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Typical Goal
Minimize the chip-area.
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Linear Layers

@ Matrix multiplication(s).
@ Often MDS matrices.
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Goal: Small round-based implementation
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Metric: XOR count

@ Implement matrix multiplication only with XOR operations.
@ Use as few XORs as possible.
@ Idea: Low XOR count = Low chip-area

@ Note: No intermediate result needs to be recomputed.
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Previous Work

@ FSE 2018: Jean, Peyrin, Sim, Tourteaux
Optimizing Implementations of Lightweight Building Blocks

@ FSE 2017: C. Li and Q. Wang

Design of Lightweight Linear Diffusion Layers from Near-MDS Matrices
@ FSE 2017: Sarkar and Syed

Lightweight Diffusion Layer: Importance of Toeplitz Matrices
@ CRYPTO 2016: Beierle, Kranz, Leander

Lightweight Multiplication in GF(2") with Applications to MDS Matrices
@ FSE 2016: Liu and Sim

Lightweight MDS Generalized Circulant Matrices
@ FSE 2016: Y. Li and M. Wang

On the Construction of Lightweight Circulant Involutory MDS Matrices
@ FSE 2015: Sim, Khoo, Oggier, Peyrin

Lightweight MDS Involution Matrices
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Previous Work

@ Searching many matrices.
Cauchy, Vandermonde, Circulant, Hadamarad,
Hadamard-Cauchy, Toeplitz, Arbitrary

@ Optimizing element multiplication.
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Counting XORs: Overhead and Fixed Cost

@ The XOR count is typically split into overhead and
fixed cost.

Matrix Multiplication
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Previous Results

Table: Best XOR counts of previous work. Matrices in the lower half
are involutory.

Dimension S-box XOR count

4 x4 4 bit 10 + 48
4 x4 8 bit 10 + 96
8 x8 4 bit 160 4 224
8 x8 8 bit 192 4- 448
4 x4 4 bit 15+ 48
4 x4 8 bit 30 + 96
8x8 4 bit 200 + 224

8 x8 8 bit 288 + 448
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Previous Results

Table: Best XOR counts of previous work. Matrices in the lower half
are involutory.

Dimension S-box XOR count

4 x4 4 bit 58
4 x4 8 bit 106
8 x8 4 bit 384
8 x8 8 bit 640
4 x4 4 bit 63
4 x4 8 bit 126
8x8 4 bit 424

8 x8 8 bit 736
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Local Optimization

Optimize k x k matrix over Fo.
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Global Optimization

Optimize nk x nk matrix over F».
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Global Optimization

BFA 2017: Boyar, Find, Peralta

Low-Depth, Low-Size Circuits for Cryptographic Applications

ePrint 2017: Visconti, Schiavo, Peralta

Improved upper bounds for the expected circuit complexity of dense
systems of linear equations over GF(2)

JoC 2013: Boyar, Matthews, Peralta

Logic Minimization Techniques with Applications to Cryptology

SAT 2010: Fuhs, Schneider-Kamp

Synthesizing Shortest Linear Straight-Line Programs over GF(2) Using
SAT

IWIL 2010: Fuhs, Schneider-Kamp

Optimizing the AES S-Box using SAT

MFCS 2008: Boyar, Matthews, Peralta

On the Shortest Linear Straight-Line Program for Computing Linear
Forms

ISIT 1997: Paar
Optimized Arithmetic for Reed-Solomon Encoders
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Global Optimization

@ Lots of work about implementing binary matrices with few
XORs.

@ Goal: Find Shortest Linear Straight-Line Programs.

@ Equivalent to our goal!
(Hardware implementation with lowest XOR count.)
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Algorithm 1 (Paar 1997)

@ Find most common subexpression.
@ Add according computation to the program.

1 0 1 1 ao ap+ a + as
1110 a | ap + a4+ as
1 1 1 1 | |a+a +a+as
o1 1 1 as a| + a + as
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Algorithm 1 (Paar 1997)

1 0 1 1 20 dop + s> + a3
1110 a | dp+as + a
11 1 1 a| |a+a +a+as
o1 1 1 as ay +a»+as
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Algorithm 1 (Paar 1997)

10 1 1 aop (ap + a2) + as
1110 a | (ap + a2) + aq
11 1 1 ar a (ao == 32) +aq + as
o1 1 1 as ay +a +as

Xo = 4o + a
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Algorithm 1 (Paar 1997)

1 0 1 1 ao Xo + as
1 110 a1 . Xo + a1
1 1 1 1 ao a Xo+ a1+ as
o1 1 1 as ay +a +as

Xo=aop+ ae
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Algorithm 1 (Paar 1997)

1 0 1 1 ao Xo + @3
1 110 a1 . Xo + a1
1 1 1 1 ao a Xo+a1 +as
o1 1 1 as ay +a +as

Xo = Qg + a
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Algorithm 1 (Paar 1997)

1 0 1 1 ao Xo + @3
1 110 a1 . Xo + a1
1 1 1 1 a» - Xo+a1+as
o1 1 1 as ay +a +as

Xo = Qg + a
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Algorithm 1 (Paar 1997)

10 1 1 ao Xo + as

1110 a | (Xo + 31)

11 1 1 ao - (Xo aF a1) + as

o1 1 1 as ay + a + as
Xo=4dp + a2

X1 = Xo + &4
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Algorithm 1 (Paar 1997)

1 0 1 1 ao Xo + as

111 0| [a] X

1 1 1 1 a | X1+ as

o1 1 1 as ay + a + as
Xo=2ag+ a

X1 =Xp+ &4
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Algorithm 1 (Paar 1997)
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Algorithm 1 (Paar 1997)

10 1 1 ao X3
1110 a | | X
11 1 1 ao o X4
0O 1 1 1 as X6

Xo = ap + a

X1 = Xo + &4

Xo = ay + a

X3 = Xo + as

X4 = Xy + a3
X5 = Xo + as
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Algorithm 1 (Paar 1997)

1 0 1 1 ao X3=4apt+a+ as
1110 a | X1=a +a +a
11 1 1 | |x=a+a +a+a
o1 1 1 as Xs = a1+ a + as

Xo = dp + a

Xy=Xp+a =a+a + a

Xo = aq + a

X3=Xp+a=ap+a + as
Xg=X1+a=a +a +a + a
Xs =Xo+a=ay+a + as
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Algorithm 1 (Paar 1997)

Table: New XOR counts for matrices from previous work. Matrices in
the lower half are involutory.

Dimension  S-box  Previously best  New results

4 x4 4 bit 58 46
4 x4 8 bit 106 102
8x8 4 bit 384 210
8x8 8 bit 640 464
4 x4 4 bit 63 51

4 x4 8 bit 126 102
8x8 4 bit 424 222

8x8 8 bit 736 620
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More advanced heuristics

@ There exists many follow-up work.
@ More sophisticated algorithms.

1 0 1 1 ap aop + a» + as
1110 ai dp + a4+ as
11 1 1 ao - 4+ a4 +a» + as
01 1 1 as ay +a +as
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1 0 1 1 ap aop + a» + as
1110 ai dp + a4+ as
11 1 1 ao - 4+ a4 +a» + as
01 1 1 as ay +a +as

Xo = ao + ai



Shorter Linear Straight-Line Programs
00000000000000000080

More advanced heuristics

@ There exists many follow-up work.
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1 0 1 1 dp + a + as
1110 ai dp + a4+ as
11 1 1 ao - 4+ a4 +a» + as
01 1 1 as ay +a +as

Xo = ao + ai
Xy =Xp+a=ap+ a4+ a



Shorter Linear Straight-Line Programs
00000000000000000080

More advanced heuristics

@ There exists many follow-up work.
@ More sophisticated algorithms.

1 0 1 1 dp + a + as
1110 ai dp + a4+ as
11 1 1 ao - 4+ a4 +a» + as
01 1 1 as ay +a +as

Xo = ao + ai
Xy =Xp+a=ap+ a4+ a
Xo =Xy +a83=8yp+a +a+as



Shorter Linear Straight-Line Programs
00000000000000000080

More advanced heuristics

@ There exists many follow-up work.
@ More sophisticated algorithms.

1 0 1 1 dp + a + as
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More advanced heuristics

@ There exists many follow-up work.
@ More sophisticated algorithms.

1 0 1 1 dp + a + as
1110 ai dp + a4+ as
11 1 1 ao - 4+ a4 +a» + as
01 1 1 as ay +a +as

Xo = ao + ai

Xy =Xp+a=ap+ a4+ a
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More advanced heuristics

@ There exists many follow-up work.
@ More sophisticated algorithms.

1 0 1 1 ap X3 = Q4p + a + as

1110 a | Xy =348p+ai+ a

11 1 1 ao a Xo =8+ a1 + a + as

01 1 1 as X4 = a1 +a+ as
Xo = ao + ai

Xy =Xp+a8=a+a + a
Xo =Xy +83 =489+ a8 +a + as
X3 =Xo+a =ap+ a + as
X4 = Xo+ 8y = a1 + a + as
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Improved Implementations

@ We applied the heuristics to
e matrices from previous work
e matrices known from block ciphers and hash functions
@ Could always find improved implementations (lower XOR
count).
@ Including AES MixColumns implementation with 97 XORs.
(So far 103 was best.)
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Statistical Analysis

@ Analyzed different constructions
Cauchy, Circulant, Hadamard, Toeplitz, Vandermonde,
Arbitrary

@ No construction was superior.
@ Exception: Subfield Construction

Good strategy

Using subfield construction with best results from smaller S-box
size.




New Results

Table: New best XOR counts compared to previous work. Matrices in
the lower half are involutory.

Dimension  S-box  Previously best New best

4 x4 4 bit 58 36
4 x4 8 bit 106 72
8x8 4 bit 384 196
8 x8 8 bit 640 392
4 x4 4 bit 63 42
4 x4 8 bit 126 84
8x8 4 bit 424 212

8x8 8 bit 736 424




New Results

Table: New best XOR counts compared to previous work. Matrices in
the lower half are involutory.

Dimension  S-box  Previously best  New best

4 x4 4 bit 10 +48 —-12 448
4 x4 8 bit 10 + 96 —24 + 96
8 x8 4 bit 160 + 224 —28 + 224
8 x8 8 bit 192 4 448 —56 + 448
4 x4 4 bit 15+ 48 —6 +48
4 x4 8 bit 30 + 96 —-12 496
8 x8 4 bit 200 + 224 —-12 4224

8x8 8 bit 288 + 448 —24 1 448
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Conclusion

Take Home Messages
@ Optimize globally rather than locally.
@ Stop thinking in overhead and fixed cost.
@ Use the existing heuristics.
@ Not necessary to restrict to matrices over finite fields.

https://github.com/pfasante/shorter_linear_slps_for_mds_matrices
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Conclusion

Take Home Messages
@ Optimize globally rather than locally.
@ Stop thinking in overhead and fixed cost.
@ Use the existing heuristics.
@ Not necessary to restrict to matrices over finite fields.

https://github.com/pfasante/shorter_linear_slps_for_mds_matrices

Any Questions?
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