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Abstract. We make a number of remarks about the AES-GCM-SIV nonce-misuse resis-
tant authenticated encryption scheme currently considered for standardization by the
Crypto Forum Research Group (CFRG). First, we point out that the security analysis
proposed in the ePrint report 2017/168 is incorrect, leading to overly optimistic
security claims. We correct the bound and re-assess the security guarantees offered
by the scheme for various parameters. Second, we suggest a simple modification to
the key derivation function which would improve the security of the scheme with
virtually no efficiency penalty.
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1 Introduction

AUTHENTICATED ENCRYPTION. An authenticated encryption scheme aims at providing
both confidentiality and authenticity when communicating over an insecure channel. The
recent CAESAR competition [CAE] has spawned a lot of candidate schemes as well as
more theoretical works on the subject.

One of the most widely deployed AEAD schemes today is GCM [MV04], which combines,
in the “encrypt-then-MAC” fashion [BN0O], a Wegman-Carter MAC [WC81, Sho96] based
on a polynomial hash function called GHASH, and the counter encryption mode [BDJR97].
GCM is nonce-based [Rog04], i.e., for each encryption the sender must provide a non-
repeating value V. Unfortunately, the security of GCM becomes very brittle in case the
same nonce N is reused (something called nonce-misuse), in particular a simple attack
allows to completely break authenticity [Jou06, BZD"16] (damages to confidentiality are
to some extent less dramatic [ADL17]).

AES-GCM-SIV. In order to remedy the nonce-misuse problem faced by GCM, Gueron
and Lindell [GL15] proposed the GCM-SIV mode. It is based on the same components as
GCM (and as such it can benefit from dedicated CPU instructions that were developed to
accelerate GCM) but it combines them through the SIV composition method [RS06] which
endows the resulting scheme with “nonce-misuse resistance”, meaning that repeating a
nonce does not affect authenticity of the scheme and only allows an adversary to detect if
the same message was already encrypted along with the same nonce before.

Some time later, Gueron, Langley, and Lindell [GLL16] proposed a variant of GCM-SIV
called AES-GCM-SIV! as a candidate for standardization to the Crypto Forum Research
Group (CFRG) of IETF. In order to overcome some limitations of GCM-SIV, this mode

1The name AES-GCM-SIV is somehow a misnomer: ingenuously, one would think that this designates
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slightly differs from the latter in essentially three ways: (i) it uses a variant of GHASH
called POLYVAL, (ii) it uses a key derivation function to derive a hashing key and an
encryption key from the nonce and the master key, whereas GCM-SIV uses hashing and
encryption keys that are independent from the nonce, and (iii) the initial counter consists
of the entire pseudorandom tag (except for its most significant bit), whereas in GCM-SIV
the 32 least significant bits of the counter are initialized with zeros. The last modification
was also suggested under the name GCM-SIV1 by Iwata and Minematsu [IM16]. A security
analysis of AES-GCM-SIV was proposed by the designers [GLL17], which covers versions 3
to 5 of the CFRG specification; weaknesses were spotted in version 2 of the specification
by the NSA [NSA17], leading to minor changes in the scheme.

OUR FINDINGS. We uncover a number of flaws in the security proofs presented in [GL15]
and [GLL17] which are serious enough to make the final security bound derived for
AES-GCM-SIV in [GLL17] essentially unusable. We give a simple attack that contradicts
this security bound, thus making the question of the provable security of AES-GCM-SIV
open. In order to fix the situation and correctly gauge AES-GCM-SIV’s security, we present
a corrected security proof and then turn to the task of interpreting this bound for concrete
parameters.
Based on their result, Gueron et al. [GLL17] claimed that the security bound of
AES-GCM-SIV is dominated by ,
R
L 1)

where n is the block length of the underlying block cipher, @ is the number of distinct

nonces used throughout encryption queries, R is the maximal number of repetitions of any

nonce in encryption queries, and the maximum message length is 2* — 1 blocks. This term

essentially captures the probability that two counters used for encryption collide, resulting

in an immediate break of confidentiality. We show that the corrected bound is actually
dominated by ,
R

et ©)

which is roughly 2* times larger than term (1) and which captures the adversary’s advantage
in distinguishing the outputs of the underlying block cipher from random (in other words,
this is a classical “PRP-PRF switching” term, albeit in the so-called “multi-user” setting).
We stress that this bound is tight and matched by a simple PRP-PRF distinguishing
attack. For large values of k (which can be up to 32), the difference between (1) and (2) is
significant, and many parameters deemed secure in [GLL17] are in fact not secure at all
(see Table 1 in Section 3.3). All details can be found in Section 3.

One might be tempted to argue that attacks against the counter encryption mode
based on distinguishing the underlying block cipher from a random function through (the
absence of) collisions in outputs is much less dangerous than collisions in counters which
immediately reveal the xor of two plaintext blocks. However, this is a very dubious and
dangerous reasoning, as shown by the following textbook example [Jou09, Sect. 6.1.1.2].
Assume that the adversary knows that a sender will encrypt one out of two possible
“unrelated” plaintexts My and M; of the same (sufficiently large) length (in blocks) ¢, and
that it intercepts the corresponding ciphertext C. Then it can simply compute C & M,
and C' @ M; and look for collisions among blocks of the resulting strings: no collision can
occur for the correct plaintext, whereas a collision will occur with probability roughly
£2/2™ for the incorrect plaintext. See also [McG12], which shows that this kind of attacks
can have a real impact in practice.

the AEAD scheme resulting from instantiating the GCM-SIV mode of operation [GL15] with the AES block
cipher. It is unclear whether the designers of AES-GCM-SIV think of it as a pure mode of operation, as
the AEAD scheme resulting from instantiating this mode with AES, or both.
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IMPROVING THE KEY DERIVATION FUNCTION. As a secondary contribution, we point
out that the key derivation function used in AES-GCM-SIV can be replaced with the “sum
of PRPs” construction [Luc00] or a variant of CENC [Iwa06] to improve the security bound
without harming efficiency. Details can be found in Section 5.

RECOMMENDATIONS. It is claimed in the abstract of [GLL17] (as well as in the CFRG
draft [GLL16, Sect. 9]) that AES-GCM-SIV “allows for encrypting up to 259 messages with
the same key” without any precision on the maximal message length. In light of our results,
we think that it is necessary to revise the recommended parameters and usage limitations
for AES-GCM-SIV. In particular, whether AES-GCM-SIV can securely encrypt more than
232 messages with the same key, which was the limit for both GCM and GCM-SIV and the
main reason for designing AES-GCM-SIV in the first place, becomes questionable. If we
follow NIST recommendations for GCM [Dwo07, Sect. 9] and pose that the adversary’s
advantage, dominated by Equation (2), should not exceed 2732, we see that for n = 128,
parameters @, R and k must satisfy

QR2 S 297—2]€-

Hence, for k = 32 and tolerating up to R = 2% repetitions of any nonce (as suggested
in [GLL16, Sect. 9]), the total number @Q of distinct nonces in encryptions must be at
most 2!7 (which implies that the total number of encrypted messages cannot be more than
QR = 22?%). In the case where nonces are drawn uniformly and independently at random,
the dominating term of the security bound becomes

INg
2n—2k+1 ?

where Ng is the total number of encryptions. Hence, when n = 128 and k = 32, Ng must
be less than approximately 23 for this term to be less than 2732,

In conclusion, the suitability of the adoption of AES-GCM-SIV as a CFRG standard or
its deployment in large-scale protocols such as QUIC [QUI] should be reconsidered based
on the new security analysis presented in this paper.

TIMELINE. This paper is based on ePrint version 20160310:063701 of [GL15] and ePrint
version 20170223:140759 of [GLL17]. These two ePrint reports were updated after we sent
a preliminary version of this paper to the authors on July 7, 2017.

2 Preliminaries

2.1 Notation and Security Definitions

GENERAL NOTATION. We let {0,1}", {0,1}*, and ({0,1}")" denote respectively the set
of bit strings of length n, the set of all bit strings (including the empty string of length 0),
and the set of non-empty tuples of n-bit strings. The length of a bit string x is denoted
|z|. Given two bit strings = and y, z||y denotes their concatenation. Given a bit string
x of length at least m, Trunc,,(x) denotes the m rightmost bits of x. Given an integer
1 < 2% —1, we let [i], denote its a-bit binary representation. Given a finite non-empty set
X, © +g X denotes the sampling of x uniformly at random in X. Given non-empty sets
X and Y, the set of all functions from X to ) is denoted Func(X,)), and the set of all
permutations of X" is denoted Perm(X).
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PRFs AND Brock CIPHERS. A keyed function with key space K, domain X, and range
Y is a function F : K x X — Y. We denote Fi(X) for F(K, X). A (q,t)-adversary against
F' is an algorithm A with oracle access to a function from X to ), making at most ¢ oracle
queries, running in time at most ¢, and outputting a single bit. The advantage of A in
breaking the PRF-security of F' is defined as

AdvP(A) = |Pr [K 5 K : AP = 1] — Pr [R < Func(X,) : A" =1]]|.

A block cipher with key space K and domain X is a mapping F : K x X — & such that
for any key K € K, X — E(K, X) is a permutation of X. We denote Ex(X) for E(K, X).
A (g,t)-adversary against F is an algorithm A with oracle access to a permutation of X,
making at most ¢ oracle queries, running in time at most ¢, and outputting a single bit.
The advantage of A in breaking the PRP-security of E is defined as

AdvyP(A) = |Pr [K 5 K : AP% = 1] — Pr [P <5 Perm(X) : AT =1]].

IV-BASED ENCRYPTION SCHEMES. Syntactically, an IV-based encryption (ivE) scheme is
a tuple IT = (K, Enc, Dec) where K is a non-empty key set and Enc and Dec are deterministic
algorithms. The encryption algorithm Enc takes as input a key K € IC, an initial value
IV € {0,1}** where ivl is the IV length, and a message M € {0,1}*, and outputs
a ciphertext C' € {0,1}*. The decryption algorithm Dec takes as input a key K € K,
an initial value IV € {0,1}*"!, and a ciphertext C' € {0,1}*, and outputs a message
M € {0,1}*. We require that

Dec(K,IV,Enc(K,IV,.M)) =M

for all tuples (K, IV, M) € K x {0,1}*"* x {0,1}*.

We denote Enc® the probabilistic algorithm which takes as input (K, M) € K x {0,1}*,
internally generates a uniformly random IV <g {0,1}*"*, computes C = Enc(K, IV, M),
and outputs (IV, C) € {0,1}*"2 x {0,1}*. We write Encs. (M) for Enc® (K, M). The security
of an ivE scheme is defined as follows.

Definition 1 (Security of an ivE scheme). Let IT = (I, Enc, Dec) be an ivE scheme. The
advantage of an adversary A in breaking II is defined as

b

AdviE(A) = ’Pr [K g O 2 ATENSK() = 1} —Pr [A$<'> - 1]

where $(-) is an oracle which on input M € {0,1}* outputs a random string of length
[TL.EncS, (M)

AUTHENTICATED ENCRYPTION. A nonce-based Authenticated Encryption with Associ-
ated Data (AEAD) scheme is a tuple IT = (K, Enc, Dec) where K is a non-empty key set
and Enc and Dec are deterministic algorithms. The encryption algorithm Enc takes as
input a key K € K, a nonce N € {0,1}* where nl is the nonce-length, associated data
(AD) A € {0,1}*, and a message M € {0,1}*, and returns a string Y € {0,1}*. The
decryption algorithm Dec takes as input a key K € K, a nonce N € {0,1}*, associated
data A € {0,1}*, and a string Y € {0,1}*, and returns either a message M € {0,1}*
or a special value | indicating that inputs are invalid. We write Encg (N, A, M) for
Enc(K, N, A, M) and Deckg (N, A,Y) for Dec(K, N, A, Y).

For many AEAD schemes (in particular for AES-GCM-SIV), any non-_L output Y of
the encryption algorithm consists of the concatenation of a ciphertext C of the same size
as the message M and a tag T' € {0,1}** where t1 is the tag-length.

We use the following Misuse Resistant Authenticated Encryption (MRAE) security
notion [RS06].
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Definition 2 (MRAE-security). Let IT = (K, Enc, Dec) be a nonce-based AEAD scheme.
The advantage of an adversary A in breaking the MRAE-security of II is defined as

AdVE™ () = [Pr [K e K¢ ATERA (o DSk ) — 1] e [ASCr) ) 1]

b

where $(-,-,) is an oracle which on input (N, A, M) outputs a random string of length
[IL.Enck (N, A, M)| and L(-,-,) is an oracle which always outputs L. The adversary is not
allowed to repeat a query or to make a decryption query (N, A,Y) if a previous encryption
query (N, A, M) returned Y. The adversary is said to be nonce-respecting if it never
repeats a nonce N in its encryption queries.

MurLTI-USER SECURITY. All security definitions above can be formulated in the multi-
user setting [ML15, BT16, HT16, LMP17]. All oracles to which the adversary has access
take an additional “identifier” input ¢ € Z C N. For each identifier i € Z, a key K is
drawn independently at random in the “real world”, whereas an independent ideal oracle is
implemented in the “ideal world”. We denote the corresponding security notion with prefix
“mu-". For example, the mu-PRF security of a keyed function F': I x X — } is defined as

AV P(A) = [ Pr K s Ki € T3 AGD2FR(0) —

— Pr |R; < Func(X,Y),i € T: A)=Ri@) — 1} ‘

2.2 Description of AES-GCM-SIV

The AES-GCM-SIV AEAD mode for a block cipher F : Ky x {0,1}" — {0,1}" combines
through the SIV composition method [RS06] a variable input-length PRF built from a
polynomial hash function called POLYVAL, a variant of GHASH [MV04], with the counter
encryption mode. The high-level structure of the mode is depicted in Figure 1. We describe
each component in details below.

The variable-input-length PRF underlying AES-GCM-SIV follows a slight variant of
the standard “hash-then-encrypt” (a.k.a. “UHF-then-PRF”) construction. It will be
convenient for the proof of Theorem 1 below to describe this function, that we denote
HtE[H, E], in the following modular way. It relies on E and an additional keyed function
H: Ky x{0,1}* x {0,1}* — {0,1}™. It takes as input a key (K1, K2) € K; x K2, a nonce
N € {0,1}! with nl < n, associated data A € {0,1}*, and a message M € {0,1}*, and
outputs a tag T € {0,1}" defined as

HtE[H,E]Kl,Kz(N,A,M)ZEKz(HKl(A,M)@N), (3)

where N is left-padded with zeros (AES-GCM-SIV sets n = 128 and restricts the nonce-
length to 96 bits, but it could potentially be larger).

The specific hash function H used in AES-GCM-SIV is defined as follows. It uses a
polynomial hash function POLYVAL taking as input a “hashing” key K; € {0,1}" and a
tuple in ({0,1}")" and returning a string in {0,1}" (the exact specification of POLYVAL,
which is only defined for n = 128, is not needed in this paper). It also uses an encoding
function Encode taking as input associated data A € {0,1}* and a message M € {0,1}*
and returning a unique encoding of (A, M) in ({0,1}")* by padding A and M with zeros
and appending an n-bit block encoding of the length of A and M. Then

Hi, (A, M) = 0||Trunc,,_1 (POLYVAL(Kl, Encode(4, M))). (4)

The specific counter mode CTR used in AES-GCM-SIV uses (n — 1)-bit counters with a
random initial value. More formally, on input a non-empty message M € {0,1}* parsed
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Figure 1: The AES-GCM-SIV mode (top) and the key derivation function (bottom).

in n-bit blocks (M, ..., My—1) where £ = [|M|/n], |M;| = n for i € {0,...,£ — 2}, and
|M;y_1| < n, an initial counter U is drawn uniformly at random in {0,1}"~! and the i-th

ciphertext block is
Ci=M; @ Ex,(1]|(U B1)),

where U B denotes addition modulo 232 of the 32 least significant bits of U and i. We
denote CTR[E]k, (U, M) the result of encrypting message M € {0,1}* under key K5 € Ko
with initial counter U € {0,1}"1.

From the components above, Gueron et al. [GLL17] define as an intermediate layer of
abstraction the GCM-SIVT AEAD mode for F as follows. It has key space K1 x Ko, and
on input a key pair (K7, K3) and a triple (N, A, M) it returns C||T where

T = HtE[H,E}Kl,Kz(N,A,M),
C = CTR[E]k,(Trunc,,—1(T), M).

Finally, the AES-GCM-SIV mode adds key derivation on top of GCM-SIV*. More specifically,
keys K; and Ky are derived from a master key K € Ky and the nonce N through a key
derivation function KeyDer[E] : ICo x {0,1}* — K1 x K3 (constructed from E, see below).
On input a key K € Ky and a triple (N, A, M), it returns C||T defined as

(K1, K3) = KeyDer(K, N),
C|IT = GCM-SIV, 1 (N, A, M).

Remark 1. We note that both GCM-SIVT and AES-GCM-SIV slightly depart from the “pure”
SIV composition method: GCM-SIV? uses the same key K5 both in the PRF and in the
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encryption scheme, and AES-GCM-SIV uses a nonce-based key derivation function. Note
however that once E, has been replaced by a uniformly random function F*, GCM-SIV™"
becomes a strict instantiation of SIV: indeed, in the tag generation part, F™* is only called
on inputs whose most significant bit is 0, while in the encryption part, it is only called on
inputs whose most significant bit is 1, which amounts to having independent uniformly
random functions in each part.

THE KEY DERIVATION FUNCTION. To be complete, it remains to describe the key
derivation routine KeyDer[E] : (K, N) — (K, K3). It is specified for E € {AES;25, AESo56}
(hence the block length is n = 128 and Ko = {0,1}*! where the key-length k1 is 128 or
256) and nonce-length n1 = 96. For i € {0,...,5}, let

T; = Trunces (AESk (N[ []32))-
Then Ky = T1||Tp and

Ky =T3||T, if k1 = 128,

= T5 || T4 || T5(| T2 if X1 = 256.
In more abstract words, it relies on a PRP-to-PRF conversion method [BKR9S,
HWKS98] which consists in concatenating truncated outputs of AES applied to the input

N and distinct indices. We will see in Section 5 that an equally efficient but more secure
PRP-to-PRF conversion method could have been used.

Remark 2. The decryption algorithm is not defined in [GLL17]. When discussing the
security of AES-GCM-SIV in the following sections, we will assume the following natural
decryption algorithm. On input a master key K € K and a triple (N, A, C||T"), we let

(K;, K2) = KeyDer(K, N),
M = CTR[E|k,(Trunc,,_1(T),C),
T' = HtE[H, Elk, k,(N, A, M),

and the decryption algorithm returns M if T = T’, and L otherwise. We note that
M = CTR[E]k,(Trunc,,—1(T), C) corresponds to counter mode decryption.

3 About the Security Bound

3.1 Problems in GLL’s Security Bound

The following security bound for AES-GCM-SIV was claimed in [GLL17]. We omit the
running time of adversaries since, unlike queries, they are irrelevant for our discussion.

Theorem ([GLL17], Theorem 6). Let A be an adversary against the MRAE-security of
IT = AES-GCM-SIV[E] where E = AES. Assume that A:

e makes encryption queries of length (in 128-bit blocks) at most 28 — 1,
e uses at most Q distinct nonces in encryption queries,
e repeats any nonce at most R times in encryption queries,

e makes at most qp decryption queries of total length at most L bits for each distinct
nonce.



Tetsu Iwata and Yannick Seurin 247

Then there exists an adversary A’ against the PRF-security of AES making at most
Q(2R + 2qp + L/128) oracle queries and an adversary A" against the PRP-security of
AES making at most 6Q oracle queries such that

2
Advi™*(A) < Advige(A”) + min { 36Q° 6Q }

2129 ’ 296

R? R?+2
rf 4D
+@Q <2AdVE\E5(A/) + 9126k + o127 )

We note that it is very unusual and confusing for the security bound of a mode of
operation to contain both the PRP- and the PRF-insecurity of the underlying block cipher.
Block ciphers are designed to be good PRPs, not PRFs. The remaining of this section will
show that confusing the two can be misleading.

More concernedly, this security bound is flawed in at least two respects. First, the
authors use an hybrid “multi-user” argument to infer the security bound for the variant
of AES-GCM-SIV denoted IT" where a uniformly random function is used to derive keys
for each nonce. However, such an argument must take into account all keys derived in
the security experiment by encryption and decryption queries. Since nonces in decryption
queries are arbitrary (in particular, they can be completely different from the ones used in
encryption queries), this means that the number of hybrid experiments must be Q+¢p (and
hence the multiplicative factor in front of the security bound given by [GLL17, Theorem 4]
should be @ + gp as well).? To formally disprove the bound as stated, simply consider an
attacker against AES-GCM-SIV with AES replaced by a uniformly random permutation,
which makes no encryption queries (@ = 0) and simply attempts to forge a valid ciphertext
within ¢p random decryption queries: the bound of [GLL17, Theorem 6] indicates that
the advantage of this adversary should be zero, whereas it is clearly not (it is roughly
gp/2"™, the probability that a random tag be valid). We note that this problem also
affects the term min{36Q?/2'2% 6Q/2°} which accounts for the adversary’s advantage in
distinguishing the key derivation function from random and which should also consider
decryption queries, so that @ should be replaced by @ + ¢p in this term as well.

Second, the number of queries made by A’, which is claimed to be at most Q(2R +
2gp + L/128), is incorrect. Details are not given, but the factor @ seems to come from
the @ hybrid “multi-user” security experiments, while the term 2R + 2qp + L/128 comes
from [GLL17, Theorem 4]. However, @ should only multiply the advantage, not the number
of queries of the adversary constructed in each hybrid experiment. Besides, the number of
queries claimed by [GLL17, Theorem 4] for each hybrid experiment is also erroneous, as we
explain in more details in Section 3.2. As we will see later, a correct upper bound for the
number of queries made by the PRF-adversary A’ against AES is essential for accurately
analyzing AES-GCM-SIV’s security.

Remark 3. Upper bounding the number of queries made by reduction A’ is actually quite
straightforward. A source of mistake in [GLL17, Theorem 6] was to derive this upper
bound by composing reductions, which, in addition to usually resulting in looser bounds,
is also quite error-prone. When analyzing the security of a high-level mode of operation
which consists of the combination of several components (as is the case for AES-GCM-SIV),
one should rather begin with replacing the underlying primitive with its uniformly random
counterpart in the high-level mode, and only then analyze the security of each component
in the information-theoretic setting.

2The discussion here depends on the exact decryption algorithm. We assume that it is defined as
in Remark 2.
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3.2 Correcting the Security Bound

In order to remedy the situation, we prove a corrected version of the bound. We start with
a corrected version of the security bound for the GCM-SIV*' mode. For the sake of clarity,
our notation slightly departs from the one used in [GLL17] (we will revert to the original
notation when comparing the bounds). We also specify an upper bound on the AD length,
which is needed to upper bound the maximal differential probability of POLYVAL. The
message length of an encryption query (N, A, M), resp. decryption query (N, A, C||T) is
the length of M, resp. C. All lengths below are measured in n-bit blocks.

Theorem 1 (GCM-SIV™ security bound). Let E be a block cipher with n-bit blocks. Let
A be an adversary against the MRAE-security of I = GCM-SIVY[E] making at most qg
encryption queries and qp decryption queries, such that

e the message length in any encryption or decryption query is at most £y,
e the AD length in any encryption or decryption query is at most £,

e the total message length in encryption queries is at most o,

e the total message length in decryption queries is at most op.

Then there exists an adversary A’ against the PRF-security of E making at most qg + qp +
og + op oracle queries such that

q2E€m (QE + QD)Q(ém +lg + 1) + 4D

mra rf
AdVE™(A) < Advy(A) + 20 o =

Proof. The adversary A has access to either the real encryption and decryption oracles
of (with a slight abuse of notation) GCM-SIV*[H, , Ex,] for uniformly random keys K,
and K, or (3, L). First, we replace the block cipher Fk, in the real encryption and
decryption oracles with a uniformly random function F*, and denote IT* the resulting
scheme. Consider the adversary A’ against the PRF-security of E, having access to an
oracle O (which is either Fk, for a random key K> or a uniformly random function F*
from {0,1}" to {0,1}"), which simply runs A, draws a uniformly random hashing key K,
and answers all encryption/decryption queries made by A using K and its oracle O. Then
A’ makes at most gg + qp + og + op oracle queries (in details, for each encryption or
decryption query it makes exactly one oracle query when computing the tag and as many
oracle queries as the length (in blocks) of the message when encrypting or decrypting it).
Moreover, one has

AdviET(A) < AdVET(A') + AdviETe(A).

It remains to upper bound A’s advantage against II*. By Remark 1, IT* is an instantia-
tion of the generic SIV construction (also called composition method A4 in [NRS14]), so
that we can apply Theorem 2 of [RS06] or the result of [NRS14, Appendix A.3] to obtain

mrae iv rf 4D
Advi™(A) < AdVC'IER[F*](B) + AdVﬁtE[HVF*}(B') + o

where B is an adversary against the ivE-security of the counter mode CTR[F*] making
at most gg queries, each of length (in n-bit blocks) at most ¢, and B’ is an adversary
against the PRF-security of HtE[H, F**], where H is defined as in Equation (4), making at
most® qg + qp queries. (Note that the last term in the bound of [RS06, Theorem 2] is

3We note that [NRS14, Lemma 3] charges B’ with a higher number of queries, namely 2(¢g + ¢p),
which has been propagated through Theorems 2.2, 3.5, 4.2, and 4.3 of [GL15] up to Theorem 4 of [GLL17].
This is actually due to the fact that Lemma 3 of [NRS14] applies to other composition methods than A4
that require this higher number of queries. It is in fact easy to see (e.g., from the proof of Theorem 2
in [RS06]) that the factor 2 is superfluous.
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(¢e + qp)/2™, but it is easy to see from its proof that this can be improved to gp /2™ as
stated here or in [NRS14, Appendix A.3].)

Clearly, the outputs of CTR[F*] are perfectly indistinguishable from random unless two
counters collide. This cannot happen for two counters used in the same encryption query.
Consider now two distinct encryption queries. Since they are both of length at most /,,,
the set of counters used for these two encryptions will overlap iff the initial counter of the
second encryption falls in a set of size at most 2¢,, — 1, which happens with probability at
most (24, —1)/2"~! (recall that counters are (n — 1)-bit long). Summing over all pairs of
encryption queries, one has

AdeTR[F*] S 2 ° 2%—1 g 2”—1 . (5)

The PRF-security of the UHF-then-PRF construction is standard (xoring the nonce

to the output of the hash function implies that one needs the hash function to be AXU

rather than AU). Assuming H is e-AXU, since B’ makes at most ¢g + ¢p queries, one
has [GL15, Lemma 3.3]

rf (¢ +qp)*e
AdVII—)itE[H,F*](B/) < —

It remains to upper bound e, which depends on the maximal length of inputs to
POLYVAL. Since Encode appends exactly one block to the concatenation of M and A, all
inputs to H have length at most ¢, + ¢, + 1. By [GLL17, Lemma 2|, we have that H is

e-AXU for

1
e = M (6)

gn—1
(Note that the denominator is 2"~! rather than 2" because of the truncation of the most
significant bit of POLYVAL.) Combining all equations above yields the result. O

COMPARISON WITH GLL’S BOUND. Theorem 4 in [GLL17] states that for any adversary
A making at most gg encryption queries of maximal message length (in n-bit blocks) 2% —1
and at most ¢p decryption queries of overall message length at most L bits,* there exists
an adversary A’ making at most 2qg + 2gp + L/n oracle queries such that

mrae prf/av qu qu +qp

Advy™(A) < 2AdvVy (A) + k2 + on 1

Restating Theorem 1 using notation of [GLL17, Theorem 4] for the sake of comparison,
we obtain that for any adversary A making at most gg encryption queries of maximal
message length (in n-bit blocks) 2¥ — 1 and at most gp decryption queries of overall
message length at most L bits, and such that the AD length (in n-bit blocks) in any query
is at most /,, there exists an adversary A’ making at most gz + gp + qg(2* — 1) + L oracle
queries® such that

2 2 2k Ea
Advﬁrae(A) < Adv%rf(A/) + 2n(il;j€'_1 + (qE + QD;n( + ) %

Putting aside factors 2 or so coming from overlooked optimizations when defining A’
and computing a few probabilities, various mistakes throughout the proofs of Theorems 3.5,

4.2, and 4.3 in [GL15] explain the differences between [GLL17, Theorem 4] (whose proof
relies on the aforementioned theorems) and Theorem 1 above:

4As far as we can tell, no upper bound is put on the AD length in the statement of [GLL17, Theorem 4].
5Note that if all messages in decryption queries are 1-bit long, then op = L.
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e The number of queries made by A’ does not take into account A’s encryption queries.
The problem seems to have slipped in when going from [GL15, Theorem 4.3], where
L denotes the overall length of all (encryption and decryption) queries to [GLL17,
Theorem 4], where L denotes the overall length of decryption queries only.

e The number of queries of adversary B’ used for deriving the final security bound
in [GL15, Theorem 3.5] is not correct. This adversary, denoted B(A) in the proof
of [GL15, Theorem 3.5], is said to make at most 2(¢g + gp) queries in the middle of
the proof (which is correct up to the remark of Footnote 3), but this becomes ¢g in
Equation (3) at the end of the proof.

e The length of the AD is not taken into account when computing the maximal
differential probability € of H in [GL15, Theorem 4.3]. This is correctly taken into
account in the bound of [GL15, Theorem 4.2] through the term ([L/n] + 1)g% /2"
(up to correcting gg to gg + ¢p, see the point above) where L denotes the overall
length of all queries (presumably including the AD length). However, in the proof
of [GL15, Theorem 4.2], the authors use the inequality [L/n] < 2% where 2* has
been defined in Sect. 2 as the maximum message length (in n-bit blocks), which,
as far as we understand, excludes the AD length. The mistake is then propagated
to [GL15, Theorem 4.3].

Based on Theorem 1, we can now state the following corrected security bound for
AES-GCM-SIV used with a block cipher with 128-bit blocks such as AES for the particular
(and simpler) case where gp = 0 (i.e., we consider a CPA-adversary against the privacy of
the scheme), which will be sufficient to make our point. We give a more general bound in
Section 4.

Theorem 2 (AES-GCM-SIV privacy bound). Let A be an adversary against the MRAE-
security of Il = AES-GCM-SIV[E] with E = AES. Assume that A:

e makes encryption queries of maximal message length (in 128-bit blocks) 2F — 1 and
mazximal AD length (in 128-bit blocks) £,

e uses at most Q distinct nonces in encryption queries,
e repeats any nonce at most R times in encryption queries,
e makes no decryption queries.

Then there exists an adversary A against the PRF-security of AES making at most R - 2"
queries and an adversary A" against the PRP-security of AES making at most 6Q queries
such that

QR*  QR*,
2126k 9128

36Q2 6Q

Adv(a) < Advig () +min { 52, 22

} + QAdVRE (A) +
Proof. The proof is similar to the one of [GLL17, Theorem 6]. We first replace the function
KeyDer[E](K,-) by a uniformly random function from {0,1}*! to K; x K2, and let I’
denote the resulting AEAD scheme. By [GLL17, Lemma 5], there exists an adversary A’
against the PRP-security of AES making at most 6 queries such that

36Q% 6Q

2129 ’ 996

Adv"™(A) < Advigs(A”) + min { } + Adv ¢ (A).

Note that IT" is exactly “GCM-SIVT in the multi-user setting”, where a fresh pair of keys
(K1, K3) is drawn uniformly at random for each nonce.® Hence, by a straightforward

6This is not entirely true since an adversary against GCM-SIV™T in the multi-user setting would be able
to freely choose nonces in encryption queries for each user, whereas in the security experiment against I/
the nonce is fixed according to the key pair, but this can only lower the adversary’s advantage.



Tetsu Iwata and Yannick Seurin 251

multi-user hybrid argument and Theorem 1 with g = R, £, =2% — 1, op = R- (2" — 1),
and gqp = op = 0, there is an adversary A’ against the PRF-security of AES making at
most R - 2* queries such that

R? R2¢,
AdviI*(A) < Q (Advgg;(A') + ) :

2126—k + 2128

which concludes the proof. O

3.3 Analyzing the Security Bound

We assume to begin with that £, = 0 and will come back to the impact of the AD length
at the end of this section.

It is claimed in [GLL17] that the security bound of AES-GCM-SIV is dominated by the
term QR2/2126=% which captures both the probability that two counters collide for two
encryption queries using the same nonce and the probability that two outputs of POLYVAL
(with empty AD input) collide for two queries with the same nonce. We disprove this
claim by showing that for virtually all parameters, the bound is actually dominated by the
term QAderEfS(A’ ). Indeed, since AES is a pseudorandom permutation, for any g < 2129/2,
there exists an adversary B making ¢ queries such that

of alg—1)
(Adversary B simply checks whether there is a collision among answers received from its
oracle. See e.g. [BKRO00, Proposition 2.4].) Since A’ makes up to R -2* queries, this means
in particular that the best upper bound we can hope for the term QAderEfS(A’ ) is roughly
QR?

Stated otherwise, the PRF-advantage term in the security bound should be replaced
by a PRP-advantage term at the cost of the PRP-PRF switching lemma (see [BKR00,
Proposition 2.5]), i.e.,

QR?

rf r
QAdVEs(A) < QAdvVE(A) + 9129—2k

after which the security bound of Theorem 2 becomes (assuming ¢, = 0)

mrae T . 36Q2 6Q T QR2 QR2
Advi™*(A) < AdviEs(A”) + mln{ 5129 ,296} + QAdVRL(A") + 120—2R + 1265

Note that QR2/2'29~2F is larger than QR?/2'26=% as soon as k > 4 and larger than
6Q/2° when R > 2'8=%  Hence, assuming that AES is a good PRP, under these two
mild conditions, the bound is dominated by the term QR?/2'2°~2% corresponding to the
“multi-user” PRF-advantage of A’ against AES.

A MATCHING ATTACK. We stress that the term QR?/2'2°72F in the bound above is
actually tight up to some small constant. For any fixed parameters (Q, R, k), consider the
following “multi-user PRP-PRF” distinguisher: for i € {1,...,Q} and j € {1,..., R}, it
queries (N;, 0, M, ;) to the encryption oracle for arbitrary distinct nonces N, ..., Ng and
arbitrary distinct messages M; ; of length 2% (and () denotes empty AD), and returns 1
iff for some 4, a collision occurs among the R - 2¥ blocks of (Cir®M;q1,....Cir® M, Rr),
where C; ; is the answer of the encryption oracle to the query (N, 0, M; ;).
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This adversary returns 1 with probability at most QR?/2'26=% when interacting with
the real encryption oracle (see below), while it returns 1 when interacting with $(-, -, -)
with probability

R-2F—1 i @ R-2F -1 - @
v () ) = IT e
i=1 i=1
>1_ 64213&-2’“(1%42’671)/2-21"‘8
QR’

implying that the adversary’s advantage is lower bounded by

QR? QR? 1 ) QR?

0.316

9l29—2k ~ 9126-k (0'316 T 9k—3 | " g120-2k"

To see that the adversary returns 1 with probability at most QR?/2'26~% when inter-
acting with the real encryption oracle, we closely follow the proof of Theorem 1. The
difference is that we treat Ex, as a uniformly random permutation rather than a uniformly
random function.

We first fix ¢ € {1,...,Q}, and focus on (C;1®M; 1,...,C; r® M, r). By construction,
for any j € {1,..., R}, we never have a collision among the 2* blocks of C; ; & M; ;. We
then fix distinet 7, j' € {1,..., R} and consider the probability of having a collision between
one of the 2% blocks of C; ; ® M; ; and one of the 2* blocks of C; j» & M; ;. There are two
cases that make the collision occur:

Case 1. Hg, (M, ;) = Hg, (M; ;).

Case 2. U; ;B¢ = U, j B for some ¢,¢ € {0,1,..., 2% — 1}, where Ui,; = Trunc,—1(T; ;)
and T; ; is the tag for the query (N;, 0, M, ;).

Note that Case 2 refers to the event
(U ;,Ui; B, U ;B = 0)Yn{U; o, Uiy B, U B (28 — 1)} £ 0,

i.e., the event that we have a collision among these 2 - 2¥ counters.

The probability of Case 1 is at most ¢ = (2¥ 4 1)/2'27 from [GLL17, Lemma 2].
Assuming that we have Hg, (M, ;) # Hg, (M; /), the probability of Case 2 is at most
2k+1 /(2128 — 1), since for any fixed T} ;, there are 212 — 1 possible values for T; j; that are
different from T; ;, and the condition U; j B¢ = U, j» B¢ requires that the most significant
127 — k bits of U; j+ be the same as those of U; ;, implying that we have at most ok+1
possibilities for T; j: that meet the condition. Therefore, for any fixed i € {1,...,Q}, we
have a collision among C; ; @ M, ; and C; j» & M; ;; with probability at most

2F +1 2k 2k
+ <
2127 2128 _ 1 — 2125’

and the claim follows from a union bound, as we have at most R?/2 possible choices for
distinct 7,7’ € {1,..., R} and @ choices for i € {1,...,Q}.

RANDOM NONCES. A security bound for AES-GCM-SIV when N is a value drawn at
random (a “random IV”) rather than a non-repeating nonce was also given in [GLL17,
Corollary 8], but since it was inferred from [GLL17, Theorem 6] it is flawed as well.”

7 Additionally, it is argued in the proof sketch of [GLL17, Corollary 8] that since the maximal number
of repetitions of any nonce is 3 except with small probability, the number of distinct nonces @ resulting
from Ng encryption queries is at most Ng/3 except with the same small probability; but actually only a
very small number of nonces will repeat three times, so that @ is in fact close to Ng.
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Table 1: Security bound for AES-GCM-SIV revised according to the leading term of
Theorem 2 and Corollary 1 compared with claims in [GLL17, Fig. 4]. We highlight in
gray parameters for which the security bound is above 2732 and should be considered
insecure according to NIST recommendations for GCM. For the nonce-based version, the
total number of encryptions Ng is set to QR.

Scheme | Np | @ | R | k | bound | [GLL17] claim

AES-GCM-SIV | 232 | 232 1 32 | 2733 2-61
(nonce based) | 264 | 264 | 1 | 32| 27! 2729
931 | 1 | 931 | 39| 9-3 032
931 | 1 [931 | 16| 935 948
939 | 1 |93 | 16| 9-10 9—32
942 | 1 | 942 | 19| 9-25 9-32
950 | 942 | 98 | 39 | 9-7 936
250 | 942 | 98 | 15 | 9-39 951
950 | 946 | 94 | 39 | o-11 940
AES-GCM-SIV | 248 | — | — 132 | 2° M4 2-44
(random IV) | 263 | — | — | 16 | 273! 2732

Hence, we also state a corrected bound for this case. As in [GLL17, Sect. 5.2], the proof
follows from the fact that the probability that any value repeats four or more times when
drawing N 96-bit values uniformly at random is at most (Ng)%/(24 - 2288) and applying
Theorem 2 with Q@ = Ng and R = 3.

Corollary 1. Let A be an adversary against the MRAE-security of the random IV-based

variant of II = AES-GCM-SIV[E] where E = AES. Assume that A makes at most Ng

encryption queries of maximal message length (in n-bit blocks) 28 — 1 with empty AD and

no decryption queries. Then there exists an adversary A’ against the PRF-security of AES

making at most 3-2F queries and an adversary A" against the PRP-security of AES making

at most 6 Ng queries such that
Adv™(A) < AdvEE(A”) + min {36(NE>2 6NE}

n = AES 2129’ 996

rf 9 (NE)4
+ Ng (AdVRES(A/) + 2126k) + 24 . 9288"

Again, for a large range of parameters, this security bound is dominated by the term

NpAdvRa (A') ~ 9N /21297 2k

PARAMETERS EXAMPLES. For concreteness, we give in Table 1 a revised version of
the claims made in [GLL17, Fig. 4] (which did not take the PRF-security of AES into
account) based on the corrected security bound of Theorem 2 and Corollary 1. We see that
the security guarantees provided by AES-GCM-SIV are significantly weaker than claimed
in [GLL17, Fig. 4].

Apart from the numerical examples in [GLL17, Fig. 4], the authors presented three
more concrete examples.
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1. For AES-GCM-SIV with a nonce, when Q = 2%, R = 28 and k = 10, it is stated
in [GLL17, Sect. 5.1] that the security bound is &” + 2°7¢’ 4+ 2753, where &’ =
AdvirEfS (A') for A’ making 2°7 queries and ¢” = Advigs(A”) for A” making 6 - 2%°
queries. Even though the number of queries made by A’ is erroneous (it should be
R -2k = 218) the authors should have concluded that the bound was vacuous since
for an adversary A’ making as much as 2°7 queries, ¢/ ~ 27! and 2°7¢’ is much
larger than 1.8

2. For AES-GCM-SIV with a random IV, when Np = 232 and k = 32, it is stated
in [GLL17, Sect. 5.2] that the adversary’s advantage is at most 2760 whereas our
corrected security bound shows that it is only upper bounded by 273°.

3. The same paragraph states that when Np = 264 and k& = 32, the distinguishing
probability is at most 2728, whereas our corrected security bound becomes void (for
the good reason that a variant of the matching attack described above succeeds with
advantage close to 1).

We note that [GLL17, Sect. 5.3] acknowledges that Adv},irEfS(A’ ) can be large, but this
crucial observation is not taken into consideration in [GLL17, Fig. 4] nor in the surrounding
discussion.

IMPACT OF THE AD LENGTH. It might seem surprising that the AD length shows
up in the privacy bound, since the AD is not supposed to be secret. This is in fact a
consequence of the definition of privacy of an AEAD scheme, which demands that the
tag be indistinguishable from random. This in turn depends on the maximal differential
probability of POLYVAL and hence on the AD length. The term QR?/,/2'%® in the security
bound of Theorem 2 is actually matched by a simple distinguishing attack: for @ distinct
nonces Ny, ..., Ng, query the encryption oracle with R triplets (N;, A; j,0), where A, ;
are arbitrary ADs of length ¢, and () denotes the empty message, receiving a tag 7; ; in
response; then there will be a collision between two tags T; ; and T; j» with probability
roughly QR?/, /21?8, whereas for truly random tags such a collision should happen with
probability approximately QR?/2128.

We note that no maximal length for the AD is given in [GLL17], while the CFRG
specification draft [GLL16] sets a maximal length of 261 — 1 bytes.? Even though there is
little reason in practice for the AD to be that large, such an upper bound implies that the
two terms QR%(,/2'2® and QR?/2'2°~2F are of similar magnitude when both the message
length and the AD length are maximal (i.e., k = 32 and ¢, ~ 2°7 blocks).

4 A General Security Bound for AES-GCM-SIV

In this section, we provide a general security bound for AES-GCM-SIV. All lengths below
are measured in n-bit blocks.

Theorem 3 (AES-GCM-SIV MRAE-security bound). Let E be a block cipher with n-bit
blocks and key space Ko = {0,1}¥, where k1 is the key length. Let A be an adversary
against the MRAE-security of Il = AES-GCM-SIV[E] such that

e A uses at most Q distinct nonces in encryption queries,

e A repeats any nonce at most R times in encryption queries,

8 Curiously, the term 2753 is correct according to our bound, but according to the bound of [GLL17,
Theorem 4] it should have been 2760,

9No rationale is given for this choice, which was presumably made according to the GCM specifica-
tion [Dwo07].
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o A makes at most qp decryption queries,

o the message length in any encryption or decryption query is at most 28 — 1,
e the AD length in any encryption or decryption query is at most £,

e the total message length in decryption queries is at most op.

Then there exists an adversary A' against the mu-PRP-security of E making at most R -2F
queries for at most Q) distinct users and distributing at most qp + op additional queries
as it wishes among users and an adversary A" against the PRP-security of E making at
most 6(Q + qp) queries such that

AdVﬁraC(A) < AdeErp(A//) + min { 36(Q + QD)2 G(Q + QD) }

on+1 ) 23n/4

QR*> (qgp+op)(R-2*+qp+o0op)

2n72k + on

(@+4qp)* QR*(2"+4¢,) Rap(2"+4.)  ap QR?
9k1+1 on + on—1 on ' on—k-1"

+ Advgu_prp (A/) +

+

The proof is deferred to Appendix A.

Let us briefly comment on the bound that would be obtained with a straightforward
multi-user hybrid argument similar to the one used in the proof of [GLL17, Theorem 6] and
Theorem 2. As in the proof of Theorem 2, we first replace KeyDer[E](K, ) by a uniformly
random function from {0, 1}* to K1 x Ks, and let II' denote the resulting AEAD scheme.
By [GLL17, Lemma 5], there exists an adversary A"’ against the PRP-security of F making
at most 6(Q + gp) queries such that

36(Q + qp)* 6(Q +qp)
on+1 ! 23n/4

AdvE(A) < AdvRIP(A”) 4 min { } + Advy*°(A).

Then, we use a multi-user hybrid argument (with Q + ¢p users) combined with Theorem 1
where qg = R, {,,, = 2 — 1, and o5 = R(2¥ — 1). This yields the bound

: r R R 22k + 4,
AV (A) < @+ ap) (AdvER) + Hrapp el 2]

2n7k:7 1 on on

for an adversary A’ making at most R -2* + gp + op oracle queries. (Note that in such
a basic multi-user hybrid argument, we have no other choice than assuming that each
hybrid adversary makes at most ¢p decryption queries of total message length op.) By
the PRP-PRF switching lemma, we have

R-2"+qp+op)?

Advp(A) < Advir () ¢ L

Combining the three equations above, one obtains

36(Q +4qp)* 6(Q+qp) }

on+1 ’ 23n/4

Adv™(A) < AdvP(A”) + min {

. Q+aqp)(R-2"+qp +0p)?
+(Q+csz)Adv5’;"(/¥)+< 2 on i1 D+ o)

(Q@+qp)R*  (Q+qp)(R+qp)*(2" +la) n (Q +4qp)ap
on—k—1 omn mn ’

+

which is a very crude bound (note in particular that it contains terms that are cubic in
gp). Instead, we set to prove a better bound with a more careful multi-user argument.
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5 About the Key Derivation Function

In this section, we point out that the key derivation function specified in AES-GCM-SIV is
sub-optimal w.r.t. security. In short, the designers could have used the “sum of PRPs”
construction [BKR98, B199, Luc00] rather than truncation.

More precisely, consider the key deriving function KeyDer'[E] which maps (K, N) to
(K1, K3) where

Ky = Ex(N||[1]s2) ® Ex (N||[0]32)
Ky = Ex(N||[3]s2) ® Ex (N[[2]52) if k1 =mn,
= Bk (N|[5]32) ® Ex (N||[4]52)|| Exc (N||[3]32) ® Ex(N||[2]32)  if k1 = 2n.

This key derivation function makes exactly the same number of calls to E as the original
one. However, its PRF-security is much better and essentially optimal. It has been
studied in numerous papers [Luc00, BI99, Pat08a, Pat10, Pat13, DHT17]. In particular,
using [DHT17, Theorem 1], the PRF-advantage of any adversary A making at most @
oracle queries against KeyDer’ is upper bounded by

’ 1.5Q + 3V/Q < 15Q)

2n - on
(Note that in the particular case we are considering, n = 128 and Q < 2% since
nonces are 96 bits long, so that the hypothesis @ < 2”75 of [DHT17, Theorem 1] is always
met.) Even an adversary which is able to query all 276 possible nonces to KeyDer’ has a
distinguishing advantage of at most 2728, whereas it has advantage close to 1 against the
original truncation-based key derivation function KeyDer.

Alternatively, one can use of a variant of CENC [Iwa06] to derive the keys as

K1 = Ex(N||[1]32) ® Ex (N||[0]s2)
= Ex(N||[3]s2) ® Ex (N||[0]32)|| Ex (N||[2]52) ® Ex (N||[0]32) if k1 = 2n.

Advﬁ';fyDer/(A) <3

— 9128-32

This saves one call to F if k1 = n and two calls if k1 = 2n, and the security is comparable
to the “sum of PRPs” construction [Pat05, IMV16].
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A Proof of Theorem 3

We will make use of the H-coefficients technique [Pat08b], that we recall very briefly here.
See e.g. [CS14] for more details. Consider an adversary A interacting with one out of two
possible systems (i.e., tuples of oracles) Sy and Siq, called by convention respectively the
real world and the ideal world, and outputting a single bit. The interaction of A with either
system defines a transcript 7 which lists all queries made by A together with their answers.
A transcript is said attainable if it can be obtained with non-zero probability when A
interacts with the ideal world. We let X,., resp. Xiq denote the random variable for the
transcript in the real, resp. ideal world. The fundamental lemma of the H-coefficients
technique is the following one.

Lemma 1. Fiz an adversary A trying to distinguish two systems Sye and Siq. Let Tpad
be a subset of the set T of attainable transcripts and Tgood = T \ Toaa be its complement.
Assume that there exists v such that for any T € Tgood,

Pr[X,e = 7]

— > 1—.
PrXu=1] — "

Then
’Pr [ASre = 1} — Pr [AS‘d = 1} ’ < Pr([Xiq € Toad] + v

We will need the following “constrained” multi-user PRP-PRF switching lemma for a
multi-user adversary making queries according to a specific pattern. Note that we cannot
use the nice result that PRP-PRF switching does not suffer multi-user degradation [LMP17]
(according to which we could use the single-user PRP-PRF switching bound with the
total number Qo of adversarial queries) since the only upper bound we have for Qo is
QR - 2% 4+ qp + op, and this would yield a bound which is quadratic in Q.

Lemma 2. Let E be a block cipher with n-bit blocks. Let A be an adversary against
the mu-PRF-security of E making at most q queries for at most Q distinct users and
distributing at most ¢’ additional queries as it wishes among users. Then

2 / /
Aderr‘lu—prf(A) < Adv;Enu—prp (A) + Q2nq n q (QZ": q )

Proof. First, we replace E by a family of independent and uniformly random permutations,
at the cost of the advantage of A against the mu-PRP-security of E. We must now upper
bound A’s advantage in distinguishing a family of independent and uniformly random
permutations from a family of independent and uniformly random functions. For this, we
use the H-coeflicients technique. We assume wlog that the adversary makes the maximal
number of allowed queries and never repeats queries. We let the real world be the family
of functions and the ideal world be the family of permutations. There is no bad transcript.
Let 7 be an attainable transcript. This implies that for each identifier ¢« € Z, all queries
with identifier ¢ are distinct (by the convention that the adversary never repeats queries)
and all corresponding answers are distinct (since in the ideal world the adversary interacts
with permutations). Then, in the real (function) world,

1

Pr [Xre = T] = W

On the other hand, in the ideal (permutation) world,
Pr(Xia =71 =[] !
d=T]= 1] 7omy
(2n)%‘

i€l
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where g; is the number of queries for identifier ¢ in the transcript and (2"),, = 2"(2" —
1)+ (2™ — ¢; + 1) with the convention that (2")y = 1. Let J be the set of @) identifiers
for which the adversary makes ¢ queries, and for i € Z let ¢} be the number of additional
queries made for identifier i. Then

1 1
prixia=7< g o

ieT €T — )

: ((;)q)? @ 1q>q/’

where we used that ), 7 ¢; = ¢’. Then we obtain for the ratio

Pr(Xee =1 ((2’?3)@ (2" —q)y

Pr(Xig=7] — \ (2" (2m)
. n2 ! /
o, Q¢ datd)
- 2n 2n
Combined with Lemma 1, this concludes the proof. O

We are now ready to prove our improved security bound for AES-GCM-SIV.

Proof of Theorem 3. We use a game-based approach [Sho04, BR06], i.e., we gradually
modify the behavior of the two oracles (that we call “worlds” rather than games) to which
the adversary has access. World W; corresponds to the real encryption and decryption
oracles. The changes in each of the successive worlds, which are formally specified in
Figure 2 and Figure 3, are as follows:

e in world Wy, we replace the key derivation function KeyDer[E](K,-) by a uniformly
random function piq : {0, 1}* — K1 x Ka;

e in world W3, we replace the block cipher F with a uniformly random function
F*: Ky x {0,1}™ — {0,1}"™;

e in world Wy, we use two independent random functions F*,G* : {0,1}™ x {0,1}" —
{0,1}" keyed by the nonce for resp. the tag generation part and the encryption
part;!©

e in world W5, we replace the tag generation function by a random function ptag from
{0,137 x {0,1}* x {0,1}* to {0,1}" and let the decryption oracle always reject;

e the final world Wg is simply the ideal world ($, 1).
In all the following, we let
Ay = |Pr[AY =1] = Pr [AYS = 1]].
We are interested in upper bounding A; ¢ and will consider each transition in turn.
TRANSITION W1-W,. It is easy to see that A; 9 can be upper bounded by the PRF-
advantage against KeyDer of an adversary making at most Q+¢p oracle queries. By [GLL17,

Lemma 5], there exists an adversary A” against the PRP-security of F making at most
6(Q 4 ¢gp) queries such that

Ays < AdVEP(A”) + min { 36(Q + ap)* 6(Q + ap) } .

on+1 ) 23n/4

10Since F* and G* are secret random functions, using the nonce directly as the key is equivalent (but
syntactically simpler) to drawing distinct keys Ko n for keying F'* in the tag generation part and distinct
keys K, , for keying G* in the encryption part.
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TRANSITION W3-W3. We construct an adversary A’ against the mu-PRF-security of E.
Let O be the oracle to which A’ has access. It runs A and answers its queries according
to the pseudocode of worlds Wy /3 by drawing all necessary keys K itself and replacing
all calls to E/F* by calls to its oracle, using the nonce as the “user identifier”. Then A’
makes at most R - 2F queries for at most @ distinct users and distributes at most ¢p + op
additional queries as it wishes among users and it perfectly simulates W5, resp. W3, when
its oracle is F, resp. F'*, so that

A2,3 S Advgu_prf(A/).
Combined with Lemma 2 with ¢ = R-2* and ¢’ = gp + op, we obtain

QR?>  (gp+op)(R-2"+qp +op)

+ .

Nz < Advp P (A) + o5 on

TRANSITION W3-W,. Note that in W3, all calls to F* in the tag generation part, resp.
encryption part, have their most significant bit set to 0, resp. 1, which is equivalent
to having two independent families of random functions. Hence, as long as all keys Ko
generated in W3 are distinct, worlds W3 and W, are perfectly equivalent (if two keys collide
in W3, the same function is used for two distinct nonces, whereas in W, functions associated
with distinct nonces are independent by construction). By the fundamental lemma of
game playing, the indistinguishability advantage is upper bounded by the probability that
two keys Ko collide in W3, so that

(Q +aqp)?
2k1+1

Agy <
TRANSITION Wy4-W5. Let TagGen and Ver be the oracles defined in Figure 3. By
simulating the encryption part, we construct an adversary B having access to a pair
of oracles (O1,02) € {(TagGen, Ver), (ptag, L)} which runs A and answers its queries as
follows, lazily sampling random functions G7% when needed: on an encryption query
(N, A, M), it returns C||T where T'= O1(N, A, M) and

C = CTR[GN](Trunc,,—1(T), M);
on a decryption query (N, A, C||T), it computes
M = CTR[GY](Trunc,,—1(T), C),

queries Oa(N, A, M, T), and returns M if Oy returns T and L if O3 returns L. Then one
can check that B perfectly simulates Wy when (O1,O3) = (TagGen, Ver) and W5 when
(017 02) = (ptaga J—)v so that

Ay = |Pr[BT8CemVer — 1] — Pr [Breet = 1] (7)

Moreover, note that B’s queries to its left, resp. right oracle have the same characteristics
as A’s queries to its encryption, resp. decryption oracle. In particular, B never submits
a right query (N, A, M,T) if a previous left query (N, A, M) returned T (this can only
happen if A makes a decryption query (N, A, C||T) such that a previous encryption query
(N, A, M) returned C||T, which is forbidden by definition of MRAE-security). We will
refer to B’s queries to the left, resp. right oracle as tag queries, resp. verification queries.

We must now upper bound B’s distinguishing advantage. For this, we use the H-
coefficients technique. More specifically, our approach is very similar to [CLS17]. We refer
to (TagGen, Ver), resp. (prag, L) as the real, resp. ideal world. From the interaction of B
with its oracles, we build the queries transcript which consists of all tag queries together
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with their answer, which we denote generically (N, A, M) — T, and all verification queries
(N', A" M',T"). Note that for an attainable transcript (whose probability in the ideal
world is non-zero), all answers to verification queries are 1, and hence we omit these
answers from the queries transcript.

In order to define good and bad transcripts easily, we reveal to B, after it has made all
its queries, the hashing keys K y for nonces appearing in the queries transcript (in the
ideal world, we simply reveal “dummy” keys that are uniformly random and independent
from the queries transcript). By appending these keys to the queries transcript, we obtain
what we simply call the attack transcript. We let X,e, resp. Xiq denote the random
variable for the attack transcript in the real, resp. ideal world.

We say that a transcript is bad if one of the two following conditions is fulfilled
(otherwise we say that it is good):

(C-1) there exists two distinct tag queries (N, Ay, M) — T1 and (N, Az, Ma) — Ty with
the same nonce such that

HKI,N(A17M1) = HK1,N (A27 MQ);

(C-2) there exists a tag query (N, A, M) — T and a verification query (N, A", M', T") with
the same nonce such that

HK1,N(A7 M) = HKl.N(A/’ M/)
T=1T.

Note that the second condition cannot happen in the real world since it would imply that
the verification query is valid (i.e., should have returned T).

PROBABILITY OF BAD TRANSCRIPTS. We consider each condition in turn, using the e-AU
property of H (recall that in the ideal world, hashing keys are random and independent
from the queries transcript). Consider the first condition. For each of the @ possible values
of the nonce, and for each of the R(R — 1)/2 possible pairs of tag queries for this nonce,
the probability of a hash output collision is at most €. By a union bound and Equation (6)
with £, = 2 — 1, we obtain that the probability that the first condition is met is at most

QR?(2% + 1)
on :

Consider now the second condition. Fix any verification query (N, A’, M’,T"). There are
at most R tag queries (N, A, M) — T with the same nonce. Let us fix one of them. We
distinguish two cases. If the verification query comes after the tag query, then either T # T’
or (A, M) # (A’, M') since otherwise this would mean that B submitted a verification
query (N, A, M, T) after having received tag T to tag query (N, A, M), which is forbidden.
In the first case, the condition cannot be fulfilled, while in the later case the probability
that the hash outputs collide is at most . If the tag query comes after the verification
query, then T is uniformly random and independent from 7", and hence the condition is
fulfilled with probability 27™. Since € > 27", in all cases, the condition is fulfilled with
probability at most €. By summing over the at most Rqp possible pairs of verification
and tag queries and using Equation (6) with ¢,, = 2 — 1, we obtain that the probability
that the ideal transcript satisfies condition (C-2) is at most

Rqp (2% + ¢,)
on—1 !
All in all,
QR*(2" +4,)  Rqp(2* + ()
on + on—1 !

Pr [Xjq is bad] <
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PROBABILITY OF GOOD TRANSCRIPTS. Fix any good transcript 7. It remains to lower
bound the ratio Pr[X,. = 7] /Pr[Xiqg = 7]. We omit the probability that hashing keys
take some particular value since it is the same in both worlds and cancels in the ratio. Then
one simply has Pr[Xiq = 7] = 1/(27)?F. The probability to obtain 7 in the real world is
exactly the probability (over functions Fy) that for each tag query (N, A, M) — T,

FJT/(HKLN(A7M)®N) =T
and for each verification query (N’, A’, M’ T")
FJE'(HKLN/ (Al7 Ml) & N/) # T

Note that for each nonce N used in encryption queries, values Hy, (A, M) @ N for tag
queries (N, A, M) made with this nonce are distinct, as otherwise condition (C-1) would
be fulfilled, and that no decryption query is “incompatible” with the tag queries transcript,
as otherwise condition (C-2) would be fulfilled. This implies that

Pr[Xpo = 7] > (;)QR (1 - g—f) .

Thus,
Pr[X,. = 7] qp
e Tl 1D
PI‘ [Xid = 7’] - AL (9)

Finally, combining Equation (7), Lemma 1, Equation (8), and Equation (9), we obtain

QR*(2* +4,)  Rgp(2" +/4a)  ap
Ays < + — =.
i on 1 n
TRANSITION W5-Wg. Clearly, the distinguishing advantage from Wj5 to Wy is upper
bounded by the mu-ivE-advantage against the counter encryption mode of an adversary
making at most R queries of maximal length 2* to at most Q users. By a straightforward
hybrid argument and Equation (5), one has

QR?
As56 = 5o g1

Combining all bounds on A; ;41 for i =1,...,5 yields the result. O
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1 algorithm KeyGen World W,
2 K s Ko
s algorithm Enc(N, A, M)
1+ (K, Ks) := KeyDer(K, N)

T .= EKZ(HKI(/LM)EBN)

-
(=]

-
=

12

¢ C:=CTR[Eg,]|(Trunc,—1(T), M)

7 return C||T

s algorithm Dec(N, A, C||T)

o (K1, Ks) := KeyDer(K, N)

10 M = CTR[EKZ](TI’UI’]Cnfl(T), C)

n 1 Z:EKQ(HKl(A,M)EBN)

12 if T =T’ then return M else return L
1 algorithm KeyGen World W5
2 Pkd < Func({O, 1}n1,]C1 X ’CQ)

s algorithm Enc(N, A, M)

1 (K1, K2) == pxa(N)

5 TZ:EKZ(HKI(A,M)@N>

¢ C:=CTR[Eg,](Trunc,_1(T), M)

7 return C||T

s algorithm Dec(N, A, C||T)

o (K1, Ks):= pxa(N)

M := CTR[Ek,](Trunc,—1(T),C)
T/ = EKQ(HK:[(A7M) @N)
if T =T’ then return M else return L

algorithm KeyGen World W3

algorithm Enc(N, A, M)

algorithm Dec(N, A, C||T)

Pkd <§ Func({O, 1}"1,IC1 X ’Cg)
F* <—¢ Func(Ky x {0,1}",{0,1}™)

(K1, K2) == pra(N)

T := Fj (Hg, (A, M) & N)

C := CTR[Fg,](Trunc,1(T), M)
return C|T

(K1, K32) = pra(N)

M = CTR[Fg, |(Trunc, (T, C)

T = FI*(2(HK1(A,M) @ N)

if T =T’ then return M else return L

Figure 2: Worlds W;-W3 used in the proof of Theorem 3. The keyed hash function H is
defined as in Equation (4).
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algorithm KeyGen
Pkd <$ Func({O, 1}1117 Kl)
F* g Func({0, 1}** x {0,1}", {0,1}"™)
G* <5 Func({O, l}nl X {Oa ]-}na {Ov 1}n)
algorithm Enc(N, A, M)
T := TagGen(N, A, M)
C := CTR[GY](Trunc,—1(T), M)
return C||T
algorithm Dec(N, A, C||T)
1 M = CTR[GY](Trunc,—1(T),C)
u  if Ver(N,A,M,T) =T then return M else return |
12 algorithm TagGen(N, A, M)
13 Kl,N = Pkd(N)
14 T::F;\}(HKLN(A,M)@N)
15 return T’
16 algorithm Ver(N, A, M, T)
17 Ky n = pra(N)
w T = Fy(Hg, y(A,M)® N)
19 if T =T’ then return T else return |

© 0w N o o A W N =

World W,y

1 algorithm KeyGen

> pPrag <3 Func({0,1}* x {0,1}* x {0,1}*,{0,1}™)
s G* g Func({0,1}** x {0,1}",{0,1}")
4 algorithm Enc(N, A, M)
s T := prag(N, A, M)
6 C:=CTR[GY|(Trunc,_1(T), M)
7 return C||T

s algorithm Dec(N, A, C||T)

o return |

World W5

Figure 3: Worlds W4-W5 used in the proof of Theorem 3. The keyed hash function H is

defined as in Equation (4).
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