ZMAC ${ }^{+}$- An Efficient Variable-output-length Variant of ZMAC

Eik List ${ }^{1} \quad$ Mridul Nandi ${ }^{2}$

${ }^{1}$ Bauhaus-Universität Weimar, Weimar, Germany
${ }^{2}$ Indian Statistical Institute, Kolkata, India

FSE
March 2018

Section 1

Motivation

Message Authentication Codes

■ Goal: Unforgeable authentication tags
■ Stateful, randomized, nonce-based, or stateless deterministic (focus)
■ Standards: CMAC [Dwo16], OMAC [IK03], f9 [ETS01], ...

Message Authentication Codes

MAC and PRF Security

$$
\mathbf{A d v}_{F}^{\mathrm{MAC}}(\mathbf{A}) \stackrel{\text { def }}{=} \operatorname{Pr}_{K \leftrightarrow \mathcal{K}}[\mathbf{A} \text { forges }]
$$

Message Authentication Codes

MAC and PRF Security

PRF Security

$\mathbf{A d v}_{F}^{\mathrm{PRF}}(\mathbf{A}) \stackrel{\text { def }}{=} \underset{\mathbf{A}}{\Delta_{K}}\left(F_{K} ; \$\right)$
$\Delta_{\mathbf{A}}(X ; Y):=\left|\operatorname{Pr}\left[\mathbf{A}^{X} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathbf{A}^{Y} \Rightarrow 1\right]\right|$ over random choice of keys, oracles X and Y, and coins of \mathbf{A} if any.
$\$$ returns $\left|F_{K}(M)\right|$ uniform random bits on any input M.

Desirable Properties

- High security

Desirable Properties

- High security
- High rate
- Parallelizability
- Single key
- Single primitive

Desirable Properties

- High security

- High rate
- Parallelizability
- Single key
- Single primitive

Variable-output-length PRFs

$$
\mathbf{A d v}_{F}^{\mathrm{VOLPRF}}(\mathbf{A}) \stackrel{\text { def }}{=}{\underset{\mathbf{A}}{ }}\left(F_{K} ; \$\right)
$$

Variable-output-length PRFs

$$
\mathbf{A d v}_{F}^{\mathrm{VOLPRF}}(\mathbf{A}) \stackrel{\text { def }}{=} \underset{\mathbf{A}}{ }\left(F_{K} ; \$\right)
$$

Examples:
■ SHAKE [Dwo15]

- Farfalle $\left[\mathrm{BDP}^{+} 16\right]$

■ (all stream ciphers)

Tweakable Block Ciphers (TBCs) for MACs

TBCs [LRW02]:

- Keyed families of permutations

$$
\widetilde{E}:\{0,1\}^{k} \times\{0,1\}^{t} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

■ Additional public input tweak T

Tweakable Block Ciphers (TBCs) for MACs

TBCs [LRW02]:

- Keyed families of permutations

$$
\widetilde{E}:\{0,1\}^{k} \times\{0,1\}^{t} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

■ Additional public input tweak T
Security Improvement over BCs:
■ Tweak for domain separation

Tweakable Block Ciphers (TBCs) for MACs

TBCs [LRW02]:

- Keyed families of permutations

$$
\widetilde{E}:\{0,1\}^{k} \times\{0,1\}^{t} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

■ Additional public input tweak T
Security Improvement over BCs:
■ Tweak for domain separation
Efficiency Improvement over BCs:

- Tweak for message processing

Tweakable Block Ciphers (TBCs) for MACs

TBCs [LRW02]:

- Keyed families of permutations

$$
\widetilde{E}:\{0,1\}^{k} \times\{0,1\}^{t} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

■ Additional public input tweak T
Security Improvement over BCs:
■ Tweak for domain separation
Efficiency Improvement over BCs:

- Tweak for message processing

Recent existing TBC-based MACs w/ high security:

■ PMAC_TBC1k/PMAC__TBC3k [Nai15]
■ HaT [CLS17]

- ZMAC [IMPS17]

Good Candidate: ZMAC

[IMPS17]

Good Candidate: ZMAC

[IMPS17]

Efficiency:
■ Fully parallelizable

- High rate: $(n+t) / n$

■ TBC-based single-key, single-primitive

Good Candidate: ZMAC

[IMPS17]

Efficiency:
■ Fully parallelizable

- High rate: $(n+t) / n$

■ TBC-based single-key, single-primitive

BBB-Security: ε-almost-universal (AU) for $\varepsilon \leq \frac{4}{2^{n+\min (n, t)}}$

Good Candidate: ZMAC

[IMPS17]

Efficiency:
■ Fully parallelizable
■ High rate: $(n+t) / n$
■ TBC-based single-key, single-primitive
BBB-Security: ε-almost-universal (AU) for $\varepsilon \leq \frac{4}{2^{n+\min (n, t)}}$
Functionality: Can we obtain a variable-output-length PRF?

Section 2

Hash-then-TBC and ZMAC ${ }^{+}$

Hash-then-TBC (НтТВС)

- TBC-based VOLPRF
- Fully parallelizable

■ Input $(Y, X) \in\{0,1\}^{n} \times\{0,1\}^{t}$
Output of universal hash function H
■ Inputs: (M, d)
■ $d=$ \#Output blocks $\left(U_{1}, \ldots, U_{d}\right)$

$\mathrm{ZMAC}^{+}=\mathrm{ZHASH}+\mathrm{HtTBC}$

■ Injective encoding and padding of message and output length: $M \leftarrow \underline{M}\|1\| 0^{*} \|\langle d\rangle_{n}$

$\mathrm{ZMAC}^{+}=\mathrm{ZHASH}+\mathrm{HtTBC}$

■ Injective encoding and padding of message and output length:
$M \leftarrow \underline{M}\|1\| 0^{*} \|\langle d\rangle_{n}$
■ Single keyed primitive \widetilde{E}_{K} :

- $\widetilde{\sim}_{K}^{0}$ in ZHaSH
- $\widetilde{\widetilde{E}}_{K}^{1}$ in HтTBC
- \widetilde{E}_{K}^{2} to derive L and R

$\mathrm{ZMAC}^{+}=\mathrm{ZHAsH}+\mathrm{HtTBC}$

■ Injective encoding and padding of message and output length:
$M \leftarrow \underline{M}\|1\| 0^{*} \|\langle d\rangle_{n}$

- Single keyed primitive \widetilde{E}_{K} :
- \widetilde{E}_{K}^{0} in ZHASH
- \widetilde{E}_{K}^{1} in HtTBC
- \widetilde{E}_{K}^{2} to derive L and R
- Bound of $O\left(q / 2^{n}+q(q+\sigma) / 2^{n+\min (n, t)}\right)$ Eliminates term $O\left(\sigma^{2} / 2^{n+\min (n, t)}\right)$

$q=$ \#queries; $\sigma=$ sum of \#blocks of all messages

Section 3

Security Analysis

VOLPRF Security of НтTBC

Proof Strategy

■ H-coefficient technique [CS14, Pat08]
■ Ideal world: U_{i} uniformly independently at random
■ Replace $\widetilde{E}_{K}^{0 / 1 / 2}$ by independent uniform random permutations $\widetilde{\pi}^{0 / 1 / 2}$
■ 2 bad events $\Longrightarrow 2$ requirements for H

VOLPRF Security of Hash-then-TBC

 bad $_{1}$

- bad ${ }_{1}$: Collision of tweaks and inputs to \widetilde{E}_{K} of HтTBC:

$$
\exists k, k^{\prime}:\left(Y, X \oplus\langle k-1\rangle_{t}\right)=\left(Y^{\prime}, X^{\prime} \oplus\left\langle k^{\prime}-1\right\rangle_{t}\right) .
$$

VOLPRF Security of Hash-then-TBC

 bad $_{1}$

- bad ${ }_{1}$: Collision of tweaks and inputs to \widetilde{E}_{K} of HTTBC:

$$
\exists k, k^{\prime}:\left(Y, X \oplus\langle k-1\rangle_{t}\right)=\left(Y^{\prime}, X^{\prime} \oplus\left\langle k^{\prime}-1\right\rangle_{t}\right) .
$$

- Pr $\left[\operatorname{bad}_{1}\right]$ upper bounded by max. differential prob. of certain differences:

$$
\operatorname{Pr}\left[\operatorname{bad}_{1}\right] \leq \sum_{k=0}^{d+d^{\prime}-1} \operatorname{Pr}_{K \leftrightarrow \mathcal{K}}\left[H_{K}(M) \oplus H_{K}\left(M^{\prime}\right)=\left(0,\langle k\rangle_{t}\right)\right] .
$$

DP Analysis of ZHash

Theorem 1

For distinct (\underline{M}, d) and $\left(\underline{M}^{\prime}, d^{\prime}\right)$ with at most m and $m^{\prime}(n+t)$-bit blocks, $1 \leq m \leq m^{\prime}<2^{\min \{n,(n+t) / 2\}-3}$, it holds that

$$
\sum_{k=0}^{d+d^{\prime}-2} \mathrm{DP}_{H}\left[M, M^{\prime},\left(0^{n},\langle k\rangle_{t}\right)\right] \leq \begin{cases}\frac{2\left(d+d^{\prime}\right)}{2^{n}} & \text { if } C 1 \\ \frac{2\left(m+m^{\prime}+1\right)}{2^{n+t}}+\frac{4\left(d+d^{\prime}\right)}{2^{n+\min \{n, t\}}} & \text { oth. }\end{cases}
$$

where $C 1 \stackrel{\text { def }}{=} M, M^{\prime}$ have equal length and differ in exactly 1 block

Rationale

- $\mathrm{DP}_{H}\left[M, M^{\prime},\left(0^{n},\langle k\rangle_{t}\right)\right]$ is lengthy

Rationale

- $\mathrm{DP}_{H}\left[M, M^{\prime},\left(0^{n},\langle k\rangle_{t}\right)\right]$ is lengthy
- Why not consider ε-AXU of ZHash?
\Longrightarrow "not guaranteed to be small" in C1 [IMPS17]
(when M, M^{\prime} have equal length and differ in 1 block)

Rationale

- $\mathrm{DP}_{H}\left[M, M^{\prime},\left(0^{n},\langle k\rangle_{t}\right)\right]$ is lengthy
- Why not consider ε-AXU of ZHash?
\Longrightarrow "not guaranteed to be small" in C1 [IMPS17]
(when M, M^{\prime} have equal length and differ in 1 block)
- Why not abstract away $\widetilde{E}_{K}^{T_{i}}\left(S_{i}\right)$ as a $\mathrm{XT}\left[\tilde{\pi}, H_{L}\right]$ permutation?
\Longrightarrow Would give $\sigma^{2} / 2^{n+\min (n, t)}$ term

Truncated-AXU

H is (n, t, ε)-truncated $\mathrm{AXU}(\mathrm{tAXU})$ iff:

$$
\max _{\Delta X} \sum_{\Delta Y} \operatorname{Pr}_{K \leftrightarrow \mathcal{K}}\left[H_{K}(M) \oplus H_{K}\left(M^{\prime}\right)=(\Delta Y, \Delta X)\right] \leq \varepsilon
$$

VOLPRF Security of Hash-then-TBC (Cont'd)

 bad_{2}

- bad $_{2}$: Collision of tweaks and outputs from \widetilde{E}_{K} of НтTBC:

$$
\text { bad }_{2} \stackrel{\text { def }}{=} \exists k, k^{\prime}:\left(X \oplus\langle k-1\rangle_{t}, U_{k}\right)=\left(X^{\prime} \oplus\left\langle k^{\prime}-1\right\rangle_{t}, U_{k^{\prime}}^{\prime}\right) .
$$

VOLPRF Security of Hash-then-TBC (Cont'd)

 bad $_{2}$

■ bad $_{2}$: Collision of tweaks and outputs from \widetilde{E}_{K} of НтTBC:

$$
\operatorname{bad}_{2} \stackrel{\text { def }}{=} \exists k, k^{\prime}:\left(X \oplus\langle k-1\rangle_{t}, U_{k}\right)=\left(X^{\prime} \oplus\left\langle k^{\prime}-1\right\rangle_{t}, U_{k^{\prime}}^{\prime}\right)
$$

■ Assume that H is $(n, t, \varepsilon)-\mathrm{tAXU}$:

$$
\operatorname{Pr}\left[\mathrm{bad}_{2}\right] \leq d \cdot d^{\prime} \cdot \varepsilon \cdot \operatorname{Pr}\left[U_{k}=U_{k^{\prime}}^{\prime}\right] \leq \frac{d d^{\prime} \varepsilon}{2^{n}} \Longrightarrow \frac{2{\sigma^{\prime 2}}^{2} \varepsilon}{2^{n}}
$$

Full Bound over q Queries

Details in Paper
■ $(n, t, \varepsilon)-\mathrm{tAXU}:$

$$
\varepsilon \leq \frac{2\left(m+m^{\prime}+1\right)}{2^{n+\min \{n, t\}}}+\frac{4}{2^{\min \{n, t\}}}
$$

Full Bound over q Queries

Details in Paper
■ $(n, t, \varepsilon)-\mathrm{tAXU}:$

$$
\varepsilon \leq \frac{2\left(m+m^{\prime}+1\right)}{2^{n+\min \{n, t\}}}+\frac{4}{2^{\min \{n, t\}}}
$$

- DP:

$$
\frac{2 \sigma^{\prime}}{2^{n}}+\frac{\left.2(q-1) \sigma+q^{2}+4(q-1) \sigma^{\prime}\right)}{2^{n+\min \{n, t\}}}
$$

Full Bound over q Queries

Details in Paper

■ $(n, t, \varepsilon)-\mathrm{tAXU}:$

$$
\varepsilon \leq \frac{2\left(m+m^{\prime}+1\right)}{2^{n+\min \{n, t\}}}+\frac{4}{2^{\min \{n, t\}}}
$$

- DP:

$$
\frac{2 \sigma^{\prime}}{2^{n}}+\frac{\left.2(q-1) \sigma+q^{2}+4(q-1) \sigma^{\prime}\right)}{2^{n+\min \{n, t\}}}
$$

■ VOLPRF bound for \mathbf{A} with q queries of at most $m \leq 2^{\min \{n, t\}-3}$ $(n+t)$-bit blocks each and at most σ blocks in total, and whose output lengths d^{i} sum up to at most σ^{\prime} :

$$
\begin{aligned}
\mathbf{A d v}_{\mathrm{ZMAC}} \mathrm{VOLPRF}_{[\pi]}(\mathbf{A}) \leq & \frac{\left(\sigma^{\prime}\right)^{2}}{2^{n}} \cdot\left(\frac{4 m+2}{2^{n+\min \{n, t\}}}+\frac{4}{2^{\min \{n, t\}}}\right)+ \\
& \frac{2 \sigma^{\prime}}{2^{n}}+\frac{2(q-1) \sigma+q^{2}+4(q-1) \sigma^{\prime}}{2^{n+\min \{n, t\}}}
\end{aligned}
$$

Full Bound over q Queries

Details in Paper

■ $(n, t, \varepsilon)-\mathrm{tAXU}:$

$$
\varepsilon \leq \frac{2\left(m+m^{\prime}+1\right)}{2^{n+\min \{n, t\}}}+\frac{4}{2^{\min \{n, t\}}}
$$

- DP:

$$
\frac{2 \sigma^{\prime}}{2^{n}}+\frac{\left.2(q-1) \sigma+q^{2}+4(q-1) \sigma^{\prime}\right)}{2^{n+\min \{n, t\}}}
$$

■ VOLPRF bound for \mathbf{A} with q queries of at most $m \leq 2^{\min \{n, t\}-3}$ ($n+t$)-bit blocks each and at most σ blocks in total, and whose output lengths d^{i} sum up to at most σ^{\prime} :

$$
\begin{aligned}
\mathbf{A d v}_{\mathrm{ZMAC}+[\widetilde{\pi}]}^{\mathrm{VOLPRF}}(\mathbf{A}) \leq & \frac{\left(\sigma^{\prime}\right)^{2}}{2^{n}} \cdot\left(\frac{4 m+2}{2^{n+\min \{n, t\}}}+\frac{4}{2^{\min \{n, t\}}}\right)+ \\
& \frac{2 \sigma^{\prime}}{2^{n}}+\frac{2(q-1) \sigma+q^{2}+4(q-1) \sigma^{\prime}}{2^{n+\min \{n, t\}}}
\end{aligned}
$$

■ No $\sigma^{2} / 2^{2 n}$ term

Section 4

Potential Instantiations and Summary

Suitable Instantiations

■ Desirable:
■ Efficient round function + efficient tweak schedule

- $t \geq n$

Suitable Instantiations

■ Desirable:
■ Efficient round function + efficient tweak schedule

- $t \geq n$

■ Deoxys-BC-256/Deoxys-BC-384 [JNP14]: AES-NI

Suitable Instantiations

■ Desirable:
■ Efficient round function + efficient tweak schedule

- $t \geq n$

■ Deoxys-BC-256/Deoxys-BC-384 [JNP14]: AES-NI

■ Skinny-64/128 and Skinny-128/256 [BJK+ 16]: Lighter

Potential Instantiations

- n-bit outputs: Same performance as ZMAC
- Long outputs: +1 (parallelizable) Call to TBC
- Ongoing work: optimized implementation

	Output length	
TBC \widetilde{E}_{K}	n bit	$\|M\|$ bit
Deoxys-BC-256	0.62	1.49
DEOXYS-BC-384	0.61	1.60
SKINNY-128/256	2.08	6.20
SKINNY-128/384	1.62	6.42

Estimated performance in cycles/byte on Intel Skylake with AES-NI.

Summary

■ Proposed $\mathrm{ZMAC}^{+}=$ZHash + HtTBC

- Variable-output-length PRF

■ Eliminated $\sigma^{2} / 2^{2 n}$ in security bound with few domains in tweak
■ $\mathbb{Z H} A S H$ needed block index in tweak i [IMPS17]

- Single primitive, single key

Questions?

References I

Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer.

Farfalle: Parallel Permutation-based Cryptography.

IACR Cryptology ePrint Archive, 2016:1188, 2016.
Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim
The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO II, volume 9815 of Lecture Notes in Computer Science, pages 123-153. Springer, 2016.

Benoít Cogliati, Jooyoung Lee, and Yannick Seurin.
New Constructions of MACs from (Tweakable) Block Ciphers.
In IACR Transactions on Symmetric Cryptology, volume 2017, pages 27-58, 2017.
Shan Chen and John P. Steinberger.
Tight Security Bounds for Key-Alternating Ciphers.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT, volume 8441 of Lecture Notes in Computer Science, pages 327-350. Springer, 2014.

Morris J Dworkin.
SHA-3 Standard: Permutation-based Hash and Extendable-output Functions.
Federal Inf. Process. Stds. (NIST FIPS)-202, 2015.
Morris J Dworkin.
NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication. Technical report, 2016.
https://doi.org/10.6028/NIST.SP.800-38B, first version May 2005.

References II

ETSI (European Telecommunications Standards Institute.
3GPP TS 35.201 Specification of the 3GPP confidentiality and integrity algorithm. Document 1: f8 and f9 specifications (version 4.1.0 Release 4).

Technical report, December 2001.
http://www.etsi.org/deliver/etsi_ts/135200_135299/135201/04.01.00_60/ts_135201v040100p.pdf.

Tetsu Iwata and Kaoru Kurosawa.
OMAC: One-Key CBC MAC.
In Thomas Johansson, editor, FSE, volume 2887 of Lecture Notes in Computer Science, pages 129-153. Springer, 2003.

Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message Authentication.
In Jonathan Katz and Hovav Shacham, editors, CRYPTO, Part III, volume 10403 of LNCS, pages 34-65. Springer, 2017.
Full version at https://eprint.iacr.org/2017/535.

Jérémy Jean, Ivica Nikolic, and Thomas Peyrin.
Tweaks and Keys for Block Ciphers: The TWEAKEY Framework.
In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT (2), volume 8874 of Lecture Notes in Computer Science, pages 274-288, 2014.

Moses Liskov, Ronald L. Rivest, and David Wagner.

Tweakable Block Ciphers.

In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 31-46. Springer, 2002.
Yusuke Naito.

Full PRF-Secure Message Authentication Code Based on Tweakable Block Cipher.

In Man Ho Au and Atsuko Miyaji, editors, ProvSec, volume 9451 of Lecture Notes in Computer Science, pages 167-182. Springer, 2015.

Jacques Patarin.
The "Coefficients H" Technique.
In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors, SAC, volume 5381 of Lecture Notes in Computer Science, pages 328-345. Springer, 2008.

Section 5

Backup Slides

VOLPRF Security of Hash-then-TBC [CS14, Pat08]

Lemma 2 (H-coefficient Technique)

Assume, the set of attainable transcripts is partitioned into two disjoint sets GoodT and BadT. Further assume, there exist $\epsilon_{1}, \epsilon_{2} \geq 0$ such that for any transcript $\tau \in$ GoodT, it holds that

$$
\frac{\operatorname{Pr}\left[\Theta_{\text {real }}=\tau\right]}{\operatorname{Pr}\left[\Theta_{\text {ideal }}=\tau\right]} \geq 1-\epsilon_{1}, \quad \text { and } \quad \operatorname{Pr}\left[\Theta_{\text {ideal }} \in \operatorname{BADT}\right] \leq \epsilon_{2}
$$

Then, for all adversaries \mathbf{A}, it holds that $\Delta_{\mathbf{A}}\left(\mathcal{O}_{\text {real }} ; \mathcal{O}_{\text {ideal }}\right) \leq \epsilon_{1}+\epsilon_{2}$.

■ Bad Transcripts: $\epsilon_{2} \leq \operatorname{Pr}\left[\right.$ bad $\left._{1}\right]+\operatorname{Pr}\left[\right.$ bad $\left._{2}\right]$

- Good Transcripts: $\epsilon_{1}=0$

VOLPRF Security of Hash-then-TBC (Cont'd)

Theorem 3

Let H be (n, t, ε)-tAXU and $L \varangle \mathcal{L}$ and H and $\widetilde{\pi} \varangle \widetilde{\operatorname{Perm}\left(\mathcal{T}^{\prime},\{0,1\}^{n}\right)}$ independent. Then, for any VOLPRF adversary A on HtTBC[$\left.\widetilde{\pi}, H_{L}\right]$ that makes at most q queries whose output lengths d^{i} sum up to at most σ^{\prime} blocks in total, it holds that $\operatorname{Adv}_{\mathrm{HTTBC}\left[\pi, H_{L}\right]}^{\mathrm{VOLPRF}}(\mathbf{A})$ is at most

$$
\frac{\left(\sigma^{\prime}\right)^{2} \varepsilon}{2^{n}}+\max _{M^{1}, \ldots, M^{q}} \sum_{i<j}^{q} \sum_{k=0}^{d^{i}+d^{j}-2} \operatorname{DP}_{H_{L}}\left[M^{i}, M^{j},\left(0^{n},\langle k\rangle_{t}\right)\right] .
$$

VOLPRF Security of Hash-then-TBC (Cont'd)

Theorem 3

Let H be (n, t, ε)-tAXU and $L \varangle \mathcal{L}$ and H and $\widetilde{\pi} \varangle \widetilde{\operatorname{Perm}}\left(\mathcal{T}^{\prime},\{0,1\}^{n}\right)$ independent. Then, for any VOLPRF adversary A on HtTBC[$\left.\widetilde{\pi}, H_{L}\right]$ that makes at most q queries whose output lengths d^{i} sum up to at most σ^{\prime} blocks in total, it holds that $\operatorname{Adv}_{\mathrm{HTTBC}\left[\pi, H_{L}\right]}^{\mathrm{VOLPRF}}(\mathbf{A})$ is at most

$$
\frac{\left(\sigma^{\prime}\right)^{2} \varepsilon}{2^{n}}+\max _{M^{1}, \ldots, M^{q}} \sum_{i<j}^{q} \sum_{k=0}^{d^{i}+d^{j}-2} \mathrm{DP}_{H_{L}}\left[M^{i}, M^{j},\left(0^{n},\langle k\rangle_{t}\right)\right]
$$

For single-block outputs:
■ ϵ_{2}-AU suffices instead of DP: $\operatorname{Pr}\left[\operatorname{bad}_{1}\right] \leq\binom{ q}{2} \varepsilon_{2}$

$$
\mathbf{A d v}_{\mathrm{HtTBC}\left[\tilde{\pi}, H_{L}\right]}^{\mathrm{PRF}}(\mathbf{A}) \leq\binom{ q}{2} \cdot\left(\frac{2 \varepsilon}{2^{n}}+\varepsilon_{2}\right)
$$

DP Analysis of ZHash (Cont'd)

■ Two scenarios with same four cases each

- $t \leq n$

■ $t>n$

- Focus on $t \leq n$ in the following

■ Focus also on fixed $\left(0,\langle k\rangle_{t}\right)$ and consider different k later

DP Analysis of ZHash (Cont'd)

Case 1

■ $\Delta Y_{s}=0 \Longrightarrow \Delta M_{R}[s]=\langle k\rangle_{t}$
■ If $k=0 \Longrightarrow \Delta Y_{s}=0$ impossible
■ If $k \neq 0 \Longrightarrow Y_{s}$ and Y_{s}^{\prime} independent:

$$
\operatorname{Pr}\left[(\Delta Y, \Delta X)=\left(0,\langle k\rangle_{t}\right)\right] \leq \frac{1}{2^{n}}
$$

DP Analysis of ZHash (Cont'd)

Case 2

- There exist (at least) two blocks $r, s: M_{r} \neq M_{r}^{\prime}$ and $M_{s} \neq M_{s}^{\prime}$

$$
\begin{array}{ll}
\Delta X=\Delta X_{r} \oplus \Delta X_{s} \oplus \Delta_{1}, & \Delta_{1} \stackrel{\text { def }}{=}\langle k\rangle_{t} \oplus \bigoplus_{1 \leq i \leq m, i \notin\{r, s\}} \Delta X_{i} \\
\Delta Y=\lambda_{r} \cdot \Delta Y_{r} \oplus \lambda_{s} \cdot \Delta Y_{s} \oplus \Delta_{2}, & \Delta_{2} \stackrel{\text { def }}{=} 0 \oplus \bigoplus_{1 \leq i \leq m, i \notin\{r, s\}} \lambda_{i} \cdot \Delta Y_{i} .
\end{array}
$$

■ Substitute $\Delta_{3}=\Delta_{1} \oplus \Delta M_{R}[r] \oplus \Delta M_{R}[s]$:

$$
\operatorname{Pr}\left[\begin{array}{c}
\Delta X=\langle k\rangle_{t} \\
\Delta Y=0
\end{array}\right]=\operatorname{Pr}\left[\begin{array}{c}
\operatorname{MSB}_{t}\left(\Delta Y_{r} \oplus \Delta Y_{s}\right)=\Delta_{3} \\
\lambda_{r} \cdot \Delta Y_{r} \oplus \lambda_{s} \cdot \Delta Y_{s}=\Delta_{2}
\end{array}\right]
$$

$$
\lambda_{r}=2^{m+1-r}, \lambda_{r}=2^{m+1-r}
$$

DP Analysis of ZHash (Cont'd)

Case 2

■ Over all n-bit Δ_{4} that yield t-bit differences Δ_{3} :

$$
\operatorname{Pr}\left[\begin{array}{c}
\Delta X=\langle k\rangle, \\
\Delta Y=0
\end{array}\right] \leq \max _{\substack{\Delta_{3} \in\{0,1\}^{t} \\
\Delta_{2} \in\{0,1\}^{n}}} \sum_{\substack{\Delta_{4} \in\{0,1\}^{n} \\
\operatorname{MSB}_{t}\left(\Delta_{4}\right)=\Delta_{3}}} \operatorname{Pr}\left[\begin{array}{c}
\Delta Y_{r} \oplus \Delta Y_{s}=\Delta_{4}, \\
\lambda_{r} \cdot \Delta Y_{r} \oplus \lambda_{s} \cdot \Delta Y_{s}=\Delta_{2}
\end{array}\right]
$$

■ Cannot assume ΔY_{r} and ΔY_{s} are independent

$$
\lambda_{r}=2^{m+1-r}, \lambda_{r}=2^{m+1-r}
$$

DP Analysis of ZHash (Cont'd)

Case 2

■ Event STColl($(r): \exists i \in\{1, \ldots, m\}, i \neq r:\left(S_{i}, T_{i}\right)=\left(S_{r}, T_{r}\right)$ or $\left(S_{i}^{\prime}, T_{i}^{\prime}\right)=\left(S_{r}, T_{r}\right)$

$$
\operatorname{Pr}[\operatorname{STColl}(r)] \leq \frac{(m+1)+\left(m^{\prime}+1\right)-1}{2^{n+t}} \leq \frac{\left(m+m^{\prime}+1\right)}{2^{n+t}}
$$

■ Similar for $\left(S_{s}, T_{s}\right)$
■ $\operatorname{STColl}(r, s)=\operatorname{STColl}(r) \vee \operatorname{STColl}(s):$

$$
\operatorname{Pr}[\operatorname{STColl}(r, s)] \leq \frac{2\left(m+m^{\prime}+1\right)}{2^{n+\min \{n, t\}}}
$$

DP Analysis of ZHash (Cont'd)

Case 2

■ If $\left(S_{r}, T_{r}\right)$ fresh $\Longrightarrow \Delta Y_{r}$ sampled from $2^{n}-\left(m+m^{\prime}+1\right)$ values
■ If $\left(S_{s}, T_{s}\right)$ fresh $\Longrightarrow \Delta Y_{s}$ sampled from $2^{n}-\left(m+m^{\prime}+1\right)$ values

$$
\begin{aligned}
& \qquad \operatorname{Pr}[E] \stackrel{\text { def }}{=} \max _{\substack{\Delta_{3} \in\{0,1\}^{t} \\
\Delta_{2} \in\{0,1\}^{n}}} \sum_{\substack{\Delta_{4} \in\{0,1\}^{n} \\
\mathrm{MSB}_{t}\left(\Delta_{4}\right)=\Delta_{3}}} \operatorname{Pr}\left[\begin{array}{c}
\Delta Y_{r} \oplus \Delta Y_{s}=\Delta_{4}, \\
\lambda_{r} \cdot \Delta Y_{r} \oplus \lambda_{s} \cdot \Delta Y_{s}=\Delta_{2}
\end{array}\right] \\
& \operatorname{Pr}[E \mid \neg \operatorname{STCoIl}(r, s)] \leq 2^{n-t} \cdot \frac{1}{\left(2^{n}-\left(m+m^{\prime}+1\right)\right)^{2}} \leq \frac{4}{2^{n+t}} \\
& \text { since we assume } m, m^{\prime}<2^{n-2} \\
& \text { ■ It follows }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[\begin{array}{c}
\Delta X=\langle k\rangle_{t} \\
\Delta Y=0
\end{array}\right] & \leq \operatorname{Pr}[E \mid \neg \operatorname{STColl}(r, s)]+\operatorname{Pr}[\operatorname{STColl}(r, s)] \\
& \leq \frac{4}{2^{n+t}}+\frac{2\left(m+m^{\prime}+1\right)}{2^{n+t}}
\end{aligned}
$$

DP Analysis of ZHash (Cont'd)

Case 3

■ M^{\prime} is one block longer than $M: m^{\prime}=m+1$
■ Padding and length encoding ensures $m>0$

- The chaining indices are shifted

$$
Y=\sum_{i=1}^{m} \mathbf{2}^{\mathbf{m}+\mathbf{1}-\mathbf{i}} Y_{i} \quad \text { whereas } \quad Y^{\prime}=\sum_{i=1}^{m+1} \mathbf{2}^{\mathbf{m}+\mathbf{2}-\mathbf{i}} Y_{i}^{\prime}
$$

■ Simply shift blocks by one? \Longrightarrow factors of masks L, R not shifted:

$$
S_{i}=M_{L}[i] \oplus 2^{i-1} L \quad S_{i}^{\prime}=M_{L}^{\prime}[i] \oplus 2^{i-1} L
$$

DP Analysis of ZHash (Cont'd)

Case 3

■ Goal:

$$
\operatorname{Pr}[E] \stackrel{\text { def }}{=} \max _{\substack{\Delta_{1} \in\{0,1\}^{t} \\
\Delta_{2} \in\{0,1\}^{n}}} \sum_{\substack{\Delta_{3} \in\{0,1\}^{n} \\
\operatorname{MSB}_{t}\left(\Delta_{3}\right)=\Delta_{1}}} \operatorname{Pr}\left[\begin{array}{c}
Y_{m+1}^{\prime} \oplus Y_{m}^{\prime} \oplus Y_{m}=\Delta_{3} \\
2\left(Y_{m+1}^{\prime} \oplus 2 Y_{m}^{\prime} \oplus Y_{m}\right)=\Delta_{2}
\end{array}\right]
$$

■ Substitute $A=Y_{m+1}^{\prime} \oplus Y_{m}, B=Y_{m}^{\prime}$:

$$
\operatorname{Pr}\left[\begin{array}{c}
A \oplus B=\Delta_{3} \\
A \oplus 2 B=\Delta_{4}
\end{array}\right]
$$

- Unique solution (A, B) in $\mathbb{F}_{2^{n}}$:

$$
B=3^{-1}\left(\Delta_{3} \oplus \Delta_{4}\right) \quad A=\Delta_{3} \oplus B
$$

DP Analysis of ZHash (Cont'd)

Case 3

- Similar approach as in Case 2:

Boolean variable $\mathrm{STColl}^{\prime}(m+1)$ for M_{m+1}^{\prime} is fresh:

$$
\operatorname{Pr}\left[\begin{array}{c}
A \oplus B=\Delta_{3} \\
A \oplus 2 B=\Delta_{4}
\end{array}\right] \leq \operatorname{Pr}\left[\left.\begin{array}{c}
A \oplus B=\Delta_{3} \\
A \oplus 2 B=\Delta_{4}
\end{array} \right\rvert\, \neg \operatorname{STColl}^{\prime}(m+1)\right]+\operatorname{Pr}\left[\operatorname{STColl}^{\prime}(m+1)\right]
$$

- It holds

$$
\operatorname{Pr}\left[\operatorname{STCoIl}^{\prime}(m+1)\right] \leq \frac{m+m^{\prime}+1}{2^{n+t}}
$$

DP Analysis of ZHash (Cont'd)

Case 3

■ Otherwise, Y_{m+1}^{\prime} is randomly chosen from $2^{n}-\left(m+m^{\prime}+1\right)$ values
■ Choice of Y_{m+1}^{\prime} (only in A) independent from Y_{m}^{\prime} (only in B):

$$
\operatorname{Pr}\left[\begin{array}{c}
B=3^{-1}\left(\Delta_{3} \oplus \Delta_{4}\right) \\
A=B \oplus \Delta_{3}
\end{array}\right] \leq \frac{1}{2^{n}} \cdot \frac{1}{2^{n}-\left(m+m^{\prime}+1\right)} \leq \frac{2}{2^{2 n}}
$$

■ Summing over $2^{n-t} t$-bit values:

$$
\begin{aligned}
\operatorname{Pr}\left[\begin{array}{c}
\Delta X=\langle k\rangle_{t} \\
\Delta Y=0
\end{array}\right] & \leq \operatorname{Pr}\left[E \mid \neg \operatorname{STCoII}^{\prime}(m+1)\right]+\operatorname{Pr}\left[\operatorname{STCoII}^{\prime}(m+1)\right] \\
& \leq \frac{2}{2^{n+t}}+\frac{m+m^{\prime}+1}{2^{n+t}}
\end{aligned}
$$

DP Analysis of ZHash (Cont'd)

Case 4

■ M^{\prime} exceeds M by ≥ 2 blocks
■ Similar strategy as in Case 2, with block indices $m+1, m+2$:

$$
\begin{aligned}
\operatorname{Pr}\left[\begin{array}{c}
\Delta X=\langle k\rangle_{t} \\
\Delta Y=0
\end{array}\right] & \leq \operatorname{Pr}\left[E \mid \neg \operatorname{STCoII}^{\prime}\left(m^{\prime}-1, m^{\prime}\right)\right]+\operatorname{Pr}\left[\operatorname{STCoII}^{\prime}\left(m^{\prime}-1, m^{\prime}\right)\right] \\
& \leq \frac{4}{2^{n+t}}+\frac{2\left(m+m^{\prime}+1\right)}{2^{n+t}}
\end{aligned}
$$

- Note: same bound for all cases but C1
- We can handle C1 with care when bounding over q queries

DP Analysis of ZHash (Cont'd)

From 2 to q queries: Case 1

- Same strategy for scenario $t>n$
- Case 1: For each $M_{R}[s]$ and fixed k, there is at most one $M_{R}^{\prime}[s]$ with $\Delta M_{R}[s]=\langle k\rangle_{t}$

$$
\begin{aligned}
& \max _{\underline{M}^{1}, \ldots, \underline{M}^{q}} \sum_{i<j}^{q} \sum_{k=0}^{d^{i}+d^{j}-2} \mathrm{DP}_{\mathrm{ZHASH}[\pi]}\left[\left(\underline{M}^{i}, d^{i}\right),\left(\underline{M}^{j}, d^{j}\right),\left(0^{n},\langle k\rangle_{t}\right)\right] \\
& \leq \max _{\underline{M}^{1}, \ldots, \underline{M}^{q}} \sum_{i=1}^{q} \sum_{k=0}^{2\left(d^{i}-1\right)} \frac{1}{2^{n}} \leq \max _{\underline{M}^{1}, \ldots, \underline{M}^{q}} \sum_{i=1}^{q} \frac{2 d^{i}}{2^{n}} \leq \frac{2 \sigma^{\prime}}{\underline{2^{n}}}
\end{aligned}
$$

DP Analysis of ZHash (Cont'd)

From 2 to q queries: Cases 2-4

$$
\begin{aligned}
& \sum_{i<j}^{q}\left(\frac{2\left(m^{i}+m^{j}+1\right)}{2^{n+\min \{n, t\}}}+\frac{4\left(d^{i}+d^{j}\right)}{2^{n+\min \{n, t\}}}\right) \\
\leq & \frac{2(q-1) \sigma}{2^{n+\min \{n, t\}}+\sum_{i<j}^{q}\left(\frac{2}{2^{n+\min \{n, t\}}}+\frac{4\left(d^{i}+d^{j}\right)}{2^{n+\min \{n, t\}}}\right)} \\
\leq & \frac{2(q-1) \sigma+q^{2}+4(q-1) \sigma^{\prime}}{2^{n+\min \{n, t\}}}
\end{aligned}
$$

$$
\overline{\sum_{i<j}^{q}\left(m^{i}+m^{j}\right)=(q-1) \sigma \text { and } \sum_{i<j}^{q}\left(d^{i}+d^{j}\right)=(q-1) \sigma^{\prime}}
$$

DP Analysis of ZHash (Cont'd)

Bound

Lemma 4

Let $\widetilde{\pi} \longleftarrow \widetilde{\operatorname{Perm}}\left(\mathcal{T}^{\prime},\{0,1\}^{n}\right)$. Given q pairwise distinct tuples $\left(\underline{M}^{i}, d^{i}\right) \in \mathcal{M} \times \mathcal{D}$, where each \underline{M}^{i} consists of less than $2^{\min \{n, t\}-3}$ blocks of ($n+t$) bit each, and of at most σ blocks in total, and whose output lengths $\sum_{i=1}^{q} d^{i} \leq \sigma^{\prime}$. Then, it holds that

$$
\begin{aligned}
& \max _{\underline{M}^{1}, \ldots, \underline{M}^{q}} \sum_{i<j}^{q} \sum_{k=0}^{d^{i}+d^{j}-2} \mathrm{DP}_{\mathrm{ZHASH}[\pi]}\left[\left(\underline{M}^{i}, d^{i}\right),\left(\underline{M}^{j}, d^{j}\right),\left(0^{n},\langle k\rangle_{t}\right)\right] \\
& \leq \frac{2 \sigma^{\prime}}{2^{n}}+\frac{2(q-1) \sigma+q^{2}+4(q-1) \sigma^{\prime}}{2^{n+\min \{n, t\}}}
\end{aligned}
$$

(n, t, ε)-tAXU Analysis of ZHash

- Goal: Fix any $\nabla X \in\{0,1\}^{t}$, probability $\Delta X \stackrel{\text { def }}{=} X \oplus X^{\prime} \stackrel{?}{=} \nabla X$
- Same two scenarios ($t \leq n$ and $t>n$), same four cases each:

(n, t, ε)-tAXU Analysis of ZHash (Cont'd) Case 1

■ Consider block $M_{s} \neq M_{s}^{\prime}$:

$$
\begin{aligned}
\operatorname{Pr}[E] & \stackrel{\text { def }}{=} \sum_{\nabla Y \in\{0,1\}^{n}} \max _{\nabla X \in\{0,1\}^{t}} \operatorname{Pr}\left[\begin{array}{l}
\Delta X=\nabla X \\
\Delta Y=\nabla Y
\end{array}\right] \\
\operatorname{Pr}[E] & \leq \operatorname{Pr}[E \mid \neg \operatorname{STColl}(s)]+\operatorname{Pr}[\operatorname{STColl}(s)] \\
& \leq \frac{1}{2^{n}-\left(m+m^{\prime}+1\right)}+\frac{\left(m+m^{\prime}+1\right)}{2^{n+t}} \\
& \leq \frac{2}{2^{t}}+\frac{m+m^{\prime}+1}{2^{n+t}}
\end{aligned}
$$

■ Case 3 similar: uses STColl $^{\prime}(m+1)$

(n, t, ε)-tAXU Analysis of ZHash (Cont'd)

Cases 2-4

■ At least two blocks r, s exist: $M_{r} \neq M_{r}^{\prime}, M_{s} \neq M_{s}^{\prime}$
■ We fix the smallest such r, s :

$$
\begin{aligned}
\operatorname{Pr}[E] & \stackrel{\text { def }}{=} \sum_{\nabla Y \in\{0,1\}^{n}} \max _{\nabla X \in\{0,1\}^{t}} \operatorname{Pr}\left[\begin{array}{l}
\Delta X=\nabla X \\
\Delta Y=\nabla Y
\end{array}\right] \\
\operatorname{Pr}[E] & \leq \operatorname{Pr}[E \mid \neg \operatorname{STColl}(r, s)]+\operatorname{Pr}[\operatorname{STColl}(r, s)] \\
& \leq 2^{n} \cdot \frac{4}{2^{n+t}}+\frac{2\left(m+m^{\prime}+1\right)}{2^{n+t}} \\
& \leq \frac{4}{2^{t}}+\frac{2\left(m+m^{\prime}+1\right)}{2^{n+t}}
\end{aligned}
$$

■ Case 4 similar: uses $\operatorname{STColl}^{\prime}\left(m^{\prime}-1, m^{\prime}\right)$
■ Scenario $t>n$ similar

(n, t, ε)-tAXU Analysis of ZHash (Cont'd)

Theorem 5

Let $\widetilde{\pi} \leftrightarrow \widetilde{\operatorname{Perm}}\left(\mathcal{T}^{\prime},\{0,1\}^{n}\right)$. For distinct inputs (\underline{M}, d) and $\left(\underline{M}^{\prime}, d^{\prime}\right)$ of at most m and $m^{\prime}(n+t)$-bit blocks, respectively, with $1 \leq m \leq m^{\prime}<2^{\min \{n, t\}-3}$, $\mathrm{ZHASH}[\widetilde{\pi}]$ is (n, t, ε)-tAXU for

$$
\varepsilon \leq \frac{2\left(m+m^{\prime}+1\right)}{2^{n+\min \{n, t\}}}+\frac{4}{2^{\min \{n, t\}}}
$$

(n, t, ε)-tAXU Analysis of ZHash (Cont'd) Case 1

■ Consider block $M_{s} \neq M_{s}^{\prime}$:

$$
\begin{aligned}
\operatorname{Pr}[E] & \stackrel{\text { def }}{=} \sum_{\nabla Y \in\{0,1\}^{n}} \max _{\nabla X \in\{0,1\}^{t}} \operatorname{Pr}\left[\begin{array}{l}
\Delta X=\nabla X \\
\Delta Y=\nabla Y
\end{array}\right] \\
\operatorname{Pr}[E] & \leq \operatorname{Pr}[E \mid \neg \operatorname{STColl}(s)]+\operatorname{Pr}[\operatorname{STColl}(s)] \\
& \leq \frac{1}{2^{n}-\left(m+m^{\prime}+1\right)}+\frac{\left(m+m^{\prime}+1\right)}{2^{n+t}} \\
& \leq \frac{2}{2^{t}}+\frac{m+m^{\prime}+1}{2^{n+t}}
\end{aligned}
$$

■ Case 3 similar: uses STColl $^{\prime}(m+1)$

(n, t, ε)-tAXU Analysis of ZHash (Cont'd)

Cases 2-4

■ At least two blocks r, s exist: $M_{r} \neq M_{r}^{\prime}, M_{s} \neq M_{s}^{\prime}$
■ We fix the smallest such r, s :

$$
\begin{aligned}
\operatorname{Pr}[E] & \stackrel{\text { def }}{=} \sum_{\nabla Y \in\{0,1\}^{n}} \max _{\nabla X \in\{0,1\}^{t}} \operatorname{Pr}\left[\begin{array}{l}
\Delta X=\nabla X \\
\Delta Y=\nabla Y
\end{array}\right] \\
\operatorname{Pr}[E] & \leq \operatorname{Pr}[E \mid \neg \operatorname{STColl}(r, s)]+\operatorname{Pr}[\operatorname{STColl}(r, s)] \\
& \leq 2^{n} \cdot \frac{4}{2^{n+t}}+\frac{2\left(m+m^{\prime}+1\right)}{2^{n+t}} \\
& \leq \frac{4}{2^{t}}+\frac{2\left(m+m^{\prime}+1\right)}{2^{n+t}}
\end{aligned}
$$

■ Case 4 similar: uses $\operatorname{STColl}^{\prime}\left(m^{\prime}-1, m^{\prime}\right)$
■ Scenario $t>n$ similar

