Single Key Variant of PMAC_Plus

Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, Liting Zhang

Fast Software Encryption, 2018, Bruges

7th March, 2018

1k-PMAC_Plus: Single Key Variant of PMAC_Plus

- First Single Key Beyond Birthday Bound (BBB) Secure Rate-1 Block-cipher based PRF.
- Achieves Better Security Bound than Existing Bound for PMAC_Plus

- Alice and Bob shares a secret key K.
- Alice generates tag $T = F_{\mathcal{K}}(M)$ and send (M, T) pair to Bob.
- Bob verifies whether tag is valid or not.

- Alice and Bob shares a secret key K.
- Alice generates tag $T = F_{\mathcal{K}}(M)$ and send (M, T) pair to Bob.
- Bob verifies whether tag is valid or not.

Security

It is hard for Eve to generate T' for a message M'.

MAC Security

• Adversary can not generate fresh valid (message,tag) pairs.

向 ト イヨ ト イヨ ト

э

• $\operatorname{Adv}_{\mathsf{F}}^{\operatorname{mac}}(A) := \operatorname{Pr}_{\mathcal{K}}[A^{\mathcal{F}_{\mathcal{K}}} \text{ forges }] \leq \epsilon$

MAC Security

- Adversary can not generate fresh valid (message,tag) pairs.
- $\operatorname{Adv}_{\mathsf{F}}^{\operatorname{mac}}(A) := \operatorname{Pr}_{\mathcal{K}}[A^{\mathcal{F}_{\mathcal{K}}} \text{ forges }] \leq \epsilon$

PRF Security

• Adversary can not distinguish from a function chosen uniformly at random.

•
$$\mathsf{Adv}_{\mathsf{F}}^{\mathrm{prf}}(A) := |\mathsf{Pr}_{\mathcal{K}}[A^{\mathcal{F}_{\mathcal{K}}} = 1] - \mathsf{Pr}_{\$}[A^{\$} = 1]| \le \epsilon$$

Parallelizable MAC (PMAC) By Black and Rogaway

Parallelizable MAC (PMAC) By Black and Rogaway

Security of PMAC: $5\sigma q/2^n$ by Nandi et al. (JMC, 2008), Tightness: Gaži et al. (IACR Trans. 2016)

PMAC_Plus by Yasuda, CRYPTO 2011

Beyond Birthday Bound secure block cipher based PRF.

Features of PMAC_Plus

- Parallel rate 1 Construction.
- Two layers of input masking
- Two layers of linear output mixing and hence the internal state size becomes doubled.
- Three independent block cipher keys
- Offers $O(\frac{q^3\ell^3}{2^{2n}})$ PRF security bound.

Features of PMAC_Plus

- Parallel rate 1 Construction.
- Two layers of input masking
- Two layers of linear output mixing and hence the internal state size becomes doubled.
- Three independent block cipher keys
- Offers $O(\frac{q^3\ell^3}{2^{2n}})$ PRF security bound.

[Yasuda, CRYPTO 2011]: "This raises a challenge to come up with a 1-key rate-1 MAC construction which is secure beyond the birthday bound"

Designing towards 1k-PMAC_Plus: Step I

Designing towards 1k-PMAC_Plus: Step I

Same Construction, Single Key: Is it secure?

Designing towards 1k-PMAC_Plus: Step I

Distinguishing Attack with One Query:Single block query $\implies (T = 0)$

Designing towards 1k-PMAC_Plus: Step II

Domain Separation for the two lanes:

Designing towards 1k-PMAC_Plus: Step II

Domain Separation for the two lanes:

Is this secure beyond the birthday bound?

Designing towards 1k-PMAC_Plus: Step II

Birthday Bound Distinguishing Attack:

• Make single block queries until a collision occurs.

◆ 同 ♪ ◆ 三 ♪

• Append a block and distinguish.

Xor a non-zero constant in second lane:

Is this construction secure beyond the birthday bound ?

Designing towards 1k-PMAC_Plus: Step III

Birthday Bound Distinguishing Attack:

- Make $O(2^{n/2})$ many queries.
- Collision Probability in real world is substantially higher.

э

* E > * E >

Multiply a non-zero constant in second lane:

1k-PMAC_Plus: first single-keyed B/C based BBB secure PRF.

1k-PMAC_Plus is structurally similar to PMAC_Plus with following minor differences:

- Second output layer is multiplied by 2.
- Requires Single block cipher key.
- Uses bit chopping function fix₀, fix₁ (Not necessary).
- Offers $O(\frac{q^3\ell^2}{2^{2n}})$ PRF security bound.

Theorem (Security Result)

1k-PMAC_Plus is secure upto $O(\sigma/2^n) + O(q\sigma^2/2^{2n})$, where σ is the total number of message blocks being queried.

Theorem (Security Result)

1k-PMAC_Plus is secure upto $O(\sigma/2^n) + O(q\sigma^2/2^{2n})$, where σ is the total number of message blocks being queried.

Proof Idea

- We prove using Coefficients-H technique:
 - Identify and bound the probability of bad transcripts (or bad events)
 - Realizing a good transcript is as likely as in the real and ideal world.

Transcript

List of all queries, responses along with internal variables. We denote it as $\tau.$

Attainable Transcript

 τ is attainable if the probability of realizing that transcript in ideal world is non zero.

$$\mathcal{V} := \underbrace{\mathcal{V}_g}_{\text{set of good transcripts}} \sqcup \underbrace{\mathcal{V}_b}_{\text{set of bad transcripts}} \text{ is the set of all}$$

Revisiting Coefficients H Technique: Theorem

- Suppose, $\exists \epsilon_{\mathrm{bad}} \geq 0$ s.t $\Pr[X_{\mathrm{id}} \in \mathcal{V}_{\mathrm{b}}] \leq \epsilon_{\mathrm{bad}}$

- Suppose,
$$\exists \epsilon_{\mathrm{ratio}} \geq 0$$
 s.t $\tau \in \mathcal{V}_{\mathrm{g}}$, $\frac{\rho_{\mathrm{re}}}{\rho_{\mathrm{id}}} := \frac{\Pr[X_{\mathrm{re}} = \tau]}{\Pr[X_{\mathrm{id}} = \tau]} \geq 1 - \epsilon_{\mathrm{ratio}}$

Then

$$\mathsf{Adv}_{\text{Real}}^{\text{Ideal}}(\mathcal{A}) \leq \epsilon_{\text{ratio}} + \epsilon_{\text{bad}}.$$

- ∢ ≣ ▶

Revisiting Coefficients H Technique: Theorem

- Suppose, $\exists \epsilon_{\mathrm{bad}} \geq 0$ s.t $\Pr[X_{\mathrm{id}} \in \mathcal{V}_{\mathrm{b}}] \leq \epsilon_{\mathrm{bad}}$

- Suppose,
$$\exists \epsilon_{\mathrm{ratio}} \geq 0$$
 s.t $\tau \in \mathcal{V}_{\mathrm{g}}$, $\frac{p_{\mathrm{re}}}{p_{\mathrm{id}}} := \frac{\Pr[X_{\mathrm{re}} = \tau]}{\Pr[X_{\mathrm{id}} = \tau]} \geq 1 - \epsilon_{\mathrm{ratio}}$

Then

$$\mathsf{Adv}_{\text{Real}}^{\text{Ideal}}(\mathcal{A}) \leq \epsilon_{\text{ratio}} + \epsilon_{\text{bad}}.$$

Bounding PRF Advantage of 1k-PMAC_Plus

If ${\rm Ideal}=\mathsf{RF}$ and ${\rm Real}=\mathsf{1}k-\mathsf{PMAC_Plus},$ some keyed construction over the same domain, then

$$\mathsf{Adv}_{1\mathsf{k}-\mathsf{PMAC}_{\mathsf{Plus}}}^{\mathrm{prf}}(\mathcal{A}) \leq \epsilon_{\mathrm{ratio}} + \epsilon_{\mathrm{bad}}.$$

э

∃ >

- **→** → **→**

Transcripts for 1k-PMAC_Plus

$$(M_j^i, X_j^i, Y_j^i, \Sigma_i, \Theta_i, \widehat{\Sigma}_i, \widehat{\Theta}_i, T_i)_i$$

Bad Transcripts for 1k-PMAC_Plus

• $\exists i : T_i = 0.$

- $\exists i$: Both Σ_i and Θ_i is non-fresh
- Additional Bad Events due to Permutation Compatibility:
 - $\exists i$: Both Σ_i non-fresh, Θ_i is fresh, $\widehat{\Theta_i}$ is non-fresh.
 - $\exists i$: Both Θ_i non-fresh, Σ_i is fresh, Σ_i is non-fresh.

Implication for Good Transcripts for 1k-PMAC_Plus

 $\forall i, \Sigma_i \text{ or } \Theta_i \text{ is fresh and } (\Sigma_i, \Theta_i, \widehat{\Sigma}_i, \widehat{\Theta}_i) \text{ is permutation compatible:}$

- We can use Sum of Permutation Result

ECF : $\Sigma_i \in {\Sigma_j, X_{\alpha}^j}, \Theta_i \in {\Theta_k, X_{\alpha}^k}$

RCOLL₁: Σ_i = Σ_j and Θ_i is fresh but Θ̂_i ∈ Ran(E_K) **RCOLL**₂: Θ_i = Θ_i and Σ_i is fresh but Σ̂_i ∈ Ran(E_K)

э

PCF1₁: Σ_i = X^{*}_α and Θ_i is fresh but Y^{*}_α ⊕ T_i = Y^k_β
PCF1₂: Θ_i = X^{*}_α and Σ_i is fresh but Y^{*}_α ⊕ T_i = Y^k_β

- ∢ ≣ ▶

• PCF2₁: $\Sigma_i = X_{\alpha}^j$ and Θ_i is fresh but $\Sigma_k = X_{\beta}^l$ and $Y_{\alpha}^j \oplus T_i = Y_{\beta}^l \oplus T_k$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

• PCF2₂: $\Sigma_i = X_{\alpha}^j$ and Θ_i is fresh but $\Theta_k = X_{\beta}^l$ and $Y_{\alpha}^j \oplus T_i = Y_{\beta}^l \oplus T_k$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

• PCF2₃: $\Theta_i = X_{\alpha}^j$ and Σ_i is fresh but $\Theta_k = X_{\beta}^l$ and $Y_{\alpha}^j \oplus T_i = Y_{\beta}^l \oplus T_k$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Summary of Probability of Bad Events

Events	Probability
ECF	$O(q\sigma^2/2^{2n})$
$\mathrm{RCOLL} = \mathrm{ROLL}_1 \lor \mathrm{RCOLL}_2$	$O(q^2\sigma/2^{2n})$
$\mathrm{PCF1} = \mathrm{PCF1}_1 \lor \mathrm{PCF1}_2$	$O(q\sigma^2/2^{2n})$
$PCF2 = PCF2_1 \lor PCF2_2 \lor PCF2_3$	$O(q^2\sigma^2/2^{3n}+\sigma/2^n)$

- ∢ ≣ ▶

Summary of Probability of Bad Events

Events	Probability
ECF	$O(q\sigma^2/2^{2n})$
$\mathrm{RCOLL} = \mathrm{ROLL}_1 \lor \mathrm{RCOLL}_2$	$O(q^2\sigma/2^{2n})$
$\mathrm{PCF1} = \mathrm{PCF1}_1 \lor \mathrm{PCF1}_2$	$O(q\sigma^2/2^{2n})$
$\mathrm{PCF2} = \mathrm{PCF2}_1 \lor \mathrm{PCF2}_2 \lor \mathrm{PCF2}_3$	$O(q^2\sigma^2/2^{3n}+\sigma/2^n)$

Bounding the Probability of Bad Transcript

 $\epsilon_{\rm bad} = O(q\sigma^2/2^{2n} + \sigma/2^n)$

御 と く ヨ と く ヨ と

High Interpolation Probability of a good transcript for 1k-PMAC_Plus

- Sum of PRP under conditional distribution

Sum of Identical PRP under Conditional Distribution

Sum of Identical PRP: Existing Results

Sum of Identical PRP: Secure upto $O(q/2^n)$ using Mirror Theory and χ^2 method.

Under Conditional Distribution

What happens when some i/p-o/p of permutations are fixed?

Our Result on Sum of Identical PRP Under Conditional Distribution

Theorem

Let (u_1, \ldots, u_s) and (v_1, \ldots, v_s) are all distinct. Then for all distinct $((X_1, Y_1) \ldots, (X_q, Y_q))$ and all non zero (T_1, \ldots, T_q) ,

$$\begin{aligned} \Pr[\Pi(X_i \| 0) \oplus \Pi(Y_i \| 1) &= T_i, i \in [q] \mid \Pi(u_1) = v_1, \dots, \Pi(u_s) = v_s] \\ &\geq (1 - \epsilon)/2^{nq}, \text{ where } \epsilon \leq 4qs^2 + 8sq^2 + 6q^3/2^{2n} \end{aligned}$$

Bounding the Probability for a Good Transcript

 $\epsilon_{
m ratio} = O(q\sigma^2/2^{2n})$

同 ト イ ヨ ト イ ヨ ト

Necessity of the Domain Separation of Two Lanes

Without fix_0, fix_1

ECF :=
$$\Sigma_i \in {\Sigma_j, X_{\alpha}^j}$$
 and $\Theta_i \in {\Theta_k, X_{\alpha}^k}$

Necessity of the Domain Separation of Two Lanes

Without fix_0, fix_1

ECF :=
$$\Sigma_i \in {\Sigma_j, X_{\alpha}^j}$$
 and $\Theta_i \in {\Theta_k, X_{\alpha}^k}$

With fix_0, fix_1

$$ext{ECF} := \mathbf{\Sigma}_i \in \{\mathbf{\Sigma}_j, \Theta_j, X^j_lpha\}$$
 and $\Theta_i \in \{\mathbf{\Sigma}_k, \Theta_k, X^k_lpha\}$

伺 ト イヨ ト イヨ

э

Necessity of the Domain Separation of Two Lanes

Without fix_0, fix_1

ECF :=
$$\Sigma_i \in {\Sigma_j, X_{\alpha}^j}$$
 and $\Theta_i \in {\Theta_k, X_{\alpha}^k}$

With fix_0, fix_1

$$\mathrm{ECF} := \Sigma_i \in \{\Sigma_j, \Theta_j, X^j_{lpha}\}$$
 and $\Theta_i \in \{\Sigma_k, \Theta_k, X^k_{lpha}\}$

To avoid analyzing extra bad events, we incorporate fix_0, fix_1 ; Security is not hampered at all!

Main Contribution

- 1k-PMAC_Plus: First Single Key BBB Secure PRF.
- Improved Security bound: $O(q^3\ell^3/2^{2n}) o O(q\sigma^2/2^{2n})$

Future Directions

- Tightness of this bound.
- How to increase the security to 3n/4-bits?

Thank You For Your Kind Attention! Questions?