Reconsidering the Security Bound of AES-GCM-SIV

Tetsu Iwata¹ and <u>Yannick Seurin</u>²

¹Nagoya University, Japan

²ANSSI, France

March 7, 2018 - FSE 2018

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 1 / 26

- we reconsider the security of the AEAD scheme AES-GCM-SIV designed by Gueron, Langley, and Lindell
- we identify flaws in the designers' security analysis and propose a new security proof
- our findings leads to significantly reduced security claims, especially for long messages
- we propose a simple modification to the scheme (key derivation function) improving security without efficiency loss

T. Iwata and Y. Seurin

- we reconsider the security of the AEAD scheme AES-GCM-SIV designed by Gueron, Langley, and Lindell
- we identify flaws in the designers' security analysis and propose a new security proof
- our findings leads to significantly reduced security claims, especially for long messages
- we propose a simple modification to the scheme (key derivation function) improving security without efficiency loss

T. Iwata and Y. Seurin

- we reconsider the security of the AEAD scheme AES-GCM-SIV designed by Gueron, Langley, and Lindell
- we identify flaws in the designers' security analysis and propose a new security proof
- our findings leads to significantly reduced security claims, especially for long messages
- we propose a simple modification to the scheme (key derivation function) improving security without efficiency loss

T. Iwata and Y. Seurin

- we reconsider the security of the AEAD scheme AES-GCM-SIV designed by Gueron, Langley, and Lindell
- we identify flaws in the designers' security analysis and propose a new security proof
- our findings leads to significantly reduced security claims, especially for long messages
- we propose a simple modification to the scheme (key derivation function) improving security without efficiency loss

Improving Key Derivation

Final Remarks

Background on AES-GCM-SIV

Fixing the Security Bound

Improving Key Derivation

Final Remarks

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 3 / 26

Background on AES-GCM-SIV

Fixing the Security Bound

Improving Key Derivation

Final Remarks

Background on AES-GCM-SIV

Fixing the Security Bound

Improving Key Derivation

Final Remarks

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 4 / 26

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]

• GCM-SIV [GL15]

- same components as GCM
- Synthetic IV (SIV) composition [RS06]
- nonce-misuse resistant

• AES-GCM-SIV [GLL16, GLL17]

- \neq GCM-SIV instantiated with AES
- similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH).
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polymb}, K_{bc})$
- proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 5 / 26

History of (AES)-GCM-(SIV) AEAD schemes

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]

• GCM-SIV [GL15]

- same components as GCM
- Synthetic IV (SIV) composition [RS06]
- nonce-misuse resistant

• AES-GCM-SIV [GLL16, GLL17]

- \neq GCM-SIV instantiated with AES
- similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH).
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polynol}, K_{bc})$
- proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 5 / 26

History of (AES)-GCM-(SIV) AEAD schemes

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]

• GCM-SIV [GL15]

- same components as GCM
- Synthetic IV (SIV) composition [RS06]
- nonce-misuse resistant

• AES-GCM-SIV [GLL16, GLL17]

- \neq GCM-SIV instantiated with AES
- similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH)
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polymb}, K_{bc})$
- proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 5 / 26

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]

• GCM-SIV [GL15]

- same components as GCM
- Synthetic IV (SIV) composition [RS06]
- nonce-misuse resistant

• AES-GCM-SIV [GLL16, GLL17]

- \neq GCM-SIV instantiated with AES
- similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH).
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polymb}, K_{bc})$
- proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]

• GCM-SIV [GL15]

- same components as GCM
- Synthetic IV (SIV) composition [RS06]
- nonce-misuse resistant

• AES-GCM-SIV [GLL16, GLL17]

- \neq GCM-SIV instantiated with AES
- similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH).
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polynol}, K_{bc})$
- proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]

• GCM-SIV [GL15]

- same components as GCM
- Synthetic IV (SIV) composition [RS06]
- nonce-misuse resistant

• AES-GCM-SIV [GLL16, GLL17]

- \neq GCM-SIV instantiated with AES
- similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH).
 - full-block counter
 - nonce-based key derivation $(K, M) \mapsto (K_{polyout}, K_{0}c)$
- proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

History of (AES)-GCM-(SIV) AEAD schemes

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]

• GCM-SIV [GL15]

- same components as GCM
- Synthetic IV (SIV) composition [RS06]
- nonce-misuse resistant

• AES-GCM-SIV [GLL16, GLL17]

- \neq GCM-SIV instantiated with AES
- similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH).
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{pdynd}, K_{0C})$
- proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

History of (AES)-GCM-(SIV) AEAD schemes

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]

• GCM-SIV [GL15]

- same components as GCM
- Synthetic IV (SIV) composition [RS06]
- nonce-misuse resistant

• AES-GCM-SIV [GLL16, GLL17]

- \neq GCM-SIV instantiated with AES
- similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH)
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polynol}, K_{bc})$
- proposed for standardization at IETF CFRG

History of (AES)-GCM-(SIV) AEAD schemes

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]

• GCM-SIV [GL15]

- same components as GCM
- Synthetic IV (SIV) composition [RS06]
- nonce-misuse resistant

• AES-GCM-SIV [GLL16, GLL17]

- \neq GCM-SIV instantiated with AES
- similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH)
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polyval}, K_{BC})$
- proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

History of (AES)-GCM-(SIV) AEAD schemes

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]
- GCM-SIV [GL15]
 - same components as GCM
 - Synthetic IV (SIV) composition [RS06]
 - nonce-misuse resistant
- AES-GCM-SIV [GLL16, GLL17]
 - \neq GCM-SIV instantiated with AES
 - similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH)
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{\text{polyval}}, K_{\text{BC}})$
 - proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

History of (AES)-GCM-(SIV) AEAD schemes

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]
- GCM-SIV [GL15]
 - same components as GCM
 - Synthetic IV (SIV) composition [RS06]
 - nonce-misuse resistant
- AES-GCM-SIV [GLL16, GLL17]
 - \neq GCM-SIV instantiated with AES
 - similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH)
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polyval}, K_{BC})$
 - proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

History of (AES)-GCM-(SIV) AEAD schemes

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]
- GCM-SIV [GL15]
 - same components as GCM
 - Synthetic IV (SIV) composition [RS06]
 - nonce-misuse resistant
- AES-GCM-SIV [GLL16, GLL17]
 - \neq GCM-SIV instantiated with AES
 - similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH)
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polyval}, K_{BC})$
 - proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

History of (AES)-GCM-(SIV) AEAD schemes

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]
- GCM-SIV [GL15]
 - same components as GCM
 - Synthetic IV (SIV) composition [RS06]
 - nonce-misuse resistant
- AES-GCM-SIV [GLL16, GLL17]
 - \neq GCM-SIV instantiated with AES
 - similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH)
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polyval}, K_{BC})$
 - proposed for standardization at IETF CFRG

T. Iwata and Y. Seurin

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]
- GCM-SIV [GL15]
 - same components as GCM
 - Synthetic IV (SIV) composition [RS06]
 - nonce-misuse resistant
- AES-GCM-SIV [GLL16, GLL17]
 - \neq GCM-SIV instantiated with AES
 - similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH)
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polyval}, K_{BC})$
 - proposed for standardization at IETF CFRG

• GCM [MV04]

- CTR encryption + Wegman-Carter MAC
- Encrypt-then-MAC composition
- widely deployed, not nonce-misuse resistant [Jou06, BZD+16]
- GCM-SIV [GL15]
 - same components as GCM
 - Synthetic IV (SIV) composition [RS06]
 - nonce-misuse resistant
- AES-GCM-SIV [GLL16, GLL17]
 - \neq GCM-SIV instantiated with AES
 - similar to GCM-SIV but three modifications:
 - universal hash function (POLYVAL instead of GHASH)
 - full-block counter
 - nonce-based key derivation $(K, N) \mapsto (K_{polyval}, K_{BC})$
 - proposed for standardization at IETF CFRG

Nonce-Based Authenticated Encryption (nAE)

Syntax

A nAE scheme Π is a pair of algorithms (Π .Enc, Π .Dec) where

- algorithm Π.Enc takes
 - (a key *K*)
 - a nonce N
 - associated data A
 - a message M

and returns a ciphertext C.

• algorithm Π . Dec takes K and (N, A, C) and returns M or \bot .

Nonce-Based Authenticated Encryption (nAE)

Security (all-in-one definition)

- The scheme Π is secure if adversary A cannot distinguish (Enc_K, Dec_K) and (\$,⊥).
- *A* cannot ask a decryption query (*N*, *A*, *C*) if it received *C* from an encryption query (*N*, *A*, *M*)
- *A* is said nonce-respecting if it never repeats a nonce in encryption queries.

Misuse-Resistant AE (MRAE)

Nonce-misuse resistance (informal) [RS06]

A nAE scheme is said nonce-misuse resistant if repeating a nonce in encryption queries:

- does not harm authenticity
- hurts confidentiality only insofar as repetitions of triplets (N, A, M) are detectable
- \simeq deterministic authenticated encryption
- MRAE schemes *cannot* be online (each ciphertext bit must depend on each input bit)

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 8 / 26

Misuse-Resistant AE (MRAE)

Nonce-misuse resistance (informal) [RS06]

A nAE scheme is said nonce-misuse resistant if repeating a nonce in encryption queries:

- does not harm authenticity
- hurts confidentiality only insofar as repetitions of triplets (N, A, M) are detectable
- \simeq deterministic authenticated encryption
- MRAE schemes *cannot* be online (each ciphertext bit must depend on each input bit)

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 8 / 26

Misuse-Resistant AE (MRAE)

Nonce-misuse resistance (informal) [RS06]

A nAE scheme is said nonce-misuse resistant if repeating a nonce in encryption queries:

- does not harm authenticity
- hurts confidentiality only insofar as repetitions of triplets (*N*, *A*, *M*) are detectable
- \simeq deterministic authenticated encryption
- MRAE schemes *cannot* be online (each ciphertext bit must depend on each input bit)

SIV composition method

- SIV (Synthetic IV) [RS06] combines a PRF F_{K1}(N, A, M) and an IV-based encryption scheme Π.Enc_{K2}(IV, M)
- provides nonce-misuse resistance: any change to *N*, *A*, or *M* randomly modifies the tag and *C*

T. Iwata and <u>Y. Seurin</u>

- SIV (Synthetic IV) [RS06] combines a PRF F_{K1}(N, A, M) and an IV-based encryption scheme Π.Enc_{K2}(IV, M)
- provides nonce-misuse resistance: any change to *N*, *A*, or *M* randomly modifies the tag and *C*

T. Iwata and <u>Y. Seurin</u>

- SIV (Synthetic IV) [RS06] combines a PRF F_{K1}(N, A, M) and an IV-based encryption scheme Π.Enc_{K2}(IV, M)
- provides nonce-misuse resistance: any change to *N*, *A*, or *M* randomly modifies the tag and *C*

T. Iwata and <u>Y. Seurin</u>

- SIV (Synthetic IV) [RS06] combines a PRF F_{K1}(N, A, M) and an IV-based encryption scheme Π.Enc_{K2}(IV, M)
- provides nonce-misuse resistance: any change to N, A, or M randomly modifies the tag and C

T. Iwata and <u>Y. Seurin</u>

Reconsidering AES-GCM-SIV's Security

FSE 2018 9 / 26

- SIV (Synthetic IV) [RS06] combines a PRF F_{K1}(N, A, M) and an IV-based encryption scheme Π.Enc_{K2}(IV, M)
- provides nonce-misuse resistance: any change to *N*, *A*, or *M* randomly modifies the tag and *C*

Details of AES-GCM-SIV

- AES-GCM-SIV = KeyDer + GCM-SIV⁺
- same BC key K_2 used in MAC and encryption $\Rightarrow 0/1$ domain separation

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

Background on AES-GCM-SIV

Fixing the Security Bound

Improving Key Derivation

Final Remarks

Background on AES-GCM-SIV

Fixing the Security Bound

Improving Key Derivation

Final Remarks

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 11 / 26

Designers' claims ([GLL17], Theorem 6)

$$\operatorname{Adv}_{AES-GCM-SIV}^{mrae}(\mathcal{A}) \leq \operatorname{Adv}_{AES}^{prp}(\mathcal{A}'') + \min\left\{\frac{36Q^2}{2^{129}}, \frac{6Q}{2^{96}}\right\}$$

$$\operatorname{KeyDer PRF-security}_{} + Q\left(2\operatorname{Adv}_{AES}^{prf}(\mathcal{A}') + \frac{R^2\ell_M}{2^{126}} + \frac{R^2 + 2q_D}{2^{127}}\right),$$

- $\ell_M = maximal message length of encryption queries$
- Q = maximal number of distinct nonces in encryption queries
- R = maximal number of nonce repetitions in encryption queries
- q_D = number of decryption queries per nonce, σ_D = total length
- \mathcal{A}' makes at most $Q(2R + 2q_D + \sigma_D)$ queries
- \mathcal{A}'' makes at most 6Q queries

T. Iwata and Y. Seurin

Designers' claims ([GLL17], Theorem 6)

$$\operatorname{Adv}_{AES-GCM-SIV}^{mrae}(\mathcal{A}) \leq \operatorname{Adv}_{AES}^{prp}(\mathcal{A}'') + \min\left\{\frac{36Q^2}{2^{129}}, \frac{6Q}{2^{96}}\right\}$$

$$\operatorname{KeyDer PRF-security}_{} + Q\left(2\operatorname{Adv}_{AES}^{prf}(\mathcal{A}') + \frac{R^2\ell_M}{2^{126}} + \frac{R^2 + 2q_D}{2^{127}}\right),$$

- $\ell_M = maximal$ message length of encryption queries
- Q = maximal number of distinct nonces in encryption queries
- R = maximal number of nonce repetitions in encryption queries
- q_D = number of decryption queries per nonce, σ_D = total length
- \mathcal{A}' makes at most $Q(2R+2q_D+\sigma_D)$ queries
- \mathcal{A}'' makes at most 6Q queries

T. Iwata and Y. Seurin

Designers' claims ([GLL17], Theorem 6)

$$\begin{aligned} \mathsf{Adv}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) &\leq \underbrace{\mathsf{Adv}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}'') + \min\left\{\frac{36Q^2}{2^{129}}, \frac{6Q}{2^{96}}\right\}}_{\mathsf{KeyDer PRF-security}} \\ &+ Q\left(2\mathsf{Adv}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') + \frac{R^2\ell_M}{2^{126}} + \frac{R^2 + 2q_D}{2^{127}}\right), \end{aligned}$$

- ℓ_M = maximal message length of encryption queries
- Q = maximal number of distinct nonces in encryption queries
- R = maximal number of nonce repetitions in encryption queries
- q_D = number of decryption queries per nonce, σ_D = total length
- \mathcal{A}' makes at most $Q(2R+2q_D+\sigma_D)$ queries
- \mathcal{A}'' makes at most 6Q queries

T. Iwata and Y. Seurin

$$\begin{split} \mathbf{\mathsf{Adv}}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) &\leq \mathbf{\mathsf{Adv}}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}'') + \min\left\{\frac{36Q^2}{2^{129}}, \frac{6Q}{2^{96}}\right\} \\ &+ Q\left(2\mathbf{\mathsf{Adv}}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') + \frac{R^2\ell_M}{2^{126}} + \frac{R^2 + 2q_D}{2^{127}}\right) \end{split}$$

- mixes PRP- and PRF-security of the underlying BC
- AD's length not taken into account
- number of queries $Q(2R+2q_D+\sigma_D)$ of \mathcal{A}' is flawed
- Q = 0 (no encryption queries), $q_D > 0 \Rightarrow \mathbf{Adv}_{AES-GCM-SIV}^{mrae}(\mathcal{A}) = 0$ \rightarrow impossible for MRAE security definition (non-zero probability to forge a tag randomly)

$$\begin{split} \mathbf{Adv}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) &\leq \mathbf{Adv}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}'') + \min\left\{\frac{36Q^2}{2^{129}}, \frac{6Q}{2^{96}}\right\} \\ &+ Q\left(2\mathbf{Adv}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') + \frac{R^2\ell_M}{2^{126}} + \frac{R^2 + 2q_D}{2^{127}}\right) \end{split}$$

- mixes PRP- and PRF-security of the underlying BC
- AD's length not taken into account
- number of queries $Q(2R+2q_D+\sigma_D)$ of \mathcal{A}' is flawed
- Q = 0 (no encryption queries), $q_D > 0 \Rightarrow \mathbf{Adv}_{AES-GCM-SIV}^{mrae}(\mathcal{A}) = 0$ \rightarrow impossible for MRAE security definition (non-zero probability to forge a tag randomly)

$$\begin{split} \mathbf{Adv}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) &\leq \mathbf{Adv}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}'') + \min\left\{\frac{36Q^2}{2^{129}}, \frac{6Q}{2^{96}}\right\} \\ &+ Q\left(2\mathbf{Adv}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') + \frac{R^2\ell_M}{2^{126}} + \frac{R^2 + 2q_D}{2^{127}}\right) \end{split}$$

- mixes PRP- and PRF-security of the underlying BC
- AD's length not taken into account
- number of queries $Q(2R+2q_D+\sigma_D)$ of \mathcal{A}' is flawed
- Q = 0 (no encryption queries), q_D > 0 ⇒ Adv^{mrae}_{AES-GCM-SIV}(A) = 0 → impossible for MRAE security definition (non-zero probability to forge a tag randomly)

T. Iwata and Y. Seurin

$$\begin{split} \mathbf{Adv}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) &\leq \mathbf{Adv}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}'') + \min\left\{\frac{36Q^2}{2^{129}}, \frac{6Q}{2^{96}}\right\} \\ &+ Q\left(2\mathbf{Adv}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') + \frac{R^2\ell_M}{2^{126}} + \frac{R^2 + 2q_D}{2^{127}}\right) \end{split}$$

- mixes PRP- and PRF-security of the underlying BC
- AD's length not taken into account
- number of queries $Q(2R+2q_D+\sigma_D)$ of \mathcal{A}' is flawed
- Q = 0 (no encryption queries), $q_D > 0 \Rightarrow \mathbf{Adv}_{AES-GCM-SIV}^{mrae}(\mathcal{A}) = 0$ \rightarrow impossible for MRAE security definition (non-zero probability to forge a tag randomly)

Corrected security bound (privacy only)

If
$$q_D = 0$$
 (no decryption queries), then

$$\begin{split} \mathbf{Adv}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) &\leq \mathbf{Adv}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}'') + \min\left\{\frac{36Q^2}{2^{129}}, \frac{6Q}{2^{96}}\right\} \\ &+ Q\mathbf{Adv}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') + \frac{QR^2\ell_M}{2^{126}} + \frac{QR^2\ell_A}{2^{128}} \end{split}$$

Main changes:

- takes into account ℓ_A = maximal length of AD
- \mathcal{A}' makes $R\ell_M$ queries versus 2QR in [GLL17]

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 14 / 26

Corrected security bound (privacy only)

If
$$q_D = 0$$
 (no decryption queries), then

$$egin{aligned} \mathsf{Adv}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) &\leq \mathsf{Adv}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}'') + \min\left\{rac{36Q^2}{2^{129}}, rac{6Q}{2^{96}}
ight\} \ &+ Q\mathsf{Adv}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') + rac{QR^2\ell_M}{2^{126}} + rac{QR^2\ell_A}{2^{128}} \end{aligned}$$

Main changes:

- takes into account $\ell_A = maximal$ length of AD
- \mathcal{A}' makes $R\ell_M$ queries versus 2QR in [GLL17]

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 14 / 26

Dominating term

$$\begin{split} \mathbf{\mathsf{Adv}}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) &\leq \mathbf{\mathsf{Adv}}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}'') + \min\left\{\frac{36Q^2}{2^{129}}, \frac{6Q}{2^{96}}\right\} \\ &+ Q\mathbf{\mathsf{Adv}}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') + \frac{QR^2\ell_M}{2^{126}} + \frac{QR^2\ell_A}{2^{128}}, \end{split}$$

- [GLL17] claimed the security bound is dominated by $\frac{QR^2\ell_M}{2^{126}}$ (accounts for counter collision)
- but in fact the PRF term is $\sim \ell_M$ larger (\mathcal{A}' makes $R\ell_M$ queries)

$$Q$$
Adv^{prf}_{AES} $(A') \simeq Q$ Adv^{prp}_{AES} $(A') + \frac{QR^2\ell_M^2}{2^{129}}$

• the bound is tight and matched by a simple distinguishing attack

T. Iwata and Y. Seurin

Dominating term

$$\begin{split} \mathbf{\mathsf{Adv}}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) &\leq \mathbf{\mathsf{Adv}}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}'') + \min\left\{\frac{36Q^2}{2^{129}}, \frac{6Q}{2^{96}}\right\} \\ &+ Q\mathbf{\mathsf{Adv}}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') + \frac{QR^2\ell_M}{2^{126}} + \frac{QR^2\ell_A}{2^{128}}, \end{split}$$

- [GLL17] claimed the security bound is dominated by $\frac{QR^2\ell_M}{2^{126}}$ (accounts for counter collision)
- but in fact the PRF term is $\sim \ell_M$ larger (\mathcal{A}' makes $R\ell_M$ queries)

$$Q \mathsf{Adv}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') \simeq Q \mathsf{Adv}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}') + rac{Q R^2 \ell_M^2}{2^{129}}$$

• the bound is tight and matched by a simple distinguishing attack

T. Iwata and Y. Seurin

Dominating term

$$\begin{split} \mathbf{\mathsf{Adv}}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) &\leq \mathbf{\mathsf{Adv}}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}'') + \min\left\{\frac{36Q^2}{2^{129}}, \frac{6Q}{2^{96}}\right\} \\ &+ Q\mathbf{\mathsf{Adv}}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') + \frac{QR^2\ell_M}{2^{126}} + \frac{QR^2\ell_A}{2^{128}}, \end{split}$$

- [GLL17] claimed the security bound is dominated by $\frac{QR^2\ell_M}{2^{126}}$ (accounts for counter collision)
- but in fact the PRF term is $\sim \ell_M$ larger (\mathcal{A}' makes $R\ell_M$ queries)

$$Q \mathsf{Adv}_{\mathsf{AES}}^{\mathsf{prf}}(\mathcal{A}') \simeq Q \mathsf{Adv}_{\mathsf{AES}}^{\mathsf{prp}}(\mathcal{A}') + rac{Q R^2 \ell_M^2}{2^{129}}$$

• the bound is tight and matched by a simple distinguishing attack

T. Iwata and Y. Seurin

Concrete security claims

Scheme	N _E	Q	R	ℓ _M	our bound	[GLL17] claim
AES-GCM-SIV	2 ³²	232	1	232	2 ⁻³³	2 ⁻⁶¹
(nonce based)	2 ⁶⁴	2 ⁶⁴	1	2 ³²	2-1	2-29
	2 ³¹	1	2 ³¹	2 ³²	2 ⁻³	2 ⁻³²
	2 ³¹	1	2 ³¹	2 ¹⁶	2 ⁻³⁵	2 ⁻⁴⁸
	2 ³⁹	1	2 ³⁹	2 ¹⁶	2-19	2-32
	2 ⁴²	1	2 ⁴²	2 ¹⁰	2 ⁻²⁵	2 ⁻³²
	2 ⁵⁰	2 ⁴²	2 ⁸	2 ³²	2 ⁻⁷	2^{-36}
	2 ⁵⁰	242	2 ⁸	2 ¹⁶	2 ⁻³⁹	2-51
	2 ⁵⁰	2 ⁴⁶	24	2 ³²	2-11	2 ⁻⁴⁰
AES-GCM-SIV	2 ⁴⁸		_	2 ³²	2 ⁻¹⁴	2 ⁻⁴⁴
(random IV)	2 ⁶³	—	—	2 ¹⁶	2-31	2 ⁻³²

 $N_E = QR$ = total number of encryption queries

T. Iwata and <u>Y. Seurin</u>

Reconsidering AES-GCM-SIV's Security

FSE 2018 16 / 26

- the adversary can choose nonces freely in decryption queries (it could reuse the same nonce q_D times)
- naive bound $(Q + q_D \text{ distinct nonces})$

$$\mathsf{Adv}_{\text{AES-GCM-SIV}}^{\text{mrae}}(\mathcal{A}) \leq (Q+q_D) \underbrace{\left((\cdots) + \frac{(R+q_D)^2(\ell_M + \ell_A)}{2^n}\right)}_{\text{CM}}$$

GCM-SIV⁺ security

- loose bound (cubic in q_D)
- with a more careful multi-user analysis we recover a bound quadratic in q_D

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 17 / 26

- the adversary can choose nonces freely in decryption queries (it could reuse the same nonce q_D times)
- naive bound $(Q + q_D \text{ distinct nonces})$

$$\mathsf{Adv}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) \leq (Q+q_D) \underbrace{\left((\cdots) + \frac{(R+q_D)^2(\ell_M + \ell_A)}{2^n}\right)}_{\mathsf{GCM-SIV}^+ \text{ security}}$$

- loose bound (cubic in q_D)
- with a more careful multi-user analysis we recover a bound quadratic in q_D

T. Iwata and Y. Seurin

- the adversary can choose nonces freely in decryption queries (it could reuse the same nonce q_D times)
- naive bound $(Q + q_D \text{ distinct nonces})$

$$\mathsf{Adv}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) \leq (Q+q_D) \underbrace{\left((\cdots) + \frac{(R+q_D)^2(\ell_M + \ell_A)}{2^n}\right)}_{\mathsf{GCM-SIV}^+ \text{ security}}$$

- loose bound (cubic in q_D)
- with a more careful multi-user analysis we recover a bound quadratic in q_D

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 17 / 26

- the adversary can choose nonces freely in decryption queries (it could reuse the same nonce q_D times)
- naive bound $(Q + q_D \text{ distinct nonces})$

$$\mathsf{Adv}_{\mathsf{AES-GCM-SIV}}^{\mathsf{mrae}}(\mathcal{A}) \leq (Q+q_D) \underbrace{\left((\cdots) + \frac{(R+q_D)^2(\ell_M + \ell_A)}{2^n}\right)}_{\mathsf{GCM-SIV}^+ \text{ security}}$$

- loose bound (cubic in q_D)
- with a more careful multi-user analysis we recover a bound quadratic in q_D

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 17 / 26

Background on AES-GCM-SIV

Fixing the Security Bound

Improving Key Derivation

Final Remarks

Background on AES-GCM-SIV

Fixing the Security Bound

Improving Key Derivation

Final Remarks

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

FSE 2018 18 / 26

Key Derivation Function

- $(K, N) \xrightarrow{\text{KeyDer}} (K_1, K_2)$ constructed from E
- standard PRP-to-PRF conversion problem
- based on truncation [HWKS98, GGM18]

• security of truncation when dropping m bits: for q large enough,

$$\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{Trunc}_{n-m}[P]}(q) \leq rac{q}{2^{(m+n)/2}}$$

• when dropping m = n/2 bits:

- two BC calls to obtain an *n*-bit key
- security up to $2^{3n/4}$ queries
- better construction: XOR of permutations

 $K_1 = E_K(N || [0]_{32}) \oplus E_K(N || [1]_{32})$

- two BC calls to obtain an n-bit key
- security up to 2ⁿ queries [Pat08, DHT17]

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

• security of truncation when dropping *m* bits: for *q* large enough,

$$\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{Trunc}_{n-m}[P]}(q) \leq rac{q}{2^{(m+n)/2}}$$

- when dropping m = n/2 bits:
 - two BC calls to obtain an *n*-bit key
 - security up to $2^{3n/4}$ queries
- better construction: XOR of permutations

 $K_1 = E_K(N || [0]_{32}) \oplus E_K(N || [1]_{32})$

- two BC calls to obtain an n-bit key
- security up to 2ⁿ queries [Pat08, DHT17]

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

• security of truncation when dropping *m* bits: for *q* large enough,

$$\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{Trunc}_{n-m}[P]}(q) \leq rac{q}{2^{(m+n)/2}}$$

- when dropping m = n/2 bits:
 - two BC calls to obtain an *n*-bit key
 - security up to $2^{3n/4}$ queries
- better construction: XOR of permutations

 $K_1 = E_K(N || [0]_{32}) \oplus E_K(N || [1]_{32})$

- two BC calls to obtain an n-bit key
- security up to 2ⁿ queries [Pat08, DHT17]

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

• security of truncation when dropping *m* bits: for *q* large enough,

$$\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{Trunc}_{n-m}[P]}(q) \leq rac{q}{2^{(m+n)/2}}$$

- when dropping m = n/2 bits:
 - two BC calls to obtain an *n*-bit key
 - security up to $2^{3n/4}$ queries
- better construction: XOR of permutations

 $K_1 = E_{\mathcal{K}}(N || [0]_{32}) \oplus E_{\mathcal{K}}(N || [1]_{32})$

- two BC calls to obtain an n-bit key
- security up to 2ⁿ queries [Pat08, DHT17]

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

• security of truncation when dropping *m* bits: for *q* large enough,

$$\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{Trunc}_{n-m}[P]}(q) \leq rac{q}{2^{(m+n)/2}}$$

- when dropping m = n/2 bits:
 - two BC calls to obtain an *n*-bit key
 - security up to $2^{3n/4}$ queries
- better construction: XOR of permutations

$$K_1 = E_K(N || [0]_{32}) \oplus E_K(N || [1]_{32})$$

- two BC calls to obtain an *n*-bit key
- security up to 2^{*n*} queries [Pat08, DHT17]

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

• security of truncation when dropping *m* bits: for *q* large enough,

$$\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{Trunc}_{n-m}[P]}(q) \leq rac{q}{2^{(m+n)/2}}$$

- when dropping m = n/2 bits:
 - two BC calls to obtain an *n*-bit key
 - security up to $2^{3n/4}$ queries
- better construction: XOR of permutations

$$K_1 = E_K(N || [0]_{32}) \oplus E_K(N || [1]_{32})$$

• two BC calls to obtain an *n*-bit key

• security up to 2^{*n*} queries [Pat08, DHT17]

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

• security of truncation when dropping *m* bits: for *q* large enough,

$$\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{Trunc}_{n-m}[P]}(q) \leq rac{q}{2^{(m+n)/2}}$$

- when dropping m = n/2 bits:
 - two BC calls to obtain an *n*-bit key
 - security up to $2^{3n/4}$ queries
- better construction: XOR of permutations

$$K_1 = E_K(N || [0]_{32}) \oplus E_K(N || [1]_{32})$$

- two BC calls to obtain an *n*-bit key
- security up to 2ⁿ queries [Pat08, DHT17]

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

Background on AES-GCM-SIV

Fixing the Security Bound

Improving Key Derivation

Final Remarks

Background on AES-GCM-SIV

Fixing the Security Bound

Improving Key Derivation

Final Remarks

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

• Gueron and Lindell, Better Bounds for Block Cipher Modes of Operation via Nonce-Based Key Derivation, CCS 2017

- security definition puts an upper bound on the number of decryption queries per nonce
 - \rightarrow complicated to enforce in practice (stateful decryption)
- Theorem 6.2 still has problems and can be falsified
- Bose, Hoang, and Tessaro, *Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds,* EUROCRYPT 2018
 - shows that the security of AES-GCM-SIV does not degrade in the multi-user setting

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

- Gueron and Lindell, Better Bounds for Block Cipher Modes of Operation via Nonce-Based Key Derivation, CCS 2017
 - security definition puts an upper bound on the number of decryption queries per nonce
 - \rightarrow complicated to enforce in practice (stateful decryption)
 - Theorem 6.2 still has problems and can be falsified
- Bose, Hoang, and Tessaro, *Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds,* EUROCRYPT 2018
 - shows that the security of AES-GCM-SIV does not degrade in the multi-user setting

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

- Gueron and Lindell, Better Bounds for Block Cipher Modes of Operation via Nonce-Based Key Derivation, CCS 2017
 - security definition puts an upper bound on the number of decryption queries per nonce
 - ightarrow complicated to enforce in practice (stateful decryption)
 - Theorem 6.2 still has problems and can be falsified
- Bose, Hoang, and Tessaro, *Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds,* EUROCRYPT 2018
 - shows that the security of AES-GCM-SIV does not degrade in the multi-user setting

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

- Gueron and Lindell, Better Bounds for Block Cipher Modes of Operation via Nonce-Based Key Derivation, CCS 2017
 - security definition puts an upper bound on the number of decryption queries per nonce
 - \rightarrow complicated to enforce in practice (stateful decryption)
 - Theorem 6.2 still has problems and can be falsified
- Bose, Hoang, and Tessaro, *Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds,* EUROCRYPT 2018
 - shows that the security of AES-GCM-SIV does not degrade in the multi-user setting

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

- Gueron and Lindell, Better Bounds for Block Cipher Modes of Operation via Nonce-Based Key Derivation, CCS 2017
 - security definition puts an upper bound on the number of decryption queries per nonce
 - \rightarrow complicated to enforce in practice (stateful decryption)
 - Theorem 6.2 still has problems and can be falsified
- Bose, Hoang, and Tessaro, *Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds*, EUROCRYPT 2018
 - shows that the security of AES-GCM-SIV does not degrade in the multi-user setting

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

The end...

Thanks for your attention!

Comments or questions?

T. Iwata and Y. Seurin

Reconsidering AES-GCM-SIV's Security

References

References I

- Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jovanovic. Nonce-Disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS. In USENIX Workshop on Offensive Technologies, WOOT 2016. USENIX Association, 2016.
- Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-theoretic Indistinguishability via the Chi-squared Method. In Advances in Cryptology - CRYPTO 2017 (Proceedings, Part III), volume 10403 of LNCS, pages 497–523. Springer, 2017.
- Shoni Gilboa, Shay Gueron, and Ben Morris. How Many Queries are Needed to Distinguish a Truncated Random Permutation from a Random Function? J. Cryptology, 31(1):162–171, 2018.
- Shay Gueron and Yehuda Lindell. GCM-SIV: Full Nonce Misuse-Resistant Authenticated Encryption at Under One Cycle per Byte. In *ACM Conference on Computer and Communications Security - CCS 2015*, pages 109–119. ACM, 2015.

References II

- Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption. CFGR Draft, 2016. Available at https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-05.
- Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV: Specification and Analysis. IACR Cryptology ePrint Archive, Report 2017/168, 2017. Available at http://eprint.iacr.org/2017/168.
- Chris Hall, David Wagner, John Kelsey, and Bruce Schneier. Building PRFs from PRPs. In Advances in Cryptology - CRYPTO '98, volume 1462 of LNCS, pages 370–389. Springer, 1998.
- Antoine Joux. Authentication Failures in NIST Version of GCM. Comments submitted to NIST Modes of Operation Process, 2006. Available at http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/ comments/800-38_Series-Drafts/GCM/Joux_comments.pdf.

References

References III

- David A. McGrew and John Viega. The Security and Performance of the Galois/Counter Mode (GCM) of Operation. In *Progress in Cryptology -INDOCRYPT 2004*, volume 3348 of *LNCS*, pages 343–355. Springer, 2004.
- Jacques Patarin. A Proof of Security in $O(2^n)$ for the Xor of Two Random Permutations. In *Information Theoretic Security ICITS 2008*, volume 5155 of *LNCS*, pages 232–248. Springer, 2008.
- Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the Key-Wrap Problem. In Advances in Cryptology - EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer, 2006.