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Abstract. Discussions about the choice of a tree hash mode of operation for a
standardization have recently been undertaken. It appears that a single tree mode
cannot address adequately all possible uses and specifications of a system. In this
paper, we review the tree modes which have been proposed, we discuss their problems
and propose solutions. We make the reasonable assumption that communicating
systems have different specifications and that software applications are of different
types (securing stored content or live-streamed content). Finally, we propose new
modes of operation that address the resource usage problem for three representative
categories of devices and we analyse their asymptotic behavior.
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1 Introduction
1.1 Context
In this article, we are interested in the parallelism of cryptographic hash functions. De-
pending on the nature of the application, we seek to achieve either of the two alternative
objectives:

• Priority to memory usage. We first reduce the (asymptotic) parallel running
time, and then the number of involved processors, while minimizing the required
memory of an implementation using as few as one processor.

• Priority to parallel time. We retain an asymptotically optimal parallel time while
containing the other computational resources.

Historically, a cryptographic hash function makes use of an underlying function, de-
noted f , having a fixed input size, like a compression function, a block cipher or more
recently, a permutation [BDPA13, BDPA11]. This underlying function, so-called inner
function according to the terminology of Bertoni et al. [BDPA13], is called iteratively on
the message blocks in order to process a message of arbitrary length. When this mode
of operation is sequential, it makes it difficult to exploit parallel architectures. In fact,
a sequential (or serial) hash function can only use Instruction-Level Parallelism (ILP)
and Single Instruction Multiple Data (SIMD) [GK12a, GK12b], because the amount of
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computation which can be done in parallel between two consecutive synchronization points
is too small. However, some operating modes use hash functions as inner functions and
can exploit a particular tree structure either for parallelism or incrementality1 purposes.
A (non-degenerated) tree structure not only allows for further use of SIMD instructions,
but also enables the use of multithreading in order to process in parallel several parts of a
message on different processors/cores.

The Internet is recognized as a network interconnecting heterogeneous computers, and
this becomes particularly true with the advent of the Internet of Things (IoT). The choice
of a hashing mode depends on the nature of the computing platforms that process the
message. According to [HBPT16], IoT devices can be classified in two categories, based
on their capability and performance: high-end IoT devices which include single-board
computers and smartphones, and low-end IoT devices which are much more resource-
constrained. Based on the memory capacity of its devices, this last category has been
further subdivided [BEK15] by the Internet Engineering Task Force (IETF). The time
and space complexities to execute the tree mode are important for resource-constrained
systems, especially when this execution is sequential (i.e. using a single processor).

In this article, we focus on the parallel efficiency of hash functions, depending on the
chosen modes. What we investigate are the tree modes for an inner Variable-Input-Length
function. Instead of working at finite distance, we consider big-O asymptotic complexities
as it is usually done in other topics of algorithms and data structures (e.g. sorting and
searching algorithms). We choose to segment the parallel computers into 3 categories,
each of which can be mapped to a dedicated hashing mode: resource-constrained devices
(no matter how low their CPU and RAM resources are), devices dedicated to critical
applications (having abundant and possibly specially-dedicated resources), and a last
category which could constitute a middle-range. Such a mapping is valid only if commu-
nicating peers are of a same category. Otherwise, the use of a hashing mode dedicated
to resource-constrained devices prevails. This work is not devoted to lightweight hash
functions and the inner function that we take as example is based on the standardized
Keccak [BDPA13]. However, there are no impediments to using some of our tree modes
with an inner lightweight hash function.

1.2 Computational model and terminology
Since a sequential hash function iterates a “low-level” primitive on fixed-size blocks of
the message (with maybe a constant number of added blocks for padding or other coding
purposes), its running time is asymptotically linear in the message size. In terms of memory
usage, such a function needs to store only one hash state during its execution. The hash
state size corresponds to the output width of the inner function. For instance, in the case
of sponge-based hash functions like Keccak, the hash state size corresponds to the width
of the underlying permutation.

Several conventions are used to describe tree structures in the context of parallel hashing
(see an example Figure 1). The first convention, denoted C1 and often used to deal with
Merkle trees, consists in considering a node as the result of f applied on the concatenation
of its children. The term hash tree is used to refer to this type of tree, where the nodes
are the f -images and the leaves are the blocks of the message. The second convention
[BDPA09, BDPVA14], denoted C2, considers the nodes as being the inputs of the inner
function. Throughout this paper, unless otherwise specified, we use the convention C2.
Thus, a node is an f -input, while a chaining value is an f -image. The tree height, denoted
h, corresponds to the number of levels, indexed from 1 (for the base level) up to h (for the
final level). For the sake of simplicity, our results are derived by considering the nodes

1The use of a balanced binary tree is particularly efficient to update the hash of an edited message.
The change of one block in the message requires an update of the digest in logarithmic time.
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as containing either chaining values or message blocks, but not both. A level is said to
be of arity a if all its nodes contain exactly a chaining values (or message blocks), except
one node whose arity may be smaller (this is an ancestor node of the last message block
processed).

M1 M2

(a) C1

f(.)

M1 M2

CV

(b) C2

Figure 1: A (2-ary) node using convention C1 (left) or C2 (right), drawn as a solid bold
line. At the left, a node is an image by f and is represented with a circle. At the right, it
consists of an entire input to f , e.g. the message blocks M1 and M2 (the coding bits are
neglected). The result of f is either the final digest or a chaining value (CV ) which takes
place in another input to f .

In order to establish our complexity results, we use the classic PRAM (Parallel Random
Access Machine) model of computation assuming the strategy EREW (Exclusive Read
Exclusive Write). Our results are presented in terms of big-O (symbol O). Our proofs use
the asymptotic equivalence (symbol ∼) and sometimes the big-Theta notation (symbol Θ).

For a given set of parameters that characterizes the tree topology of a scalable tree
mode, the “ideal” parallel running time corresponds to the time needed to compute the
final digest when the number of processors is not a priori bounded. Actually, this number
of processors is a function of the message size and the chosen parameters. With the
convention used for a node (i.e. an f -input), it corresponds exactly to the number of
nodes that embed message bits. Such a definition makes the assumption that nodes
embedding both message bits and chaining values bits position the former before the latter
(i.e. a message part followed by one or more chaining values, termed as kangaroo hopping
in [BDPA14]). The term amount of work refers to the total number of calls to the low-level
primitive (e.g. the permutation of Keccak) performed by the processors. It can be seen
as the sequential running time. We say that it is asymptotically optimal if it is equal to
the asymptotic running time—in O(n)—of a traditional (serial) hash function. As regards
tree-based hash functions, the worst amount of work is obtained when the node arities
are small and the tree height unrestricted. For instance, the amount of work to compute
the root of a classic Merkle binary tree is at least twice that of a serial hash function. For
a parallel algorithm, the amount of work is lower than or equal to the product number
of processors × parallel time. We say that the number of processors is optimal for the
desired parallel time if this product is in O(n).

1.3 Our contributions
After a concise state of the art on tree hash modes, we describe strategies for sequential
and parallel implementations of tree hash modes, with particular attention to the memory
consumption. For a sequential implementation, we show that the memory consumption of
a tree hash mode is asymptotically linear in the height of the produced tree, whatever its
node arities. We then propose several scalable tree modes using Sakura coding [BDPA14].
These modes address the problems of memory usage, parallel time and number of processors:

• We show how to parameterize the tree topology and give 3 modes (4S, 5S and 6S)
suitable for the hashing of (streamed or not) stored content.
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• Then, we show that it is interesting to have a sequence of increasing levels arities,
or even levels of increasing node arities. This leads us to propose 3 modes (4L, 5L
and 6L) suitable for the hashing of live-streamed content. While at first glance this
seems somewhat contradictory, we show that without knowing in advance the size of
the message, these 3 adaptive tree constructions actually lead to different asymptotic
complexities.

• We discuss the way of decreasing the number of processors required to obtain the
ideal (asymptotic) parallel running time. The proposed modes then become optimal
with respect to the amount of work.

• We give some guidelines for the use of interleaving.

• We make suggestions for generating a digest of arbitrary length using a parallel
construction.

1.4 Organization of the article
After a brief survey on tree hash modes, Section 3 contains background information
regarding hash functions and tree hash modes. We discuss their security, implementation
strategies and their time-space efficiency. Using a parameterizable tree hash mode described
in Section 4, we derive several modes addressing the memory usage problem, the parallel
time and the number of processors. In particular, Section 5 gives parameters that produce
tree topologies suitable for streamed stored content. Then, parameters suitable for live-
streamed content are given in Section 6. Finally, we discuss in Section 7 how we can
conciliate scalability and interleaving, and concluding remarks are given in the last section.

2 Overview of tree hash modes and motivations
A tree hash mode uses an inner function f to compute the hashes of nodes based on the
values of their children. Depending on the target application, the result can simply be
the final digest of the hash tree (i.e. the hash of the root node), or all the computed
f -images. Tree hashing is due to Merkle and Damgård [Dam89, Mer79] and has several
applications: Post-Quantum Cryptography with Merkle signatures, Incremental Cryp-
tography, Authenticated Dictionaries, and the field we are concerned with here, Parallel
Cryptography.

Tree hash modes have been proposed in the SHA-3 candidates Skein [FBS+09] and
MD6 [RAB+08], and also in BLAKE2 [ANWOW13]. These tree modes are slightly
parameterizable since the arity of the tree can be chosen. Better still, in Skein, the node
arities are slightly more customizable: a parameter λin indicates that the inner nodes (i.e.
nodes of level ≥ 2) are of arity 2λin and a parameter λleaf indicates that the base level
nodes each contain 2λleaf message blocks. Skein, BLAKE2 and MD6 have also a parameter
restricting the tree height. If this last parameter has a too small value, the root node can
have an arity proportional to the size of the message.

Bertoni et al. [BDPA09, BDPVA14] give sufficient conditions for a tree-based hash
function to ensure its indifferentiability from a random oracle. They define the flexible
Sakura coding [BDPA14] which ensures these conditions, and enables any hash algorithm
using it to be indifferentiable from a random oracle, automatically. More particularly,
if all the tree hash modes are compliant with this coding and operate the same inner
function, (trivial) inter-collisions are avoided—or are merely reduced to collisions of the
inner function.

They also propose several tree hash modes for different usages. We can compare the
efficiency of these algorithms using Big-O notation. For example, a mode—called Mode 1 in
this article, “final node growing” in [BDPA14], or “unlimited fanout” in [ANWOW13]—can
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make use of a tree of height 2, defined in the following way: the message is divided into fixed-
size chunks which have to be hashed separately. The hash computations are distributed
among the processors, and the concatenation of the resulting digests is sequentially hashed
by a single processor. The advantages of this mode are its scalability (the number of
processors can be linear in the number of blocks) and its reduced memory usage when
executed sequentially. Its drawback is its ideal running time which remains linear in the
message size. In Mode 2, the message is divided into as many parts (of roughly equal size)
as there are processors so that each processor hashes each part, and then the concatenation
of all the results is sequentially hashed by one processor. In order to divide the message
into parts of roughly equal size, the size of the message is required as input to the algorithm,
which limits its use to the hashing of stored (or streamed stored) contents. Bertoni et
al. use an idea from Gueron [Gue13, Gue14] to propose a variant (Mode 2L) which still
makes use of a two-level tree and a fixed number of processors, but this one interleaves the
blocks of the message. This interleaving, which consists in distributing the message bits
(or blocks) in a round-robin fashion among q clusters, has several advantages. It allows
an efficient parallel hashing of a streamed message, a roughly equal distribution of the
data processed by each processor in the first level of the tree (without prior knowledge of
the message size), and finally a correct alignment of the data in the processors’ registers
(for SIMD implementations). The major drawback of this interleaving is that the memory
consumption is O(q) if the message bits have to be processed in the order of their arrival,
no matter whether this tree hash function is sequentially implemented or not. Finally, the
classic binary tree, in Mode 3, offers the best ideal running time but it consumes a lot of
storage when executed by a single processor. Let M be a message of n blocks, each block
being of fixed-length N . Table 1 compares the efficiency of these algorithms.

Table 1: Asymptotic efficiency using Big-O notation of existing tree hash modes, where
n is the number of blocks of the message. Mode 2 is dedicated to a “fixed” number q of
processors. Its asymptotic efficiency is given without hiding the quantities q and 1/q in
the Big-O.
Mode Live

streaming
Memory

(sequential)
Number of
processors

Parallel
running time
(ideal case)

Comments

1 X 1 n n root of unlimited arity
2S - 1 q

n/q
not scalable (but

reduced amount of work)2L X q q
3 X logn n logn tree of unlimited height

There was a debate [Luc13, Kel14] about the way of standardizing tree hash modes.
On the one hand, some wanted a single and simple tree hash mode allowing unrestricted
depth2 (like Skein [FBS+09], MD6 [RAB+08] or BLAKE2 [ANWOW13]), with maybe
several sets of parameters for the node arities. These tree topologies are flexible and
have a good potential parallelism, because they support live streaming, are scalable and
allow a nice ideal speedup (in running time). The problem is that, when its height is
unbounded, such a tree brings a performance penalty for sequential execution, as the
memory consumption and the amount of work (i.e. computations) are much greater than
for a serial (traditional) hash function. Note that the asymptotic efficiency of such a tree
is the same as that of Mode 3. However, if a parameter restricts its height (as allowed
by Skein, MD6 or BLAKE2), its asymptotic (parallel) efficiency can fall into the case of
Mode 1.

2The term unrestricted can be misused. For some of these modes, there is a parameter defining the
depth of the tree, and this one can be set large enough so that, in practice, it does not have any impact on
the tree topology.
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The choice of a tree hash mode, such as Mode 3, could be motivated by the potential
speedup obtained in ideal conditions. Its drawbacks are both the height of the produced
tree structure which increases logarithmically with the size of the message and a substantial
addition of computations. Most existing tree-based hash functions propose a parameter
to limit the height of the tree, that we denote t. If this parameter is set, there exists a
message size threshold, denoted lt, from which the final node will grow proportionally with
the message size, thus leading to a performance penalty. Let us suppose that we have a
new mode, denoted Mode X, which, for message sizes exceeding this value, constructs a
tree of height t offering a better potential speedup than Mode 3. If the message size is
known in advance and the choice of a tree hash mode is still motivated by the potential
speedup, we have the following simple but interesting strategy: Choose Mode X if the
message size exceeds lt, and Mode 3 otherwise.

digest
f(.)

f(.) f(.)f(.)

B blocks B

(a) Mode 1

digest
f(.)

f(.)

digest

f(.)

f(.)

f(.) f(.)

M1 M2

≈ n/2 ≈ n/2

M2

≈ n/2 ≈ n/2

M1 M3 M4

(b) Mode 2S (left) and Mode 2L (right)

Figure 2: Illustration of Mode 1 (at the top) and Mode 2 (at the bottom). At the top, the
message is divided into chunks of fixed size B, while at the bottom it is divided into two
chunks of roughly the same size (≈ n/2). In this example, Mode 2 is dedicated to the use
of two processors.

On the other hand, some argue that there should be as many tree modes as application
usages. According to Kelsey [Kel14], there should be two standards: one standard for
parallel hashing and one standard for tree hashing. The standard for tree hashing would
focus on trees of arbitrary (unrestricted) depth, with small node arities. These tree
topologies are suitable for timestamping, authenticated dictionaries or Merkle signatures
(and their variants). The standard for (fast) parallel hashing would focus on trees having a
small height, because the evaluation of a hash function should remain efficient on resource-
constrained devices (having few memory and maybe a single processor). Indeed, as we will
see later, the memory consumption is linear in the tree height. Moreover, a small tree height
means a reduced amount of work. Since mid-2016, the standard for parallel hashing is
available in NIST SP 800-185, with the specification of a ParallelHash function [KjCP16]
adopting the tree structure of Mode 1. At the same time, Bertoni et al. [BDP+16]
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have proposed another variant of Mode 1 implemented with numerous optimizations, in
particular the use of SIMD instructions, kangaroo hopping and a Round-Reduced version
of Keccak.

Even for a client-server application, the memory consumption of a tree hash mode is a
concern. Let us take the example of a Cloud Storage application making use of Mode 3. If,
for checking their integrity, a storage server computes simultaneously the hashes of n-block
files uploaded from v clients, the total memory consumption is then O(v logn). That has
to be compared to the O(v) required by a Mode 1 based hash function or a serial hash
function (e.g. SHA-3). These differences should be taken into account when dimensioning
the server.

Thus, the discussed modes are roughly the ones summarized in Table 1. Some illustra-
tions are depicted in Figure 2 and Figure 3. Even if it is scalable and allows an optimal
running time (in ideal conditions), Mode 3 seems to be left aside. It is just recommended
for incremental hashing, or for the other cited cryptographic algorithms and protocols.
Regarding the other proposed modes, it seems that a choice has to be made between
scalability (Mode 1) and a reduced sequential part of the computation (the root node
computation in Mode 2). In practice, for a small number of processors, this makes a
difference. Asymptotically, in either case, the parallel time is still linear in the size of the
message.

digest
f(.)

f(.) f(.)f(.) f(.)

f(.)f(.)

f(.)f(.)f(.)f(.)f(.)f(.)f(.)f(.)

M1 M11 M15 M16M2 M3 M4 M5 M6 M9 M10 M12 M13 M14M7 M8

(a) Mode 3

digest
f(.)

f(.) f(.)

f(.)f(.)f(.)f(.)f(.)f(.)f(.)f(.)

f(.) f(.)

M1 M11 M15 M16M2 M3 M4 M5 M6 M9 M10 M12 M13 M14M7 M8

(b) Variant of Mode 3 when restricted to 3 levels

Figure 3: Illustration of Mode 3 with and without height restriction, at the bottom and at
the top respectively. At the bottom, the root node has an arity which grows proportionally
with the size of the message.

Mode 1 and Mode 2 have the advantage of requiring a constant memory consumption
when executed sequentially. Nevertheless, under such a memory constraint, their ideal
asymptotic parallel time is far from optimal. How can we reduce this time while leaving
unchanged the space consumption? As regards Mode 3, the situation is reversed and we
might wish to trade the logarithmic parallel time for a less decreasing function in order
to decrease the memory footprint of a sequential implementation. The paper deals with
these issues because it is unclear how to build tree toplogies allowing trade-offs between
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these two complexity criteria. Once a tree topology achieving a particular pair (number of
processors, parallel time) has been characterized, the first component is not necessarily
optimal with respect to the amount of work and thus becomes another matter of interest.

3 Preliminaries
3.1 Security
Bertoni et al. [BDPA09, BDPVA14] give some guidelines to design correctly a tree hash
mode τ operating an inner hash (or compression) function f . They define three sufficient
conditions (message-completeness, final-node-separability, tree-decodability) which ensure
that the constructed hash function τf , which makes use of an ideal inner function f , is
indifferentiable from an ideal hash function. They propose to use particular frame bits (i.e.
meta information bits) in nodes (i.e. f -inputs) in order to meet these conditions. These
frame bits characterize the type of node processed.

These conditions ensure that no weaknesses will be introduced when using the inner
function. For instance, with tree-decodability, an inner collision in the tree is impossible
without a collision for the inner function. Andreeva et al. have shown in [AMP10] that a
hash function indifferentiable from a random oracle satisfies the usual security notions, up
to a certain degree, such as pre-image and second pre-image resistance, collision resistance
and multicollision resistance.

In the modes we propose, we use Sakura coding which is specified with an ABNF
grammar [BDPA14]. Sakura enables any tree-based hash function using it to be auto-
matically indifferentiable from a random oracle, without the need of further proofs. The
coding used in a node depends on some information about it. For instance, if a node has
children, the information about their number is encoded inside it using Sakura.

3.2 Implementation strategies and complexities
Since an inner (sequential) hash function processes a number of bits which is a multiple of
a certain block size N , its time complexity behaves like a staircase function of this number
of bits. We say that the time complexity of this iterated hash function f for the operation
f(x) can be approximately described as an affine function of its input size l (in number of
blocks) whose coefficients depend on the choice of the hash function and its parameters.
For instance, we can use a sponge construction [BDPA07] like the Keccak algorithm
[BDPA13], the new SHA-3 standard [Nat15, RPjC+09]. The two important parameters
of this sponge construction are the rate r and the capacity c. This construction uses a
permutation P to process a state S of r + c bits at each iteration, and is divided into
two phases: the absorbing phase which processes the message blocks and the squeezing
phase which generates the hash output. The collision resistance and pre-image resistance
strengths are related to the bit-size c/2. Throughout the paper, we suppose the use of
the extendable-output function RawSHAKE256 which needs a capacity of 512 bits and
which, according to the standard FIPS 202 [Nat15], can have a state size of 1600 bits
and subsequently a rate of 1088 bits. For its use in tree hash algorithms, Bertoni et al.
[BDPA14] suggest to set its digest size equal to the capacity c.

3.2.1 Memory usage.

The memory space used by the execution of a hash function can be divided into two
quantities, the space used by the message to hash, and the auxiliary space used to execute
the function on the message. The latter is particularly important for memory-constrained
devices. Besides, in the case of streaming applications, a message can be processed by a
system as it arrives without being stored. In such a case, the total memory space used
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Figure 4: Application of the variant of the highest node first strategy. We represent the
subtree of nodes containing the first 8 blocks of the message. Levels 1 and 2 are represented
from left-to-right and nodes at a same level are represented vertically from bottom-to-top.
In these nodes, black blocks contain possible frame bits and grey blocks message blocks or
chaining values. For reasons of simplicity, it is assumed that the cost to process frame bits
is negligible and that one message block (or chaining value) is processed per unit of time.
Percentages at the right corner of a node indicates the progression of its consumption
by f , and dark grey blocks indicate which data have been used. We also suppose that
d = 1, meaning that the result of f applied on a node is immediately used to advance the
computation of its parent node. As a result, when 9 units of time have elapsed, the node
at level 2 has been consumed by f up to the three-quarter mark.

is approximately reduced to the auxiliary space. In this paper, we refer to the auxiliary
space when speaking of memory usage. A sequential hash function needs to store Θ(1)
hash states in memory. For evaluating f on all the nodes of a tree of height h, a sequential
implementation needs to store Θ(h) hash states in memory, regardless of the node arities.
This memory consumption is due to a highest node first strategy, which consists to apply
f on the highest node first. For a classic k-ary Merkle tree where k is a small number,
this node is the highest node that has all its chaining values ready (i.e. instantiated by
f) to be processed. This strategy is particularly used in Merkle tree traversal techniques
[Szy04, BDS08]. For a tree having nodes of very high arity (e.g. of arity a, possibly
dependent of the message size), this strategy has to be changed in the following way: start
(or continue) to evaluate f on the highest node that has d chaining values not yet consumed
(with d a constant much lower than a). Thus, this number d serves as a threshold value to
trigger the (continuation/progression of the) processing by f of the node. With such a
variant, there is no need to wait until all the children be processed to process their parent
node, and, as a consequence, there can at most be d hash states in memory per level. An
example is depicted Figure 4.

3.2.2 Multithreading.

Having multiple processors/cores, we would like to use them to improve the computation
time. We need to employ multithreading to distribute, by means of working threads,
the parallel computations among these processors. We assume here that we have p
processors and that we use a fixed thread pool containing p threads (one thread per
processor). Multithreaded implementations are very efficient if the threads do not need
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to communicate and/or synchronize, or as little as possible. Synchronization delays are
indeed very time-consuming. Depending on the scheduling strategy used, tree hashing can
require a lot of synchronizations. Many situations have to be explored:

• If the message to hash is already available (i.e. locally stored on the system), we
recommend to assign3 to each thread one of the p biggest subtrees (of approximately
the same size). If the tree topology makes it hard to find p biggest subtrees covering
the whole message, an other solution is to seek the highest level having a number
of nodes q ≥ p, and to assign to each thread dq/pe of the q subtrees rooted at
these nodes. For the rest of the nodes, the method can vary. For instance, we
can distribute the evaluations of f on the remaining nodes as fairly as possible
between the processors (at the cost of some synchronizations), or merely perform
these computations sequentially. Such a strategy reduces greatly the number of
synchronization points, and thus improves performances. Note that a thread processes
its subtree as done by a sequential implementation, i.e., using the highest node first
algorithm described above.

• If the message is received via a streaming system (no matter if it is stored or generated
on the fly on the remote server), the allocation strategy is necessarily fine-grained,
with a grain size depending on the bandwidth with which the message is received.
Thus, compared to the previous case, such a parallel implementation has to cope with
more synchronization delays. Assuming that the link bandwidth is not a problem, we
describe here a scheduling strategy for the simple case where the tree arity a is small.
This one could be named higher level first as it is similar to the strategy used in a
sequential implementation. For a set of p threads, at each level we use a buffer which
can receive pa values (they are message blocks or chaining values). At any time, the
threads are working at a same level of the tree and their goal is to fill up as soon as
possible the highest level buffer. On a same level these threads have to apply f on pa
nodes in order to move up and push p chaining values in the buffer of the next level.
Once these p chaining values are computed, the buffer at the level below is flushed
(i.e. the pa just processed chaining values are removed). If the current level occupied
by threads is greater than 1 and the lack of resources on the level below prevents
them from filling up the current buffer (i.e. they cannot finish the computation of
the pa values), then they return down to level 1, otherwise they continue, and so
on. We let the reader deduce a termination phase for the end of the message, where
buffers’ contents of less than pa values have to be processed. Note that depending on
the throughput with which the message is received, this strategy could be adapted
to process subtrees instead of nodes with the aim of increasing the amount of work
done between two synchronization points. In other words, there could be a trade-off
between the algorithm we just described and the one presented at the first point
above. An other simple alternative to increase the amount of work between two
synchronization points is to consider buffers of pak values, with a parameter k > 1
to select appropriately.

• There are possibly other situations in which the message blocks are not received
in the order. They could be interleaved in a certain way for the need of the hash
function. In this paper, we do not discuss further more such a situation which seems
unreasonable from a transport layer standpoint (e.g., in the OSI or DOD layered
model for network protocol).

For processing a tree of height h, a parallel implementation using p processors requires
O(ph) hash states in memory.

3Assigning the processing of a subtree to a processor means that the latter is responsible for evaluating
f on all its nodes.
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3.2.3 SIMD implementations.

The single-instruction multiple-data (SIMD) units are present in a modern x86 processor
or core. Well known instruction sets are MMX, 3DNow!, SSE, SSE2, SSE3, SSSE3, SSE4,
AVX and AVX2. These units can apply a same operation on several data simultaneously.
They are thus very useful to compute several instances of a hash (or compression) function
in parallel. The size of SIMD registers determines how many parallel hash (or compression)
functions can be evaluated.

3.2.4 Interleaving.

It is very useful for streamed content and serves two purposes: first, for multithreaded
implementations, it allows the feeding of each processor as soon as possible. If each
processor is responsible for the computation of a node, interleaving allows the distribution
of the message bits/blocks among the nodes in a round-robin fashion. Second, for SIMD
implementation, it allows a perfect alignment of the message blocks in the processor
registers when loading the message sequentially. To the best of our knowledge, interleaving
has been proposed to be used in a 2-level tree (Mode 2L of Table 1), under the name of
j-lanes hashing [Gue14]. In this proposition, the number of nodes of the first level (i.e.
lanes) is a fixed parameter. Its use in trees of height O(h), where h is a function of the
message size, is an interesting question that will be discussed in Section 7.

4 A parameterizable tree hash mode
We remind the reader that the number of hash states in memory corresponds, in the worst
case, to the height h of the tree. Besides, if we denote by ui the biggest arity at level
i, for i = 1 . . . h, the ideal parallel running time is (asymptotically) bounded by a linear
function of

∑h
i=1 ui. This bound is indeed achieved when almost all the node arities of

each level i are equal to ui, but we will show that certain tree-growing strategies yield a
parallel time linear in h+ u1. In what follows, we present a tree hash mode using Sakura
which, when the parameters are adequately chosen, produces modes offering interesting
trade-offs between memory consumption, parallel running time and number of processors.
The parameters suitable for streaming stored content and streaming live content will be
discussed in Section 5 and Section 6 respectively.

4.1 Notations
Let f be a hash function which takes as input a messageM of an arbitrary length, and maps
it to an output f(M) of a fixed bit-length N . More concretely, f can be the intermediate
extendable-output function RawSHAKE256 [Nat15] with a digest size of N = 512 bits.
Beforehand, the following notations are used in the description of the hashing mode:

• The operator ‖ denotes the concatenation.

• I2OSP(x, xLen) is a function specified in the standard PKCS#1 [Lab12]. It converts
a non-negative integer, denoted x, into a byte stream of specified length, denoted
xLen.

• {xLen} is a single byte that represents the binary encoding of xLen. The arity x of a
node is encoded by using I2OSP(x, xLen) and {xLen}, where xLen is appropriately
chosen.

• The encoding of the arity x is defined as:

enc(x) := I2OSP(x, blog256 xc+ 1)‖{blog256 xc+ 1}.
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• 0∗ indicates a non-negative number of bits 0 to be used in an f -input for padding,
for alignment purposes. We will assume that this is the minimum number of bits 0
so that the bit-length of the f -input is a multiple of a word bit-length (i.e. 32 or
64 bits).

• I is the interleaving block size of a node that determines how the message bits are
distributed over its children. To the first child are given the first I bits, to the
second child is given the second sequence of I bits and so on. After reaching the
last child, we return to the first child, and so on. A child node (of a node having an
interleaving block size) can have its own interleaving block size, meaning that the bits
it is responsible for are distributed over its children according to this attribute. This
process can be repeated recursively if several generations of descendants have their
own interleaving block size. The notation I∞ means the absence of interleaving.

• {I} represents two bytes that encode I. It is defined with a floating point representa-
tion, with one byte for the mantissa and one byte for the exponent. For the absence
of interleaving, {I∞} is represented (using hexadecimal notation) with the coded
mantissa 0xFF and the coded exponent 0xFF. We refer to the Sakura specification
[BDPA14] for further information.

These encoded elements serve to identify the type of node and to delimit the embedded
message hop, chaining hops or kangaroo hops, in accordance with Sakura coding [BDPA14].
These hops embed useful data (message blocks and chaining values). The term payload of
a node refers to the list of its embedded message blocks and chaining values. The other
notations useful for our analysis are summarized in Table 2.

Table 2: Additional notations
h Height of the tree
n Number of blocks of the message
T (.) Parallel running time to process a node and all its descendants
W (.) Lambert W function
e Neper constant
ui Arity of level i
ui,j Arity of the node indexed (i, j)
a Tree arity (notation used when the arity is fixed for all nodes)
γ Time to process a chaining value or a message block

4.2 The tree hash mode
A hash tree can be characterised by a two-dimensional sequence (ui,j)i≥1,j≥1 of arities,
where ui,j is the arity of node (i, j), by assuming that the nodes are indexed at a same
level with j, and from the base level to the root node with i. In other words, the node
(1, 1) covers the first message blocks at the base level of the tree. In case all the nodes of
level i are of same arity ui (except the last node arity which may be smaller), this tree can
be characterised by a sequence (ui)i≥1 of arities.

Given a message M of bit-length |M | and a two-dimensional sequence of arities
(ui,j)i≥1,j≥1, SHAKE256 can be defined with the following tree hash mode using Sakura:

1. Let l0 = n = d|M |/Ne and M0 = M . The quantity l0 is the number of blocks of M ,
where the last block may be shorter than N bits. We set i = 0.

2. We split Mi into blocks Mi,1, Mi,2, ..., Mi,li+1 where:
(1) li+1 = min

{
k |
∑k
j=1 ui+1,j ≥ li

}
;

(2)Mi,j with j < li+1 is ui+1,jN bits long, andMi,li+1 may be shorter than ui+1,li+1N
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bits.
The node arities (u′j)j≥1 of the current level are defined as follows:

u′j :=
{

ui+1,j for j = 1 . . . li+1 − 1,
li −

∑li+1−1
v=1 ui+1,v for j = li+1.

Then, we check certain conditions to apply Sakura coding correctly:

• If i = 0 and li+1 ≥ 2, we compute the message

Mi+1 :=
li+1n

j=1
f (Mi,j‖110∗0) .

• If i = 0 and li+1 = 1, we compute the message
Mi+1 := f (Mi,1‖11) .

• If i > 0 and li+1 > 1, we compute the message

Mi+1 :=
li+1n

j=1
f
(
Mi,j‖enc(u′j)‖{I∞}‖010∗0

)
.

Remark: In certain tree-growing strategies, all the nodes at a same level can
have the same arity, except the rightmost one, the arity of which may be lower.
For SIMD implementation purposes, it is suggested that the number of padding
bits for the rightmost f -input be such that all the f -inputs, at this level of the
tree, have same length.
• If i > 0 and li+1 = 1, we compute the message

Mi+1 := f (Mi,1‖enc(u′1)‖{I∞}‖01) .

3. We set i = i+ 1. If li = 1, we return the hash value Mi. Otherwise, we return to
step 2.

Let us consider a node, denoted R∗, and its child nodes, denoted Ri for i = 1 . . . k, indexed
in the order in which their corresponding chaining values are processed in R∗. Let us
denote by T (R) the parallel time to process a node R and all its descendants. For the tree
hash mode defined above, we have

T (R∗) = Θ
(

max
i=1...k

{T (Ri) + (k − i+ 1)γ}
)
, (1)

where γ is the time to process a chaining value or message block.

Case of a fixed arity at each level. Using the proposed mode, we remark that
dd· · · ddn/u1e/u2e · · · e/uie = dn/(u1u2 · · ·ui)e

for a sequence of (strictly) positive integers (uj)j=1...i. Consider a sequence of arities
(uj)j≥1. At level i, there are exactly dn/(u1u2 · · ·ui)e nodes. If this sequence has an
increasing number of terms greater than or equal to 2, then there exists an integer h > 0
such that

∏h
j=1 uj ≥ n where n is the number of blocks of the message. This ensures that

we obtain a tree structure since, at level h, it remains a single node, the final (root) node.
The problem is to find a sequence of arities (uj)j≥1 such that the tree height h is O(g1(n))
and

∑h
j=1 uj is O(g2(n)), where g1(n) and g2(n) are the desired complexities. Indeed,

the memory usage of a sequential implementation and the ideal parallel running time are
related to these two quantities. Note that the ideal parallel running time is accurately
related to

∑h
i=1(α · ui + β) with ui ≥ 1, and α and β strictly positive integer constants

such that γ = α+ β.
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Other tree-growing strategies. The above method does not apply and a case-by-case
analysis is required.

Note that this parameterizable mode is as simple as possible and that certain compu-
tational overheads are not avoided. In particular, all the leaves are at the same depth.
To decrease slightly the number of calls to the underlying permutation, the concept of
kangaroo hopping4 [BDPA14] can be used. Such an optimization reduces the (exact)
computational costs of a tree mode at finite distance but does not change its asymptotic
behaviour.

In the following two sections, we propose three new modes for streaming stored content
(4S, 5S and 6S) and their variants for streaming live content (4L, 5L, 6L). Two of them can
be seen as refinements of Mode 1 and Mode 3. In Mode 6, we optimize the tree topology
subject to the constraint of an (asymptotically) optimal parallel time, while in Mode 4 we
optimize the tree topology for a restricted memory consumption. The third one, called
Mode 5, represents a balanced compromise. Table 3 summarizes the complexities of these
modes.

Table 3: Asymptotic efficiency (using Big-O notation) of our scalable tree modes (4x, 5x,
6x with x ∈ {S,L}), where n is the number of blocks of the message and ε is a positive
constant, such that ε < 1. The ideal parallel time refers to the running time when the
number of processors is not a priori bounded. The previously defined modes (1, 2S/2L, 3)
have been added for comparison.

Tree
mode

Live
streaming

Memory usage
(sequential)

Number
of

processors

Parallel
running time
(ideal case)

Priority

1 X 1 n n memory consumption
2S - 1

q n/q
memory and total
work (for a fixed q)2L X q

3 X logn n logn parallel time

4S - 1 n1−ε nε memory consumption4L X
5S - logn

log logn
n log logn
log1+ε n

log1+ε n
log logn none (trade-off)5L X

6S - logn− log logn n
logn logn parallel time6L X

5 Parameters for streaming stored content
Can we find a tree of sublogarithmic height on which a hash function could rely to benefit
of a logarithmic parallel time? We can try to find a height h such that hn1/h = C logn,
where C is a constant. The rationale is that we could hope for a sublogarithmic height
at the counterpart of any multiplicative constant factor for the logarithmic parallel time.
Trying to solve this equation on real numbers enables us to answer negatively to the
question raised here. We have the equation log h+ logn

h = log(C logn) that we can write

4The number of calls to the permutation can be slightly decreased by replacing the first chaining value
of a node by the payload of the f -input (node) by which this chaining value was produced. The payload
of a resulting node corresponds to a message block followed by one or more chaining values. By using
sakura, it is augmented with adequate frame bits. The message block is then encoded in a message hop
and, if kangaroo hopping is used once or several times, the chaining values are encoded in one or several
chaining hops.
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in the form − logn
h = log( h

C logn ). Continuing, we can obtain the form

− logn
h

e
− logn
h = −1

C
. (2)

We note that the Lambert W function solves the equations of type xex = y, where the
solution for the unknown variable x is W (y). By using it for solving Equation 2, we get
− logn

h = W (−1
C ). Since the domain of W is [−1/e,∞[, there is no real solution if C < e.

If C = e, we have W (−1
e ) = −1 and then the only solution is x = logn. If C > e, we have

−1/C ∈]− 1/e, 0[ and then W (−1/C) takes two real negative values, denoted w0 and w1,
evaluated using the two branches W0 and W−1 of the Lambert function. Then, Equation 2
has two solutions h0 = − logn

w0
and h1 = − logn

w1
.

When we have to hash a stored file or a streamed stored media, its size is known in
advance. Assuming a fixed (but possibly different) arity at each level of the tree, we can
then use this information to define a finite sequence of level arities (ui)i=1...h. We give
three interesting sets of parameters:

• Mode 4S. ui = dnεe for all i ∈ J1, hK and h = 1
ε , with a positive constant ε < 1

such that 1/ε is a strictly positive integer. For instance ε = 1/2.

• Mode 5S. u1 =
⌈

log1+ε
2 n

log2 log2 n

⌉
, ui = dlogε2 ne for all i ∈ J2, hK, with a tree height

h =
⌈

log2(dn/u1e)
ε log2 log2(dn/u1e)

⌉
+ 1 and a positive constant ε < 1.

• Mode 6S. u1 = dlogc ne, ui = c for all i ∈ J2, hK with an integer constant c > 1,
and h =

⌈
logc

(
n
u1

)⌉
+ 1.

Some examples of trees resulting from the application of Mode 4S and Mode 6S on
small messages are illustrated in Figure 5 and Figure 6.

digest

f

f

f

f

M9

CV3CV2CV1

M8M7M5 M6

M4M2 M3M1

M10

Figure 5: Tree of nodes used by f to compress a message of 10 blocks, assuming the use of
Mode 4S with the parameter ε = 1/2. Levels 1 and 2 are represented from left-to-right
and nodes at a same level are represented vertically from bottom-to-top. In these nodes,
black blocks contain frame bits and light grey blocks message blocks or chaining values.
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(b) Mode 6S

Figure 6: Comparison of trees produced by Mode 3 and Mode 6S when applied on a
message of 16 blocks. This compact representation uses convention C1 where nodes,
depicted by circles, are f -images. Mode 6S conserves the asymptotic parallel time of Mode
3 but reduces the number of processors, the memory usage and the amount of work (due
to the reduced number of chaining values).

Theorem 1. There are 3 tree hashing modes having the following efficiency complexities:
• Mode 4S has an ideal parallel running time in O(nε) by using only O(n1−ε) processors,
for a sequential memory consumption of O(1) hash states.

• Mode 5S has an ideal parallel running time in O
(

log1+ε n
log logn

)
by using only O

(
n log logn
log1+ε n

)
processors, for a sequential memory consumption of O

(
logn

log logn

)
hash states.

• Mode 6S has an ideal parallel running time in O(logn) by using only O( n
logn )

processors, for a sequential memory consumption of O(log( n
logn )) hash states.

Proof. We examine the modes, in terms of parallel running time, number of processors
and (sequential) memory consumption, one after the other:
• Mode 4S is consistent since dnεe1/ε ≥ n. Its asymptotic parallel running time is
clearly O(nε/ε) and the height of the tree is O(1/ε), where ε is a constant. The
number of involved processors is n/dnεe = O(n1−ε).

• With Mode 5S, the parallel running time is obtained by construction. Indeed, we con-
sider a tree covering n′ blocks and seek the smallest h′ such that h′n′1/h′ = log1+ε n′

ε log logn′ .
We have:

n′1/h
′

= 1
h′

log1+ε n′

ε log logn′ ⇔
−ε log logn′

logε n =
(
−1
h′

logn′
)
e
−1
h′ logn′ ,
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and it follows that −1
h′ logn′ = W

(
−ε log logn′

logε n′

)
. Thus, we have:

h = − logn′

W (−(ε log logn′) log−ε n′)
.

Since −ε log logn′ log−ε n′ is negative and tends to 0, we can evaluate h′ thanks to
the two branches W−1(.) or W (.) of the Lambert function. We choose to use W−1(.)
since we have the asymptotic approximation

W−1(x) = Ω (log(−x)− log(− log(−x)))

when x ∈ [−1/e, 0[. Consequently, h′ is O( logn′
ε log logn′ ). Thus, we could consider a

tree of height h′ =
⌈

log2(n′)
ε log2 log2(n′)

⌉
and of arity a′ = dn′1/h′e ≈ dlogε2 n′e. We now

enlarge the tree by adding to it, at the bottom, one level of n′ = dn/u1e nodes of
arity u1 =

⌈
log1+ε n
ε log logn

⌉
. The height of the new tree is h = h′ + 1 = O( logn

ε log logn ) and

the sum of level arities is u1 + (h− 1)a′ = O( log1+ε n
ε log logn ). We let the reader checking

the consistency of the mode.

• Mode 6S is consistent since u1c
dlogc(n/u1)e ≥ u1c

logc nu−1
1 ≥ n. Its parallel time is

dlogc ne+ c
⌈
logc

(
n

dlogc ne

)⌉
= O(logc n) and h is O

(
logc

(
n

logc n

))
.

Remark. One way to reduce the number of processors when applying a mode is to use a
rescheduling technique5 at runtime. However, there is a benefit in reworking the tree for
reducing this number and also some overheads. If a mode uses a tree topology allowing a
given asymptotic parallel time, a variant reducing the number of processors required while
conserving (asymptotically) the aforementioned parallel time exists. Let T (n) be the ideal
parallel time of a mode having a = ν(n) as fanout for all the nodes, where ν is a concave
function. We consider the following tree topology: The first level has approximately
n/T (n) nodes, each containing T (n) message blocks, except maybe the rightmost one,
where the number of message blocks can be smaller. An a-ary tree is constructed on
top of these n/T (n) nodes. Thus, the first level is of arity T (n) while the others are of
arity a. The nodes are then formatted using Sakura coding in accordance with this tree
representation. The overall parallel running time to compute the digest is approximately
T (n) + T (n/T (n)), by using only n/T (n) processors. The computational overheads in
space and amount of work are reduced against a parallel time almost doubled.

6 Parameters for streaming live content
In this section, we discuss the parallel operating modes which do not require the message
size as input. These modes are scalable and can process the message as it is received. They
are essential for any application making use of live streaming.

Can we benefit from increasing arities at a same level of the tree? We respond to
this question with a sketch of tree mode which minimizes the tree height and allows the
processing of live-streamed content. We suppose that we have k + 1 processors denoted
P0, P1, P2, ..., Pk. Processors P1, ..., Pk each compute the hash of a distinct message

5A rescheduling consists in distributing the tasks of a parallel step to a reduced set of processors whose
number is lower than usual (and thus may be lower than the number of tasks). This is performed at each
parallel step in the hope of getting the best parallel time for such a number of processors. The underlying
data structure formed by the dependencies between the tasks (i.e. the algorithm) is unchanged.
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part6. These chaining values are denoted cv1, ..., cvk. Figure 7 depicts a tree produced
by this mode. For the sake of simplicity, we suppose that kangaroo hopping is not used.
Processor P0 then merely collects and processes these chaining values as soon as they are
evaluated. We suppose that the processors start their computations at the same time (P0
is delayed since kangaroo hopping is not used). It appears that during the processing of a
chaining value cvi by P0, Processor Pi+1 can process one or more message blocks. Thus,
the message parts processed could be of increasing lengths without producing a significant
impact on the running time of P0. Let us suppose the following complexities:

• the running time of Pi is αi+ β where α and β are positive constants, for i ≥ 1.

• the running time of P0 is related to the number of chaining values. For instance,
it is α′k + β′ where α′ and β′ are positive constants. The waiting time for cv1 is
supposed to be taken into account.

We have max{α′k + β′,max1≤i≤k{αi+ β}} = O(k), where k is the smallest integer such
that

∑k
i=1 i ≥ n. The total parallel running time is then in O(n1/2). The following tree

mode, denoted Mode 4L, generalizes this for a given constant tree height.

Mode 4L. The underlying tree can be defined recursively until we obtain a given tree
height h. Initially (before tree pruning), the root node is assumed to be of arity ∞. Hence,
a node of arity k has its leftmost child node of arity 2, its second child node from the left
of arity 3, ..., its i-th child node from the left of arity i+ 1, ..., its rightmost child node of
arity k + 1. A node arity can also be computed directly. For instance, given a tree height
h = 4, the node arities ui,j for h ≥ i ≥ 1 and j ≥ 1 grow as follows:

ui,j =


∞ if i = 4,
j + 1 if i = 3 or (i < 3 and j ≤ 2),
2 + (j mod (k2

1 + k1)/2) if i = 2 and j > 2,
2 + (j mod (k3

2 + 3k2
2 + 2k2)/6) if i = 1 and j > 2,

where k1 =
⌊
−1+

√
1+8j

2

⌋
and k2 is the integer part of the positive solution of k3

2 + 3k2
2 +

2k2 − 6j = 0. An example is depicted in Figure 8.

Theorem 2. Mode 4L has an ideal parallel running time in O (nε) by using only O
(
n1−ε)

processors, and requires O
( 1
ε

)
= O(1) hash states in memory to process the message with

a single processor, with ε = 1/h.

Proof. Let abr denote the arity of the righmost node at the base level, and let h denote
the height of the tree. According to Equation (1), the parallel time to compute the digest
using a tree produced by Mode 4L is affine in abr +h. We suppose a tree of constant height
h = 1/ε where ε < 1. Once we have pruned the unneeded branches in the tree, the root
node has a finite arity denoted x. Considering a h-level tree produced by Mode 4L under
the constraint of a x-ary root node, the maximum number of blocks, denoted nmax(x),
covered by this tree is

1+x∑
ih−1=2

1+ih−1∑
ih−2=2

· · ·
1+i3∑
i2=2

1+i2∑
i1=2

i1 =
x+h∑

ih−1=h

ih−1∑
ih−2=h−1

· · ·
i3∑
i2=3

i2∑
i1=2

i1

=
(
x+ h− 2
h− 1

)
+
(
x+ h− 1

h

)
.

6A message part consists of a certain number of blocks.
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Figure 7: Tree of nodes used by f to compress a message of 10 blocks. It has minimal
height and its base level nodes have increasing arities. Level 1 is composed of the nodes
embedding the message blocks, while Level 2 is a single node embedding the chaining
values.
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Figure 8: Compact representation (using convention C1) of a tree produced by Mode 4L
for a 14-block message and a tree height h = 3.
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By construction of the tree, abr ≤ x+h. Hence, we would like to express x as a function of n.
Given a message size n, we then seek the minimum x satisfying nmax(x) ≥ n > nmax(x−1).
Since nmax(x) is polynomial in x, we have nmax(x)

nmax(x−1) −→x→∞ 1, and since nmax(x) > 0, it
follows that nmax(x) ∼ n. We can then seek x such that nmax(x) ∼ n. It can be shown
that

nmax(x) ∼ xh

h! .

Thus, we have x ∼ (nh!)1/h ∼ (2πh)1/(2h) h
e n1/h using the Stirling formula. Since

h = 1/ε is constant, we deduce that abr + h = O(nε). The number of involved processors
corresponds to the number of base level nodes, i.e. the quantity

1+x∑
ih−1=2

1+ih−1∑
ih−2=2

· · ·
1+i3∑
i2=2

i2.

Given the estimated value x = O(n1/h), it follows by composition of functions that this
quantity is in O(nh−1

h ).

Mode 5L. The arities ui,j of the nodes (i, j) for i ≥ 1 and j ≥ 1 grow as follows:

ui,j =
{⌈ log1+ε

c (c+j)
log log(c+j)

⌉
if i = 1 ∀j ≥ 1,

dlogεc(c+ j)e ∀i > 1 ∀j ≥ 1,

with an integer constant c > 1 and a positive constant ε < 1.

Theorem 3. Mode 5L has an ideal parallel running time in O
(

log1+ε n
log logn

)
by using only

O
(
n log logn
log1+ε n

)
processors, and requires O

(
logn

log logn

)
hash states in memory to process the

message with a single processor.

Proof. The number of involved processors (or base level nodes) is the smallest k1 such
that

∑k1
j=1

⌈
log1+ε

c (c+j)
log log(c+j)

⌉
≥ n. Because this sum increases slowly, it can be shown that∑k1

j=1

⌈
log1+ε

c (c+j)
log log(c+j)

⌉
∼ n and

∑k1
j=1

⌈
log1+ε

c (c+j)
log log(c+j)

⌉
∼ k1

log1+ε k1
log log k1

. We find the expected
number of processors k1(n) ∼ n log logn

log1+ε n
. Hence, we show that the height of the tree

belongs to O
(

logn
log logn

)
. We denote by ki the number of nodes at level i ≥ 1. We have

k2 ∼ k1
log1+ε(k1) and, more generally, ki ∼ k1

log(1+ε)i(k1) . We seek i such that ki ∼ 1, i.e. such
that log(1+ε)i(k1) ∼ k1. Applying the log function to both sides gives i ∼ log k1

(1+ε) log log k1
∼

logn
(1+ε) log logn . Finally, the height × average node arity product gives the expected parallel
time.

Mode 6L. The arities ui,j of the nodes (i, j) for i ≥ 1 and j ≥ 1 grow as follows:

ui,j =
{
dlogc(c+ j)e if i = 1,
c ∀i > 1 ∀j ≥ 1,

where c > 1 is an integer constant.

Theorem 4. Mode 6L has an ideal parallel running time in O(logn) by using only O( n
logn )

processors, and requires O(log n
logn ) hash states in memory to process the message with a

single processor.
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Proof. Let us first look at the number of base level nodes. For the sake of simplification, we
seek the lowest k such that

∑k
j=3dlog2 je ≥ n, which is an equivalent problem. Note that

since
∑k
j=3dlog2 je/(

∑k−1
j=3dlog2 je) −→

k→∞
1, we have

∑k
j=3dlog2 je ∼ n. Asymptotically,

we then seek k such that k log k ∼
∑k
i=2 log i ∼ n. The solution meets the equivalence

n
logn ∼

k log k
log(k)+log log(k) ∼ k, which leads to the expected number of processors. The average

node arity of the first level is Θ(logn) and we construct an c-ary tree on top of Θ(n/ logn)
base level nodes. The total parallel time is then O(logn) and the height h of the tree is
dlogc(k)e+ 1 = O(log(n/ logn)).

It is shown in Appendix A that resource trade-offs are also possible using tree-growing
strategies in which the arity does not vary in a same level but increases when getting close
to the root node (i.e. level-by-level).

7 Conciliating interleaving and scalability
In this section, we discuss approaches for hybrid Multithreading-SIMD implementations
and the way to handle block interleaving.

Case of a fixed arity at each level. The interleaving of the message bits/blocks is an
interesting feature if it is applied to nodes having a low number of children. For instance,
in Mode 2L, it is applied to a single node having q children, and we can think that q
is small enough so that the memory space consumption is small as well. Even though
Sakura allows the coding of an interleaving parameter for each node, we can wonder if it
is judicious to use it for all nodes in the tree. Let us imagine that our hash function is
based on a tree structure with a logarithmic height and a constant arity (e.g. all nodes
are of arity 4). In fact, with the assumption that message bits/blocks are processed in
sequence, using interleaving for all nodes leads to a memory consumption in the order of
the size of the message. It is then preferable to use it for the nodes of a single level (or of
a constant number of levels) in the tree.

Interleaving is bounded to a processor architecture, that is, it is difficult to imagine
an interleaving mechanism that could be, in some sense, scaled on different architectures
(with different register sizes). Having this in mind, we can still imagine an operating mode
that could be both bounded to a single architecture and scalable from the multithreading
standpoint. In order to use interleaving in the tree structures having nodes of high arity
(possibly dependent of the message size), we propose to add a single level of small and
constant arity nodes. The interleaving parameter would be set7 for all nodes of this level
(and only this one). The location where this level is inserted in the tree depends on the
type of application (stored or live-streamed content). In the case of stored content, this
level would be inserted near the root. In the case of live-streamed content, this level would
probably be inserted near the base level in order to allow both the use of multithreading and
SIMD instructions. In fact, in this second case, the most adequate location of the insertion
depends on the bandwidth with which the message is received. It should be inserted at the
highest level8 which allows the correct feeding of SIMD instructions executed in parallel
by the processors. Note that, in either case, the asymptotic complexity remains unchanged
by this modification.

7A value different from {I∞} is used.
8Considering a constant bandwidth and an infinitely large message, this level is clearly near the base

level.



Kevin Atighehchi and Alexis Bonnecaze 233

digest

f

f

f

f

f

f

f

f

f

s1 s29

s2 s30

s3 s31

s4 s32

CV2CV1 CV6 CV8CV3 CV4 CV5 CV7

s93

s94

s95

s96

s37s33

s34 s38

s39s35

s40s36

Figure 9: Variant of Mode 4L (with a tree height 2) for the support of slice interleaving with
a Multi-Core SIMD architecture. At the base level, only the first two groups are presented.
In a multithreaded implementation with a fixed thread pool, the group computations are
distributed among the threads, but each thread is responsible for processing the nodes of
a same group in their entirety, by means of a SIMD implementation.

Case of increasing arities inside a level. To evaluate several times the inner function
using SIMD instructions, it is desirable to have messages of same length. This requires
another type of changes to the tree topology: One possibility is to increase the number
of nodes of the base level by a (constant) multiplicative factor, thus leaving the height
of the tree unchanged. We do not give a general method and by way of example (see
Figure 9), we show how Mode 4L can be changed to support both multithreading and
SIMD implementation, with or without block interleaving. We suppose that the cores have
SIMD instructions operating on wide registers (e.g. AVX2 with 256-bit YMM registers).
For instance, for exploiting a 4-way SIMD architecture, we multiply by 4 the consecutive
number of i-ary nodes at the base level and regroup them as quadruplets. We have a
group of 4 nodes of arity 1, followed by a group of 4 nodes of arity 2, followed by a group
of 4 nodes of arity 3, and so on. If interleaving is desired, it is applied inside parts of
increasing length (corresponding to the number of blocks processed by a quadruplet of
nodes), i.e. the first group is responsible for the first part of 4 blocks, ..., the j-th group
is responsible for the j-th part of 4j blocks, and so on. Each part is divided into slices
(64-bit qwords) that are distributed in a round-robin fashion among the nodes of a same
group. Let us suppose a message divided in qwords, i.e. M = s1s2 . . . sk where |si| = 64,
and let us denote Node2,i the i-th node of the second group. In this group, the slices are
interleaved in the following way: Node2,i is composed of the slices s32+i, s36+i, s40+i, ...,
s92+i. Note that a slight update of Sakura coding is required to support interleaving in
a small group of child nodes. In addition to the parameter I = 64, the group size nI = 4
should also be encoded.
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8 Concluding remarks
In this paper, we introduced different ways of constructing a SHAKE function based on
an inner function RawSHAKE and a parameterizable tree of nodes. Resulting modes
are Sakura-compatible and lead to interesting asymptotic bounds with regard to the
memory usage in a sequential implementation, the ideal parallel time and the number
of involved processors. We showed new directions for tree hash modes with a focus on
space-time trade-offs, whether these modes are intended for stored content or for streaming
live content. Our primary goal was to provide asymptotic complexities. In addition, it
would also be of interest, in a future work, to propose variants of our modes using various
optimizations suitable to software implementations.

On the accuracy of complexity measures. This paper has focused on the asymptotic
analysis (using big-O) of tree hash modes but there is also an interest for their optimizations
at finite distance (i.e. by giving exact complexity results) in order to produce efficient
tree hash circuits. For instance, in the case of Mode 3, an interesting work is to reduce
at best the number of rounds9 of parallel calls to the permutation (i.e. the depth of the
circuit, which is in O(logn)) by taking into account the frame bits overheads of Sakura.
A much more interesting challenge is to optimize the mode in depth and width: the goal is
to minimize the maximum number of parallel calls to the permutation that can occur in
one round, subject to the constraint of a minimal number of rounds. This kind of work
was initiated in [AR17] with the use of a minimal coding for the nodes.

Exploiting parallelism for the output extension. Besides, we supposed the result of the
SHAKE function to be of fixed size (512 bits), while its main functionality is to generate a
hash of arbitrary length. If we nevertheless decide to allow this functionality by using the
“squeezing” phase of the last evaluation of RawSHAKE (on the final node), our asymptotic
results lose their relevance. Indeed, the squeezing phase being purely sequential, if it is
decided to generate a hash of, say, n bits from a message of length n, the total number of
evaluations of the permutation is then in O(n), no matter the type of tree used to compress
the message. To remedy this problem, that one “squeezing” phase can be demultiplied
using an inverted tree of type GGM (Goldreich-Goldwasser-Micali [GGM84]) having for
root the final node. In this configuration, there are two trees: one to compress the message
and the other one to expand the hash to the desired length. Nodes of the second tree
are defined such that each node is a part of an f -image except for the root node which
is an f -input. Originally, GGM construction allows a long pseudo-random bitstring to
be generated from a short (pseudo-)random seed, by means of a binary tree. In our case,
the used tree is not necessarily binary. Instead, its topology coherently depends on the
parameters used in the first tree with, nevertheless, a slight difference if the node arities are
not fixed per level: For each node, the child node arities are in reverse order as compared
to the first tree. Let us take an example where the digest of a 9-block message is computed
thanks to Mode 4L with a tree height h = 2 and we require this digest to be of same length
as the message. In the first tree, the base level node arities will be 2, 3 and 4 while they
will be 4, 3 and 2 in the second tree. More precisely, the arity of a node determines the
length of the corresponding hash generated by RawSHAKE. Indeed, it seems that these
parameters can be reused in this second inverted10 tree so as to maintain the asymptotic
parallel time. A GGM tree normally has all its leaves at the same depth. Its height is
then chosen such that the total number of bits of the leaves is greater than or equal to the
desired hash length. In order to generate a hash of a given size, some of its branches should
be pruned and one leaf should probably be truncated. We finally note that interleaving

9The running time of a round is one unit of time, that is, one call to the permutation.
10It is inverted in the sense that the flows of computation are from root to leaves.
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techniques could be used in this second tree to take better advantage of SIMD instructions.
We think that these last aspects deserve particular attention. If we do not want to use a
GGM tree construction to expand the hash, an alternative is a Counter based PRG, e.g.
CTR-DRBG (Counter mode Deterministic Random Byte Generator [BK12]) whose ideal
parallel running time is constant.

Benefits of using additional operators from the parallelism standpoint. As a last
remark, there were no modes referenced in our tables (Section 2 and Section 4) having
an asymptotically sublogarithmic (or even constant) parallel running time. The reason
is that using only f as operator, such complexities are not possible. In order to make a
parallel running time in O(1) possible, the hashing mode should require a constant number
of rounds of parallel calls to the underlying permutation, and the intermediate results
of the last round should be combined with a second operator of negligible cost (e.g. the
XOR operator). The Randomize-then-Combine paradigm has been proposed by Bellare
et al. [BM97], with several examples of combining operators. The XOR operator must
be avoided for arbitrary-length messages, due to an attack based on Gauss elimination.
More generally, some of the proposed operators in finite groups are not resistant to the
subexponential Generalized Birthday Attack [Wag02]. The possibility of such a scheme
nevertheless looks interesting. As we have seen previously, the use of a traditional tree hash
mode (using only f) by a set of computers having different computational resources leads to
a race to the bottom with respect to the potential parallelism. Indeed, when transmitting
a signed message, the parameters of the tree topology chosen by the transmitting computer
are not necessarily optimal for the receiving one. A hashing scheme with a O(1) ideal
parallel running time resolves this problem. Besides, if the combining operator is both
associative and commutative, the distribution of work among the computing units can be
done in any manner, without any tree topology constraint.
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A Additional parameters for live-streamed content
Mode WC (Weak Compromise). We rework the tree structure of Mode 3 by fixing the
arity of the nodes to a constant k which is a power of 2. For instance, if k = 24, the
number of hash states of a sequential implementation is approximately divided by 4, but
in return, the parallel running time is approximately multiplied by 4. Generally, if k = 2i
where i is a positive integer, then the memory consumption of a sequential implementation
is approximately divided by i while the parallel running time is multiplied by k/ log2 k.
There is no change asymptotically (using Big-O).

One way to reduce the memory consumption is to use an increasing sequence (ui)i≥1
of arities, where ui is the arity of level i. We thus seek a sequence (ui)i≥1 meeting the
constraint

∏h
i=1 ui ≥ n where the integer h and the sum

∑h
i=1 ui reflect the desired

complexities, in terms of memory usage and parallel time. First, we note that for this kind
of tree it is impossible to adapt Mode 4S to support live-streamed content while keeping
the same complexities. Suppose that the tree height h is constant. It is indeed impossible
to have a finite sequence (ui)i=1...h meeting this constraint for all possible message size
n, and where the terms ui do not depend on n. However, in what follows, we show that
certain sequences of arities give interesting asymptotic efficiencies.

Mode B1. The arities ui of the levels i ≥ 1 grow as follows:

ui = 2i ∀i ≥ 1.

Theorem 5. Suppose that we have as many processors as we want. Mode B1 has

O

(
n

1√
2logn

)
parallel running time and requires O

(√
logn

)
hash states in memory to

process the message with a single processor.

Proof. Asymptotically, the amount of memory consumed in a sequential implementation
corresponds, in the worst case, to the height k of the tree. We seek the lowest k such that∏k
i=1 ui ≥ n. We have

∏k
i=1 2i ≥ n which is equivalent to

∑k
i=1 i ≥

logn
log 2 . Since this sum

is positive and polynomial in k, we have k2

2 ∼
logn
log 2 , i.e. k = O(

√
2 log). The parallel time

is an affine function of
∑k
i=1 2i ∼ 2k = O

(
n

1√
2 log2 n

)
.

Mode B2. The arities ui of the levels i ≥ 1 grow as follows:

ui = i+ 1 ∀i ≥ 1.

Theorem 6. Suppose that we have as many processors as we want. Mode B2 has
O
(

log2 n
log2 logn

)
parallel running time and requires O

(
logn

log logn

)
hash states in memory to

process the message with a single processor.

Proof. Asymptotically, the amount of memory consumed in a sequential implementation
corresponds, in the worst case, to the height k of the tree. We seek the lowest k such
that

∏k
i=1 ui ≥ n. It has been shown before that log(

∏k
i=1 ui) ∼ logn. According

to the Stirling Formula, k! ∼ kke−k
√

2πk. Thus, we have logn ∼ log(kke−k
√

2πk) =
k log k− k+ 1

2 log(2πk) ∼ k log k. Hence, log logn ∼ log(k log k) = log k+ log log k ∼ log k.

We finally obtain k ∼ logn
log k ∼

logn
log logn . If we have as many processors as we want, then

the amount of blocks processed sequentially is asymptotically the sum of the k level arities.
Considering that

∑k
i=2 i ∼

k2

2 , we deduce the expected result.
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Mode B3. The arities ui of the levels i ≥ 1 grow as follows:

ui = blog(i+ 3)c ∀i ≥ 1.

Theorem 7. Suppose that we have as many processors as we want. Mode B3 has
O
(

logn log logn
log log logn

)
parallel running time and requires O

(
logn

log log logn

)
hash states in memory

to process the message with a single processor.

Proof. For the sake of simplification, we can seek the lowest k such that∏k
i=2 log i ≥ n, which is an equivalent problem. Applying the log function to both sides,

we can show that
∑k
i=2 log log i ∼ logn. Asymptotically, we can then seek k such that

k log log k ∼
∑k
i=2 log log i ∼ logn. The solution k is such that k ∼ logn

log log logn . Regarding

the parallel running time, it follows that
∑k
i=2 log i ∼ k log k ∼ logn

log log logn log
(

logn
log log logn

)
,

giving the expected result.

Note that this paper does not investigate sequences behaving like superfactorial or
hyperfactorial, which probably lead to other interesting trade-offs.

As for the modes dedicated to stored content, we can reduce the number of processors
allowing the ideal parallel running time to be reached by means of a rescheduling technique.
Indeed, since the processors have more computations to do at higher levels of the tree (and
the lower level nodes have smaller arity), we could assign to each processor a subtree that
represents the amount of computations of a higher level node. In doing so, the parallel
running time is only increased by a constant factor. This aspect will be developed in future
works.


	Introduction
	Context
	Computational model and terminology
	Our contributions
	Organization of the article

	Overview of tree hash modes and motivations
	Preliminaries
	Security
	Implementation strategies and complexities
	Memory usage.
	Multithreading.
	SIMD implementations.
	Interleaving.


	A parameterizable tree hash mode
	Notations
	The tree hash mode

	Parameters for streaming stored content
	Parameters for streaming live content
	Mode 4L.
	Mode 5L.
	Mode 6L.



	Conciliating interleaving and scalability
	Case of a fixed arity at each level.
	Case of increasing arities inside a level.


	Concluding remarks
	Additional parameters for live-streamed content
	Mode B1.
	Mode B2.
	Mode B3.




