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Abstract. We define ZOCB and ZOTR for nonce-based authenticated encryption with
associated data, and analyze their provable security. These schemes use a tweakable
blockcipher (TBC) as the underlying primitive, and fully utilize its input to process
a plaintext and associated data (AD). This property is commonly referred to as full
absorption, and this has been explored for schemes based on a permutation or a
pseudorandom function (PRF). Our schemes improve the efficiency of TBC-based
counterparts of OCB and OTR called ΘCB3 (Krovetz and Rogaway, FSE 2011)
and OTR (Minematsu, EUROCRYPT 2014). Specifically, ΘCB3 and OTR have an
independent part to process AD, and our schemes integrate this process into the
encryption part of a plaintext by using the tweak input of the TBC. Up to a certain
length of AD, ZOCB and ZOTR completely eliminate the independent process for it.
Even for longer AD, our schemes process it efficiently by fully using the tweak input
of the TBC. For this purpose, based on previous tweak extension schemes for TBCs,
we introduce a scheme called XTX∗. To our knowledge, ZOCB and ZOTR are the
first efficiency improvement of ΘCB3 and OTR in terms of the number of TBC calls.
Compared to Sponge-based and PRF-based schemes, ZOCB and ZOTR allow fully
parallel computation of the underlying primitive, and have a unique design feature
that an authentication tag is independent of a part of AD. We present experimental
results illustrating the practical efficiency gain and clarifying the efficiency cost for it
with a concrete instantiation. The results show that for long input data, our schemes
have gains, while we have efficiency loss for short input data.
Keywords: ZOCB · ZOTR · Authenticated encryption · Associated data · Tweak-
able blockcipher · Provable security

1 Introduction
Nonce-Based Authenticated Encryption. Authenticated encryption (AE) is a symmetric-
key cryptographic function for simultaneously providing confidentiality and integrity of
plaintexts. Starting from the formalization by Katz and Yung [KY00] and Bellare and
Namprempre [BN00, BN08], and the seminal constructions by Jutla [Jut01, Jut08], the
practical significance of AE has been widely recognized, and it grows as one of the most
active research areas in symmetric-key cryptography.
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Associated data (AD) is data that is authenticated but not encrypted, and AE with
associated data (AEAD), formalized by Rogaway [Rog02], takes both a plaintext and AD
as input. AEAD provides confidentiality of plaintexts and integrity of both plaintexts and
AD. The most basic form of AEAD is based on a nonce, and is called nonce-based AEAD
(NAE)1. A nonce is a non-repeating value for each encryption, and can be realized for
instance with a counter. NAE is commonly built as a mode of operation of a blockcipher.
However, there is often an inherent limitation on the security caused by the birthday
paradox on the input or output of a blockcipher, which ensures only n/2-bit security of
NAE if a blockcipher with n-bit blocks is used. The n/2-bit security is commonly referred
to as up to the birthday bound (upBB) security. Possible solutions to break this barrier
exist, i.e. NAE with beyond the birthday bound (BBB) security, however, they come with
an extra computational cost.

One direction to overcome the obstacle is to use a tweakable blockcipher (TBC) as
the underlying primitive instead of classical blockciphers. A TBC was formalized by
Liskov, Rivest, and Wagner [LRW02, LRW11], and it has an extra t-bit tweak input to
provide variability, i.e., it realizes a family of 2t independent blockciphers indexed by the
tweak. Starting from the early Hasty Pudding Cipher [Sch98], we see a growing number of
concrete proposals, including Threefish (in Skein [FLS+10]), Deoxys-BC [JNP14a], Joltik-
BC [JNP14b], and KIASU-BC [JNP14c] from the TWEAKEY framework [JNP14d], and
Scream [GLS+14], where the last four schemes were submitted to CAESAR (Competition
for Authenticated Encryption: Security, Applicability, and Robustness) [CAE]. We also see
other examples including SKINNY [BJK+16], QARMA [Ava17], and CRAFT [BLMR19].
See also TBCs in the proposals for the NIST Lightweight Cryptography project [NIS].

TBC-Based NAE. One of the most well known TBC-based NAE schemes is ΘCB3 by
Krovetz and Rogaway [KR11]. The basic form of ΘCB3 called TAE was already proposed
by Liskov et al. in 2002 [LRW02, LRW11], and OCB1 was proposed by Rogaway in
2004 [Rog04]2. The seminal OCB in [Rog04] is a blockcipher-based realization of OCB1
and ΘCB3, and has been standardized in ISO [ISO09] and IETF [KR14]. The latest
version called OCB3 in [KR11] is provably secure with upBB security, and its security
is well understood, as it has evolved over the years and multiple security proofs are
published [RBBK01, Rog02, RBB03, Rog04, KR11]3. See also a series of papers [AY13,
ZWH16, ADL17, BN17] for analyses of the provable security aspect of OCB.

ΘCB3 is simple, parallelizable, and efficient. It uses one call to a TBC to process one
n-bit input block, where n is the block length in bits of the TBC. We note that ΘCB3 itself
was not designed as a standalone TBC-based NAE scheme, but it was introduced as an
abstraction of OCB to simplify the security proof. However, due to the strong advantages,
a number of concrete NAE proposals employ ΘCB3 with dedicated TBCs. For example,
there are multiple CAESAR submissions [CAE] using ΘCB3, including Deoxys [JNP14a],
Joltik [JNP14b], KIASU [JNP14c], and Scream [GLS+14]. See also proposals for the
NIST Lightweight Cryptography project [NIS], OPP [GJMN16] for permutation-based
instantiations of ΘCB3 that uses a (tweakable) Even-Mansour construction4, and a
construction by Naito [Nai17].

Despite its wide adoption in concrete constructions and in-depth analyses of the provable
security aspect, there is no essential efficiency improvement of TBC-based NAE in terms
of the number of TBC calls since the appearance of TAE and OCB1 in the early 2000s.
From a different perspective, a blockcipher-based NAE scheme OTR and its TBC-based
counterpart OTR were designed by Minematsu [Min14]. These schemes improve OCB and

1We use NAE instead of NAEAD.
2TAE is defined as a plain AE scheme that does not take AD as input, and ΘCB3 is a refinement of

OCB1.
3We note that issues in the security proof in [Rog04] are reported [IM18, Poe18, Iwa18, IIMP19].
4OPP is closer to OCB as the underlying permutation has no native tweak input.
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ΘCB3 by removing the necessity of the decryption routine of the underlying blockcipher
or TBC (this property is often called as the inverse-freeness). However, OTR and OTR
still do not improve the number of blockcipher or TBC calls of OCB and ΘCB3.

ZOCB and ZOTR. We present the first improvement to ΘCB3 in terms of the number of
TBC calls. We follow the natural approach of using the input of the underlying primitive
as much as possible. This approach is often called full absorption of the underlying
primitive, which has been studied for NAE based on a permutation or a pseudorandom
function (PRF). For instance for Sponge-based constructions [BDPA08, BDPA11], full
absorption by integrating the AD process into the encryption process has been studied by
Sasaki and Yasuda [SY15] and by Mennink et al. [MRV15]. The work by Reyhanitabar
et al. [RVV15] shows full absorption for PRF-based NAE. In the authentication-only
scenario, ZMAC [IMPS17] can be seen as a TBC-based MAC with full absorption, while the
related deterministic AEAD (DAE) called ZAE [IMPS17] does not achieve full absorption,
and as far as we know, the possibility of TBC-based NAE with full absorption has not
been explored prior to our work.

Our first proposal, which we call ZOCB, achieves full absorption by effectively inte-
grating the authentication process of AD into the encryption process of a plaintext. The
difficulty of TBC-based NAE to improve ΘCB3 is that invertibility of the TBC has to be
maintained for decryption, which is only ensured for one of the two inputs of the TBC.
This issue was irrelevant in the previous works of ZMAC or ZAE. Likewise, the issue of
invertibility is non-existent in Sponge-based or PRF-based constructions.

Suppose that we have a TBC with n-bit blocks and t-bit tweaks. Our design approach
is to use the t-bit tweak input space of the TBC to process a block of AD, while we use
the n-bit input space to process a block of plaintext, as invertibility is not necessary in the
process of AD but is needed for the process of a plaintext. The t-bit tweak space was used
only for a block counter and domain separation in ΘCB3. This approach in turn implies
that a block counter has to be realized by some other means, and for this purpose we
follow the design of ZMAC and ZAE to use the so-called masks to realize the block counter.
We introduce a tweak extension scheme, called XTX∗, which combines XTX [MI15] and
XT [IMPS17], and uses the idea of XEX∗ [Rog04].

Our design, like ZMAC and ZAE, combines a TBC and a mask to obtain the efficiency
improvement. See Fig. 1 for the schematic comparison between ΘCB3, ZMAC/ZAE, and
ZOCB, and Fig. 2 for the design approaches in [SY15, MRV15, RVV15]. In ZOCB, the i-th
plaintext block M [i] and AD block A[i] are processed simultaneously in a single primitive
call as in Sponge-based and PRF-based NAE [SY15, MRV15, RVV15], while ZOCB is
structurally different from them in that ZOCB is fully parallelizable, and hence there is no
chaining value that can be utilized as in [SY15, MRV15, RVV15]. Therefore, the design of
ZOCB can be characterized as having advantages of both:

• full absorption by processing M [i] and A[i] simultaneously in one primitive call as
in [SY15, MRV15, RVV15], which was not explored for TBC-based NAE, and

• full parallelizability as in ΘCB3 and ZMAC/ZAE, which is not achieved by [SY15,
MRV15, RVV15].

It also has a unique design feature that a tag is independent of a part of the AD blocks,
which is needed to maintain the parallelizability for the lack of chaining values. As we
detail below, our contribution is to show that the approach does work in the context of
TBC-based NAE, both in terms of provable security and implementation aspects.

Given a TBC with n-bit blocks and t-bit tweaks, when AD is shorter than mt bits,
where m is the length of a plaintext in n-bit blocks, ZOCB needs only about m calls of the
underlying TBC, which improves ΘCB3 that needs m+ a calls, where a is the length of
AD in n-bit blocks. Even if AD is longer than mt bits, ZOCB is still faster than ΘCB3, as
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Figure 1: (a) The processing of the i-th plaintext block M [i] in ΘCB3, where EK takes
both a nonce N and a block counter i as the tweak input. (b) The processing of two
consecutive plaintext blocks M [2i] and M [2i+ 1] in ZMAC/ZAE. (c) The processing of a
plaintext block M [i] and an AD block A[i] in ZOCB. They are processed simultaneously
in a single TBC call. In these figures, EK is the underlying TBC. For simplicity, the
domain separation is omitted and the figures assume n = t. α and β in ZMAC/ZAE and
ZOCB are n-bit strings that depend on the key and/or nonce. The dashed box in ZOCB
can be seen as a TBC with large tweak space that takes A[i], i, and N as the tweak input.
Observe the difference to ΘCB3, where the TBC in the dashed box takes A[i] as the tweak
input in addition to (i,N). The difference to ZMAC/ZAE is the simultaneous processing
of M [i] and A[i].
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Figure 2: (a) The Sponge-based scheme with full absorption [SY15, MRV15]. p is a public
permutation. (b) The PRF-based scheme with full absorption [RVV15]. FK is a PRF and
∆ is a mask that depends on the key, nonce, and the block counter. These schemes are
non-parallelizable, and full absorption is achieved by utilizing the chaining values.

we use a standalone upBB secure AD authentication from [IMPS17] that can process n+ t
bits per one TBC call. Therefore, our proposal uniformly reduces the required number of
TBC calls for any input length, neglecting the constant number of calls during the setup.

We also define ZOTR as an improvement of OTR. These schemes do not need a
decryption routine of a TBC, and ZOTR uses the same number of TBC calls as ZOCB.
See Table 1 for the comparison with other schemes.

With respect to the tag generation process in ZOCB and ZOTR, in the schemes listed
in Table 1 and in the previous designs [SY15, MRV15, RVV15], a tag is a function of the
entire AD. We also see that all the secure ones (A1–A8) in [NRS14], a tag is a function of
the entire AD. In contrast to this, in ZOCB and ZOTR, a tag is obtained as the TBC-
encryption of a checksum of plaintext blocks, and the tag is independent of a part of the
AD blocks. As we outline below, ZOCB and ZOTR achieve provable authenticity despite
the use of this type of AD-independent tags. We remark that a tag of A9 in [NRS14] is
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Table 1: Comparison of our schemes with other BC/TBC-based NAE/DAE schemes and
FKD. BC stands for a blockcipher. The block length of BC/TBC is n bits, and the tweak
length of the TBC is t bits. “Func.” is the functionality, “Prim.” is the primitive, and “#
of calls” refers to the number of BC/TBC calls for at-bit AD and mn-bit plaintexts for the
case t = n, neglecting constant number of calls. “Inv.” denotes the inverse-freeness, and
“Para.” shows if the primitive can be called in parallel. “Mul” in GCM denotes GF(2n)
multiplication. Full-state Keyed Duplexing (“FKD”) is based on a permutation (“Perm”),
where b denotes the width of the permutation, c is a security related parameter called
capacity, and r = b− c. # of calls is written for AD of |A| bits and a plaintext of |M | bits.

Scheme Func. Prim. # of calls Inv. Para. Security Ref.
a < m a ≥ m

GCM NAE BC, Mul (a+m) Mul +m BC Y Y n/2 [MV04, NIS07]
OCB3 NAE BC a+m N Y n/2 [KR11]
OTR NAE BC a+m Y Y n/2 [Min14]

ΘCB3 NAE TBC a+m N Y n [Rog04, KR11]
OTR NAE TBC a+m Y Y n [Min14]
SCT DAE TBC a+ 2m Y Y n/2 (n as NAE) [PS16]
ZAE DAE TBC a/2 + 3m/2 Y Y min{n, (n+ t)/2} [IMPS17]

FKD NAE Perm |M |/r (if |A|/c ≤ |M |/r) Y N min{|K|, c/2} [BDPA11, MRV15]
(|A|+ |M |)/b (else)

ZOCB NAE TBC m (a+m)/2 N Y min{n, (n+ t)/2} Sect. 5
ZOTR NAE TBC m (a+m)/2 Y Y min{n, (n+ t)/2} Sect. 6

independent of AD, however, it does not achieve a desirable provable security result.
We point out that, unlike Sponge-based and PRF-based schemes, the number of TBC

calls was not reduced without cost. The use of a mask requires a doubling operation for
each block, and this can add efficiency cost in practice. We also note that the tweak does
not behave like a counter, and this can add the computational cost to update the tweak
depending on the TBC in use. We discuss in Sect. 9 a possible solution to mitigate the
cost.

The length of AD is usually shorter than a plaintext, in which case the efficiency gain
of our schemes becomes marginal, or can be worse if the cost for the doubling operation
is larger than the efficiency gain. Still, real-world protocols tend to require long header
information for handling complex network setting, say IPv6 header has a minimum of 40
bytes (whereas it was 20 bytes for IPv4) that can be arbitrarily extended, and is attached
to any packet [Hag09].

Provable Security. We analyze the provable security of ZOCB and ZOTR. Under the
standard assumption about the underlying TBC, we show that they have min{n, (n+ t)/2}-
bit security both in privacy and authenticity, well beyond the upBB security (n/2-bit
security) for a reasonable tweak length. As mentioned above, in ZOCB and ZOTR, a tag
is independent of a part of AD blocks. The provable security of authenticity works because
in the decryption, the tag is a function of both the ciphertext and AD, and hence changing
one of the AD blocks in decryption will affect the tag. The proofs are not mathematically
involved, however, they still require careful analysis due to the integration mechanism of
the AD process.

We remark that the provable security bounds are worse than those of ΘCB3 and OTR
that are perfectly secure in privacy and have n-bit security in authenticity. This implies
that, as NAE schemes, they have n-bit security by taking the minimum of the privacy and
authenticity security bounds. For ZOCB and ZOTR, by using a TBC with n ≤ t, they
achieve n-bit security as NAE schemes and hence in this case our schemes do not have
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security loss compared to ΘCB3 and OTR. We also note that our security analysis is in
the classical single key scenario, and the security against related-key attacks, side-channel
attacks, or multi-key security is not a part of the design criteria. We also do not consider
nonce-misuse scenario or decryption misuse scenario. In particular, as NAE schemes, our
proposals are insecure if a nonce is repeated in encryption.

Instantiation and Implementation. In order to see the practical efficiency gain, we
instantiate ZOCB and ZOTR to measure the speed. We propose an AES-based TBC called
TAES, which is a natural construction of a TBC where we simply put the concatenation
of a 128-bit tweak and 128-bit key into the key-scheduling function of AES-256. AES-256
was not designed to be used as a TBC, but TAES immediately gives a very efficient TBC
that could be used in various other TBC-based schemes. We claim 128-bit security of
TAES in the single-key setting, and we discuss the reason why the most efficient attack on
AES-256 is not applicable to TAES. We propose TAES as a target for cryptanalysts, and
we leave further detailed security analysis as an open problem.

We implemented TAES-ZOCB/ZOTR on an Intel Skylake CPU using AES-NI and
compared them with TAES-ΘCB3. We also tested an Intel Haswell CPU. Furthermore, to
see the advantage with an existing TBC, we implemented SKINNY-ZOCB/ZOTR and
compared them with SKINNY-ΘCB3, where we use the version called SKINNY-128-256.
The results show that our schemes have practical efficiency gains for long input data. We
also see that the efficiency loss for short input data is limited.

2 Preliminaries
Notation. We first introduce notation that we use throughout this paper. Let {0, 1}∗
be the set of all finite bit strings, including the empty string ε. For X ∈ {0, 1}∗, |X| is
its length in bits. For an integer i ≥ 0, {0, 1}i is the set of all bit strings of i bits, and
{0, 1}≤i is the set of all bit strings of at most i bits, including ε. For an integer ` ≥ 1,
|X|` is the length of X ∈ {0, 1}∗ in `-bit blocks, which is defined as |X|` = d|X|/`e if
X 6= ε, and |X|` = 1 if X = ε. For two bit strings X and Y , X ‖Y is their concatenation.
We also write this as XY if it is clear from the context. Let 0i be the string of i zero
bits, and for instance we write 10i for 1 ‖ 0i. For X ∈ {0, 1}∗ and ` ≥ 1, we define the
one-zero-padding function, ozp`(X), as ozp`(X) = X if X 6= ε and |X| mod ` = 0, i.e.,
if |X| is a positive multiple of ` bits. Otherwise, ozp`(X) = X ‖ 10`−1−(|X| mod `). For
X ∈ {0, 1}∗ with |X| ≥ i, msbi(X) is the first (left) i bits of X, and lsbi(X) is the last
(right) i bits of X.

For X ∈ {0, 1}∗ and ` ≥ 1, we define the parsing operation of X into `-bit blocks as
(X[1], . . . , X[x]) `←− X, where for X 6= ε, we let x = |X|`, X[1] ‖ . . . ‖X[x] = X, |X[i]| = `

for 1 ≤ i ≤ x − 1, and 1 ≤ |X[x]| ≤ `. For X = ε, we let x = 1, X[x] `←− X, and
X[1] = ε. For X ∈ {0, 1}`+i with ` ≥ 1 and i ≥ 0, we define another type of parsing
operation (X[1], X[2]) `,i←− X as X[1] = msb`(X) and X[2] = lsbi(X). We also write this as
(X[1], X[2]) `,∗←−− X for X[1] = msb`(X) and X[2] = lsb|X|−`(X). Note that when |X| = `,
we have (X[1], X[2]) `,∗←−− X, where X[1] = X and X[2] = ε.

We use a tweakable blockcipher (TBC) as the underlying primitive. A TBC is a
keyed function E : K ×W × {0, 1}n → {0, 1}n, where K is the key space, W is the tweak
space, and n is the block length, such that for any key and tweak (K,W ) ∈ K × W,
E(K,W, ·) is a permutation over {0, 1}n. We emphasize that E in this paper is a TBC
(which is often denoted as Ẽ). Following [PS16, IMPS17], we consider the case where
W = I × {0, 1}t for some I ⊂ N = {0, 1, . . .} and t ≥ 0, where t is called the (effective)
tweak length. For (i,W ) ∈ I × {0, 1}t = W, we write EK((i,W ),M), EiK(W,M), or
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Ei,WK (M) for E(K, (i,W ),M) interchangeably. For (i,W ) ∈ W, the inverse permutation
D(K, (i,W ),M) of E(K, (i,W ),M) is written as DK((i,W ),M), Di

K(W,M), or Di,W
K (M).

For i, ` ∈ N with 0 ≤ i ≤ 2` − 1, we write the standard `-bit representation of i as [i]`. For
instance we write E3,[1]t

K (0n) to mean E(K, (3, 0t−11), 0n).
Given a TBC E : K ×W × {0, 1}n → {0, 1}n with W = I × {0, 1}t, for X ∈ {0, 1}∗,

we define the msb-or-padding function mopt(X) as

mopt(X) def=
{

msbt(X) if |X| ≥ t ,
X ‖ 0t−|X| if |X| < t .

Observe that for any X ∈ {0, 1}∗, we have |mopt(X)| = t. We note that, for Y ∈ {0, 1}t
and X ∈ {0, 1}n, Y ⊕mopt(X) corresponds to Y ⊕t X used in ZMAC [IMPS17].

We use a multiplication in the Galois Field GF(2n) of 2n elements. The element is
represented as an n-bit string an−1 . . . a1a0, or an integer

∑
0≤i≤n−1 ai2i. We assume that

2 ∈ GF(2n), which is 0n−110 in an n-bit string, generates all the non-zero elements, and
thus the multiplicative order of 2 is 2n − 1. We write 2 · a to mean the multiplication of
a ∈ GF(2n) by 2, which is called the doubling operation, and we write 2i · a or 2ia if we
apply the doubling operation i times on a. Implementation of doubling over GF(2n) is
simple. It is one-bit logical shift of an n-bit variable (which represents the coefficient vector
of a polynomial in GF(2n)) followed by XOR of a constant representing the irreducible
polynomial defining the field. See e.g. [Rog04].

TPRP and TSPRP Notions. We assume that TBC E : K ×W × {0, 1}n → {0, 1}n is
a tweakable pseudorandom permutation (TPRP) [LRW02, LRW11]. Let Perm(W, n) be
the set of all functions E : W × {0, 1}n → {0, 1}n such that for any W ∈ W, E(W, ·) is
a permutation over {0, 1}n. We say that E is a tweakable uniform random permutation
(TURP) if E $← Perm(W, n), and for an adversary B, we define

Advtprp
E (B) def= Pr

[
BEK(·,·) ⇒ 1

]
− Pr

[
BE(·,·) ⇒ 1

]
,

where the first probability is taken over K $← K and the randomness of B, and the last
one is taken over E $← Perm(W, n) and B.

We also assume that TBC E : K × W × {0, 1}n → {0, 1}n is a tweakable strong
pseudorandom permutation (TSPRP) [LRW02, LRW11]. For TURP E $← Perm(W, n),
let D be the set of inverse permutations, i.e., for any W ∈ W, D(W, ·) is the inverse
permutation of E(W, ·). For an adversary B, we define

Advtsprp
E (B) def= Pr

[
BEK(·,·),DK(·,·) ⇒ 1

]
− Pr

[
BE(·,·),D(·,·) ⇒ 1

]
,

where the probabilities are over K $← K and B for the first one, and E $← Perm(W, n) and
B for the last one.

AEAD Scheme. Let Π = (Π.Enc,Π.Dec) be an AEAD scheme. The deterministic
encryption algorithm Π.Enc takes a key K ∈ KΠ and a tuple (N,A,M) of a nonce
N ∈ NΠ, associated data (AD) A ∈ AΠ, and a plaintext M ∈MΠ as input, and returns a
ciphertext and a tag (C, T ) ∈ CΠ × TΠ, where KΠ is the key space, NΠ is the nonce space,
AΠ is the AD space,MΠ is the plaintext space, CΠ is the ciphertext space, and TΠ is the
tag space. We write (C, T ) ← Π.EncK(N,A,M) for (C, T ) ← Π.Enc(K,N,A,M). The
deterministic decryption algorithm Π.Dec takes K ∈ KΠ and (N,A,C, T ) ∈ NΠ ×AΠ ×
CΠ × TΠ as input, and returns M ∈MΠ or the distinguished reject symbol ⊥. We write
M ← Π.DecK(N,A,C, T ) or ⊥ ← Π.DecK(N,A,C, T ) for M ← Π.Dec(K,N,A,C, T ) or
⊥ ← Π.Dec(K,N,A,C, T ), and require thatM ← Π.DecK(N,A,Π.EncK(N,A,M)) holds
for all (K,N,A,M) ∈ KΠ ×NΠ ×AΠ ×MΠ.
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Privacy Notion. The privacy notion we consider captures the indistinguishably of a
ciphertext by a nonce-respecting adversary with a chosen plaintext attack [Rog02]. A
privacy adversary A has access to the encryption oracle Π.EncK or a random-bits oracle
which we write the $-oracle. The encryption oracle takes (N,A,M) ∈ NΠ × AΠ ×MΠ
as input and returns (C, T )← Π.EncK(N,A,M). The $-oracle takes (N,A,M) ∈ NΠ ×
AΠ ×MΠ as input and returns a uniform random string (C, T ) $← {0, 1}|Π.EncK(N,A,M)|,
i.e., a uniform random string of the same length as the output of Π.EncK(N,A,M). The
privacy advantage is defined as

Advpriv
Π (A) def= Pr

[
AΠ.EncK(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·) ⇒ 1

]
,

where the first probability is over K $← KΠ and A, and the last is over the $-oracle and A.
We say that A in the privacy game is nonce-respecting if it does not make two queries
with the same nonce, regardless of its internal coin or the response from the oracle. We
consider only nonce-respecting privacy adversaries.

Authenticity Notion. The authenticity notion we consider captures the unforgeability
of a nonce-respecting adversary with a chosen ciphertext attack [Rog02]. Let A be an
authenticity adversary that has access to the encryption oracle Π.EncK and the decryption
oracle Π.DecK . The encryption oracle is as in the privacy notion. The decryption oracle
takes (N,A,C, T ) ∈ NΠ ×AΠ × CΠ × TΠ as input and returns M ← Π.DecK(N,A,C, T )
or ⊥ ← Π.DecK(N,A,C, T ). We define the authenticity advantage as

Advauth
Π (A) def= Pr

[
AΠ.EncK(·,·,·),Π.DecK(·,·,·,·) forges

]
,

where the probability is over K $← KΠ and A, and we say that the adversary forges if the
decryption oracle returns a bit string (other than ⊥) for a query (N,A,C, T ), where (C, T )
was not previously returned to A from the encryption oracle for a query (N,A,M). The
adversary A in the authenticity game is assumed to be nonce-respecting with respect to
the encryption oracle, and A can repeat the same nonce for the decryption oracle. More
precisely, suppose that A has made i encryption queries with nonces N1, . . . , Ni and j
decryption queries with nonces N ′1, . . . , N ′j . If the next query is an encryption query with
a nonce Ni+1, then it holds that Ni+1 6∈ {N1, . . . , Ni}, but Ni+1 ∈ {N ′1, . . . , N ′j} may hold.
If the next query is a decryption query with a nonce N ′j+1, then both N ′j+1 ∈ {N1, . . . , Ni}
and N ′j+1 ∈ {N ′1, . . . , N ′j} may hold. Without loss of generality, we assume that A does not
make redundant queries, i.e., if the encryption oracle returns (C, T ) for a query (N,A,M),
then A does not subsequently make a decryption query (N,A,C, T ), and A does not repeat
a query.

3 iZOCB and iZOTR
3.1 iZOCB
Overview. We first present the specification of iZOCB, the idealized version of ZOCB, to
highlight the feasibility of the block-by-block processing of AD and AD-independent tag
approach, and the structural difference from ΘCB3.5

Intuitively, iZOCB corresponds to the rightmost figure of ZOCB in Fig. 1, where the
dashed box is replaced with an ideally secure TBC Ẽ with large tweak space G. We call G
the global tweak space, and a global tweak includes the i-th t-bit AD block A[i], a block
counter i, a nonce N , and values for the domain separation. For a plaintext parsed into

5See Appendix D for an informal introduction to iZOCB and ZOCB.
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n-bit blocks (M [1], . . . ,M [m]) n←−M and AD parsed into t-bit blocks (A[1], . . . , A[a]) t←− A,
the i-th call of the TBC Ẽ to compute a ciphertext block C[i] can be described as
C[i]← Ẽ((N,A[i], i),M [i]). This allows us to encrypt an mn-bit plaintext with at-bit AD
for any a < m at the cost of m+ 1 calls of Ẽ. When a ≥ m, (a−m)t bits of AD remain
unprocessed, and they are authenticated with a TBC-based (computational) universal
hash function that takes (n+ t)-bit input per Ẽ call. This is an n-bit output version of
ZHASH [IMPS17]. A tag is the encryption of a checksum, which is the XOR of all the
plaintext blocks and is independent of the first (m− 1)t bits of AD, where m is the block
length of the plaintext.

Compared to ΘCB3 that has an independent PMAC-style process for AD and hence
tags depend on the entire AD, the process for A[i] is integrated into the encryption process
of a plaintext block M [i]. Therefore, iZOCB is structurally different from ΘCB3, and this
is made possible since we are assuming global tweak space G for the underlying TBC.

Idealized ZOCB. We write iZOCB[Perm(G, n)] = (iZOCB.Enc, iZOCB.Dec) for the en-
cryption and decryption algorithms of iZOCB that uses Perm(G, n) as the underlying TBC.
G is global tweak space defined as

G def= {C,H} × I ′ × {0, 1}n × {0, 1}t × Zρ , (1)

where C and H are used to separate the Core functions and the Hash function, I ′ def= {0, 1, 2},
Zρ = {0, . . . , ρ− 1}, ρ = 2(n+min{n,t})/2 − 1, and t ≥ 1 is a constant, with the constraint
that for a global tweak (b, ν,N,B, i) ∈ G, N must satisfy N = 0n when b = H. In other
words, G can alternatively be defined as

G def=
(
{C} × I ′ × {0, 1}n × {0, 1}t × Zρ

)
∪
(
{H} × I ′ × {0n} × {0, 1}t × Zρ

)
.

Here, {C,H} × I ′ corresponds to the domain separation, {0, 1}n corresponds to the space
for nonces, {0, 1}t is the space for t-bit AD blocks, and Zρ corresponds to the block counter.
The value of ρ specifies the maximum input length.

Now iZOCB takes a TURP Ẽ ∈ Perm(G, n) as a key. Let D̃ be the decryption of Ẽ.
iZOCB has the signature KiZOCB = Perm(G, n), NiZOCB = {0, 1}n, AiZOCB = MiZOCB =
CiZOCB = {0, 1}≤nρ, and TiZOCB = {0, 1}n. The specification of iZOCB[Perm(G, n)] =
(iZOCB.Enc, iZOCB.Dec) is presented in Fig. 3 and the encryption algorithm is illustrated
in Figs. 4 and 5.

In the encryption algorithm, iZOCB.EncẼ(N,A,M), we first check the block length m of
M (in n-bit blocks), and if the length of A is less than mt bits, then we let B ← ozpmt(A),
(C, Y ) ← iCore.EncẼ(N,B,M), and return (C, T ) with T = Y . The Core function is
the main routine for processing M and B to compute C and Y . M is processed as
in ΘCB3, while we use the tweak input to process B. If |A| ≥ mt, then we let B be
the first mt bits of A, and B̂ be the remaining bits of A. M and B are processed as
(C, Y )← iCore.EncẼ(N,B,M), and for the remaining bits B̂ of A, they are processed with
the Hash function as Ŷ ← iHashẼ(B̂). The hash function works similarly to ZHASH of
ZMAC. The output is (C, T ) with T = Y ⊕ Ŷ .

Observe that, in Fig. 4, Y is independent of B[1], . . . , B[m− 1], the first (m− 1)t bits
of AD. However, when we decrypt, changes in B[1], . . . , B[m − 1] will affect Y , which
intuitively explains why our AD-independent tag approach works.

Security of iZOCB. The next theorem shows that iZOCB is provably secure.

Theorem 1. Let Perm(G, n) be the underlying TBC of iZOCB, where G is defined
as in (1). For any privacy adversary A that makes q encryption queries, we have
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Algorithm iZOCB.EncẼ(N,A,M)

1. m← |M |n
2. if |A| < mt then
3. B ← ozpmt(A)
4. Ŷ ← 0n
5. else
6. (B, B̂) mt,∗←−−− A
7. Ŷ ← iHashẼ(B̂)
8. (C, Y )← iCore.EncẼ(N,B,M)
9. T ← Ŷ ⊕ Y

10. return (C, T )

Algorithm iCore.EncẼ(N,B,M)
// M ∈ {0, 1}∗, |M |n = m, and |B| = mt

1. S ← 0n
2. (M [1], . . . ,M [m]) n←−M
3. (B[1], . . . , B[m]) t←− B
4. for i = 1 to m− 1 do // m ≥ 2
5. S ← S ⊕M [i]
6. C[i]← ẼC,0,N,B[i],i−1(M [i])
7. Z ← ẼC,0,N,0t,m−1(0n)
8. C[m]←M [m]⊕msb|M [m]|(Z)
9. S ← S ⊕ ozpn(M [m])
10. if |M [m]| 6= n then
11. Y ← ẼC,1,N,B[m],m−1(S)
12. else
13. Y ← ẼC,2,N,B[m],m−1(S)
14. C ← (C[1], . . . , C[m])
15. return (C, Y )

Algorithm iZOCB.DecẼ(N,A,C, T )

1. m← |C|n /
2. if |A| < mt then
3. B ← ozpmt(A)
4. Ŷ ← 0n
5. else
6. (B, B̂) mt,∗←−−− A
7. Ŷ ← iHashẼ(B̂)
8. (M,Y )← iCore.DecẼ(N,B,C) /

9. T ∗ ← Ŷ ⊕ Y /
10. if T ∗ = T then return M /
11. else return ⊥ /

Algorithm iCore.DecẼ(N,B,C)
// C ∈ {0, 1}∗, |C|n = m, and |B| = mt

1. S ← 0n
2. (C[1], . . . , C[m]) n←− C /

3. (B[1], . . . , B[m]) t←− B
4. for i = 1 to m− 1 do // m ≥ 2
5. M [i]← D̃C,0,N,B[i],i−1(C[i]) /
6. S ← S ⊕M [i] /

7. Z ← ẼC,0,N,0t,m−1(0n)
8. M [m]← C[m]⊕msb|C[m]|(Z) /
9. S ← S ⊕ ozpn(M [m])
10. if |C[m]| 6= n then /

11. Y ← ẼC,1,N,B[m],m−1(S)
12. else
13. Y ← ẼC,2,N,B[m],m−1(S)
14. M ← (M [1], . . . ,M [m]) /
15. return (M,Y ) /

Algorithm iHashẼ(B̂)

1. Ŷ ← 0n
2. (B̂[1], . . . , B̂[a]) n+t←−− B̂
3. for i = 1 to a− 1 do // a ≥ 2
4. (P [i], Q[i]) n,t←−− B̂[i]
5. Ŷ ← Ŷ ⊕ ẼH,0,0n,Q[i],i−1(P [i])
6. (P [a], Q[a]) n,t←−− ozpn+t(B̂[a])
7. if |B̂[a]| 6= n+ t then
8. Ŷ ← Ŷ ⊕ ẼH,1,0n,Q[a],a−1(P [a])
9. else

10. Ŷ ← Ŷ ⊕ ẼH,2,0n,Q[a],a−1(P [a])
11. return Ŷ

Figure 3: Definitions of iZOCB.EncẼ(N,A,M) and iZOCB.DecẼ(N,A,C, T ). The blue
lines with a blue triangle in iZOCB.DecẼ(N,A,C, T ) and iCore.DecẼ(N,B,C) indicate the
difference from the corresponding encryption algorithms (also in other figures).
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Figure 4: iCore.EncẼ(N,B,M) of iZOCB, where (B[1], . . . , B[m]) t←− B. The value of ν in
the last step is 1 if |M [m]| 6= n and 2 otherwise. S is M [1]⊕ · · ·⊕M [m− 1]⊕ ozpn(M [m]).
The red dashed lines are t bits wide (also in other figures).
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Figure 5: iHashẼ(B̂) of iZOCB, where (B̂[1], . . . , B̂[a]) n+t←−− B̂ and (P [i], Q[i]) n,t←−− B̂[i]. ν
in the last step is 1 if |B̂[a]| 6= n+ t and 2 otherwise.

Advpriv
iZOCB[Perm(G,n)](A) = 0. For any authenticity adversary A that makes q encryption

and q′ decryption queries, we have Advauth
iZOCB[Perm(G,n)](A) ≤ 4q′/2n.

The privacy bound follows from the fact that iCore.EncẼ(N,B,M) and iHashẼ(B̂) are
independent due to domain separation, and in iCore.EncẼ(N,B,M), each call of ẼC,·,·,·,·(·)
takes distinct global tweaks due to the nonce. The authenticity bound requires careful
case analyses, and a complete proof is presented in Sect. 4.1.

3.2 iZOTR
Overview. We next present the idealized version of ZOTR, which we write iZOTR. This
is based on OTR [Min14], and the PMAC-style process for AD in OTR is integrated into
the encryption process.6 iZOCB and iZOTR share the same overall structure, and the
difference from iZOCB is the definition of the Core functions, where we use a two-round
Feistel permutation that uses a TBC as round functions. This eliminates the need of the
decryption of the TBC.

Idealized ZOTR. We write iZOTR[Perm(G, n)] = (iZOTR.Enc, iZOTR.Dec) for the en-
cryption and decryption algorithms of iZOTR that uses Perm(G, n) as the underlying TBC.
Here, G is global tweak space defined as

G def= {C,H} × I ′ × {0, 1}n × {0, 1}t × Zρ , (2)

where I ′ def= {0, 1, . . . , 5}, Zρ = {0, . . . , ρ − 1}, ρ = 2(n+min{n,t})/2 − 1, and t ≥ 1 is a
constant, with the constraint that a global tweak (b, ν,N,B, i) ∈ G must satisfy N = 0n
when b = H.

6See Appendix E for an informal introduction to iZOTR and ZOTR.
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Algorithm iZOTR.EncẼ(N,A,M)

1. m← |M |n
2. if |A| < mt then
3. B ← ozpmt(A)
4. Ŷ ← 0n
5. else
6. (B, B̂) mt,∗←−−− A
7. Ŷ ← iHashẼ(B̂)
8. (C, Y )← iCore.EncẼ(N,B,M)
9. T ← Ŷ ⊕ Y
10. return (C, T )

Algorithm iZOTR.DecẼ(N,A,C, T )

1. m← |C|n /
2. if |A| < mt then
3. B ← ozpmt(A)
4. Ŷ ← 0n
5. else
6. (B, B̂) mt,∗←−−− A
7. Ŷ ← iHashẼ(B̂)
8. (M,Y )← iCore.DecẼ(N,B,C) /

9. T ∗ ← Ŷ ⊕ Y /
10. if T ∗ = T then return M /
11. else return ⊥ /

Figure 6: Definitions of iZOTR.EncẼ(N,A,M) and iZOTR.DecẼ(N,A,M)

iZOTR uses Perm(G, n) as the underlying TBC, and it takes a TURP Ẽ ∈ Perm(G, n)
as a key. It has the signature KiZOTR = Perm(G, n), NiZOTR = {0, 1}n, AiZOTR =MiZOTR =
CiZOTR = {0, 1}≤nρ, and TiZOTR = {0, 1}n.

The specification of iZOTR[Perm(G, n)] = (iZOTR.Enc, iZOTR.Dec) is in Figs. 6, 7, 8,
and 9, and the encryption is illustrated in Figs. 10, 11, and 12. We note that the pseudocode
of iZOTR.EncẼ(N,A,M), iZOTR.DecẼ(N,A,C, T ), and iHashẼ(B̂) is the same as the cor-
responding pseudocode of iZOCB. iZOCB and iZOTR differ only in iCore.EncẼ(N,B,M)
and iCore.DecẼ(N,B,M), where the Core functions work as in OTR, while AD is processed
with the tweak input of the underlying TBC.

Security of iZOTR. We show that iZOTR is provably secure. A proof is in Sect. 4.2.

Theorem 2. Let Perm(G, n) be the underlying TBC of iZOTR, where G is defined
as in (2). For any privacy adversary A that makes q encryption queries, we have
Advpriv

iZOTR[Perm(G,n)](A) = 0. For any authenticity adversary A that makes q encryption
and q′ decryption queries, we have Advauth

iZOTR[Perm(G,n)](A) ≤ 6q′/2n.

4 Security Proofs of iZOCB and iZOTR
4.1 Security Proof of iZOCB (Theorem 1)
The overall proof approach follows those of OCB1 and ΘCB3. However, we need an
additional analysis due to the integration mechanism of the AD process.

We first consider the privacy bound, and then the authenticity bound.

The Privacy Bound. We observe that, for an encryption query (N,A,M), any output
block of iCore.Enc involves exactly one call of Ẽ taking a unique tweak that contains N .
Therefore, (C, Y ) in line 8 of iZOCB.Enc is a uniformly random string of |M | + n bits.
The tag T in line 9 is also uniformly random since iHash is an independent procedure to
iCore.Enc from the domain separation. This means that (C, T ) is completely random and
the privacy bound is 0.

The Authenticity Bound. We first consider the case q′ = 1 (i.e. single decryption query).
We consider the most effective information theoretic adversary, i.e., we assume that the
adversary makes all the q encryption queries before making the single verification query.
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Algorithm iCore.EncẼ(N,B,M) // M ∈ {0, 1}∗, |M |n = m, and |B| = mt

1. S ← 0n
2. (M [1], . . . ,M [m]) n←−M
3. `← dm/2e
4. (B[1], . . . , B[m]) t←− B
5. for i = 1 to `− 1 do // ` ≥ 2
6. C[2i− 1]← ẼC,0,N,B[2i−1],i−1(M [2i− 1])⊕M [2i]
7. C[2i]← ẼC,1,N,B[2i],i−1(C[2i− 1])⊕M [2i− 1]
8. S ← S ⊕M [2i]
9. if m mod 2 = 0 then
10. Z ← ẼC,0,N,B[m−1],`−1(M [m− 1])
11. C[m]← msb|M [m]|(Z)⊕M [m]
12. C[m− 1]← ẼC,1,N,0t,`−1(ozpn(C[m]))⊕M [m− 1]
13. S ← S ⊕ ozpn(C[m])⊕ Z
14. if m mod 2 = 1 then
15. C[m]← msb|M [m]|(ẼC,0,N,0t,`−1(0n))⊕M [m]
16. S ← S ⊕ ozpn(M [m])
17. if m mod 2 = 0 and |M [m]| 6= n then Y ← ẼC,2,N,B[m],`−1(S)
18. if m mod 2 = 0 and |M [m]| = n then Y ← ẼC,3,N,B[m],`−1(S)
19. if m mod 2 = 1 and |M [m]| 6= n then Y ← ẼC,4,N,B[m],`−1(S)
20. if m mod 2 = 1 and |M [m]| = n then Y ← ẼC,5,N,B[m],`−1(S)
21. C ← (C[1], . . . , C[m])
22. return (C, Y )

Figure 7: Definition of iCore.EncẼ(N,B,M) of iZOTR

Let Se = (Ni, Ai,Mi, Ci, Ti)i=1,...,q be the query-response pairs of the q encryption queries,
and let (N ′, A′, C ′, T ′) be the single decryption query. Note that the adversary can be
assumed to be deterministic, and this implies that (N ′, A′, C ′, T ′) is a function of Se.

Now from the definition, we have Ni 6= Nj for all 1 ≤ i < j ≤ q and (N ′, A′, C ′, T ′) 6=
(Ni, Ai, Ci, Ti) for all 1 ≤ i ≤ q. We follow the notation used in the corresponding
pseudocode. All the internal variables for the i-th encryption query have subscript i,
and those for the decryption query have a prime symbol. For example, Mi is parsed
as (Mi[1], . . . ,Mi[mi])

n←− Mi. Let T ∗ ∈ {0, 1}n be the true tag value for the decryp-
tion query (N ′, A′, C ′, T ′), i.e., T ∗ is the value defined in line 9 of the computation of
iZOCB.DecẼ(N ′, A′, C ′, T ′) in Fig. 3.

We define ν′ ∈ {1, 2} as ν′ = 1 when |C ′[m′]| 6= n, and ν′ = 2 when |C ′[m′]| = n. This
is used in the encryption of S′. For the i-th encryption query, νi is defined similarly.

For a random variable X over finite space X , we write

pp(X) def= max
x∈X

Pr[X = x]

to denote the maximum point probability of X. The maximum point probability condi-
tioned on an event E is defined as pp(X | E) = maxx∈X Pr[X = x | E ].

Let p def= Pr[T ′ = T ∗ | Se]. We evaluate p, which directly gives the maximum of forgery
probability, by a case analysis. As we arbitrarily fix Se, (N ′, A′, C ′, T ′) is also fixed, and
we rely on the remaining randomness of iZOCB.DecẼ.

As a decryption query (N ′, A′, C ′, T ′) such that (N ′, A′, C ′) = (Ni, Ai, Ci) for some
1 ≤ i ≤ q and T ′ 6= Ti always fails, we may assume that (N ′, A′, C ′) 6= (Ni, Ai, Ci) holds
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Algorithm iCore.DecẼ(N,B,C) // C ∈ {0, 1}∗, |C|n = m, and |B| = mt

1. S ← 0n
2. (C[1], . . . , C[m]) n←− C /
3. `← dm/2e
4. (B[1], . . . , B[m]) t←− B
5. for i = 1 to `− 1 do // ` ≥ 2
6. M [2i− 1]← ẼC,1,N,B[2i],i−1(C[2i− 1])⊕ C[2i] /

7. M [2i]← ẼC,0,N,B[2i−1],i−1(M [2i− 1])⊕ C[2i− 1] /
8. S ← S ⊕M [2i]
9. if m mod 2 = 0 then
10. M [m− 1]← ẼC,1,N,0t,`−1(ozpn(C[m]))⊕ C[m− 1] /

11. Z ← ẼC,0,N,B[m−1],`−1(M [m− 1]) /
12. M [m]← msb|C[m]|(Z)⊕ C[m] /
13. S ← S ⊕ ozpn(C[m])⊕ Z
14. if m mod 2 = 1 then
15. M [m]← msb|C[m]|(ẼC,0,N,0t,`−1(0n))⊕ C[m] /
16. S ← S ⊕ ozpn(M [m])
17. if m mod 2 = 0 and |C[m]| 6= n then Y ← ẼC,2,N,B[m],`−1(S) /

18. if m mod 2 = 0 and |C[m]| = n then Y ← ẼC,3,N,B[m],`−1(S) /

19. if m mod 2 = 1 and |C[m]| 6= n then Y ← ẼC,4,N,B[m],`−1(S) /

20. if m mod 2 = 1 and |C[m]| = n then Y ← ẼC,5,N,B[m],`−1(S) /
21. M ← (M [1], . . . ,M [m]) /
22. return (M,Y ) /

Figure 8: Definition of iCore.DecẼ(N,B,C) of iZOTR

Algorithm iHashẼ(B̂)

1. Y ← 0n
2. (B̂[1], . . . , B̂[a]) n+t←−− B̂
3. for i = 1 to a− 1 do // a ≥ 2
4. (P [i], Q[i]) n,t←−− B̂[i]
5. Y ← Y ⊕ ẼH,0,0n,Q[i],i−1(P [i])
6. (P [a], Q[a]) n,t←−− ozpn+t(B̂[a])
7. if |B̂[a]| 6= n+ t then
8. Y ← Y ⊕ ẼH,1,0n,Q[a],a−1(P [a])
9. else
10. Y ← Y ⊕ ẼH,2,0n,Q[a],a−1(P [a])
11. return Y

Figure 9: Definition of iHashẼ(B̂) of iZOTR
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EC,1,N

M [1] M [2]

C[1] C[2]

B[1]

B[2]

0

0

EC,0,N

EC,1,N

M [3] M [4]

C[3] C[4]

B[3]

B[4]

1

1

Figure 10: iCore.EncẼ(N,B,M) of iZOTR
for the process of M [1], . . . ,M [4] and
B[1], . . . , B[4] when |M |n = m ≥ 5

for all 1 ≤ i ≤ q. Recall that m′ = |C ′|n and mi = |Ci|n. Our analysis is divided into the
following cases.

Case 1. N ′ 6= Ni for all 1 ≤ i ≤ q

Case 2. For some 1 ≤ i ≤ q, N ′ = Ni and C ′ 6= Ci
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Figure 11: iCore.EncẼ(N,B,M) of iZOTR for the case m mod 2 = 0. This illustrates the
process of M [m− 3], . . . ,M [m] and B[m− 3], . . . , B[m], where (B[1], . . . , B[m]) t←− B. ν
in the last step is 2 if |M [m]| 6= n and 3 otherwise. S is M [2]⊕M [4]⊕ · · · ⊕M [m− 2]⊕
ozpn(C[m])⊕ Z.

M [m]

msb|·|

C[m] Y

S

B[m]

M [m− 2] M [m− 1]

B[m− 2]

B[m− 1]

C[m 2] C[m 1]

· · ·

EC,0,N

EC,1,N

EC,0,N EC,ν,N

m−3
2

m−3
2

0t
0n

m−1
2
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2

Figure 12: iCore.EncẼ(N,B,M) of iZOTR for the case m mod 2 = 1. This processes
M [m− 2], . . . ,M [m] and B[m− 2], . . . , B[m], where (B[1] . . . , B[m]) t←− B. ν in the last
step is 4 if |M [m]| 6= n and 5 otherwise. S is M [2]⊕M [4]⊕ · · ·⊕M [m− 1]⊕ ozpn(M [m]).

Case 2.1. m′ 6= mi

Case 2.2. m′ = mi

Case 3. For some 1 ≤ i ≤ q, N ′ = Ni, C ′ = Ci, and A′ 6= Ai

Case 3.1. B′ 6= Bi

Case 3.2. B′ = Bi and |A′|, |Ai| < m′t

Case 3.3. B′ = Bi, |A′| < m′t, and |Ai| ≥ m′t
Case 3.4. B′ = Bi, |A′| ≥ m′t, and |Ai| < m′t

Case 3.5. B′ = Bi and |A′|, |Ai| ≥ m′t

Observe that we cover all the cases. The details of the analysis follow.
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Case 1. Y ′ is uniformly random over {0, 1}n, and from T ∗ = Y ′⊕ Ŷ ′, we have p = 1/2n.

Case 2.1. Y ′ = ẼC,ν′,N ′,B′[m′],m′−1(S′) (for some ν′ ∈ {1, 2}) is uniformly random since
(ν′, N ′, B′[m′],m′−1) is a unique tweak among all calls to ẼC,·,·,·,·(·) for encryption queries
due to the uniqueness of (ν′,m′− 1). Therefore, T ∗ = Y ′⊕ Ŷ ′ is also uniform and we have
p = 1/2n.

Case 2.2. This case is similar to the case of ΘCB3 and is divided into two subcases.
For simplicity we write m = m′ = mi. Since Ŷ ′ and Ŷi are independent of Y ′ and Yi, the
probability of T ∗ ⊕ Ti = Y ′ ⊕ Yi ⊕ Ŷ ′ ⊕ Ŷi = 0n is bounded by pp(Y ′ ⊕ Yi).

Subcase (1) is the case C ′[j] 6= Ci[j] for some 1 ≤ j < m with m ≥ 2. Then M ′[j] is
uniform over {0, 1}n (when B′[j] 6= Bi[j]) or {0, 1}n \ {Mi[j]} (when B′[j] = Bi[j]). This
implies that

S′ ⊕ Si =

 ⊕
h=1,...,m−1

M ′[h]⊕Mi[h]

⊕ ozpn(M ′[m])⊕ ozpn(Mi[m]) (3)

contains an independent term M ′[j] ⊕Mi[j] which is uniform over {0, 1}n or uniform
over {0, 1}n \ {0n}. Therefore, Pr[S′ ⊕ Si = 0n] is at most 1/(2n − 1), and we have
pp(Y ′ ⊕ Yi | S′ 6= Si) ≤ 1/(2n − 1). This yields p ≤ 1/(2n − 1) + 1/(2n − 1) = 2/(2n − 1).

Subcase (2) is the case C ′[j] = Ci[j] for all 1 ≤ j < m and C ′[m] 6= Ci[m]. If
B′[j] 6= Bi[j] for some 1 ≤ j < m, then (3) contains an independent term M ′[j] which is
uniform over {0, 1}n, and hence we have Pr[S′⊕Si = 0n] = 1/2n, from which p ≤ 2/(2n−1)
follows.

If B′[j] = Bi[j] for all 1 ≤ j < m, then we have

S′ ⊕ Si = ozpn(M ′[m])⊕ ozpn(Mi[m]) .

First, when ν′ 6= νi, the final tweaks for S′ and Si are different and thus Y ′⊕Yi is uniform.
Next, consider the case ν′ = νi. When |C ′[m]| 6= |Ci[m]| (which must be the case that both
are shorter than n bits), we have |M ′[m]| 6= |Mi[m]| and S′ ⊕ Si 6= 0n from the property
of ozp. When |C ′[m]| = |Ci[m]| = ` for some 1 ≤ ` ≤ n, we have

S′ ⊕ Si = ozpn(C ′[m]⊕msb`(Z))⊕ ozpn(Ci[m]⊕msb`(Z))
= ozpn(C ′[m]⊕ Ci[m]) ,

where Z = Z ′ = Zi, and this must be non-zero. Thus, pp(Y ′⊕Yi) ≤ 1/(2n− 1) holds, and
this gives p ≤ 2/(2n − 1) for Case 2.2.

Case 3.1. For some 1 ≤ j ≤ m, where m = m′ = mi, we have B′[j] 6= Bi[j]. Therefore,
when 1 ≤ j < m (and m ≥ 2),M ′[j] is uniform and independent ofMi[j], thus S′⊕Si = 0n
with probability 1/2n. When j = m, S′ and Si are encrypted with different tweaks,
making Y ′ independent and uniform over {0, 1}n. From the same analysis as in Case 2.2
including the observation that we can focus on pp(Y ′ ⊕ Yi) and ignore Ŷ ′ and Ŷi, we have
p ≤ 2/(2n − 1).

Case 3.2. Let m = m′ = mi. We have B′ = ozpmt(A′) and Bi = ozpmt(Ai), and
A′ 6= Ai implies that this case is impossible.
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Case 3.3. We have T ∗ = Y ′ = Yi and Ti = Yi ⊕ Ŷi. Here, Ŷi is iHashẼ(B̂i) and is
uniformly random since this involves at least one call of ẼH,·,·,·,·(·) (note that B̂i can
be empty), and we may have B̂i = B̂j for some (possibly multiple) indices 1 ≤ j ≤ q,
in which case we have Ŷj = Ŷi with probability one. Let J be the set of such indices
j ∈ {1, . . . , q} \ {i}.

We observe that Yi is uniform given Se, since Ti = Yi ⊕ Ŷi completely hides Yi for the
randomness of Ŷi, and Ŷj for any j ∈ J is masked by Yj , which itself is independent and
uniformly random. Therefore, T ∗ is completely random, implying p = 1/2n.

Case 3.4. We have T ∗ = Y ′ ⊕ Ŷ ′ = Yi ⊕ Ŷ ′ and Ti = Yi. From the same analysis as in
Case 3.3, Ŷ ′ is either independent and uniformly random (when B̂′ 6= B̂j for all 1 ≤ j ≤ q),
or uniformly random but not independent (when B̂′ = B̂j for some j ∈ {1, . . . , q} \ {i}).
However, for the latter case, Ŷ ′ = Ŷj is masked by Yj . Hence Ŷ ′ is uniform given Se and
we have p = 1/2n.

Case 3.5. The analysis is similar to that of authentication part of ΘCB3. Let m =
m′ = mi. We have T ∗ = Y ′ ⊕ Ŷ ′ and Ti = Yi ⊕ Ŷi, where Y ′ = Yi. As in the analysis of
Case 3.4, Ŷ ′ may be identical to some Ŷj for j ∈ {1, . . . , q} \ {i}. However, we may ignore
them and focus on pp(Ŷ ′ ⊕ Ŷi).

Let |B̂′|n+t = a′ and |B̂i|n+t = ai. As the first mt bits of A′ and Ai are the same, we
must have B̂′ 6= B̂i. Following the pseudocode, let (P ′[j], Q′[j]) n,t←−− B̂′[j] for 1 ≤ j < a′

and (P ′[a′], Q′[a′]) n,t←−− ozpn+t(B̂′[a′]). Similarly, we define (Pi[j], Qi[j]), where 1 ≤ j ≤ ai,
for B̂i. We divide the analysis into three subcases.

Subcase (1) is the case a′ = ai ≥ 2 and B̂′[j] 6= B̂[j] for some 1 ≤ j < a′. We observe
that Ŷ ′ ⊕ Ŷi contains an independent term EH,0,0n,Q′[j],j−1(P ′[j])⊕ EH,0,0n,Qi[j],j−1(Pi[j]),
and this term has the maximum point probability of 1/(2n−1), which implies pp(Ŷ ′⊕Ŷi) ≤
1/(2n − 1). We therefore have p ≤ 1/(2n − 1).

Subcase (2) is the case a′ = ai and B̂′[a′] 6= B̂i[a′]. In this case, we have either
ozpn+t(B̂′[a′]) 6= ozpn+t(B̂i[a′]) or ozpn+t(B̂′[a′]) = ozpn+t(B̂i[a′]) but |B̂′[a′]| 6= |B̂i[a′]|.
The former case is the same as Subcase (1). For the latter case, due to the difference in
the second argument of the tweak ν ∈ {1, 2}, Ŷ ′ ⊕ Ŷi is uniformly random. Therefore,
p ≤ 1/(2n − 1).

Subcase (3) is the case a′ < ai or ai < a′. If a′ < ai, we see that Ŷ ′ ⊕ Ŷi contains
an independent term EH,0,0n,Qi[ai],ai−1(Pi[ai]), and we have p = 1/2n. The same analysis
holds for the case ai < a′.

Overall, p ≤ 2/(2n − 1) holds for all the cases, which gives

Advauth
iZOCB[Perm(G,n)](A) ≤ 2

2n − 1 ≤
4
2n

for any adversary A that makes q encryption queries and single decryption query. Using
the generic transformation from single to multiple decryption queries given by Bellare
et al. [BGM04], we obtain the claimed authenticity bound.

4.2 Security Proof of iZOTR (Theorem 2)
The proof is similar to those of iZOCB and OTR [Min14]7. We analyze the privacy first,
and then the authenticity.

7OTR uses a tweakable random function, while iZOTR uses a tweakable random permutation, and this
makes the difference of the constant in the security bound.
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The Privacy Bound. We see that any output block of iCore.Enc has exactly one call of Ẽ
taking a unique tweak, and this contains a nonce. Therefore, (C, Y ) is uniform, and from
the independence of iHash, (C, T ) is also uniform. This proves that the privacy bound is
zero.

The Authenticity Bound. The basic strategy is the same as the case of iZOCB. We
first focus on the case q′ = 1. We employ the same notation as was used in the proof of
Theorem 1. Additionally, we use `′ = dm′/2e and ν′ ∈ {2, 3, 4, 5} following the pseudocode,
i.e., for the decryption query, we have ν′ = 2 when m′ mod 2 = 0 and |C ′[m′]| 6= n, ν′ = 3
when m′ mod 2 = 0 and |C ′[m′]| = n, ν′ = 4 when m′ mod 2 = 1 and |C ′[m′]| 6= n,
and ν′ = 5 when m′ mod 2 = 1 and |C ′[m′]| = n. For the i-th encryption query, we
define `i and νi analogously, and we also use subscript i for other internal variables. Let
p = Pr[T ′ = T ∗ | Se] be the advantage of the most effective adversary, where Se denote the
transcript of the q encryption queries. Following the proof of Theorem 1, we use pp(X) to
denote the maximum point probability of random variable X.

The case analysis for deriving p is as follows.

Case 1. N ′ 6= Ni for all 1 ≤ i ≤ q

Case 2. For some 1 ≤ i ≤ q, N ′ = Ni and C ′ 6= Ci

Case 2.1. (ν′, `′, B′[m′]) 6= (νi, `i, Bi[mi])
Case 2.2. (ν′, `′, B′[m′]) = (νi, `i, Bi[mi]) and ν′ = νi ∈ {2, 3}
Case 2.3. (ν′, `′, B′[m′]) = (νi, `i, Bi[mi]) and ν′ = νi ∈ {4, 5}

Case 3. For some 1 ≤ i ≤ q, N ′ = Ni, C ′ = Ci, and A′ 6= Ai

Case 3.1. (ν′, `′, B′[m′]) 6= (νi, `i, Bi[mi])
Case 3.2. (ν′, `′, B′[m′]) = (νi, `i, Bi[mi]) and B′ 6= Bi

Case 3.3. (ν′, `′, B′[m′]) = (νi, `i, Bi[mi]), B′ = Bi, and |A′|, |Ai| < m′t

Case 3.4. (ν′, `′, B′[m′]) = (νi, `i, Bi[mi]), B′ = Bi, |A′| < m′t, and |Ai| ≥ m′t
Case 3.5. (ν′, `′, B′[m′]) = (νi, `i, Bi[mi]), B′ = Bi, |A′| ≥ m′t, and |Ai| < m′t

Case 3.6. (ν′, `′, B′[m′]) = (νi, `i, Bi[mi]), B′ = Bi and |A′|, |Ai| ≥ m′t

In what follows, we present the details of the analysis.

Case 1. Y ′ is random, and from T ∗ = Y ′ ⊕ Ŷ ′, we have p = 1/2n.

Case 2.1. The final tweaks used to encrypt S′ and Si are different, and both are used
exactly once. Therefore, Y ′ is independent and uniform, and we have p = 1/2n.

Case 2.2. As ν′ = νi ∈ {2, 3}, we have m′ mod 2 = mi mod 2 = 0. The analysis of this
case mostly follows the proof of OTR [Min14]. From (ν′, `′) = (νi, `i), m′ = mi holds true.
For simplicity let m = m′ = mi and ` = `′ = `i. Note that by definition, m cannot be zero,
and we have m ≥ 2. Let (V ′[1], . . . , V ′[`]) 2n←− C ′ and (Vi[1], . . . , Vi[`])

2n←− Ci, and we call
V ′[j] or Vi[j] a chunk. From C ′ 6= Ci, there exists 1 ≤ j ≤ ` such that V ′[j] 6= Vi[j].

As in the analysis of iZOCB, we evaluate pp(Y ′⊕Yi) and this can be used as the bound
of p from the independence of iHash. As in the proof of Theorem 1, we observe that

pp(Y ′ ⊕ Yi) ≤ pp(Y ′ ⊕ Yi | S′ 6= Si) + Pr[S′ = Si]

≤ 1
2n − 1 + Pr[S′ = Si] . (4)
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We evaluate pp(Y ′ ⊕ Yi) in two subcases.
Subcase (1) is the case that j satisfies 1 ≤ j < `. We have |V ′[j]| = |Vi[j]| = 2n, and

we note that ` ≥ 2 in this case. Let (C ′[2j − 1], C ′[2j]) n←− V ′[j], and the decryption of
V ′[j] is described as{

M ′[2j − 1] = ẼC,1,N ′,B′[2j],j−1(C ′[2j − 1])⊕ C ′[2j] , (5)
M ′[2j] = ẼC,0,N ′,B′[2j−1],j−1(M ′[2j − 1])⊕ C ′[2j − 1] , (6)

and M ′[2j] is used in the checksum S′.
We observe that S′ ⊕ Si contains M ′[2j] ⊕Mi[2j], and this is independent of other

n-bit terms in S′ ⊕ Si, since they are encrypted with Ẽ using different tweaks. Therefore,
we have

Pr[S′ = Si] ≤ pp(M ′[2j]⊕Mi[2j]) . (7)

From (5), we observe that Pr
[
M ′[2j − 1] = Mi[2j − 1]

]
≤ 1/(2n − 1), and from (6),

pp(M ′[2j]⊕Mi[2j] |M ′[2j − 1] 6= Mi[2j − 1]) is at most 1/(2n − 1). We obtain

pp(M ′[2j]⊕Mi[2j]) ≤ pp(M ′[2j]⊕Mi[2j] |M ′[2j − 1] 6= Mi[2j − 1])
+ Pr

[
M ′[2j − 1] = Mi[2j − 1]

]
≤ 1

2n − 1 + 1
2n − 1 . (8)

From (4), (7), and (8), we have p ≤ 3/(2n − 1).
Subcase (2) is the case j = ` and the difference is only in the last chunk. Let

U ′ = ozpn(C ′[m])⊕ Z ′ and Ui = ozpn(Ci[m])⊕ Zi. Note that U ′ ⊕ Ui is an independent
term in S′ ⊕ Si, thus Pr[S′ = Si] is at most pp(U ′ ⊕ Ui). We have

pp(U ′ ⊕ Ui) ≤ pp(U ′ ⊕ Ui |M ′[m− 1] 6= Mi[m− 1])
+ Pr

[
M ′[m− 1] = Mi[m− 1]

]
. (9)

If ozpn(C ′[m]) 6= ozpn(Ci[m]), then we have Pr
[
M ′[m− 1] = Mi[m− 1]

]
≤ 1/(2n − 1),

and given M ′[m− 1] 6= Mi[m− 1], Z ′ is uniform over {0, 1}n \ {Zi} (note that ozpn(Ci[m])
and Zi are dependent but ozpn(C ′[m]) and Z ′ are independent). Therefore, pp(U ′ ⊕ Ui |
M ′[m− 1] 6= Mi[m− 1]) is at most 1/(2n − 1). Combining this and (4) and (9), we have
p ≤ 3/(2n − 1).

If ozpn(C ′[m]) = ozpn(Ci[m]), we have C ′[m] = Ci[m], and thus C ′[m−1] 6= Ci[m−1],
since ν′ = νi is assumed. Then M ′[m − 1] 6= Mi[m − 1] holds. From (9), we have
pp(U ′ ⊕ Ui) ≤ 1/(2n − 1). From (4), we have p ≤ 2/(2n − 1).

Combining Subcases (1) and (2), we have p ≤ 3/(2n − 1).

Case 2.3. We have ν′ = νi ∈ {4, 5}, implying m′ mod 2 = mi mod 2 = 1. We use the
2n-bit parsing as in Case 2.2. There exists 1 ≤ j ≤ ` for ` = `′ = `i such that V ′[j] 6= Vi[j].
If 1 ≤ j < `, from the same analysis as in Subcase (1) of Case 2.2, we have p ≤ 3/(2n − 1).
If j = ` and the difference is only in the last chunk, we necessary have C ′[m] 6= Ci[m],
where m = m′ = mi. Now if we have B′[j] 6= B[j] for some 1 ≤ j < m, then we have
a difference in tweaks used for two-block chunks, and by following a similar analysis to
Subcase (1) of Case 2.2, we obtain p ≤ 3/(2n − 1). If B′[j] = B[j] for all 1 ≤ j < m, then
let U ′ = ozpn(M ′[m]) and Ui = ozpn(Mi[m]). Observe that S′ ⊕ Si = U ′ ⊕ Ui. When
ν′ = νi = 5, we have

U ′ ⊕ Ui = M ′[m]⊕Mi[m] = C ′[m]⊕ Ci[m] 6= 0n .

When ν′ = νi = 4, we again obtain U ′ ⊕ Ui 6= 0n from the property of ozp. Therefore,
S′ 6= Si holds for both cases, and we have p ≤ 1/(2n − 1).
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Case 3.1. The analysis is identical to that of Case 2.1, and we have p = 1/2n.

Case 3.2. The analysis is almost the same as those of Cases 2.2 and 2.3. We let
1 ≤ j < m, where m = m′ = mi, be an index such that B′[j] 6= Bi[j] (note that j = m
is excluded as B′[m] = Bi[m]). Then, we have a difference in tweaks used for two-block
chunks, and by following Subcase (1) of Case 2.2, we have p ≤ 3/(2n − 1).

The remaining cases, Cases 3.3–3.6, correspond to Cases 3.2–3.5 of the proof of
Theorem 1, respectively, and the same proof works. This is because iZOCB and iZOTR
share the same high-level structure and the same specification of iHash.

Therefore, we have p ≤ 3/(2n − 1) ≤ 6/2n for all the cases, and this gives the upper
bound of Advauth

iZOTR[Perm(G,n)](A) against an adversary A that makes single decryption
query. By using [BGM04], we conclude the proof.

5 ZOCB
Overview. ZOCB is a TBC-based NAE scheme that is obtained from iZOCB by instan-
tiating the TURP Ẽ ∈ Perm(G, n) with a concrete TBC Ê that has the global tweak
space G. We start from a TBC E : K ×W × {0, 1}n → {0, 1}n, where W = I × {0, 1}t,
{0, 1, 2, 3} ⊆ I, and t ≥ 1. This corresponds to a TBC as a primitive and for instance E
could be SKINNY or Deoxys-BC. We introduce a tweak extension scheme, called XTX∗,
which efficiently converts the ideally secure version of E, which we write E, into a TBC
Ê that has the global tweak space G, where G includes {0, 1}n for a nonce, {0, 1}t for an
AD block, and Zρ for a block counter. XTX∗ combines XTX [MI15] and XT [IMPS17],
and uses the idea of XEX∗ [Rog04] (which is a blockcipher mode for TBCs) for efficiently
combining TPRP-secure and TSPRP-secure TBCs. XTX∗ is formalized in Appendix A.
ZOCB is obtained by instantiating Ẽ in iZOCB with Ê, which itself is constructed from E.

We summarize various TBCs that appear in this paper.

• E : K ×W × {0, 1}n → {0, 1}n is the underlying TBC as a primitive. For instance
this could be SKINNY or Deoxys-BC, and this corresponds to EK in Fig. 1.

• E ∈ Perm(W, n) is a TURP that has the same tweak space and block length as E.
This corresponds to the ideally secure version of E.

• Ê : KÊ × G × {0, 1}
n → {0, 1}n is a TBC that we construct by using E as a building

block. The construction is based on XTX∗, and this has the global tweak space G as
defined in (1). This corresponds to the dashed box in the rightmost figure of Fig. 1,
where we use E instead of EK .

• Ẽ ∈ Perm(G, n) is a TURP that has the same tweak space and block length as Ê, and
this corresponds to the ideally secure version of Ê. This was used to define iZOCB in
Sect. 3.1.

See Fig. 13 for the input and output of Ê, and Fig. 14 for the instantiation with E.

Specification of ZOCB. We present the specification of ZOCB. To use ZOCB, one has
to specify a TBC E : K ×W × {0, 1}n → {0, 1}n as a parameter, where W = I × {0, 1}t,
{0, 1, 2, 3} ⊆ I, and t ≥ 1. We write ZOCB[E] = (ZOCB.Enc,ZOCB.Dec) for ZOCB that
uses E as the underlying TBC. We have KZOCB = K, i.e., the key space is the key space
of the underlying TBC, NZOCB = {0, 1}n, AZOCB =MZOCB = CZOCB = {0, 1}≤nρ, and
TZOCB = {0, 1}n. Recall that ρ = 2(n+min{n,t})/2 − 1.

Let E ∈ Perm(W, n) be a TURP that has the same tweak space and block length as
E. Now from E ∈ Perm(W, n), we define a TBC Ê : KÊ × G × {0, 1}

n → {0, 1}n. The
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(b) ÊC,ν,N,B,i(M) for ν ∈ {1, 2}
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EH,ν,N

(c) ÊH,ν,N,B,i(M)

Figure 13: (a) C ← ÊC,ν,N,B,i(M) for ν = 0. The idealized version Ẽ is used to process
B[1], . . . , B[m − 1] and M [1], . . . ,M [m] in iCore.Enc of iZOCB. (b) C ← ÊC,ν,N,B,i(M)
for ν ∈ {1, 2}. The idealized version is used to compute Y in iCore.Enc of iZOCB. (c)
C ← ÊH,ν,N,B,i(M) for ν ∈ {0, 1, 2}. The idealized version is used to compute Ŷ in iHash
of iZOCB.
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Figure 14: (a) Instantiation of Fig. 13a with E. (b) Instantiation of Fig. 13b with E. (c)
Instantiation of Fig. 13c with E. In these figures, α, β, γ, δ are computed as (13).

key space is KÊ = Perm(W, n), i.e., it takes E ∈ Perm(W, n) as a key, the tweak space is
G, and for a global tweak (b, ν,N,B, i) ∈ G, the encryption of M ∈ {0, 1}n is defined as
follows. 

ÊC,ν,N,B,i
E (M) = Eν,mopt(2iβ)⊕B(M ⊕ 2iα)⊕ 2iα if ν = 0 (10)

ÊC,ν,N,B,i
E (M) = Eν,mopt(2iβ)⊕B(M ⊕ 2iα) if ν ∈ {1, 2} (11)

ÊH,ν,N,B,i
E (M) = Eν,mopt(2iδ)⊕B(M ⊕ 2iγ) (12)

Here, α, β, γ, and δ are defined as

α = E3,[0]t(N) , β = E3,[1]t(N) , γ = E3,[2]t(0n) , and δ = E3,[3]t(0n) . (13)

Figures 14a, 14b, and 14c implement (10), (11), and (12), respectively. The decryption of
C ∈ {0, 1}n, which we write D̂, uses the decryption D of E and is defined in an obvious
way as follows.

D̂C,ν,N,B,i
E (C) = Dν,mopt(2iβ)⊕B(C ⊕ 2iα)⊕ 2iα if ν = 0

D̂C,ν,N,B,i
E (C) = Dν,mopt(2iβ)⊕B(C)⊕ 2iα if ν ∈ {1, 2}

D̂H,ν,N,B,i
E (C) = Dν,mopt(2iδ)⊕B(C)⊕ 2iγ

Now we are ready to define ZOCB and present its specification. We observe that
iZOCB[Perm(G, n)] takes a TURP Ẽ ∈ Perm(G, n) as the key, and this can be instantiated
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Algorithm ZOCB.EncK(N,A,M)

1. m← |M |n
2. if |A| < mt then
3. B ← ozpmt(A)
4. Ŷ ← 0n
5. else
6. (B, B̂) mt,∗←−−− A
7. Ŷ ← HashK(B̂)
8. (C, Y )← Core.EncK(N,B,M)
9. T ← Ŷ ⊕ Y

10. return (C, T )

Algorithm Core.EncK(N,B,M)
// M ∈ {0, 1}∗, |M |n = m, and |B| = mt

1. S ← 0n
2. α← E

3,[0]t
K (N), β ← E

3,[1]t
K (N)

3. (M [1], . . . ,M [m]) n←−M
4. (B[1], . . . , B[m]) t←− B
5. for i = 1 to m− 1 do // m ≥ 2
6. S ← S ⊕M [i]
7. W [i]← B[i]⊕mopt(β)
8. C[i]← E

0,W [i]
K (M [i]⊕ α)⊕ α

9. α← 2 · α, β ← 2 · β
10. W [m]← mopt(β)
11. Z ← E

0,W [m]
K (α)⊕ α

12. C[m]←M [m]⊕msb|M [m]|(Z)
13. S ← S ⊕ ozpn(M [m])
14. W [m+ 1]← B[m]⊕mopt(β)
15. if |M [m]| 6= n then
16. Y ← E

1,W [m+1]
K (S ⊕ α)

17. else
18. Y ← E

2,W [m+1]
K (S ⊕ α)

19. C ← (C[1], . . . , C[m])
20. return (C, Y )

Algorithm ZOCB.DecK(N,A,C, T )

1. m← |C|n /
2. if |A| < mt then
3. B ← ozpmt(A)
4. Ŷ ← 0n
5. else
6. (B, B̂) mt,∗←−−− A
7. Ŷ ← HashK(B̂)
8. (M,Y )← Core.DecK(N,B,C) /

9. T ∗ ← Ŷ ⊕ Y /
10. if T ∗ = T then return M /
11. else return ⊥ /

Algorithm Core.DecK(N,B,C)
// C ∈ {0, 1}∗, |C|n = m, and |B| = mt

1. S ← 0n
2. α← E

3,[0]t
K (N), β ← E

3,[1]t
K (N)

3. (C[1], . . . , C[m]) n←− C /

4. (B[1], . . . , B[m]) t←− B
5. for i = 1 to m− 1 do // m ≥ 2
6. W [i]← B[i]⊕mopt(β) /

7. M [i]← D
0,W [i]
K (C[i]⊕ α)⊕ α /

8. S ← S ⊕M [i] /
9. α← 2 · α, β ← 2 · β
10. W [m]← mopt(β)
11. Z ← E

0,W [m]
K (α)⊕ α

12. M [m]← C[m]⊕msb|C[m]|(Z) /
13. S ← S ⊕ ozpn(M [m])
14. W [m+ 1]← B[m]⊕mopt(β)
15. if |C[m]| 6= n then /

16. Y ← E
1,W [m+1]
K (S ⊕ α)

17. else
18. Y ← E

2,W [m+1]
K (S ⊕ α)

19. M ← (M [1], . . . ,M [m]) /
20. return (M,Y ) /

Figure 15: Definitions of ZOCB.EncK(N,A,M) and ZOCB.DecK(N,A,C, T ). Recall that
the blue lines with a blue triangle in ZOCB.DecK(N,A,C, T ) and Core.DecK(N,B,C)
indicate the difference from the corresponding encryption algorithms.

with any TBC in Perm(G, n). In particular, Ê can be used as the underlying TBC, which
itself takes E ∈ Perm(W, n) as a key. Let iZOCB[Ê] be iZOCB that uses Ê as the underlying
TBC and takes E ∈ Perm(W, n) as a key.

For E ∈ Perm(W, n), i.e., when we use a TURP E ∈ Perm(W, n), ZOCB[Perm(W, n)]
is define as iZOCB[Ê], where Ê is obtained from E as stated above.

For a TBC E, ZOCB[E] is defined as iZOCB[Ê], where in Ê, we use EK for randomly
chosen key K $← K instead of E. See Figs. 13 and 14. We present the specification of
ZOCB[E] in Figs. 15 and 16. The encryption algorithm is illustrated in Figs. 17, 18,
and 19.
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Algorithm HashK(B̂)

1. Ŷ ← 0n
2. γ ← E

3,[2]t
K (0n), δ ← E

3,[3]t
K (0n)

3. (B̂[1], . . . , B̂[a]) n+t←−− B̂
4. for i = 1 to a− 1 do // a ≥ 2
5. (P [i], Q[i]) n,t←−− B̂[i]
6. W [i]← Q[i]⊕mopt(δ)
7. Ŷ ← Ŷ ⊕ E0,W [i]

K (P [i]⊕ γ)
8. γ ← 2 · γ, δ ← 2 · δ
9. (P [a], Q[a]) n,t←−− ozpn+t(B̂[a])
10. W [a]← Q[a]⊕mopt(δ)
11. if |B̂[a]| 6= n+ t then
12. Ŷ ← Ŷ ⊕E1,W [a]

K (P [a]⊕ γ)
13. else
14. Ŷ ← Ŷ ⊕E2,W [a]

K (P [a]⊕ γ)
15. return Ŷ

Figure 16: Definition of HashK(B̂) of
ZOCB
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Figure 17: Generation of masks α, β, γ, and
δ. Recall that the red dashed lines are t bits
wide (also in other figures).
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Figure 18: Core.EncK(N,B,M) of ZOCB, where (B[1], . . . , B[m]) t←− B. The value of ν in
the last step is 1 if |M [m]| 6= n and 2 otherwise. S is M [1]⊕· · ·⊕M [m−1]⊕ozpn(M [m]).

6 ZOTR
Overview. ZOTR is obtained from iZOTR by instantiating the TURP Ẽ with a concrete
TBC E. We extend the tweak space of E to obtain Ê that has global tweak space G
(defined in (2)) based on the tweak extension scheme XTX∗, so that each call of Ê takes a
t-bit block of AD as a part of the tweak input. Since we need only the encryption routine
of Ê, the tweak extension is simpler than that of ZOCB in that we do not have the XOR
of masks in the output of the TBC. ZOTR is defined as iZOTR by instantiating Ẽ with Ê.

Specification of ZOTR. As with ZOCB, to use ZOTR, one has to specify a TBC
E : K ×W × {0, 1}n → {0, 1}n as a parameter, where W = I × {0, 1}t, {0, 1, . . . , 6} ⊆ I,
and t ≥ 1. We write ZOTR[E] = (ZOTR.Enc,ZOTR.Dec) for ZOTR that uses E as the
underlying TBC. We have KZOTR = K, NZOTR = {0, 1}n, AZOTR =MZOTR = CZOTR =
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Figure 19: HashK(B̂) of ZOCB, where (B̂[1], . . . , B̂[a]) n+t←−− B̂ and (P [i], Q[i]) n,t←−− B̂[i].
ν in the last step is 1 if |B̂[a]| 6= n+ t and 2 otherwise.

B

M

C

i

EC,ν,N

(a) ÊC,ν,N,B,i(M) for ν ∈ {0, 1, . . . , 5}

B

M

C

i

EH,ν,N

(b) ÊH,ν,N,B,i(M) for ν ∈ {0, 1, 2}

Figure 20: (a) C ← ÊC,ν,N,B,i(M) for ν ∈ {0, 1, . . . , 5}. The idealized version Ẽ is used
in iCore.Enc of iZOTR. (b) C ← ÊH,ν,N,B,i(M) for ν ∈ {0, 1, 2}. The idealized version is
used in iHash of iZOTR.

{0, 1}≤nρ, and TZOTR = {0, 1}n, where ρ = 2(n+min{n,t})/2 − 1.
We define a TBC Ê : KÊ × G × {0, 1}

n → {0, 1}n from E ∈ Perm(W, n). Here,
KÊ = Perm(W, n) and the tweak space is G, which is defined in (2). For a global tweak
(b, ν,N,B, i) ∈ G, the encryption of M ∈ {0, 1}n is defined as{

ÊC,ν,N,B,i
E (M) = Eν,mopt(2iβ)⊕B(M ⊕ 2iα) , (14)

ÊH,ν,N,B,i
E (M) = Eν,mopt(2iδ)⊕B(M ⊕ 2iγ) , (15)

where

α = E6,[0]t(N) , β = E6,[1]t(N) , γ = E6,[2]t(0n) , and δ = E6,[3]t(0n) . (16)

The decryption is defined in an obvious way (and we omit this as this will not be used).
We note that we can see it as XT introduced in [IMPS17]. See Fig. 20 for the input and
output of Ê, and Fig. 21 for the instantiation with E in (14) and (15).

We are now ready to define ZOTR. Let iZOTR[Ê] be iZOTR that uses Ê as the under-
lying TBC and takes E ∈ Perm(W, n) as a key. For E ∈ Perm(W, n), ZOTR[Perm(W, n)]
is defined as iZOTR[Ê], where Ê is constructed from E as above. For a TBC E, ZOTR[E]
is defined as iZOTR[Ê], where Ê is obtained by using EK instead of E.

The specification of ZOTR[E] is in Figs. 22, 23, 24, and 25. See Figs. 26, 27,
and 28 for illustrations. We note that, as with the case of iZOTR, the pseudocode
of ZOTR.EncK(N,A,M) and ZOTR.DecK(N,A,C, T ) is the same as the corresponding
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Figure 21: (a) Instantiation of Fig. 20a with E. (b) Instantiation of Fig. 20b with E.
α, β, γ, δ are computed as (16).

Algorithm ZOTR.EncK(N,A,M)

1. m← |M |n
2. if |A| < mt then
3. B ← ozpmt(A)
4. Ŷ ← 0n
5. else
6. (B, B̂) mt,∗←−−− A
7. Ŷ ← HashK(B̂)
8. (C, Y )← Core.EncK(N,B,M)
9. T ← Ŷ ⊕ Y

10. return (C, T )

Algorithm ZOTR.DecK(N,A,C, T )

1. m← |C|n /
2. if |A| < mt then
3. B ← ozpmt(A)
4. Ŷ ← 0n
5. else
6. (B, B̂) mt,∗←−−− A
7. Ŷ ← HashK(B̂)
8. (M,Y )← Core.DecK(N,B,C) /

9. T ∗ ← Ŷ ⊕ Y /
10. if T ∗ = T then return M /
11. else return ⊥ /

Figure 22: Definitions of ZOTR.EncK(N,A,M) and ZOTR.DecK(N,A,C, T )

pseudocode of ZOCB, and HashK(B̂) is also the same except for the generation of γ and
δ.

7 Security of ZOCB and ZOTR
7.1 Security of ZOCB
Privacy Theorem. Let A be a privacy adversary that makes q queries, and suppose
that the queries are (N1, A1,M1), . . . , (Nq, Aq,Mq). For 1 ≤ i ≤ q, let mi = |Mi|n. If
|Ai| < mit, then let σi = mi + 1. Otherwise, we let σi = mi + 1 + |B̂i|n+t, where
(Bi, B̂i)

mit,∗←−−− Ai. Then we define the query complexity as σpriv = 2q + 2 +
∑

1≤i≤q σi,
which corresponds to the maximum number of calls to the underlying TBC. We have the
following information theoretic result for the privacy of ZOCB.

Theorem 3. Let A be a privacy adversary against ZOCB[Perm(W, n)] that makes at most
q queries with the query complexity at most σpriv. Then we have Advpriv

ZOCB[Perm(W,n)](A) ≤
4σ2

priv/2n+min{n,t}.

A proof is presented in Sect. 7.2. Note that privacy adversaries are nonce-respecting. If
we use a TBC E which is secure in the sense of the TPRP notion instead of Perm(W, n),
then the corresponding complexity theoretic result can be shown by a standard argument.
See e.g., [BKR00].
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Algorithm Core.EncK(N,B,M) // M ∈ {0, 1}∗, |M |n = m, and |B| = mt

1. S ← 0n
2. α← E

6,[0]t
K (N), β ← E

6,[1]t
K (N)

3. (M [1], . . . ,M [m]) n←−M
4. `← dm/2e
5. (B[1], . . . , B[m]) t←− B
6. for i = 1 to `− 1 do // ` ≥ 2
7. W [2i− 1]← B[2i− 1]⊕mopt(β)
8. C[2i− 1]← E

0,W [2i−1]
K (M [2i− 1]⊕ α)⊕M [2i]

9. W [2i]← B[2i]⊕mopt(β)
10. C[2i]← E

1,W [2i]
K (C[2i− 1]⊕ α)⊕M [2i− 1]

11. S ← S ⊕M [2i]
12. α← 2 · α, β ← 2 · β
13. if m mod 2 = 0 then
14. W [m− 1]← B[m− 1]⊕mopt(β)
15. Z ← E

0,W [m−1]
K (M [m− 1]⊕ α)

16. C[m]← msb|M [m]|(Z)⊕M [m]
17. W [m]← mopt(β)
18. C[m− 1]← E

1,W [m]
K (ozpn(C[m])⊕ α)⊕M [m− 1]

19. S ← S ⊕ ozpn(C[m])⊕ Z
20. if m mod 2 = 1 then
21. W [m]← mopt(β)
22. C[m]← msb|M [m]|(E0,W [m]

K (α))⊕M [m]
23. S ← S ⊕ ozpn(M [m])
24. W [m+ 1]← B[m]⊕mopt(β)
25. if m mod 2 = 0 and |M [m]| 6= n then Y ← E

2,W [m+1]
K (S ⊕ α)

26. if m mod 2 = 0 and |M [m]| = n then Y ← E
3,W [m+1]
K (S ⊕ α)

27. if m mod 2 = 1 and |M [m]| 6= n then Y ← E
4,W [m+1]
K (S ⊕ α)

28. if m mod 2 = 1 and |M [m]| = n then Y ← E
5,W [m+1]
K (S ⊕ α)

29. C ← (C[1], . . . , C[m])
30. return (C, Y )

Figure 23: Definition of Core.EncK(N,B,M) of ZOTR

Authenticity Theorem. Let A be an authenticity adversary that makes q encryption
queries and q′ decryption queries. Let (N1, A1,M1), . . . , (Nq, Aq,Mq) be the encryption
queries, and (N ′1, A′1, C ′1, T ′1), . . . , (N ′q′ , A′q′ , C ′q′ , T ′q′) be the decryption queries. We define
σ1, . . . , σq as in the privacy case. For 1 ≤ j ≤ q′, let m′j = |C ′j |n. If |A′j | < m′jt, then let

σ′j = m′j + 1. Otherwise, let σ′j = m′j + 1 + |B̂′j |n+t, where (B′j , B̂′j)
m′jt,∗←−−−− A′j . Then we

define the query complexity as σauth = 2(q + q′) + 2 +
∑

1≤i≤q σi +
∑

1≤j≤q′ σ
′
j . We have

the following information theoretic result for the authenticity of ZOCB.

Theorem 4. Let A be an authenticity adversary against ZOCB[Perm(W, n)] that makes
at most q encryption queries and at most q′ decryption queries, where the query complexity
is at most σauth. Then we have Advauth

ZOCB[Perm(W,n)](A) ≤ 4σ2
auth/2n+min{n,t} + 4q′/2n.

A proof is presented in Sect. 7.2. As in the privacy case, if we use a TBC E secure in
the sense of the TSPRP notion, then we obtain the corresponding complexity theoretic
result by following e.g., [BKR00].
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Algorithm Core.DecK(N,B,C) // C ∈ {0, 1}∗, |C|n = m, and |B| = mt

1. S ← 0n
2. α← E

6,[0]t
K (N), β ← E

6,[1]t
K (N)

3. (C[1], . . . , C[m]) n←− C /
4. `← dm/2e
5. (B[1], . . . , B[m]) t←− B
6. for i = 1 to `− 1 do // ` ≥ 2
7. W [2i]← B[2i]⊕mopt(β) /

8. M [2i− 1]← E
1,W [2i]
K (C[2i− 1]⊕ α)⊕ C[2i] /

9. W [2i− 1]← B[2i− 1]⊕mopt(β) /

10. M [2i]← E
0,W [2i−1]
K (M [2i− 1]⊕ α)⊕ C[2i− 1] /

11. S ← S ⊕M [2i]
12. α← 2 · α, β ← 2 · β
13. if m mod 2 = 0 then
14. W [m]← mopt(β) /

15. M [m− 1]← E
1,W [m]
K (ozpn(C[m])⊕ α)⊕ C[m− 1] /

16. W [m− 1]← B[m− 1]⊕mopt(β) /

17. Z ← E
0,W [m−1]
K (M [m− 1]⊕ α) /

18. M [m]← msb|C[m]|(Z)⊕ C[m] /
19. S ← S ⊕ ozpn(C[m])⊕ Z
20. if m mod 2 = 1 then
21. W [m]← mopt(β)
22. M [m]← msb|C[m]|(E0,W [m]

K (α))⊕ C[m] /
23. S ← S ⊕ ozpn(M [m])
24. W [m+ 1]← B[m]⊕mopt(β)
25. if m mod 2 = 0 and |C[m]| 6= n then Y ← E

2,W [m+1]
K (S ⊕ α) /

26. if m mod 2 = 0 and |C[m]| = n then Y ← E
3,W [m+1]
K (S ⊕ α) /

27. if m mod 2 = 1 and |C[m]| 6= n then Y ← E
4,W [m+1]
K (S ⊕ α) /

28. if m mod 2 = 1 and |C[m]| = n then Y ← E
5,W [m+1]
K (S ⊕ α) /

29. M ← (M [1], . . . ,M [m]) /
30. return (M,Y ) /

Figure 24: Definition of Core.DecK(N,B,C) of ZOTR

7.2 Proofs of Theorems 3 and 4
Overview. We consider Ê that is defined in Sect. 5, and we first formalize TPRP* and
TSPRP* notions for it. These notions capture the indistinguishability between the real
world (when the oracle implements Ê) and the ideal world (when the oracle is Ẽ), and
we show that Ê is secure in these notions (Proposition 1). Since we know that iZOCB
is a secure NAE scheme (Theorem 1), we obtain Theorems 3 and 4 by noting that the
adversary in the TPRP* and TSPRP* notions can simulate ZOCB (in the real world) or
iZOCB (in the ideal world).

TPRP* and TSPRP* Notions. For the TBC Ê : KÊ × G × {0, 1}
n → {0, 1}n defined in

Sect. 5, recall that Ẽ ∈ Perm(G, n) is the corresponding TURP and D̃ is its decryption.
We consider the security notions which we call TPRP* and TSPRP*. Let B be an
adversary in the TSPRP* notion. The goal is to distinguish between Ê and Perm(G, n),
with the constraint that B does not have access to the decryption if it uses a tweak



28 ZOCB and ZOTR: TBC Modes for AE with Full Absorption

Algorithm HashK(B̂)

1. Ŷ ← 0n
2. γ ← E

6,[2]t
K (0n), δ ← E

6,[3]t
K (0n)

3. (B̂[1], . . . , B̂[a]) n+t←−− B̂
4. for i = 1 to a− 1 do // a ≥ 2
5. (P [i], Q[i]) n,t←−− B̂[i]
6. W [i]← Q[i]⊕mopt(δ)
7. Ŷ ← Ŷ ⊕ E0,W [i]

K (P [i]⊕ γ)
8. γ ← 2 · γ, δ ← 2 · δ
9. (P [a], Q[a]) n,t←−− ozpn+t(B̂[a])
10. W [a]← Q[a]⊕mopt(δ)
11. if |B̂[a]| 6= n+ t then
12. Ŷ ← Ŷ ⊕E1,W [a]

K (P [a]⊕ γ)
13. else
14. Ŷ ← Ŷ ⊕E2,W [a]

K (P [a]⊕ γ)
15. return Ŷ

Figure 25: Definition of HashK(B̂) of
ZOTR
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Figure 26: Core.EncK(N,B,M) of ZOTR
for the process of M [1], . . . ,M [4] and
B[1], . . . , B[4] when |M |n = m ≥ 5
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Figure 27: Core.EncK(N,B,M) of ZOTR for the case m mod 2 = 0. This illustrates the
process of M [m− 3], . . . ,M [m] and B[m− 3], . . . , B[m], where (B[1] . . . , B[m]) t←− B. ν
in the last step is 2 if |M [m]| 6= n and 3 otherwise. S is M [2]⊕M [4]⊕ · · · ⊕M [m− 2]⊕
ozpn(C[m])⊕ Z.

(b, ν,N,B, i) ∈ G with b = C and ν ∈ {1, 2}, nor b = H. The constraint can be described
by seeing that B has access to three oracles, which are (ÊC,·,·,·,·

E (·), D̂C,0,·,·,·
E (·), ÊH,·,0n,·,·

E (·))
for E $← Perm(W, n), or (ẼC,·,·,·,·(·), D̃C,0,·,·,·(·), ẼH,·,0n,·,·(·)) for Ẽ $← Perm(G, n). That is,
ν = 0 must be respected when b = C for decryption, and N = 0n must be satisfied when
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Figure 28: Core.EncK(N,B,M) of ZOTR for the case m mod 2 = 1. This processes
M [m− 2], . . . ,M [m] and B[m− 2], . . . , B[m], where (B[1] . . . , B[m]) t←− B. ν in the last
step is 4 if |M [m]| 6= n and 5 otherwise. S is M [2]⊕M [4]⊕ · · ·⊕M [m− 1]⊕ ozpn(M [m]).

b = H from the definition of G. The TSPRP* notion is formalized as

Advtsprp*
Ê

(B) def= Pr
[
BÊC,·,·,·,·

E (·),D̂C,0,·,·,·
E (·),̂EH,·,0n,·,·

E (·) ⇒ 1
]

− Pr
[
BẼC,·,·,·,·(·),D̃C,0,·,·,·(·),̃EH,·,0n,·,·(·) ⇒ 1

]
,

where the first probability is over E $← Perm(W, n) and B, and the last is over Ẽ $←
Perm(G, n) and B.

The TPRP* notion captures the indistinguishability of Ê from Perm(G, n) without
decryption, and is formalized as

Advtprp*
Ê

(B) def= Pr
[
BÊC,·,·,·,·

E (·),̂EH,·,0n,·,·
E (·) ⇒ 1

]
− Pr

[
BẼC,·,·,·,·(·),̃EH,·,0n,·,·(·) ⇒ 1

]
, (17)

where the probabilities are defined in an obvious way. We have the following result about
the security of Ê.

Proposition 1. For any TSPRP* adversary B that makes q queries in total, we have
Advtsprp*

Ê
(B) ≤ 4q2/2n+min{n,t}. Furthermore, for any TPRP* adversary B that makes q

queries in total, we have Advtprp*
Ê

(B) ≤ 4q2/2n+min{n,t}.

In Appendix A, we introduce a tweak extension scheme called XTX∗, and Ê can be
seen as an instance of XTX∗. We present the analysis of XTX∗, from which Proposition 1
directly follows.

Completing the Proof. From the definitions of ZOCB[Perm(W, n)] and iZOCB[Ê], it is
easy to verify the following proposition.

Proposition 2. ZOCB[Perm(W, n)] is equivalent to iZOCB[Ê].

Now, let A be a privacy adversary against ZOCB[Perm(W, n)]. Given A, we can
construct a TPRP* adversary B against Ê by following the definition of iZOCB[Perm(G, n)]
in Fig. 3 and by replacing the calls to Ẽ by its corresponding oracle calls.
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We see that when B has access to Ê, then A is given access to iZOCB[Ê], which is
equivalent to ZOCB[Perm(W, n)]. When B has access to Perm(G, n), then A is given
access to iZOCB[Perm(G, n)]. Since B makes at most σpriv queries, we obtain

Advpriv
ZOCB[Perm(W,n)](A) ≤ Advtprp*

Ê
(B) + Advpriv

iZOCB[Perm(G,n)](A) ≤
4σ2

priv

2n+min{n,t}

from Proposition 1 and Theorem 1.
For an authenticity adversary A, we similarly have

Advauth
ZOCB[Perm(W,n)](A) ≤ Advtsprp*

Ê
(B) + Advauth

iZOCB[Perm(G,n)](A)

≤ 4σ2
auth

2n+min{n,t} + 4q′
2n ,

since the TSPRP* adversary B makes at most σauth queries. Note that the decryption is
only needed for the case of (10), and we fix N = 0n for the case of (12). We see that B
can indeed simulate the oracles of A.

7.3 Security of ZOTR
The security bounds of ZOTR are similar to those of ZOCB. The main difference is that,
in the computational setting, TPRP security is sufficient for authenticity of ZOTR, while
we need TSPRP security for authenticity of ZOCB.

Privacy Theorem. For a privacy adversary A against ZOTR, we use the same definition
of σpriv of ZOCB. The information-theoretic bound is as follows. A proof is in Sect. 7.4.

Theorem 5. Let A be a privacy adversary against ZOTR[Perm(W, n)] that makes at most
q queries with the query complexity at most σpriv. Then we have Advpriv

ZOTR[Perm(W,n)](A) ≤
4σ2

priv/2n+min{n,t}.

Authenticity Theorem. For an authenticity adversary A against ZOTR, we also use the
same definition of σauth of ZOCB. We have the following information theoretic result for
the authenticity of ZOTR. A proof is in Sect. 7.4.

Theorem 6. Let A be an authenticity adversary against ZOTR[Perm(W, n)] that makes
at most q encryption queries and at most q′ decryption queries, where the query complexity
is at most σauth. Then we have Advauth

ZOTR[Perm(W,n)](A) ≤ 4σ2
auth/2n+min{n,t} + 6q′/2n.

For these results, we have the same remarks as in Sect. 7.1 for derivations of the
computational counterparts, except that the underlying TBC is only required to be TPRP
secure for both privacy and authenticity. See e.g., [BKR00] for the treatment of the
computational setting.

7.4 Proofs of Theorems 5 and 6
Overview. The security proof of ZOTR has the same structure as that of ZOCB. For the
TBC Ê with global tweak space G define from E ∈ Perm(W, n) in Sect. 6, we show that it
is secure in the TPRP* notion customized for ZOTR (Proposition 3). Theorem 2 shows
that iZOTR is a secure NAE scheme, and we see that the adversary in the TPRP* notion
can simulate ZOTR (in the real world) or iZOTR (in the ideal world), and Theorems 5
and 6 follow.
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TPRP* Notion. Consider the TBC Ê : KÊ×G×{0, 1}
n → {0, 1}n defined in Sect. 6, and

the corresponding TURP Ẽ ∈ Perm(G, n). We formalize the TPRP* notion of Ê defined as

Advtprp*
Ê

(B) def= Pr
[
BÊC,·,·,·,·

E (·),̂EH,·,0n,·,·
E (·) ⇒ 1

]
− Pr

[
BẼC,·,·,·,·(·),̃EH,·,0n,·,·(·) ⇒ 1

]
,

where the probabilities are defined in an obvious way. Note that this is different from (17)
in the definition of G. We have the following result about the security of Ê.

Proposition 3. For any TPRP* adversary B that makes q queries in total, we have
Advtprp*

Ê
(B) ≤ 4q2/2n+min{n,t}.

We present the analysis of a more general case of XTX∗ in Appendix A, and Proposition 3
follows.

Completing the Proof. The following proposition immediately follows from the defini-
tions.

Proposition 4. ZOTR[Perm(W, n)] is equivalent to iZOTR[Ê].

Given a privacy or authenticity adversary A against ZOTR[Perm(W, n)], we can
construct a TPRP* adversary B against Ê by following the definition of iZOTR[Perm(G, n)]
and by replacing the calls to Ẽ by its corresponding oracle calls. We see that TPRP*
adversary B against Ê can simulate iZOTR[Ê], which is equivalent to ZOTR[Perm(W, n)],
or iZOTR[Perm(G, n)].

For a privacy adversary A, since B makes at most σpriv queries, we obtain

Advpriv
ZOTR[Perm(W,n)](A) ≤ Advtprp*

Ê
(B) + Advpriv

iZOTR[Perm(G,n)](A) ≤
4σ2

priv

2n+min{n,t}

from Proposition 3 and Theorem 2.
For an authenticity adversary A, B makes at most σauth queries, and

Advauth
ZOTR[Perm(W,n)](A) ≤ Advtprp*

Ê
(B) + Advauth

iZOTR[Perm(G,n)](A)

≤ 4σ2
auth

2n+min{n,t} + 6q′
2n

holds from Proposition 3 and Theorem 2.

8 Instantiation and Implementation
8.1 Instantiation
Instantiation with TAES. AES is naturally the first cipher we would like to instantiate
under ZOCB and ZOTR. However, it is a plain blockcipher that does not take tweaks as
input. We observe AES-256 has a key length of 256 bits, while 128-bit security is sufficient
for most of real-world applications. Hence we define Tweakable AES (TAES for short), by
inputting the tweak as the second half of the master key. We avoid using the first half as
the tweak because the first half is used as pre-whitening key of AES-256, which leaves the
first round of AES-256 offering no security when the tweak is known. TAES immediately
results in a TBC of 128-bit keys and 128-bit tweaks, whose software performance enjoys
the fast AES New Instructions (AES-NI) and security inherits directly from the intensive
cryptanalysis against AES in the last 20 years. To instantiate ZOCB and ZOTR with
TAES, the first byte (8 bits) of TAES’s tweak is reserved to encode the elements of I, and
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the remaining 120 bits are for the effective tweak inputs of ZOCB and ZOTR. Hence, both
TAES-ZOCB and TAES-ZOTR are of key and effective tweak lengths of 128 and 120 bits.

We claim 128-bit security of TAES under the single-key and chosen-tweak setting, i.e.,
both value and difference of the tweak can be chosen freely by attackers while the key is
kept the same and secret. One might have the concern that the security of AES-256 is
violable to the related-key attack due to Biryukov and Khovratovich [BK09]. Note the
related-key attack only works with differences in both halves of the 256-bit key, and the
attackers choose differences in round-keys, rather than that in the master key. This attack
might still work under the setting of related key-and-tweak (i.e., non-zero differences in
both key and tweak) for TAES. However, the proof of ZOCB and ZOTR only concerns the
security under single-key. Under this constraint, the attackers can only choose differences
in the second half of the master key where the tweak lies, rather than round keys. This
requirement contradicts the attack settings in the Biryukov-Khovratovich attack, hence
this attack as in the current form is not applicable to TAES. Yet, dedicated cryptanalysis
of TAES is required to gain confidence in its security, which we leave as an open problem.

Instantiation with SKINNY-128-256. SKINNY is a family of TBCs proposed by Beierle
et al. at CRYPTO 2016 [BJK+16]. The family consists of a set of versions for different
block sizes and tweakey sizes (SKINNY does not differentiate the tweak and key, and
calls the combined input tweakey). It fits exactly the usecase of ZOCB and ZOTR as
the tweakey space is large. To demonstrate the effectiveness of our design, we choose
SKINNY-128-256 with block size 128 bits and tweakey size 256 bits to be instantiated
under ZOCB and ZOTR.

Instantiation with Other TBCs. ZOCB and ZOTR are modes of operation for TBCs,
and any reasonable TBCs can be used to instantiate our schemes. For instance KIASU-
BC [JNP14c] or Deoxys-BC [JNP14a] can be used, and we chose TAES and SKINNY-
128-256 as the tweak length of KIASU-BC does not best suit for our schemes, TAES
can fully benefit from the efficiency of AES-NI, and the security of SKINNY-128-256
is extensively analyzed [SKI]. Given that Deoxys-II was selected as the final portfolio
of CAESAR [CAE], Deoxys-BC is certainly another reasonable option to instantiate
our schemes. See e.g. [CHP+17, MMS18, CHP+18, Sas18] for cryptanalytic results on
Deoxys-BC.

8.2 Implementation Results
Implementation with TAES. To benefit from the efficiency of AES-NI, the speed test of
TAES implementation is carried out on an Intel Core i5-6500 CPU clocked at 3.20 GHz
(Skylake family). Although the encryption runs as fast as 0.65 cycles per byte (c/B) for long
plaintexts when the key schedule is not counted (i.e., all round keys are precomputed and
stored somewhere), it is noted that the key schedule can be slower than encryption itself.
Gueron et al. [GLNP15] developed a dedicated key schedule implementation using SSE
instructions which is faster than the standard implementation based on aeskeygenassist
instruction of AES-NI. In order to take advantage of this fast key schedule and not to
waste the limited number of registers storing all the round keys, we interleave the key
schedule with the aesenc instruction, which performs AES round function. As aesenc
takes 4 cycles, we set the parallelism to 4 to achieve the best possible performance. Our
implementation also confirms that 4 is the best choice for achieving the fastest speed.

To compare the efficiency to process plaintexts and AD of various lengths, we imple-
mented ΘCB3 instantiated with TAES, where 8 bits of the tweak is to encode I (ΘCB3
needs a few bits for I), 56 bits for the block counter, and 64 bits for the nonce8.

8This is because the tweak space of the TBC inside ΘCB3 exceeds n bits if the nonce length is n bits,
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Implementation with SKINNY-128-256. For ease of notation, we will use SKINNY for
short here to represent the specific instance SKINNY-128-256. The best performance of
SKINNY is achieved by bit-sliced implementation using AVX2 registers and parallelism set
to be 64 [Köl17], and we are to follow the same when it is instantiated under ZOCB and
ZOTR. There are two 128-bit chunks of the 256-bit tweakey named TK1 and TK2. Since
SKINNY does not differentiate the tweak and key, we have the choice of using either TK1
or TK2 as the secret key when instantiated under ZOCB and ZOTR. We observe the round
key contribution from TK2 follows a cycle of length 16, i.e., round-key contribution from
TK2 is the same for round 16 · i+ j, for i = 0, 1, 2 and any fixed j in the range 0 ≤ j < 16.
For better performance, we choose TK2 to be the secret key, precompute its contribution
in the first 16 rounds, store them in registers, and re-use for the subsequent 32 rounds.
This is consistent with the recommendation in [BJK+16], where using TK1 for processing
tweaks is recommended. Hence, the key schedule for processing the secret key is almost
free in computation for long data. However, because the bit-sliced implementation only
supports processing 64 blocks of data in parallel and there is no optimized implementation
available for processing short data, in our implementation, short inputs are processed using
the encryption function for a single block, which follows the reference code of SKINNY.
Due to this differentiation between data of different lengths, a significant gap appears
between the performance with data of less than 64 (2× 64 for ZOTR) blocks and that with
data of more than 64 (2× 64 for ZOTR) blocks (hundreds of cycles per byte vs. several
cycles per byte). As a result, for SKINNY-ZOCB/ZOTR/ΘCB3, the graphs of c/B as a
function of input lengths lose lots of information. Thus, we merely provide the raw data of
the experimental results in Tables 4–5 in Appendix F for comparison.
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Figure 29: Speed of TAES-ZOCB on Skylake. (a) Absolute speed in c/B. (b) Relative to
TAES-ΘCB3. Corresponding graphs for TAES-ZOTR on Skylake are very similar.

Timing Method. We timed ZOCB/ZOTR/ΘCB3 instantiated with TAES and SKINNY
on CPUs of two families. One is an Intel(R) Core(R) i5-6500 CPU clocked at 3.20 GHz
(Skylake family), with 32 (or 256, 6144) KB L1 (resp. L2, L3) cache, with Ubuntu 16.04.3

where n = 128 in our case. We could use n-bit nonces by using (a simple variant of) XTX∗ applied to
TAES instead of raw TAES, but this slightly increases the computation and memory. Hence, our setting
only gains the performance of TAES-ΘCB3.
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Figure 30: Speed of TAES-ZOTR on Haswell. (a) Absolute speed in c/B. (b) Relative to
TAES-ΘCB3. Corresponding graphs for TAES-ZOCB on Haswell are very similar.

LTS OS, g++ (GNU/gcc) compiler of version 5.4.0, and icpc (Intel/icc) compiler of
version 19.0.1. Another is an Intel(R) Xeon(R) E5-2603 v3 CPU clocked at 1.60 GHz
(Haswell family), with 32 (or 256, 15360) KB L1 (resp. L2, L3) cache, with Ubuntu
14.04.5 LTS OS, g++ (GNU/gcc) compiler of version 4.8.5, and icpc (Intel/icc) compiler
of version 19.0.1. We used -O3 option to compile the programs. During the timing,
we turned off hyper-threading and disabled Turbo Boost. As the timing method, we
used Brain Gladman’s program for timing the implementations of AES9. The instruction
used is rdtsc. We used the function e_cycles() which uses 100 loops to evaluate the
entire time of eight repetitions of data processing of particular lengths. Concretely, the
data consists of plaintexts (M) and associated data (AD), where plaintexts are of length
|M| ∈ {24, 25, . . . , 220} bytes and AD are of length |AD| ∈ (15/16)×{24, 25, . . . , 220} bytes.
Note here one block of a plaintext is of 128 bits, that of AD is of 120 bits, and we only
time the processing of data of length divisible by the block sizes.

Observations on Performance Evolves with the Length of the Inputs. Figures 29a
and 30a are graphs of absolute values for c/B as functions of input lengths. Figures 29b and
30b are graphs of relative values for c/B (i.e., the c/B of TAES-ZOCB and TAES-ZOTR
divided by c/B of TAES-ΘCB3). The raw data generating those figures are reported in
Tables 2–3 in Appendix F. From these figures and the raw data, we have the following
observations.

• For short input data such that |AD| . 480 bytes or |AD|/|M| . 0.12, TAES-ZOCB
and TAES-ZOTR are not (always) as fast as TAES-ΘCB3.

• For long input data such that |AD| & 480 bytes and |AD|/|M| & 0.12, TAES-ZOCB
and TAES-ZOTR perform better than TAES-ΘCB3.

• Asymptotically with long data, for the case where |AD|/|M| & 0.12, the performance
gain of TAES-ZOCB/ZOTR is about 40% (i.e., c/B(TAES-ΘCB3)−c/B(TAES-ZOCB)

c/B(TAES-ΘCB3) ≈
40%), they are about 1.7× faster than TAES-ΘCB3.

9Available via http://github.com/BrianGladman/AES.

http://github.com/BrianGladman/AES
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• Similar observations on the performances of SKINNY-ZOCB/ZOTR/ΘCB3 can
be derived from raw data presented in Tables 4–5 in Appendix F. The difference
lies in the boundary between the portions of the two input spaces where ΘCB3 or
ZOCB/ZOTR perform better. The boundary is closer to the small values of data
length for SKINNY instances than that for TAES instances.

We expect the performance gains over long data remain roughly the same for instantiations
under other TBCs as long as the block size of the underlying TBC remains unchanged.

We note that the above observations are made from the timing data of particular
lengths, and behavior of other lengths can vary.

Source code, raw data, and the graphs are available at https://github.com/zocbzotr.

9 Discussions and Conclusions
In this paper, we specified ZOCB and ZOTR, and showed their provable security. These
schemes simultaneously achieve full absorption and full parallelizability. We also presented
experimental results showing the advantages of our schemes and clarifying the cost for it.
Here, we present discussions related to our designs.

upBB Security of Components. We first point out that upBB security is enough for
masks. That is, the masks α and β are generated by TBC calls taking a nonce as input
(as a block), and this mask generation provides Θ(q2/2n)-distinguishing advantage from
uniform with q queries, seemingly violating our security claim. However, this is irrelevant
because these masks are only required to satisfy certain independence conditions with
O(1/2n) bias for any distinct pair of nonces.

We also remark that upBB security is enough for HashK used in ZOCB and ZOTR.
The output length of the hash function is n bits, and this may seem to allow an attack
with birthday complexity. However, it is only required to be a (computational) universal
hash function of n-bit output, as with the case of ΘCB3 that uses a PMAC-style hash
function to process AD.

Tags Can Be Truncated. We next note that depending on the application, n-bit tags
of ZOCB and ZOTR can be safely truncated. If the tag is truncated to 1 ≤ τ ≤ n bits,
the resulting authenticity term with respect to q′ will be multiplied by 2n−τ since the
adversary just needs to guess the truncated τ bits of a random value. That is, 4q′/2n in
Theorem 4 is increased to 4q′/2τ , and 6q′/2n in Theorem 6 is increased to 6q′/2τ , and they
can be proved by modifying the corresponding proofs in a straightforward way. However,
we note that the tag length has to be fixed during the lifetime of the key.

Using iZOCB and iZOTR. If one has a secure TBC Ê : KÊ × G × {0, 1}
n → {0, 1}n as a

primitive with a long tweak input, where G is defined as in (1) or (2), then it is tempting
to practically use iZOCB and iZOTR. They both have perfect security in privacy and n-bit
security in authenticity, just as like ΘCB3 and OTR. However, even with such Ê, using
it as E in ZOCB and ZOTR improves the efficiency as they can process longer AD per
one primitive call, and hence iZOCB and iZOTR are conceptual schemes to highlight the
feasibility of the block-by-block processing of AD and the AD-independent tag approach,
and for provable security rather than schemes for real applications.

Tightness of the Security Bounds. It is easy to see that the security bounds of iZOCB
and iZOTR (Theorems 1 and 2) are tight, i.e., there is an attack that matches the
corresponding security bound. We also see that the security bounds of Ê in Propositions 1
and 3 are tight, since a simultaneous collision of the input block and input tweak of E

https://github.com/zocbzotr
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reveals the masks. However, we do not know the tightness of the security bounds of ZOCB
and ZOTR (Theorems 3, 4, 5, and 6).

Switching-Off the Doubling. We next discuss a possible way to extend our schemes. In
the current specifications of ZOCB and ZOTR, the doubling operations for α and β are
always performed m times for m-block plaintexts no matter how short AD is. While the
computational cost of doubling is not large in general, this may still cause slight speed
degradation when AD is short and the plaintext is long, and the TBC is ultimately fast.
The case is visible from the experimental results in Sect. 8. In order to mitigate the issue,
as a possible direction to further improve the efficiency, one could derive an extension of
our schemes that stops doubling operations for α and β immediately after the end of AD.
That is, the doubling operations for α and β are performed exactly a times for at-bit AD
with a < m. For this extension, one needs to add one more element to I to indicate the
presence of an AD block in the encryption/decryption core, and add a plain block counter
in the space that was used for the empty AD blocks. This extension adds complexity to
the specification and the proof, and we leave it as a future work to specify the details of
this approach and the analysis of it.

Further Future Work. While we used TAES and SKINNY-128-256 in our experiments,
ZOCB and ZOTR benefit if the underlying TBC has large tweak space, and if the tweak
can be updated efficiently. A TBC with the same characteristic also improves ZMAC
and ZAE. A dedicated design of such TBCs remains to be explored. We emphasize that
detailed security analysis of TAES remains, and we recommend its use only after a sufficient
amount of analysis confirms it security.

In this paper, we use the t-bit tweak input space of the TBC to process a block of AD,
while we use the n-bit input space to process a block of plaintext. Our schemes achieve full
absorption and allow fully parallel computation of the underlying TBC, and they have the
unique design feature in the tag generation, where they demonstrate that AD-independent
tags can provide authenticity. We believe that our approach adds design space to various
TBC modes, and has wide applications related to TBC-based constructions. For instance
it could be used to design efficient tweakable enciphering schemes [HR03, HR04] with large
tweak space from a TBC, it could be used to obtain efficient robust AE schemes [HKR15],
or it could be used to improve the efficiency of online AE schemes [AFF+14].

A Proofs of Propositions 1 and 3
To prove Propositions 1 and 3, we introduce a general tweak space extender called XTX∗
as a generalization of XTX [MI15] and XEX∗ [Rog04]. We start with the definition of
partition-respecting TSPRP adversaries.

Definition 1. Let G be finite tweak space, and let E : KE × G × {0, 1}n → {0, 1}n be a
TBC, where KE is the key space. Suppose that there is a partition of G into two sets, the
enc-dec set Ged and enc-only set Geo. If an adversary A against E has access to both EK
and DK with any tweak in Ged but has access to only EK with any tweak in Geo, then we
say that A is a partition-respecting TSPRP adversary with respect to Ged and Geo. If the
partition is clear from the context, we simply say that A is partition-respecting.

We next introduce the tweak space extender XTX∗. Fix the tweak space G, where G
can be partitioned into enc-dec set Ged and enc-only set Geo. Let E ∈ Perm(W, n) be a
TURP for some W, and H : L × G → {0, 1}n ×W be a keyed hash function, where L is
the key space of H and L ∈ L is the key.

XTX∗[Perm(W, n), H] is a TBC that is parametrized by Perm(W, n) and H, and has
encryption algorithm XTX.Enc∗ : KXTX∗ ×G ×{0, 1}n → {0, 1}n and decryption algorithm
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XTX.Dec∗ : KXTX∗ × G × {0, 1}n → {0, 1}n. The key space is KXTX∗ = Perm(W, n) × L
and they take E ∈ Perm(W, n) and L ∈ L as the key. The encryption of M ∈ {0, 1}n
under the tweak G ∈ G and key (E, L) ∈ KXTX∗ is defined as{

C = XTX.Enc∗E,L(G,M) = E(U,M ⊕ V )⊕ V if G ∈ Ged ,

C = XTX.Enc∗E,L(G,M) = E(U,M ⊕ V ) if G ∈ Geo ,

where HL(G) = (V,U) ∈ {0, 1}n ×W. The decryption of C ∈ {0, 1}n is defined by using
the decryption D of E as{

M = XTX.Dec∗E,L(G,C) = D(U,C ⊕ V )⊕ V if G ∈ Ged ,

M = XTX.Dec∗E,L(G,C) = D(U,C)⊕ V if G ∈ Geo .

A tweak of XTX∗[Perm(W, n), H] is called a global tweak, and a tweak of E may be called
an internal tweak. We next define two properties needed for H.

Definition 2. Let H : L × G → {0, 1}n ×W be a keyed hash function. If

max
c∈{0,1}n

Pr[L $← L : V ⊕ V ′ = c, U = U ′] ≤ ε (18)

holds for any distinct G,G′ ∈ G, where HL(G) = (V,U) and HL(G′) = (V ′, U ′), then H is
(n,W, ε)-partial almost XOR universal, or (n,W, ε)-pAXU. If

max
c∈{0,1}n

Pr[L $← L : V = c, U = U ′] ≤ ε (19)

holds for any distinct G,G′ ∈ G, then H is (n,W, ε)-partial uniform, or (n,W, ε)-pU.

We remark that (n,W, ε)-pAXU was previously defined for XTX [MI15].
The following lemma shows that XTX∗ is an information-theoretic TSPRP-secure TBC

for any partition-respecting TSPRP adversary. A proof is in Appendix B.

Lemma 1. Consider XTX∗[Perm(W, n), H], and let A be a partition-respecting TSPRP
adversary that makes q queries in total. If H is (n,W, ε)-pAXU and (n,W, ε)-pU, then
we have Advtsprp

XTX∗[Perm(W,n),H](A) ≤ εq2.

We next observe that Ê defined in Sect. 7.2 for ZOCB is an instance of XTX∗. Specifically,
for G defined in (1), let H : L × G → {0, 1}n ×W be defined as HL(b, ν,N,B, i) = (V,U),
where

V =
{

2iα if b = C ,
2iγ if b = H ,

(20)

U =
{

(ν,mopt(2iβ)⊕B) if b = C ,
(ν,mopt(2iδ)⊕B) if b = H .

(21)

The key space L consists of all functions of E3,·(·), and α, β, γ, and δ are defined as in (13).
The tweak partition is defined as Ged = {(b, ν,N,B, i) ∈ G : b = C, ν = 0} for the enc-dec
set, and Geo = G \ Ged for the enc-only set.

Similarly, we see that Ê defined in Sect. 7.4 for ZOTR is an instance of XTX∗. For
G in (2), we define H : L × G → {0, 1}n ×W as (20) and (21), where the key space L
consists of all functions of E6,·(·), and α, β, γ, and δ are defined as in (16). The tweak
partition is defined as Ged = ∅ for the enc-dec set, and Geo = G for the enc-only set.

It remains to show that the instantiation of H in (20) and (21) is (n,W, ε)-pAXU and
(n,W, ε)-pU for small ε.
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Proposition 5. For both ZOCB and ZOTR, the instantiation of H in (20) and (21) is
(n,W, ε)-pAXU and (n,W, ε)-pU for ε = 4/2n+min{n,t}.

A proof is an elementary case analysis and is presented in Appendix C. Finally,
Propositions 1 and 3 follow from the fact that Ê is an instantiation of XTX∗, Lemma 1,
and Proposition 5.

B Proof of Lemma 1
The proof is based on Patarin’s H-coefficient technique [Pat08]. We follow the standard
terminology and techniques commonly used. For details we refer to [CS14] by Chen and
Steinberger which provides a compact exposition of the H-coefficient technique.

In the real world, the adversary A makes queries to XTX∗[Perm(W, n), H], which we
abbreviate as XTX∗ throughout the proof. In the ideal world, A makes queries to a TURP
Ẽ ∈ Perm(G, n). Here, A is a partition-respecting TSPRP adversary, and we assume that
it makes qed queries that have tweaks in Ged, and qeo queries that have tweaks in Geo. Thus
q = qed + qeo. We remark that q is a parameter of A but qed and qeo are not static and
possibly adaptively determined by A.

We index the queries (and all internal variables) from 1 to q with no distinction on
the tweaks. Let Gi ∈ G be the (global) tweak used in the i-th query and let (Mi, Ci) ∈
{0, 1}n×{0, 1}n be the plaintext and ciphertext blocks. We do not distinguish the direction
of queries, hence if the i-th query is an encryption query, (Gi,Mi) is queried and Ci is
a response, and if the i-th query is a decryption query, (Gi, Ci) is queried and Mi is
a response. As explained, when Gi ∈ Geo, it must be an encryption query. We define
Xi = Vi⊕Mi and Yi = V̂i⊕Ci, where V̂i = Vi when Gi ∈ Ged, and V̂i = 0n when Gi ∈ Geo.

We assume that Ẽ in the ideal world also internally invokes HL(Gi) to derive Vi and
Ui, so that Xi and Yi are determined. Note that they are dummy variables to simplify the
analysis and do not affect the outputs.

Without loss of generality, we assume that A is deterministic and does not make
repeated queries nor reversed queries (i.e. encryption query (G,M) to obtain C then
decryption query (G,C) to obtain M , and vice versa). From the property of a TBC, this
guarantees {

(Gi,Mi) 6= (Gj ,Mj) for any 1 ≤ i < j ≤ q , and
(Gi, Ci) 6= (Gj , Cj) for any 1 ≤ i < j ≤ q .

(22)

It is a popular technique for proofs based on the H-coefficient technique that we relax the
game such that the key L of H is given to A after A made all the queries, which allows A
to determine all X1, . . . , Xq and Y1, . . . , Yq from the transcript. This only benefits A.

Therefore, we write the transcript as

τ = ((G1,M1, C1), . . . , (Gq,Mq, Cq), L) .

Here, qed and qeo are uniquely determined from τ .

Good and Bad Transcripts. As A is assumed to be deterministic, the probability space
of the transcript (for both real and ideal worlds) solely depends on the internal TBC used
in the world. We write the probability space under the real and ideal worlds as Prre[·] and
Prid[·], and use Θ = τ to denote the event that the transcript is τ . We say τ is attainable
if Prid[Θ = τ ] > 0, which is equivalent to that (22) holds true, and we only consider
attainable transcripts.

We say τ is bad if (Xi, Ui) = (Xj , Uj) or (Yi, Ui) = (Yj , Uj) for some 1 ≤ i < j ≤ q,
and τ is good if it is not bad. Let BadT and GoodT denote the set of all bad and good
transcripts. Notice that BadT ∪ GoodT is the set of all attainable transcripts.
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We use the following fundamental lemma of the H-coefficient technique. See e.g. [CS14]
for the proof.

Lemma 2. If there exists ε1 and ε2 such that for any τ ∈ GoodT,

Prre[Θ = τ ]
Prid[Θ = τ ] ≥ 1− ε1 and Pr

id
[Θ ∈ BadT] ≤ ε2 ,

then A’s advantage is bounded by ε1 + ε2.

We first evaluate Prid[Θ ∈ BadT] in the following lemma.

Lemma 3. If H is (n,W, ε)-pAXU and (n,W, ε)-pU, then Prid[Θ ∈ BadT] ≤ εq2.

Proof. We have

Pr
id

[Θ ∈ BadT] ≤ Pr
id

[(Xi, Ui) = (Xj , Uj) for some 1 ≤ i < j ≤ q]

+ Pr
id

[(Yi, Ui) = (Yj , Uj) for some 1 ≤ i < j ≤ q] . (23)

For i 6= j, the event (Xi, Ui) = (Xj , Uj) never happens when Gi = Gj , since Gi = Gj
implies (Vi, Ui) = (Vj , Uj), and Mi 6= Mj (as it must be attainable) ensures (Xi, Ui) 6=
(Xj , Uj) . If Gi 6= Gj , then we have

Pr
id

[(Xi, Ui) = (Xj , Uj)]

=
∑
mi,mj

Pr
id

[(Xi, Ui) = (Xj , Uj) |Mi = mi,Mj = mj ] · Pr
id

[Mi = mi,Mj = mj ]

≤ max
mi,mj

Pr
id

[(Xi, Ui) = (Xj , Uj) |Mi = mi,Mj = mj ]

≤ max
mi,mj

Pr
id

[Vi ⊕ Vj = mi ⊕mj , Ui = Uj |Mi = mi,Mj = mj ]

≤ max
c

Pr
id

[Vi ⊕ Vj = c, Ui = Uj ]

≤ ε ,

where the second last inequality follows from the fact that HL does not affect the responses
in the ideal world, and the last one follows from the assumption on H.

We next evaluate Prid[(Yi, Ui) = (Yj , Uj)] in two cases. First, assuming Gi 6= Gj and
Gi, Gj ∈ Ged, or Gi 6= Gj , Gi ∈ Ged, and Gj ∈ Geo, we have

Pr
id

[(Yi, Ui) = (Yj , Uj)]

=
∑
ci,cj

Pr
id

[(Yi, Ui) = (Yj , Uj) | Ci = ci, Cj = cj ] · Pr
id

[Ci = ci, Cj = cj ]

≤ max
ci,cj

Pr
id

[(Yi, Ui) = (Yj , Uj) | Ci = ci, Cj = cj ]

= max
ci,cj

Pr
id

[V̂i ⊕ V̂j = ci ⊕ cj , Ui = Uj | Ci = ci, Cj = cj ]

≤ max
ci,cj

Pr
id

[V̂i ⊕ V̂j = ci ⊕ cj , Ui = Uj ]

≤ ε ,

where the last inequality follows from the assumption on H.
Finally, when Gi 6= Gj and Gi, Gj ∈ Geo, (Yi, Ui) = (Yj , Uj) is equivalent to (Ci, Ui) =

(Cj , Uj). Therefore, we have

Pr
id

[(Yi, Ui) = (Yj , Uj)] = Pr
id

[(Ci, Ui) = (Cj , Uj)]



40 ZOCB and ZOTR: TBC Modes for AE with Full Absorption

≤ Pr
id

[Ci = Cj | Ui = Uj ] ·
∑
c

Pr
id

[Vi ⊕ Vj = c, Ui = Uj ]

≤ 1
2n · 2

nε

= ε ,

and therefore, the right hand side of (23) is at most 2ε
(
q
2
)
≤ εq2, which proves Lemma 3.

Finally, it remains to evaluate the ratio between Prre[Θ = τ ] and Prid[Θ = τ ].

Lemma 4. For any τ ∈ GoodT,

Prre[Θ = τ ]
Prid[Θ = τ ] ≥ 1 .

Proof. Let G1, . . . , Gq denote the q tweaks in the transcript. Let ded denote the number
of distinct tweaks in Ged and let {Ged

1 , . . . , G
ed
ded
} be the set of all unique tweaks among

{Gi : 1 ≤ i ≤ q,Gi ∈ Ged}. Similarly, the number of distinct tweaks in Geo is denoted by
deo, and the set of distinct tweaks in Geo is denoted by {Geo

1 , . . . , G
eo
deo
}. We have ded ≤ qed

and deo ≤ qeo.
For 1 ≤ i ≤ ded, let Ied(i) = {j : 1 ≤ j ≤ q,Gj = Ged

i } and ced(i) = |Ied(i)|, i.e., ced(i) is
the number of queries with G = Ged

i . Similarly we define Ieo(i) and ceo(i) for 1 ≤ i ≤ deo.
Here, for x ∈ {ed, eo}, {Ix(i)}i=1,...,dx is a partition of {i : Gi ∈ Gx}, that is, Ix(i) ∩

Ix(j) = ∅ for any i 6= j, and
⋃
i=1,...,qx

Ix(i) = {i : Gi ∈ Gx}.
Similarly, for U1, . . . , Uq, let d′ed denote the number of unique Ui’s with Gi ∈ Ged (which

is uniquely determined as the transcript contains L), and let {U ed
1 , . . . , U ed

d′ed
} be the set

of unique Ui’s with Gi ∈ Ged. Also, for 1 ≤ i ≤ d′ed, let I ′ed(i) = {j : 1 ≤ j ≤ q, Uj = U ed
i }

and c′ed(i) = |I ′ed(i)|. In the same manner, we define d′eo, {U eo
1 , . . . , U

eo
d′eo
}, and I ′eo(i) and

c′eo(i) for 1 ≤ i ≤ d′eo.
For i ≥ 0, let (2n)i be (2n) · (2n− 1) · · · (2n− i+ 1), with the convention that (2n)0 = 1.

In the ideal world, the probability of any good (in fact, any attainable) τ is completely
determined by {ced(i)}i=1,...,ded and {ceo(i)}i=1,...,deo from the definition of TURP Ẽ (which
takes the global tweak as its tweak input). For any attainable transcript τ , we have

Pr
id

[Θ = τ ] =
ded∏
i=1

1
(2n)ced(i)

·
deo∏
j=1

1
(2n)ceo(j)

· 1
|L|

, (24)

where the last multiplication by 1/|L| comes from the uniform distribution of L for the
keyed hash function.

In the real world, the probability of any good transcript τ is determined by {c′ed(i)}i=1,...,d′ed
and {c′eo(i)}i=1,...,d′eo

, since E takes tweak Ui as its input, and if Ui = Uj , we must have
distinct input blocks and distinct output blocks for E, irrespective of the direction of each
query. The probability distribution of a response (which is Ci for an encryption query
and Mi for a decryption query) is uniquely determined by the probability distribution of
Xi and Yi as Xi = Mi ⊕ Vi and Yi = Ci ⊕ V̂i, where Vi (and whether V̂i = Vi or 0n) is
determined by L and Gi given in the transcript. Therefore, we have

Pr
re

[Θ = τ ] =
d′ed∏
i=1

1
(2n)c′ed(i)

·
d′eo∏
j=1

1
(2n)c′eo(j)

· 1
|L|

. (25)

We observe that Gi = Gj implies Ui = Uj , but the other direction is not necessarily
true. Thus, for x ∈ {ed, eo} and for all 1 ≤ i ≤ qx, Ix(i) is either equal to I ′x(j) for some j
(which occurs iff ∀h 6∈ Ix(i), Uh 6= U x

j ), or a union of {I ′x(j)}j∈J for some J ⊆ {1, . . . , qx},
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but it is not possible that, for any j 6= j′, I ′x(i) contains both elements of Ix(j) and
Ix(j′). In other words, {I ′x(1), . . . , I ′x(d′x)} is obtained by applying some join operations to
{Ix(1), . . . , Ix(dx)}.

This implies that
∏
i=1,...,d′x

(2n)c′x(i) ≤
∏
j=1,...,dx

(2n)cx(j) holds for any x ∈ {ed, eo},
since (2n)a+b ≤ (2n)a ·(2n)b holds for any non-negative a and b. From this observation, (24),
and (25), we obtain Lemma 4.

Finally, we obtain Lemma 1 from Lemmas 2, 3, and 4.

C Proof of Proposition 5
Let G and G′ be two distinct (global) tweaks in G, where G = (b, ν,N,B, i) and G′ =
(b′, ν′, N ′, B′, i′). We write W = mopt(2iβ)⊕B when b = C and W = mopt(2iδ)⊕B when
b = H. For G′, all the internal variables are written analogously using a prime symbol.

First, we assume ν = ν′, as otherwise U 6= U ′ holds with probability one. In what follows,
we evaluate ppAXU = maxc Pr[V ⊕ V ′ = c,W = W ′] and ppU = maxc Pr[V = c,W = W ′].

We observe that, for the case of ZOCB, V and V ′ are generated by E3,[0]t and E3,[2]t ,
and W and W ′ are generated by E3,[1]t and E3,[3]t . For the case of ZOTR, they are
generated by E6,[0]t , E6,[2]t , E6,[1]t , and E6,[3]t . This implies{

Pr[V ⊕ V ′ = c,W = W ′] = Pr[V ⊕ V ′ = c] · Pr[W = W ′] ,
Pr[V = c,W = W ′] = Pr[V = c] · Pr[W = W ′] .

We also see that V and V ′ are always uniform (but not necessarily independent), hence
maxc Pr[V = c] = maxc Pr[V ′ = c] = 1/2n holds for any case. Therefore, it is sufficient to
evaluate maxc Pr[V ⊕ V ′ = c] and Pr[W = W ′], which is presented in the following seven
cases.

Case 1: b = C and b′ = H, or b = H and b′ = C. We assume b = C and b′ = H as
the other case is analyzed similarly. We have V = 2iα, W = mopt(2iβ) ⊕ B, V ′ = 2i′γ,
and W ′ = mopt(2i

′
δ) ⊕ B′. We see that V ⊕ V ′ is uniform, and the first min{n, t}

bits of mopt(2iβ) ⊕ mopt(2i
′
δ) = mopt(2iβ ⊕ 2i′δ) is uniform. Hence ppAXU = ppU =

1/2n · 1/2min{n,t}.

Case 2: b = b′ = C and N 6= N ′. We have V = 2iα, V ′ = 2i′α′, W = mopt(2iβ)⊕B,
and W ′ = mopt(2i

′
β′) ⊕ B′. Because α and α′ are the output blocks of a random

permutation that takes distinct input blocks (i.e., N and N ′), Pr[2iα⊕ 2i′α′ = c], which
is bounded by maxx Pr[2iα = 2i′x ⊕ c | α′ = x], is at most 1/(2n − 1) for any c ∈
{0, 1}n. Similarly, β and β′ are the output blocks of a random permutation, and hence
Pr[mopt(2iβ)⊕mopt(2i

′
β′) = B⊕B′] is bounded by 2n−t/(2n−1) if t ≤ n and by 1/(2n−1)

if t > n. Therefore, the unified bound is 2/2min{n,t}. Hence ppAXU = 2/2n · 2/2min{n,t}

and ppU = 1/2n · 2/2min{n,t}.

Case 3: b = b′ = H and N 6= N ′. This case is impossible from the definition of G
that has a constraint that N = 0n must hold when b = H.

Case 4: b = b′ = C, N = N ′, and i 6= i′. We have V = 2iα, V ′ = 2i′α,
W = mopt(2iβ)⊕B, and W ′ = mopt(2i

′
β)⊕B′. Then V ⊕ V ′ = (2i + 2i′) · α is uniform

over {0, 1}n, and the first min{n, t} bits of W ⊕W ′ = mopt((2i + 2i′) · β)⊕B ⊕B′ is also
uniform. Note here that i, i′ ∈ Zρ = {0, . . . , ρ− 1} and ρ = 2(n+min{n,t})/2 − 1, implying
that 2i + 2i′ 6= 0 for both cases of min{n, t} = t and min{n, t} = n.

Therefore, we have ppAXU = 1/2n · 1/2min{n,t} and ppU = 1/2n · 1/2min{n,t}.
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Case 5: b = b′ = H, N = N ′, and i 6= i′. Due to the symmetry to Case 4, we have
ppAXU = 1/2n · 1/2min{n,t} and ppU = 1/2n · 1/2min{n,t}.

Case 6: b = b′ = C, N = N ′, i = i′, and B 6= B′. We have V = 2iα, V ′ = 2iα,
W = mopt(2iβ) ⊕ B, and W ′ = mopt(2iβ) ⊕ B′. Then V ⊕ V ′ = 0n and W ⊕W ′ =
B ⊕B′ 6= 0t, thus ppAXU = ppU = 0.

Case 7: b = b′ = H, N = N ′, i = i′, and B 6= B′. The analysis is the same as in
Case 6, and we have ppAXU = ppU = 0.

Finally, we can take ppAXU and ppU as 4/2n+min{n,t} to cover all the cases.
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D Informal Introduction to iZOCB and ZOCB
In this section, we informally introduce iZOCB and ZOCB to see the overview of our
schemes, neglecting various corner cases and precise mathematical definitions. To use
iZOCB, the idealized version of ZOCB, we assume that there is a TBC Ẽ that takes an
n-bit block X as input, and has the tweak space {C,H} × {0, 1, 2} × {0, 1}n × {0, 1}t ×
{0, 1, . . . , 2(n+min{n,t})/2 − 2}. For simplicity, we assume that n = t and hence the tweak
space is {C,H} × {0, 1, 2} × {0, 1}n × {0, 1}n × {0, 1, . . . , 2n − 2}. The first two arguments
of the tweak space are for domain separation, the third argument {0, 1}n is for a nonce,
the fourth argument {0, 1}n is for an AD block, and the last argument {0, 1, . . . , 2n − 2} is
for a block counter.

Suppose that we have a plaintext M = (M [1],M [2],M [3]) ∈ {0, 1}3n and AD A =
(A[1], A[2], A[3]) ∈ {0, 1}2.5n, where |A[1]| = |A[2]| = n and |A[3]| = 0.5n. Given (N,A,M),
the encryption process to compute the ciphertext C = (C[1], C[2], C[3]) ∈ {0, 1}3n and
the tag T ∈ {0, 1}n is as in Fig. 31. The decryption, given (N,A,C, T ) with C =
(C[1], C[2], C[3]) ∈ {0, 1}3n and A = (A[1], A[2], A[3]) ∈ {0, 1}2.5n, is to first obtain M [1]
from (A[1], C[1]), then M [2] from (A[2], C[2]), M [3] from Z and C[3], and we check
the validity of T by comparing it with T ∗, which is the encryption of the checksum
S = M [1]⊕M [2]⊕M [3] and A[3].

With respect to the security, the privacy is proved from the fact that all the TBC calls
use distinct tweak values, and hence the adversary that has access to the encryption oracle
obtains the output blocks of the TBC with distinct tweak values. The authenticity is non-
obvious. We see that the tag T is independent of A[1] and A[2] in encryption, and iZOCB
nevertheless achieves provable authenticity. The intuition is that, given (N,A,M,C, T )
obtained from the encryption oracle, if the adversary manipulates A[1] or A[2] to forge
in decryption, this will result in a random checksum S as this will randomize M [1] or
M [2]. More precisely, let us assume that the adversary makes one encryption query
and has (N,A,M,C, T ), and now makes a single forgery attempt (N ′, A′, C ′, T ′), where
|A| = |A′| = 2.5n and |C| = |C ′| = 3n.

• If N ′ 6= N , then (N,A,M,C, T ) obtained from the encryption oracle is of no use since
the tag T ∗ for (N ′, A′, C ′) is computed by using a tweak (C, 2, N ′, A′[3] ‖ 10n/2−1, 2),
which is unique due to the domain separation and N ′.

• If N ′ = N and C ′ 6= C, then we have C ′[1] 6= C[1], C ′[2] 6= C[2], or C ′[3] 6= C[3].
If C ′[1] 6= C[1], then M ′[1] is uniformly random over {0, 1}n (in case A′[1] 6= A[1])
or {0, 1}n \ {M [1]} (in case A′[1] = A[1]). In either case, we see that the checksum
S′ for (N ′, A′, C ′) is sufficiently randomized, and the forgery cannot succeed. The
same analysis applies for the case C ′[2] 6= C[2]. If C ′[1] = C[1], C ′[2] = C[2], and
C ′[3] 6= C[3], then we must have S′ 6= S (in case A′[1] = A[1] and A′[2] = A[2]), or
S′ is uniformly random over {0, 1}n (in case A′[1] 6= A[1] or A′[2] 6= A[2]). Therefore,
the success probability of the forgery is low for all the cases.

• If N ′ = N , C ′ = C, and A′ 6= A, then we have A′[1] 6= A[1], A′[2] 6= A[2], or
A′[3] 6= A[3]. In the former two cases, S′ is uniformly random over {0, 1}n, and in
the last case, T ∗ is uniformly random over {0, 1}n, and hence the forgery will be
unsuccessful with a high probability.

Next, we consider ZOCB. Let EK be a TBC as a primitive. This could be SKINNY or
Deoxys-BC. It takes an n-bit block X as input, and has the tweak space {0, 1, 2, 3}×{0, 1}t.
We assume that n = t, and we consider the following instantiation of Ẽ.{

ẼC,0,N,A,i(X) = E0,2iβ⊕A
K (X ⊕ 2iα)⊕ 2iα (26)

ẼC,2,N,A,i(X) = E2,2iβ⊕A
K (X ⊕ 2iα) (27)
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Figure 31: The encryption process of a plaintext M = (M [1],M [2],M [3]) ∈ {0, 1}3n
and AD A = (A[1], A[2], A[3]) ∈ {0, 1}2.5n with iZOCB to produce the ciphertext C =
(C[1], C[2], C[3]) and the tag T . S is M [1]⊕M [2]⊕M [3].
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Figure 32: The encryption process of M = (M [1],M [2],M [3]) ∈ {0, 1}3n and A =
(A[1], A[2], A[3]) ∈ {0, 1}2.5n with ZOCB to produce C = (C[1], C[2], C[3]) and T . α =
E3,0n

K (N), β = E3,0n−11
K (N), and S = M [1]⊕M [2]⊕M [3].

Here, α = E3,0n

K (N) and β = E3,0n−11
K (N). With this instantiation, we obtain Fig. 32,

which shows the encryption process of ZOCB.
It can be shown that, under certain restrictions where the adversary has the encryption

and decryption oracles of (26) but only the encryption oracle of (27), the adversary cannot
distinguish the ideal Ẽ from Ẽ that is instantiated as (26) and (27). The adversary with
the restrictions can still simulate iZOCB (in the case of ideal Ẽ) or ZOCB (in the case of Ẽ
that is instantiated as (26) and (27)), and hence the provable security of ZOCB follows
from the security of iZOCB.

E Informal Introduction to iZOTR and ZOTR
As the introduction of iZOCB and ZOCB in Appendix D, we informally introduce iZOTR
and ZOTR. To use iZOTR, we fix a TBC Ẽ that takes an n-bit block X as input, and has
the tweak space {C,H} × {0, 1, . . . , 5} × {0, 1}n × {0, 1}t × {0, 1, . . . , 2(n+min{n,t})/2 − 2}.
We assume n = t, in which case the tweak space is {C,H} × {0, 1, . . . , 5} × {0, 1}n ×
{0, 1}n × {0, 1, . . . , 2n − 2}. The tweak space has the same semantics as iZOCB, i.e., the
first two arguments are for domain separation, the third argument {0, 1}n is for a nonce,
the fourth argument {0, 1}n is for an AD block, and the last argument {0, 1, . . . , 2n − 2} is
for a block counter.

To encrypt (N,A,M), where M = (M [1],M [2],M [3]) ∈ {0, 1}3n is a plaintext and
A = (A[1], A[2], A[3]) ∈ {0, 1}2.5n is AD, the ciphertext C = (C[1], C[2], C[3]) ∈ {0, 1}3n
and the tag T ∈ {0, 1}n are computed as in Fig. 33. To decrypt (N,A,C, T ) with
C = (C[1], C[2], C[3]) ∈ {0, 1}3n and A = (A[1], A[2], A[3]) ∈ {0, 1}2.5n, we first compute
M [1] from (A[2], C[1], C[2]), then M [2] from (A[1],M [1], C[1]), and M [3] from C[3]. We
then check if T = T ∗ holds, where T ∗ is obtained from S = M [2]⊕M [3] and A[3].
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The privacy is perfect from the uniqueness of the tweak in all the TBC calls. The
authenticity needs a case analysis, and as in Appendix D, we assume that the adversary
makes one encryption query to obtain (N,A,M,C, T ), and now makes a single forgery
attempt (N ′, A′, C ′, T ′), where |A| = |A′| = 2.5n and |C| = |C ′| = 3n.

• If N ′ 6= N , then the tag T ∗ for (N ′, A′, C ′) is computed by using a unique tweak
value (C, 5, N ′, A′[3] ‖ 10n/2−1, 1), and hence the success probability is 1/2n.

• If N ′ = N and C ′ 6= C, then we have C ′[1] 6= C[1], C ′[2] 6= C[2], or C ′[3] 6= C[3]. If
C ′[1] 6= C[1], then M ′[1] is randomized from the randomness of ẼC,1,N ′,A[2],0(C ′[1]),
and the probability of M [1] = M ′[1] is low. Under the condition that M [1] 6= M ′[1],
M ′[2] is sufficiently randomized from the randomness of ẼC,0,N ′,A[1],0(M ′[1]). It
follows that S′ is sufficiently randomized from M ′[2], and hence the forgery will not
succeed.
If C ′[1] = C[1] and C ′[2] 6= C[2], then we must have M [1] 6= M ′[1] (in case
A′[2] = A[2]), or M [1] 6= M ′[1] holds with an overwhelming probability (in case
A′[2] 6= A[2]), and hence the same reasoning as above works.
If C ′[1] = C[1], C ′[2] = C[2], and C ′[3] 6= C[3], then S′ 6= S holds from M ′[3] 6= M [3]
(in case A′[1] = A[1] and A′[2] = A[2]), or S′ is sufficiently randomized (in case
A′[1] 6= A[1] or A′[2] 6= A[2]). Therefore, the success probability of the forgery is low.

• If N ′ = N , C ′ = C, and A′ 6= A, then we have A′[1] 6= A[1], A′[2] 6= A[2], or
A′[3] 6= A[3]. We see that M ′[2] is sufficiently random over {0, 1}n in the first two
cases, implying the randomness of S′. The last case directly implies that T ∗ is
uniformly random, and the forgery will not succeed.

Next, we present ZOTR. Let EK be a TBC as a primitive. It takes an n-bit block X
as input, and has the tweak space {0, 1, . . . , 6} × {0, 1}t. We assume that n = t, and we
instantiate Ẽ as follows. 

ẼC,0,N,A,i(X) = E0,2iβ⊕A
K (X ⊕ 2iα) (28)

ẼC,1,N,A,i(X) = E1,2iβ⊕A
K (X ⊕ 2iα) (29)

ẼC,5,N,A,i(X) = E5,2iβ⊕A
K (X ⊕ 2iα) (30)

Here, α = E6,0n

K (N) and β = E6,0n−11
K (N). With this instantiation, we obtain Fig. 32,

which shows the encryption process of ZOTR.
We can show that the adversary that has the encryption oracles of (28)–(30) cannot

distinguish the ideal Ẽ from Ẽ that is instantiated as (28)–(30). In case of ideal Ẽ, we
obtain iZOTR, and in the case of Ẽ that is instantiated as (28)–(30), we obtain ZOTR.
Therefore, the provable security of ZOTR follows from the security of iZOTR.

F Raw Timing Data
Here, we report raw timing data of TAES-ZOCB/TAES-ZOTR/TAES-ΘCB3 and SKINNY-
ZOCB/SKINNY-ZOTR/SKINNY-ΘCB3.
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Figure 33: The encryption process of a plaintext M = (M [1],M [2],M [3]) ∈ {0, 1}3n
and AD A = (A[1], A[2], A[3]) ∈ {0, 1}2.5n with iZOTR. The output is a ciphertext
C = (C[1], C[2], C[3]) and a tag T . S is M [2]⊕M [3].
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Figure 34: The encryption process of M = (M [1],M [2],M [3]) ∈ {0, 1}3n and A =
(A[1], A[2], A[3]) ∈ {0, 1}2.5n with ZOTR to produce C = (C[1], C[2], C[3]) and T . α =
E6,0n

K (N), β = E6,0n−11
K (N), and S = M [2]⊕M [3].
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Table
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1.56
32

15.2
10.24
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1.54
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1.56
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2.98
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2.51
2.51

2.50
131072

2.57
2.57

2.57
2.57

2.57
2.57

2.57
2.57

2.57
2.56

2.56
2.56

2.56
2.55

2.53
2.52

2.51
2.51

262144
2.57

2.57
2.57

2.57
2.57

2.57
2.57

2.57
2.57

2.56
2.56

2.56
2.56

2.55
2.54

2.53
2.52

2.51
524288

2.57
2.57

2.57
2.57

2.57
2.57

2.57
2.57
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2.93
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2.46
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3.21
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4.57

4.57
4.57

4.57
4.57

4.57
4.57

4.57
4.56

4.56
4.54

4.51
4.44

4.32
4.10

3.72
3.14

2.40
T

A
E

S
-Z

O
T

R
M
\

A
D

0
15

30
60

120
240

480
960

1920
3840

7680
15360

30720
61440

122880
245760

491520
983040

16
29.88

26.89
19.12

13.43
9.24

6.80
4.39

3.44
2.87

2.63
2.48

2.42
2.42

2.40
2.41

2.44
2.46

2.47
32

17.61
12.12

14.96
10.37

7.89
6.40

4.47
3.35

2.82
2.61

2.47
2.42

2.41
2.40

2.41
2.44

2.46
2.47

64
11.91

9.68
8.06

9.05
7.01

6.09
4.40

3.46
2.89

2.61
2.48

2.42
2.42

2.40
2.41

2.44
2.46

2.47
128

9.06
8.13

7.35
6.15

6.14
5.16

4.44
3.54

2.96
2.65

2.49
2.43

2.42
2.40

2.41
2.44

2.46
2.47

256
7.19

6.79
6.43

5.82
4.90

5.03
3.93

3.33
2.87

2.59
2.47

2.42
2.41

2.39
2.41

2.44
2.46

2.47
512

5.62
5.44

5.30
5.01

4.54
3.82

3.54
3.06

2.75
2.54

2.45
2.41

2.41
2.39

2.41
2.44

2.46
2.47

1024
5.01

4.94
4.87

4.74
4.51

4.07
3.41

2.92
2.65

2.50
2.43

2.40
2.40

2.39
2.40

2.44
2.46

2.47
2048

4.65
4.62

4.59
4.52

4.40
4.16

3.77
3.16

2.56
2.44

2.40
2.39

2.40
2.38

2.40
2.44

2.46
2.47

4096
4.49

4.48
4.46

4.43
4.37

4.25
4.02

3.65
3.06

2.40
2.36

2.37
2.39

2.38
2.40

2.44
2.46

2.47
8192

4.41
4.40

4.39
4.38

4.35
4.29

4.17
3.95

3.57
3.00

2.32
2.33

2.37
2.37

2.39
2.44

2.46
2.46

16384
4.38

4.37
4.37

4.36
4.35

4.32
4.26

4.14
3.92

3.56
3.00

2.31
2.33

2.35
2.38

2.44
2.45

2.46
32768

4.37
4.37

4.37
4.36

4.36
4.34

4.31
4.25

4.13
3.92

3.55
2.99

2.29
2.32

2.36
2.42

2.44
2.46

65536
4.37

4.37
4.36

4.36
4.36

4.35
4.33

4.30
4.24

4.13
3.91

3.55
2.99

2.28
2.33

2.40
2.43

2.45
131072

4.37
4.37

4.37
4.37

4.36
4.36

4.35
4.34

4.31
4.25

4.13
3.92

3.55
3.00

2.30
2.36

2.40
2.43

262144
4.39

4.39
4.39

4.39
4.39

4.39
4.38

4.38
4.36

4.33
4.27

4.16
3.94

3.58
3.02

2.31
2.37

2.41
524288

4.40
4.40

4.40
4.40

4.40
4.40

4.39
4.39

4.38
4.37

4.34
4.28

4.16
3.95

3.58
3.02

2.31
2.36

1048576
4.40

4.40
4.40

4.40
4.40

4.40
4.40

4.40
4.39

4.39
4.37

4.34
4.28

4.16
3.95

3.58
3.02

2.31
T

A
E

S
-Θ

C
B

3
M
\

A
D

0
15

30
60

120
240

480
960

1920
3840

7680
15360

30720
61440

122880
245760

491520
983040

16
14.03

10.47
9.30

7.89
6.38

5.04
4.58

4.31
4.24

4.19
4.17

4.16
4.16

4.16
4.16

4.16
4.16

4.16
32

9.86
8.83

8.33
7.48

6.30
5.10

4.61
4.33

4.25
4.20

4.18
4.17

4.16
4.16

4.16
4.16

4.16
4.16

64
6.06

6.38
6.48

6.28
5.71

4.81
4.49

4.27
4.21

4.19
4.17

4.16
4.16

4.16
4.16

4.16
4.16

4.16
128

5.10
5.34

5.52
5.57

5.30
4.69

4.44
4.27

4.21
4.19

4.17
4.16

4.16
4.16

4.16
4.16

4.16
4.16

256
4.62

4.77
4.90

5.00
4.91

4.55
4.39

4.25
4.22

4.19
4.17

4.16
4.16

4.16
4.16

4.16
4.16

4.16
512

4.38
4.47

4.56
4.62

4.59
4.41

4.32
4.23

4.20
4.18

4.17
4.16

4.16
4.16

4.16
4.16

4.16
4.16

1024
4.26

4.31
4.35

4.39
4.38

4.30
4.27

4.21
4.19

4.18
4.17

4.16
4.16

4.16
4.16

4.16
4.16

4.16
2048

4.21
4.23

4.25
4.28

4.28
4.24

4.22
4.19

4.19
4.17

4.17
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4096
4.18

4.19
4.20

4.21
4.22

4.20
4.19

4.17
4.18

4.17
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
8192

4.16
4.17

4.17
4.18

4.18
4.17

4.17
4.17

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

16384
4.16

4.16
4.17

4.17
4.17

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
32768

4.15
4.16

4.16
4.16

4.16
4.16

4.16
4.15

4.15
4.15

4.15
4.16

4.15
4.15

4.15
4.16

4.16
4.16

65536
4.15

4.15
4.15

4.15
4.15

4.15
4.15

4.15
4.15

4.15
4.15

4.15
4.15

4.15
4.16

4.16
4.16

4.16
131072

4.15
4.15

4.15
4.15

4.15
4.15

4.15
4.15

4.15
4.15

4.15
4.15

4.15
4.16

4.16
4.16

4.16
4.16

262144
4.15

4.15
4.16

4.16
4.16

4.15
4.15

4.16
4.16

4.15
4.16

4.16
4.15

4.16
4.16

4.16
4.16

4.16
524288

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

1048576
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
4.16

4.16
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Table
4:

Software
perform

ance
in

c/B
ofSK

IN
N
Y
-ZO

C
B/ZO

T
R
/Θ

C
B3

on
Skylake

com
piled

using
gcc,w

ith
various

input
length

(in
bytes)

S
K

IN
N

Y
-Z

O
C

B
M
\

A
D

0
15

30
60

120
240

480
960

1920
3840

7680
15360

30720
61440

122880
245760

491520
983040

16
816.38

738.94
498.88

343.99
239.44

178.17
137.04

122.22
112.91

58.34
29.26

14.42
7.20

6.76
4.93

4.02
3.56

3.33
32

511.38
348.24

422.51
285.24

214.65
167.98

139.26
120.33

112.05
58.13

29.21
14.62

7.20
6.77

4.93
4.02

3.57
3.33

64
358.85

290.84
244.33

264.80
196.11

161.65
137.48

123.07
111.96

58.50
29.52

14.80
7.40

6.80
4.95

4.03
3.57

3.33
128

282.74
253.18

228.94
192.19

185.94
151.65

134.35
122.21

113.43
59.29

30.19
15.21

7.63
6.95

5.00
4.06

3.59
3.34

256
244.68

230.89
218.82

198.19
166.52

146.82
129.31

120.41
113.02

61.62
31.44

15.97
8.05

7.19
5.15

4.12
3.61

3.36
512

225.20
218.65

212.66
201.56

182.39
153.25

126.69
117.80

112.19
64.22

34.13
17.41

8.82
7.58

5.35
4.23

3.66
3.38

1024
215.50

212.39
209.41

203.55
192.82

174.65
146.76

116.50
111.06

68.62
38.37

20.37
16.65

8.38
5.76

4.44
3.78

3.64
2048

114.04
113.23

112.42
110.79

107.74
102.05

92.40
77.67

61.44
74.56

45.84
25.59

13.59
10.03

6.62
4.88

4.00
3.55

4096
60.04

59.77
59.59

59.13
58.29

56.69
53.71

48.62
40.88

32.25
38.91

23.55
13.15

6.91
6.61

4.89
4.00

3.55
8192

33.02
32.96

32.90
32.79

32.55
32.09

31.21
29.60

26.80
22.56

17.74
20.55

12.44
6.89

5.11
4.92

4.02
3.57

16384
19.56

19.53
19.52

19.49
19.41

19.27
19.01

18.48
17.51

15.85
13.33

10.44
11.34

6.80
5.17

4.21
4.06

3.59
32768

12.81
12.82

12.82
12.83

12.81
12.76

12.67
12.49

12.15
11.51

10.43
8.77

6.82
6.71

5.28
4.32

3.75
3.63

65536
9.44

9.44
9.44

9.43
9.42

9.40
9.37

9.30
9.17

8.92
8.45

7.66
6.46

5.00
5.45

4.53
3.90

3.52
131072

7.76
7.76

7.76
7.76

7.75
7.75

7.73
7.70

7.65
7.55

7.34
6.95

6.30
5.31

4.08
4.31

3.83
3.51

262144
6.93

6.93
6.92

6.93
6.92

6.92
6.91

6.90
6.88

6.83
6.73

6.54
6.21

5.62
4.74

3.63
3.73

3.48
524288

6.50
6.50

6.51
6.50

6.50
6.50

6.50
6.49

6.48
6.46

6.41
6.32

6.15
5.83

5.28
4.45

3.39
3.44

1048576
6.29

6.29
6.29

6.29
6.29

6.28
6.28

6.29
6.28

6.27
6.25

6.20
6.11

5.94
5.64

5.11
4.30

3.28
S

K
IN

N
Y

-Z
O

T
R

M
\

A
D

0
15

30
60

120
240

480
960

1920
3840

7680
15360

30720
61440

122880
245760

491520
983040

16
805.56

733.71
495.66

342.07
238.29

177.52
136.85

122.05
112.84

58.35
29.27

14.42
7.19

6.76
4.93

4.02
3.56

3.34
32

512.06
348.70

423.65
286.10

214.90
168.27

139.50
120.44

112.12
58.25

29.29
14.67

7.22
6.77

4.94
4.03

3.57
3.34

64
356.92

289.39
243.44

264.09
195.46

161.18
137.13

122.88
111.95

58.54
29.54

14.81
7.40

6.80
4.95

4.04
3.58

3.34
128

279.78
250.34

226.44
190.33

184.09
150.17

133.41
121.70

113.17
59.25

30.12
15.17

7.60
6.96

5.01
4.07

3.60
3.35

256
240.77

227.45
215.58

194.92
164.02

144.60
127.67

119.46
112.44

61.32
31.28

15.88
7.98

7.16
5.13

4.12
3.62

3.36
512

221.20
214.85

208.98
198.01

179.20
150.61

124.35
116.33

111.27
63.66

33.85
17.25

8.75
7.54

5.33
4.22

3.66
3.38

1024
211.42

208.30
205.40

199.69
189.25

171.25
143.94

114.20
109.54

67.65
37.83

20.07
16.50

8.31
5.72

4.42
3.77

3.63
2048

206.46
204.95

203.47
200.59

195.01
184.80

167.25
140.58

109.11
106.69

65.27
36.46

19.35
12.98

8.12
5.65

4.38
3.74

4096
107.99

107.60
107.22

106.44
104.94

102.03
96.70

87.51
73.57

57.03
55.58

33.64
18.77

9.90
8.15

5.68
4.41

3.76
8192

57.31
57.21

57.11
56.90

56.50
55.69

54.16
51.32

46.44
39.03

30.23
28.96

17.51
9.72

6.62
5.70

4.42
3.77

16384
31.95

31.93
31.91

31.85
31.73

31.50
31.05

30.20
28.66

25.93
21.80

16.86
15.67

9.40
6.63

4.98
4.46

3.79
32768

19.28
19.33

19.32
19.31

19.27
19.20

19.06
18.79

18.27
17.32

15.68
13.18

10.17
8.95

6.65
5.09

4.16
3.84

65536
13.00

13.00
13.00

12.99
12.98

12.96
12.91

12.82
12.64

12.28
11.65

10.54
8.87

6.82
6.69

5.27
4.32

3.75
131072

9.84
9.84

9.84
9.83

9.83
9.82

9.80
9.77

9.70
9.56

9.30
8.81

7.98
6.72

5.15
5.03

4.26
3.75

262144
8.27

8.27
8.27

8.27
8.27

8.26
8.26

8.24
8.21

8.15
8.03

7.82
7.41

6.71
5.65

4.32
4.17

3.75
524288

7.48
7.48

7.48
7.48

7.48
7.48

7.48
7.47

7.45
7.43

7.37
7.27

7.07
6.70

6.07
5.11

3.90
3.76

1048576
7.09

7.09
7.09

7.09
7.09

7.09
7.08

7.08
7.07

7.06
7.04

6.99
6.89

6.70
6.35

5.75
4.84

3.69
S

K
IN

N
Y

-Θ
C

B
3

M
\

A
D

0
15

30
60

120
240

480
960

1920
3840

7680
15360

30720
61440

122880
245760

491520
983040

16
406.81

314.13
283.27

257.98
240.84

218.10
211.90

208.74
104.71

48.84
20.70

6.55
6.12

5.90
5.79

5.74
5.71

5.70
32

305.98
276.83

262.88
248.70

237.09
217.26

211.75
208.76

105.62
49.51

21.16
6.82

6.27
5.99

5.84
5.76

5.73
5.70

64
255.18

247.52
243.13

237.27
231.44

215.91
211.29

208.57
107.09

50.76
21.84

7.17
6.43

6.05
5.86

5.78
5.73

5.71
128

229.99
228.50

227.63
226.19

224.54
214.01

210.69
208.44

110.17
53.32

23.42
8.04

6.89
6.29

5.99
5.84

5.76
5.72

256
217.36

217.12
217.34

217.54
217.75

211.58
209.61

207.96
115.71

57.97
26.26

9.60
7.66

6.67
6.18

5.93
5.81

5.75
512

211.00
211.07

211.36
211.77

212.45
209.24

208.37
207.44

125.16
66.68

31.86
12.82

9.33
7.53

6.62
6.14

5.91
5.80

1024
14.08

17.03
19.94

25.47
35.66

50.51
75.24

106.86
71.97

40.60
19.35

6.72
6.23

5.97
5.84

5.77
5.73

5.71
2048

9.94
11.48

12.97
15.94

21.56
30.49

47.14
72.47

54.88
34.54

17.91
6.66

6.22
5.97

5.84
5.77

5.73
5.71

4096
7.81

8.61
9.38

10.89
13.87

18.80
28.59

45.44
38.15

27.09
15.80

6.56
6.19

5.97
5.84

5.77
5.74

5.72
8192

6.71
7.13

7.51
8.28

9.80
12.39

17.74
27.62

24.98
19.80

13.18
6.41

6.14
5.95

5.84
5.77

5.74
5.72

16384
6.16

6.37
6.57

6.96
7.73

9.05
11.85

17.23
16.33

14.07
10.62

6.22
6.06

5.92
5.83

5.77
5.74

5.72
32768

5.87
5.98

6.07
6.27

6.65
7.33

8.75
11.57

11.29
10.30

8.60
6.02

5.95
5.87

5.81
5.77

5.73
5.72

65536
5.73

5.78
5.82

5.92
6.12

6.45
7.17

8.62
8.55

8.09
7.27

5.87
5.85

5.81
5.78

5.75
5.73

5.71
131072

5.65
5.68

5.70
5.75

5.85
6.02

6.38
7.12

7.11
6.90

6.50
5.78

5.78
5.77

5.74
5.73

5.72
5.71

262144
5.63

5.65
5.66

5.68
5.73

5.82
6.00

6.37
6.38

6.28
6.08

5.70
5.70

5.70
5.71

5.70
5.70

5.70
524288

5.62
5.63

5.63
5.64

5.67
5.71

5.80
5.99

6.00
5.95

5.86
5.67

5.67
5.67

5.67
5.68

5.69
5.69

1048576
5.61

5.62
5.62

5.63
5.64

5.66
5.71

5.80
5.82

5.79
5.74

5.64
5.64

5.65
5.65

5.66
5.66

5.67
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Table
5:

Software
perform

ance
in

c/B
ofSK

IN
N
Y
-ZO

C
B/ZO

T
R
/Θ

C
B3

on
H
aswellcom

piled
using

gcc,w
ith

various
input

length
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