not in Y are omitted.

α

β

i1 i2 i1 i2 α

β

i1 i2

mα = mβ mα = mβ+2

Figure 5: Collision patterns for the type-3 messages. The dot lines represent input
collisions. Inputs that are not in Y are omitted.

Type-1: |I 6=1 (Mα,Mβ)| = 0. For the type-1 messages, the event E2 occurs. However,
as Mα 6= Mβ , Mα

mα 6= Mβ
mβ

, i.e., B 6= 0 is satisfied. Thus, |L| = 0.

Type-2: |I 6=1 (Mα,Mβ)| = 1. For the type-2 messages, Y includes odd multiplicity
elements only, where Y = {Y αi , Y

β
i } when I

6=
1 (Mα,Mβ) = {i}. Thus, |L| = 0.

Type-3: |I 6=1 (Mα,Mβ)| = 2. Let I 6=1 (Mα,Mβ) = {i1, i2} with i1 < i2. There are
three cases: mα = mβ , mα = mβ + 1, and mα = mβ + 2. Figure 4 shows these cases. If
mα = mβ + 1 then Y includes an odd multiplicity element. Thus, the remaining cases
mα = mβ and mα = mβ + 2 are considered.

The first case (mα = mβ) is considered. In this case, either Xα
i1

= Xα
i2

or Xα
i1

= Xβ
i2

occurs if E2 occurs. Figure 5 shows collision patterns for the messages. For γ ∈ {α, β},

Xα
i1 = Xγ

i2
⇔ 2i1 · L1 ⊕ 23i1 · L2 ⊕Mα

i1 = 2i2 · L1 ⊕ 23i2 · L2 ⊕Mγ
i2

⇔ (2i1 ⊕ 2i2) · L1 ⊕ (23i1 ⊕ 23i2) · L2 = Mα
i1 ⊕M

γ
i2
.

The number of possibilities of L1 is 2n, and fixing L1, L2 is defined. Thus, we have
|L| ≤ 2 · 2n.

Regarding the remaining case (mα = mβ +2), Xα
i1

= Xα
i2

is satisfied if E2 occurs, where
ii = mα − 1 and i2 = mα. Figure 5 shows the collision pattern. By the same analysis, we
have |L| ≤ 2n.

Type-4: |I 6=1 (Mα,Mβ)| = 3. Let I 6=(Mα,Mβ) = {i1, i2, i3} such that i1 < i2 < i3.
There are four cases: mα = mβ ; mα = mβ + 1; mα = mβ + 2; mα = mβ + 3. Figure 6
shows these cases. If mα = mβ + 1 or mα = mβ + 3 then Y includes odd multiplicity
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α
β

i1 i2 i3

mα = mβ

mα = mβ+1

mα = mβ+2

α
β

α
β

i1 i2 mα-1        

i1 mα-2  mα-1      

mα = mβ+3
α
β

mα-3   mα-2  mα-1      

Figure 6: Inputs from the type-4 messages. Inputs that are not in Y are omitted.

α
β

i1 i2 i3mα = mβ

mα = mβ+2
α
β

i1 mα-2  mα-1      

i1 i2 i3

i1 i2 i3

i1 i2 i3

i1 mα-2  mα-1      

α
β

i1 i2 i3

i1 i2 i3α
β

i1 i2 i3

α
β

i1 i2 i3

Figure 7: Collision patterns for the type-4 messages. The dot lines represent input
collisions. Inputs that are not in Y are omitted.

elements. Hence, the remaining cases mα = mβ and mα = mβ + 2 are considered.
The case (mα = mβ) is considered. If the event E2 occur, then three input collisions

occurs. For example, Xα
i1

= Xβ
i3
, Xβ

i1
= Xα

i2
and Xβ

i2
= Xα

i3
. The first two collisions offer
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the following system:

(2i1 ⊕ 2i3) · L1 ⊕ (23i1 ⊕ 23i3) · L2 = Mα
i1 ⊕M

β
i3
,

(2i1 ⊕ 2i2) · L1 ⊕ (23i1 ⊕ 23i2) · L2 = Mβ
i1
⊕Mα

i2 .

The above system offers a unique solution for L1 and L2. As shown Figure 7, there are at
most six patterns (each pattern offers a unique solution for L1 and L2), and thus we have
|L| ≤ 6.

The case (mα = mβ + 2) is considered. In this case, i2 = mα − 2, i3 = mα − 1. As
Figure 7, there are at most two patterns, and each pattern offers a unique solution for L1
and L2 by the same analysis as the above. Thus, we have |L| ≤ 2.

Type-5: |I 6=1 (Mα,Mβ)| ≥ 4. If E2 occurs, then there exist input collisions Xγ1
i1

=
Xγ2
i2
, Xγ3

i3
= Xγ4

i4
for (i1, γ1), (i2, γ2), (i3, γ3), (i4, γ4) ∈ I 6=2 (Mα,Mβ) such that at least

three of i1, i2, i3, i4 are distinct.4 The input collisions offer the following system.

Xγ1
i1

= Xγ2
i2
⇔(2i1 ⊕ 2i2) · L1 ⊕ (23i1 ⊕ 23i2) · L2 = Mγ1

i1
⊕Mγ2

i2
,

Xγ3
i3

= Xγ4
i4
⇔(2i3 ⊕ 2i4) · L1 ⊕ (23i3 ⊕ 23i4) · L2 = Mγ3

i3
⊕Mγ4

i4
.

}
(7)

Regarding the above system, we need to take notice of the possibility of existing a
system where 2i1 ⊕ 2i2 = 2i3 ⊕ 2i4 , 23i1 ⊕ 23i2 = 23i3 ⊕ 23i4 , and Mγ1

i1
⊕Mγ2

i2
= Mγ3

i3
⊕Mγ4

i4
.

The system is called “collision system,” and means that the two equations are the same.
On the other hand, we show that such collision system does not exist. In the following,
conditions yielding such collision system are revealed. Assume that 2i1 ⊕ 2i2 = 2i3 ⊕ 2i4 .
As i1, i2, i3, i4 ≤ mmax ≤ 2n/2 and at least three of i1, i2, i3, i4 are distinct, the assumption
implies that i1, i2, i3, i4 are all distinct. Then,

23i1 ⊕ 23i2 = 23i3 ⊕ 23i4

⇔ (2i1 ⊕ 2i2)3 ⊕ (2i1 ⊕ 2i2) · 2i1+i2 = (2i3 ⊕ 2i4)3 ⊕ (2i3 ⊕ 2i4) · 2i3+i4

⇔ (2i1 ⊕ 2i2) · (2i1+i2 ⊕ 2i3+i4) = 0n .

By i1, i2, i3, i4 ≤ mmax ≤ 2n/2 and 4 ≤ n, one has i1 + i2, i3 + i4 < 2n/2+1 < 2n, and thus

23i1 ⊕ 23i2 = 23i3 ⊕ 23i4 ⇔ i1 + i2 = i3 + i4 .

Similarly,

23i1 ⊕ 23i3 = 23i2 ⊕ 23i4 ⇔ i1 + i3 = i2 + i4,

23i1 ⊕ 23i4 = 23i2 ⊕ 23i3 ⇔ i1 + i4 = i2 + i3 .

The three equations i1 + i2 = i3 + i4, i1 + i3 = i2 + i4 and i1 + i4 = i2 + i3 offer the
condition i1 = i2 = i3 = i4.

From the above analysis, 2i1 ⊕ 2i2 6= 2i3 ⊕ 2i4 or 23i1 ⊕ 23i2 6= 23i3 ⊕ 23i4 is satisfied,
and thus the system (7) offers a unique solution for (L1, L2). Fix i1, i3. When Xγ1

i1
6= Xγ3

i3
,

the numbers of i2 and i4 (i.e., the number of collisions Xγ1
i1

= Xγ3
i3

and Xγ2
i2

= Xγ4
i4
) are at

most (mα +mβ − 2) and (mα +mβ − 3), respectively. When Xγ1
i1

= Xγ3
i3
, fix i2, and then

the number of i4 (the number of collisions Xγ2
i2

= Xγ4
i4
) is at most (mα +mβ − 3). Hence,

we have |L| ≤ (mα +mβ − 2)(mα +mβ − 3) + (mα +mβ − 3) ≤ 4m2
max ≤ 4 · 2n.

4It is easy to see that for any distinct pairs (j1, δ1), (j2, δ2), (j3, δ3), (j4, δ4) ∈ I 6=
2 (Mα,Mβ), at least

two of j1, j2, j3, j4 are distinct. Hence, we only have to do is to show that if the event E2 occurs, then
choosing (j1, δ1), (j2, δ2), (j3, δ3), (j4, δ4) ∈ I 6=

2 (Mα,Mβ) such that two of j1, j2, j3, j4 are distinct, i.e.,
j1 = j3 6= j2 = j4, and the collisions Xδ1

i1
= Xδ2

i2
, Xδ3

i3
= Xδ4

i4
occur, there exist other collision pairs

(j5, δ5), (j6, δ6) ∈ I 6=
2 (Mα,Mβ) (i.e., Xδ5

i5
= Xδ6

i6
) such that j5, j6 are distinct from j1, j2, j3, j4. As

|I 6=
1 (Mα,Mβ)| ≥ 4, if the event E2 occurs, there are such collision pairs.
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4.3 Remark
The above proof considers two events that cover attacks given in Section 3.1. The first
event deals with the PRP-PRF switch at the last block. This event corresponds with
(PRF-attack 2). The second event deals with a hash collision. This event corresponds
with (PRF-attack 1).

5 MAC-Security of PMAC with Two Powering-Up Masks
Regarding the MAC-security of PMAC where the masking scheme defined in (4) and K,K ′
are independently drawn, we give the tight upper bound O(q2

m/2n + qv/2n) for qm MAC
and qv verification queries.

Theorem 4. Assume that 4 ≤ n, and the maximum length in blocks mmax is at most 2n/2.
Then, we have

Advmac
PMAC[L,EK ,EK′ ]((qm, qv,mmax), t) ≤ 3.5q2

m

2n + 8qv
2n + 2 ·Advprp

E (σ, t′) ,

where t′ = t+O(σ) for σ the total number of message blocks by all queries.

As Section 4.1, the term 2 ·Advprp
E (σ, t′) is introduced by replacing the underlying keyed

block ciphers EK , EK′ with random permutations P $←− Perm({0, 1}n), P ′ $←− Perm({0, 1}n),
respectively. Hereafter, Advmac

PMAC[L,P,P ′](qm, qv,mmax), the advantage function of the MAC-
security of PMAC[L, P, P ′], is upper bounded. Without loss of generality, an adversary A
is deterministic. We demand that A never asks a repeated query and a trivial verification
query (M,T ) that was obtained from some previous MAC query.

5.1 Indistinguishability between Real and Ideal Worlds
As [CS16], we consider the indistinguishability between the real and ideal worlds. The real
and ideal oracles are defined as

ΠR = (PMAC[L, P, P ′],Verif[PMAC[L, P, P ′]]) , and ΠI = (R,Rej) ,

where R $←− Func({0, 1}∗, {0, 1}τ ) is a random function and Rej is a reject oracle that
returns a reject symbol reject for any query. The advantage function of an adversary A
outputting a bit is defined as

Advind
ΠR,ΠI (A) := Pr[AΠR = 1]− Pr[AΠI = 1] .

In the ideal world, in addition to the ideal oracles, a random permutation P $←− Perm({0, 1}n)
and random values L = (L1, L2) $←− {0, 1}2n are defined, which do not affect an adversarial
behavior but are used in this proof.

Let
τm =

(
(M1, T 1), (M2, T 2), . . . , (Mqm , T qm)

)
be the list of MAC queries of A and the corresponding answers, and

τv =
(

(M̂1, T̂ 1, b1), (M̂2, T̂ 2, b2), . . . , (M̂qv , T̂ qv , bqv )
)

the list of verification queries (M̂ i, T̂ i) of A and the corresponding answers bi ∈ {accept, reject}.
In addition to the lists, hash values τh,m by MAC queries and τh,v by verification queries
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are revealed to A, after its interaction. Note that in the ideal world, for a message M , the
hash value H is defined as H = PHASH[L, P ](M).

τh,m =
(
H1, . . . ,Hqm

)
and τh,v =

(
Ĥ1, . . . , Ĥqv

)
,

where Hi is the hash value defined by the i-th MAC query and Ĥi is the hash value defined
by the i-th verification query. The transcript, which A obtains after the interaction, is
defined as

τ = (τm, τv, τh,m, τh,v) .

A transcript τ is said attainable (with respect to adversary A) if the probability to
obtain this transcript in the ideal world is non-zero. In particular, note that for an
attainable transcript τ , the answer of any verification query (M̂ i, T̂ i) is bi = reject. We
denote T the set of attainable transcripts. We also denote TR, resp. TI , the probability
distribution of the transcript τ induced by the real, resp. ideal oracles.

We upper bound the indistinguishability advantage by using the coefficient H tech-
nique [Pat08] (we follow the description of [CS14]).

Lemma 3. Fix an adversary A. Let T = Tgood∪Tbad be a partition of the set of attainable
transcripts. Assume that there exists ε such that for any τ ∈ Tgood, one has Pr[TR=τ ]

Pr[TI=τ ] ≥ 1−ε.
Then, Advind

ΠR,ΠI (A) ≤ Pr[TI ∈ Tbad] + ε.

5.1.1 Good and Bad Transcripts

Tbad is defined so that one of the following events occurs.

• bad1 ⇔ ∃i, j ∈ [qm] s.t. i 6= j and Hi = Hj (a hash collision occurs for MAC
queries).

• bad2 ⇔ ∃i, j ∈ [qm] s.t. i 6= j and T i = T j (a tag collision occurs for MAC queries).

• bad3 ⇔ ∃i ∈ [qm], j ∈ [qv] s.t. Hi = Ĥj ∧ T i = T̂ j (hash and tag collisions occur
between MAC and verification queries).

Tgood is defined as Tgood = T \Tbad.

5.1.2 Upper Bound of Pr[TI ∈ Tbad]

By the definition of Tbad,

Pr[T2 ∈ Tbad] = Pr[bad1 ∨ bad2 ∨ bad3] .

Firstly, the probability that bad1 occurs, denoted by p1, is upper bounded. For two
distinct messages Mα,Mβ of block lengths at most mmax, the hash collision probability is
upper bounded by 6/2n (given in Equation (5) in Section 4.1.2). Using the upper bound,

p1 ≤
(
qm
2

)
· 6

2n ≤
3q2
m

2n ,

Secondly, the probability that bad2 occurs denoted by p2 is, by the birthday analysis,

p2 ≤
0.5q2

m

2n .

Thirdly, the probability that bad3 occurs under the condition that bad2 does not occur,
denoted by p3, is upper bounded. Fix i ∈ [qv]. By ¬bad2, the number of messages of
encryption queries whose responses are Ĥi is at most 1. Let j ∈ [qm] such that Hj = Ĥi.
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Then, the hash collision probability for the inputs M j and M̂ i is upper bounded by 6/2n
(given in Equation (5) in Section 4.1.2). Thus we have

p3 ≤
6qv
2n .

Finally, we have

Pr[TI ∈ Tbad] ≤ p1 + p2 + p3 ≤
3.5q2

m

2n + 6qv
2n .

5.1.3 Upper Bound ε

Let τ ∈ Tgood. Let p be the probability that a random permutation P and random values
L = (L1, L2) are compatible with the hash values in τh,m, τh,v.

Regarding the ideal world, for i ∈ [qm], Pr[R(M i) = T i] = 1/2n, and thus we have

Pr[TI = τ ] = p ·
(

1
2n

)qm
.

Next, the real world is considered. Regarding MAC queries, by ¬bad2, hash values
Hi are all distinct, and by ¬bad1, tags T i are all distinct. Thus, the probability that the
responses are equal to

(
T 1, . . . , T qm

)
is

1
(2n)qm

.

Regarding verification queries, by ¬bad3, hash values defined by verification queries are
distinct from those by MAC queries. The probability that the i-th responses is reject is at
least

1− 1
2n − qm − (i− 1) ≥ 1− 1

2n − (qm + qv)
≥ 1− 2

2n , assuming qm + qv ≤ 2n−1,

and thus the probability that the responses are all reject is at least(
1− 2

2n

)qv
≥ 1− 2qv

2n .

We thus have
Pr[TR = τ ] ≥ p · 1

(2n)qm
·
(

1− 2qv
2n

)
.

Consequently,

Pr[TR = τ ]
Pr[TI = τ ] ≥

p · 1
(2n)qm

·
(
1− 2qv

2n
)

p ·
( 1

2n
)qm = (2n)qm

(2n)qm
·
(

1− 2qv
2n

)
≥ 1− 2qv

2n ,

and thus we have
ε = 2qv

2n .

5.1.4 Upper Bound of Advind
ΠR,ΠI

(A)

Putting the upper bound of Pr[TI ∈ Tbad] and ε into Lemma 3 gives

Advind
ΠR,ΠI (A) ≤ 3.5q2

m

2n + 8qv
2n . (8)
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5.2 Upper Bound of Advmac
PMAC[L,P,P ′](qm, qv, mmax)

The indistinguishability between ΠR and ΠI ensures that the upper bound (8) is also the one
of the difference Advmac

ΠR (qm, qv,mmax)−Advmac
ΠI (qm, qv,mmax). As Advmac

ΠI (qm, qv,mmax) =
0, we have

Advmac
PMAC[L,P,P ′](qm, qv,mmax) ≤ 3.5q2

m

2n + 8qv
2n .

5.3 Remarks
The analysis in the above proof covers the three attacks in Section 3.2. The event bad1
corresponds with (MAC-attack 1) that is the attack using a hash collision for MAC
queries. The events bad2 and bad3 correspond with (MAC-attack 3) that is the attack
using a hash collision between MAC and verification queries. In the evaluation of ε in
Section 5.1.3, these events are used to ensure that tags by verification queries are (almost)
n-bit random values, and thus correspond with (MAC-attack 2) that is the attack of
guessing tags randomly.

The proof can be applied to other hash-then-encrypt-type MACs, where a block cipher
key in the hash function is independently drawn from that of the finalization. Our proof
offers the upper bound O(q2

m/2n + qv/2n) for qm MAC and qv verification queries as
long as the hash collision probability for any distinct two messages is O(1/2n). Several
hash-then-encrypt-type MACs such as EMAC [JN16] and LightMAC [LPTY16] achieve the
hash collision probability, and thus have the tight upper bound.

The upper bound O(q2
m/2n+qv/2n) ensures that the PMAC has beyond-birthday-bound

security with respect to verification queries as long as q2
m ≤ qv.

6 Modifications

6.1 Arbitrary Length Messages
The previous sections consider PMAC of which input lengths are multiples of n. Using
the one-zero padding 10∗, arbitrary length messages can be handled: the last message
block is defined as Mm‖10n−1−|Mm|. As PMAC1 [Rog04], using multiplications by 3, 5
over GF (2n)∗, one can avoid an additional block cipher call by the one-zero padding: for
example, the last input block is defined as

Mm‖10n−1−|Mm| ⊕ 3 · (2m−1 · L1 ⊕ 23(m−1) · L2) if |Mm| < n ,

Mm ⊕ 5 · (2m−1 · L1 ⊕ 23(m−1) · L2) if |Mm| = n .
(9)

6.2 Random Values L1, L2 from Keyed Block Cipher EK′

Using the block cipher EK′ used at the last block, secret values L1, L2 can be defined,
e.g., L1 ← EK′(0n), L2 ← EK′(1n). In this case, if no input to EK′ (hash value) collides
with 0n or 1n, then the (almost) same security bounds in Theorems 3, 4 can be obtained.
Regarding PMAC defined in Section 3, an adversary can obtain an output of EK′ for any
input, by a one-block query to PMAC, yielding (PRF and forgery) attacks on the MAC.
On the other hand, applying secret masks to the last blocks such as (9), an adversary
cannot obtain L1 and L2 by queries to PMAC, unless some last input block is 0n or 1n
incidentally. By the randomness of L1 or L2, the probability that some last block is 0n or
1n is at most O(q/2n), which appears to the security bounds.
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6.3 Other Powering-Up Methods
As shown in the proof of Theorem 3 (Section 4), in order to obtain the tight upper bounds
of PMAC with two powering-up masks, we need to remove the possibility of existing
collision systems (see the analysis of the type-5 messages of the event E2 in Section 4.2).
The proof of Theorem 3 shows that using the masking scheme defined in (4), no collision
system exists.

Regarding other other masking schemes, the PMAC_Plus’s scheme [Yas11]: φ(i) =
2i · L1 ⊕ 22i · L2 is considered, as the first MAC with two masks. For integers i1, i2, i3, i4
whose at least three are distinct, and message blocks Mγ1

i1
, Mγ2

i2
, Mγ3

i3
and Mγ4

i4
, the

following system is considered,

(2i1 ⊕ 2i2) · L1 ⊕ (22i1 ⊕ 22i2) · L2 = Mγ1
i1
⊕Mγ2

i2
,

(2i3 ⊕ 2i4) · L1 ⊕ (22i3 ⊕ 22i4) · L2 = Mγ3
i3
⊕Mγ4

i4
.

In order to ensure that no collision system exists, we need to show that assuming 2i1⊕2i2 =
2i3 ⊕ 2i4 , 2i1 ⊕ 2i2 6= 2i3 ⊕ 2i4 or 22i1 ⊕ 22i2 6= 22i3 ⊕ 22i4 is satisfied. However, assuming
2i1 ⊕ 2i2 = 2i3 ⊕ 2i4 ,

22i1 ⊕ 22i2 ⊕ 22i3 ⊕ 22i4 =
(
22i1 ⊕ 22i2

)2 ⊕ (22i3 ⊕ 22i4
)2 = 0n .

Thus, the possibility of existing collision systems cannot be removed by the PMAC_Plus’s
masking scheme. More generally, the possibility cannot be removed by masking schemes:
φ(i) = 2ai · L1 ⊕ 2bi · L2 for integers 0 < a < b such that a < b and ∃j ∈ N s.t. b/a = 2j .
Hence, we use the masking scheme defined in (4) that does not have the property.

6.4 Single-Key PMAC with Two Powering-Up Masks
When K = K ′, in order to obtain the same security bounds in Theorems 3, 4, one needs to
ensure that no collision occurs between inputs to EK and to EK′ . However, for the total
number of message blocks σ and the number of queries q, the input collision probability is
O(qσ/2n), and thus our results cannot be applied to the single-key version for obtaining
the tight upper bounds.

7 Multi-User Security of PMAC with Two Powering-Up
Masks

In the previous sections, we discuss the single-user security of PMAC defined in Section 3.
Regarding the multi-user security, our proofs for the single-user security can easily be
extended to the ones for the multi-user security. Assume that the number of users is u.
First, 2u keyed block ciphers are replaced with random permutations. In this replacement,
the multi-user PRP-security advantage of the keyed block ciphers is introduced (the
advantage is defined in e.g. [ML15]). Next, consider the security of the PMAC with random
permutations. Since for each user, random permutations are chosen independently, one can
analyze the security of the PMAC for each of u users independently. For the PRF-security,
let qi be the number of queries by the i-th user, then from Theorem 3, the upper bound
becomes O(q2

1/2n + q2
2/2n + · · ·+ q2

u/2n), which is tight. Similarly, for MAC-security of
the PMAC, the tight upper bound can be obtained.
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