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Abstract. As a core component of SPN block cipher and hash function, diffusion
layer is mainly introduced by matrices built from maximum distance separable (MDS)
codes. Up to now, most MDS constructions require to perform an equivalent or even
exhaustive search. In this paper, we study the cyclic structure of rotational-XOR
diffusion layer, a commonly used diffusion primitive over (Fb

2)n, which consists of
only rotation and XOR operations. First, by providing some novel properties on
this class of matrices, we prove the lower bound on the number of rotations for
n ≥ 4, and show the tightness of this bound for n = 4. Next, through characterizing
the relation among sub-matrices for each possible form, we eliminate all the other
non-optimal cases. Finally, we present a direct construction of such MDS matrices,
which allows to generate 4 × 4 perfect instances for arbitrary b ≥ 4. Every example
contains the fewest possible rotations, so under this strategy, our proposal costs
the minimum gate equivalents (resp. cyclic shift instructions) in the hardware (resp.
software) implementation. To the best of our knowledge, it is the first time that
rotational-XOR MDS diffusion layers have been constructed without any auxiliary
search.
Keywords: Lightweight Cryptography · MDS Diffusion Layers · Bit-wise Circulant
Matrices · Multiple Platforms

1 Introduction
As a central part in the substitution-permutation network, diffusion layer is very important
for the overall security and efficiency of cryptographic schemes. On the one hand, it plays
a role in spreading internal dependencies, which contributes to enhancing the resistance
against statistical cryptanalysis. On the other hand, due to the importance of ubiquitous
computing and the rapid development of lightweight cryptography, designing diffusion
layers with efficient hardware/software implementations has already been a hot research
topic [GWG15,SDMO12,SKOP15,LBs+16,SS16].

The quality of a diffusion layer is connected to its branch number [DR02], whose
cryptographic significance corresponds to the minimal number of active S-boxes in any
two consecutive rounds. From a coding theory perspective, maximum distance separable
(MDS) codes are quite good choices for the construction of diffusion layers, as their branch
numbers are maximal [MS77]. However, a problem is that using MDS matrix usually
comes at the price of a less efficient implementation. Due to Galois field multiplications,
hardware implementations will often suffer from an important area requirement, with
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the result that MDS matrices are sometimes not suitable for the resource-constrained
environments, such as RFID systems and sensor networks.

To deal with this dilemma, one common way is to construct lightweight MDS matrices
using recursive strategy, which is first adopted in the design of lightweight hash function
Photon [GPP11] and block cipher LED [GPPR11]. Its main idea is choosing a linear
transformation which is sparse and compact, and composing it several times to obtain
an easy-to-implement MDS matrix (also called serial matrix). Such proposal is further
generalized in [SDMS12,WWW12], and also connected with coding theory [AF14,Ber13].
Since each entry in a serial matrix is selected with relatively low XOR count [KPPY14], this
recursive approach often provides a good way to save hardware area. For a diffusion matrix
of order k, serial-based implementation computes its nontrivial row (i.e. the last row), and
then applies it for k times recursively. As a result, this method inevitably requires more
clock cycles, which makes it not suited for round-based or low-latency implementation.

Another trend is constructing lightweight MDS matrices by use of circulant structure
[Dav80], which is popular in the design of symmetric-key algorithms [DKR97,DR02]. For
hardware implementations, the benefit of a circulant matrix is that all rows are similar (up
to a right shift), and we can trivially reuse the multiplication circuit to save silicon area.
Namely, it is actually possible for the round-based implementation to compute only one
row of a circulant matrix. Therefore, using a circulant matrix gives adequate flexibility to
do a trade-off between the area requirement and clock cycle, whereas most of the other
matrix types are suitable for either one but not both circumstances.

However, most current constructions of MDS circulant matrices require to perform an
equivalent or even exhaustive search [GR14,LW16,LS16]. The time complexity of checking
MDS property is unacceptable when the matrix size is large, so those methods are only
applicable for relatively small dimensions. One exception is the approach of Augot et
al. [AF14], who directly generate MDS matrices using shortened BCH codes (implying that
they still need another algorithm in advance to find MDS cyclic codes). Thus an instinctive
question is whether we can construct circulant MDS matrices with no auxiliary search.
In addition, current lightweight constructions focus mainly on hardware implementation,
with little concern on the software performance. Considering an algorithm might be
implemented in various platforms, it is an obvious advantage if software performance of
the proposed diffusion layer can be improved without loss of hardware efficiency. This
paper is devoted to tackle these problems.

Our contributions. In this paper, we investigate the construction of rotational-XOR
MDS diffusion layer over (Fb2)n, which contains only rotation and XOR operations. By
providing a series of novel observations on this cyclic structure, we precisely characterize
the relation among sub-matrices for each possible perfect form. After eliminating all the
other non-optimal cases, we get a direct construction of rotational-XOR MDS linear layers
for n = 4, which allows to generate 4× 4 MDS instances for arbitrary b ≥ 4. Compared
with block-wise circulant matrices, our bit-wise circulant matrices are more attractive on
certain processors, since each rotation can be implemented with a single instruction. As
far as we know, it is the first time that rotational-XOR MDS diffusion layers have been
directly constructed with no auxiliary search.

Organization. In Section 2, we provide some notations and related propositions which
are useful for the later proofs. After formally defining a rotational-XOR diffusion layer, we
present important observations on this class of matrices in Section 3. We illustrate possible
forms of perfect rotational-XOR diffusion layer and check the MDS property for each of
them in Section 4. Afterwards, a direct construction of rotational-XOR MDS matrices is
deduced in Section 5. We compare the implementation cost in terms of XOR count with
the best known results in Section 6. Finally, a brief conclusion is given in Section 7.
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2 Preliminaries
In this section, we fix basic notations and introduce what branch number is. After giving
several useful properties, we formally define a rotational-XOR diffusion layer, which has
been widely used in the design of symmetric-key ciphers. Since diffusion layers investigated
in the present paper are linear transformations over (Fb2)n, we directly use an n×n matrix
with each block size b× b to represent a linear layer in the subsequent discussions.

2.1 Notations
• |M | : Determinant of the matrix M .

• ≪ : Bit-wise left rotation on (n · b)-bit vectors.

• wt(x) : Number of nonzero entries of the vector x.

• GL(b, S) : Set of all b× b non-singular matrices with entries in S.

• ei : Standard unit vector, i.e. a binary vector with 1 only at the i-th position.

2.2 Branch number
Throughout this paper, vectors are represented as columns and subscript index values
begin at 1, unless otherwise stated. Assume x = (x1,x2, ...,xn) is an (n · b)-bit input
vector, where xi ∈ Fb2, 1 ≤ i ≤ n. Then the corresponding output of M can be expressed
as M(x) = M · x. Recall that the diffusion power of M is often quantified by the branch
number, an important criterion proposed by Daemen and Rijmen [DR02].
Definition 1. The differential branch number of a diffusion layer M is denoted by

Bd(M) = min
x∈(Fb

2)n,x6=0
{wt(x) + wt(M · x)}.

Analogously, we can define the linear branch number.
Definition 2. The linear branch number of a diffusion layer M is denoted by

Bl(M) = min
x∈(Fb

2)n,x 6=0
{wt(x) + wt(MT · x)},

where MT is the transpose of M .
For a diffusion layer acting on n entries, the maximum Bd and Bl are both n+1 (known

as the singleton bound [MS77]). If Bd(M) = Bl(M) = n + 1, M is called a perfect or
MDS diffusion layer. A linear layer has a maximum Bd if and only if it has a maximum
Bl [DR02], and therefore we omit linear branch number in the sequel.
Proposition 1. Let M = (Mi,j) and M ′ = (M ′i,j), 1 ≤ i, j ≤ n, where Mi,j and M ′i,j
are all b× b matrices over F2. If there exists a linear transformation P ∈ GL(b,F2) such
that

M ′i,j = Mi,j · P
for every entry of M ′, then M and M ′ are of the same branch number.

Now suppose U = [u1, ..., ut] and V = [v1, ..., vt] are two sequences of length t, where
1 ≤ u1 < · · · < ut ≤ n, 1 ≤ v1 < · · · < vt ≤ n. We denote the square sub-matrix of M of
order t by

M(U, V ) = (Muj ,vj
, 1 ≤ j ≤ t).

Thereby the results of [BR99] and [MS77] can be re-described as the following statement.
Proposition 2. Assume M = (Mi,j), 1 ≤ i, j ≤ n, and the entries of M are b×b matrices
over F2. M is MDS if and only if its every square sub-matrix of order t is non-singular
for 1 ≤ t ≤ n.
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2.3 Diffusion layer based on rotations and XORs
In this paper, we consider linear layers over the vector space (Fb2)n constructed by only
left-rotation and XOR operations. It is called rotational-XOR diffusion layer and can be
formally defined as follows.

Definition 3. Let n, b be positive integers and I ⊂ {0, 1, ..., n · b− 1}. A rotational-XOR
diffusion layer determined by I over (Fb2)n is denoted by MIn,b, which can be characterized
as

MIn,b · x =
⊕
i∈I

(x ≪ i),

where x is the (n · b)-bit input vector.

This diffusion primitive has been used in symmetric-key ciphers SMS4 [DL08], DBlock
[WZY15] and RoadRunneR [BS15]. For example, SMS4 adopts an MDS MI4,8 where
I= {0, 2, 10, 18, 24}. Based on Proposition 2, the computation for judging whether MIn,b
is perfect would be complicated1 when n is large. So the focus of this paper is placed only
on 4× 4 linear layers, which are widely used in the modern cryptography.

It is not difficult to see that rotational-XOR matrix is a specific type of circulant
matrices, and MI4,b can be expressed as

Circ(A,B,C,D) =


A B C D
D A B C
C D A B
B C D A

 ,
where A, B, C and D are all b × b matrices over F2. Just as mentioned in [DKR97,
SKOP15], using circulant matrix in a diffusion layer has significant advantages, e.g. the
prominent flexibility to be implemented in both round-based and serialized implementations.
Nevertheless, it must be noticed that MI4,b is a bit-wise cyclic matrix, while it is not the
case for the general circulant matrix (e.g. recent constructions in [LW16] and [LS16]).

Proposition 3. If MI4,8 is an MDS matrix (i.e. Bd(MI4,8) = 5) for some set I, then
|I| ≥ 5.

Although the result above has been proved only for b = 8 in [ZWFS09], it can be
extended for arbitrary size b in a trivial way, and we ignore the proof here. Due to the
MDS diffusion layers used in SMS4 and DBlock, the lower bound provided by Proposition
3 is tight. More importantly, as shown later in this paper, we are always able to construct
perfect MI4,b as long as b ≥ 4, implying that this lower bound is tight also for any b ≥ 4.
As a consequence, in view of the lightweight hardware/software implementation, we mainly
study the construction of MI4,b with |I| = 5 in the remaining sections.

3 On Properties of Rotational-XOR Diffusion Layers
Before giving our novel observations, we need to introduce some notations. For a b × b
binary matrix A = (ai,j) where 1 ≤ i, j ≤ b, we say A has diagonal σ, if ai,j = 1 for all
i and j such that j − i = σ. Furthermore, if A has diagonals σ1, ..., σt, and has no 1 at
other positions, we use the expression

A =
t∑
i=1

diag(σi)

1As can be deduced from [GWG15], the time complexity is about nb3 ·
∑Bd

i=1 (i2 · Ci
2n) to deal with

such a matrix with branch number Bd.
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for simplicity. As an illustration, binary matrix shown in Figure 1-(a) can be denoted by
diag(7) + diag(0) + diag(−5).

Figure 1: Binary matrices with element 1 only at diagonals

Let A = diag(α) + diag(−β) be a b × b non-singular binary matrix, where α, β > 0.
Note that there are b−α and b−β 1’s in the diagonal α and β respectively. We claim that
α+ β ≤ b. Otherwise, the number of element 1 is less than b, and A is obviously singular.
Now we deduce a necessary and sufficient condition for such matrix to be invertible.

Theorem 1. A b× b binary matrix A = diag(α) + diag(−β), α, β > 0, is non-singular if
and only if (α+ β)|b.

Proof. As depicted in Figure 1-(b), all row vectors of A, a1, ...,ab, can be divided into
three groups:

(1) a1 = eα+1, ... , aβ = eα+β .

(2) aβ+1 = eα+β+1 + e1, ... , ab−α = eb + eb−α−β .

(3) ab−α+1 = ab−α−β+1, ... , ab = eb−β .

A is invertible if and only if each row vector ei, 1 ≤ i ≤ b, can be represented as a linear
combination of these aj ’s. Let

Ω = Ω1 ∪ Ω2 = {α+ 1, · · · , α+ β} ∪ {b− α− β + 1, · · · , b− β}.

First, it holds for e1 that

e1 = aβ+1 + eα+β+1

= aβ+1 + a2β+α+1 + e2(α+β)+1

= · · ·
= aβ+1 + · · ·+ atβ+(t−1)α+1 + et(α+β)+1,

and e1 can be expressed as a linear combination of the aj ’s if and only if there exists some
index t(α+ β) + 1 such that et(α+β)+1 = aj1 , i.e. t(α+ β) + 1 ∈ Ω. Thereupon

e1 = aβ+1 + a2β+α+1 + · · ·+ atβ+(t−1)α+1 + aj1 .

It should also be noticed that for each ei1 with i1 = 1 mod (α+ β), ei1 is expressible in
the similar way.

Likewise, for other standard unit vectors, ei can be represented as a linear combination
of aj ’s, if and only if there exists some ji ∈ Ω such that ji = i mod (α + β). Since Ω1
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and Ω2 are disjoint (otherwise there would be two identical rows in A), then |Ω| = α+ β,
which implies Ω forms a complete residue system modulo α + β. Moreover, as both Ω1
and Ω2 consist of consecutive integers, it must hold that

(b− α− β + 1) mod (α+ β) = (α+ β) mod (α+ β) + 1,

which is equivalent to b mod (α+ β) = 0. Thereby, (α+ β)|b is a necessary and sufficient
condition for A to be invertible.

Note that if A = diag(0) + diag(t) where t 6= 0, A is always invertible. Thus we can
obtain the sufficient and necessary conditions for invertibility of matrices containing only
two diagonals.

Corollary 1. Let A = diag(α) + diag(β) be a b× b matrix. A is invertible if and only if
one of the following conditions is satisfied.

(1) α 6= β and one of them is 0.

(2) αβ < 0 and |α− β| is a divisor of b.

Theorem 2. A b × b matrix A = diag(0) + diag(t), t 6= 0, is involutory if and only if
|t| ≥ db/2e.

Proof. Since the transpose of an involutory matrix is still involutory, we only consider the
case t > 0. First, all row vectors of A can be denoted by

a1 = e1 + et+1, ... , ab−t = eb−t + eb, ab−t+1 = eb−t+1, ... , ab = eb,

and all column vectors can be denoted by

a′
1 = e1, ... , a′

t = et, a′
t+1 = et+1 + e1, ... , a′

b = eb + eb−t.

Let H = A2, and then Hi,j is the inner product of the i-th row and j-th column of A. It
is easy to see that

H = I ⇔< ai,a
′
j >= δij ⇔ t+ 1 > b− t,

where δij is the Kronecker delta. This means A2 = I is equivalent to

t ≥

{
(b+ 1)/2 b is odd
b/2 b is even,

and we complete the proof.

Next, by exploiting the properties of rotational-XOR diffusion layers MI4,b with |I| = 5,
we find ways to group them in equivalent classes.

Proposition 4. Let MI4,b be a rotational-XOR matrix with I = {i1, ..., i5}, 0 ≤ i1 <

· · · < i5 ≤ 4b − 1. MI4,b has the same branch number with MI
′

4,b, where I ′ = {(i1 +
b) mod 4b, ..., (i5 + b) mod 4b}.

As a matter of fact, Proposition 4 indicates a right rotation on the 4 blocks of
Circ(A,B,C,D). In addition, left rotation by i bits is equivalent to right rotation by
4b− i bits for any 4b-bit vector, and intuitively there should not be any difference between
left rotation and right rotation in terms of the branch number. Therefore we obtain the
result below.

Proposition 5. Let MI4,b be a rotational-XOR matrix with I = {i1, ..., i5}, 0 ≤ i1 <

· · · < i5 ≤ 4b − 1. MI4,b and MI′

4,b are of the same branch number, where I ′ = {(4b −
i1) mod 4b, ..., (4b− i5) mod 4b}.
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Proof. Note that MI′

4,b is closely related to the transpose of MI4,b. More precisely,

MI
′

4,b = Circ(AT , DT , CT , BT ).

Let P = (eb, ..., e1). For persymmetric matrix A, we have AT = PAP . According to
Proposition 1 and Proposition 4, MI′

4,b and MI4,b are of the same branch number since P is
invertible.

In the sequel, we always assume that i1 = 0. For cases where i1 > 0,2 search results
and some other evidences suggest it is very likely that MI4,b is not MDS. Unfortunately,
at the time being, we could not find a rigorous and complete proof for the assertion.
Nevertheless, we can show that when i1 = 0, there always exists an MI

′

4,b which is
equivalent to MI4,b such that i′1 = 0 and i′2 < b. Indeed, if i2 < b then I ′ = I and we are
done. Otherwise, it holds that i2 = b in order for B to be invertible. If i3 < 2b, we set
I ′ = {(i1 − b) mod 4b, ..., (i5 − b) mod 4b} = {0, i3 − b, i4 − b, i5 − b, i1 + 3b}, and we are
done. Continuing this procedure, we can always find a block with exactly two non-negative
diagonals, one of which is diagonal 0. Thus, we have proved that:

Theorem 3. For any MDS MI4,b = Circ(A,B,C,D) which contains at least one diagonal
0 among the five non-negative diagonals, there always exists an MI′

4,b = Circ(A′, B′, C ′, D′)
where A′ = diag(σ) + diag(0) and σ > 0, such that Bd(MI

′

4,b) = Bd(MI4,b).

Furthermore, for any rotational-XOR MDS diffusion layer MI4,b with |I| = 5, we claim
that there are at most two indices in I = {i1, ..., i5} divisible by b. Suppose not, two cases
should be discussed:

(1) If there are four indices in I divisible by b, then without loss of generality, we consider
the case visualized in Figure 2. Here A = B and B + C is singular. Hence there
obviously exists a non-zero vector x = (e1, e1,0,0) such that wt(x)+wt(MI4,b ·x) ≤ 4,
which contradicts the MDS condition.

Figure 2: MI4,b with |I| = 5 where there exist four indices in I divisible by b

(2) If there are three indices in I divisible by b, without loss of generality, assume that
b|i1, b|i2, b|i3. Then in order for D being invertible, there are two possible situations.

(i) i4 < 3b and i5 = i4 + b. We notice that either A or C is involutory,3 and that
D = A+ C. Without loss of generality, suppose A is involutory. As depicted
in Figure 3-(i), A2 + A + C = I + A + C is singular (each row of the matrix
has two 1’s), so there exists a nonzero vector x such that (A2 +A+ C)x = 0
(for example, x could be the all-one vector (1, 1, ..., 1)). Take y = Ax, then
Dx + Ay = (A + C + A2)x = 0 and Ax + By = Ax + y = 0, which implies
wt(v) + wt(Mv) ≤ 4 for the input v = (x,y,0,0). This contradicts the MDS
condition.

2From the perspective of equivalence class, now we are referring to cases where all indices in I are not
divisible by b.

3Let ta and tc be the non-zero diagonals in A and C respectively. Then ta = i4 − 3b and tc = i4 − 2b
based on Figure 3-(i). Since |ta|+ |tc| = b, one of |ta| and |tc| must be no less than b/2. According to
Theorem 2, either A or C is involutory.
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(ii) 5/2b < i4 < 3b and i5 = i4 + s, where s > 3b− i4 is a proper divisor of b. As
shown in Figure 3-(ii), A+B and B + C are singular matrices with common
nonempty null space. Similar to the explication of case (i), the branch number
of resulting matrix is no more than 4.

Figure 3: MI4,b with |I| = 5 where there are three indices in I divisible by b

In summary, for an arbitrary MDS MI4,b with |I| = 5, there are at most two indices in I
divisible by b. As can be seen from the following elaboration, this is a crucial criterion
which plays a significant role in determining the possible forms for perfect rotational-XOR
diffusion layers.

4 On Forms of Rotational-XOR MDS Diffusion Layers
In this section, we illustrate possible forms of rotational-XOR MDS diffusion layers. Based
on the analysis of Section 3, we can always restrict constructions toMI4,b = Circ(A,B,C,D)
with i1 = 0 and 0 < i2 < b. One such instance is naturally regarded as a representative,
from which we can obtain some other candidates.

For the five shifts (or indices) in a set I, consider all distances between two consecutive
shifts where neither of the two shifts are divisible by b. In order for each block to be
invertible, these distances should be a divisor of b, and at most one of them is strictly
smaller than b. Due to such limits, there are only 7 possible forms of rotational-XOR MDS
diffusion layers. We characterize the shifts for each possible form as follows:

(1) {0, l, l + b, l + s+ b, l + s+ 2b},

(2) {0, l, l + s, l + s+ b, l + s+ 2b},

(3) {0, l, l + b, l + s+ b, 3b},

(4) {0, l, l + s, l + s+ b, 3b},

(5) {0, l, l + b, l + 2b, l + s+ 2b},

(6) {0, l, l + b, l + 2b, l + 3b},

(7) {0, l, l + b, l + 2b, 3b},

where 0 < l < b and s is a proper divisor of b. For ease of understanding, we describe the
four blocks in the first row for each case in Appendix A.
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There are some implicit points we should be aware of. First, l in the first five cases
must satisfy l > b/2.4 Second, form (3) and (4) are equivalent according to Proposition
5, i.e. each instance in form (3) has an equivalent counterpart in form (4) and vice versa.
Additionally, the last three blocks in form (6) are identical, which means it can not be
MDS [LS16]. All these insights leave us only 5 cases (i.e. form (1), (2), (3), (5) and (7)) to
detect.

Figure 4: Rotational-XOR diffusion layer MI4,b with I = {0, l, l + b, l + s+ b, l + s+ 2b}

Lemma 1. For I = {0, l, l + b, l + s+ b, l + s+ 2b}, where l > b/2, MI4,b is not MDS.

Proof. Consider the sub-matrix T =
[
B D
D B

]
, we prove that B +D is singular, so T is

singular. As shown in Figure 4,

B +D = diag(l − b) + diag(l) + diag(l + s− 2b) + diag(l + s− b).

Then B+D has exactly two 1’s in each row, which means the sum of all columns of B+D
is 0 since we are working over F2. As a result, B +D is singular, implying that MI4,b is
not MDS.

Figure 5: Rotational-XOR diffusion layer MI4,b with I = {0, l, l + s, l + s+ b, l + s+ 2b}

Lemma 2. For I = {0, l, l + s, l + s+ b, l + s+ 2b}, where l > b/2, MI4,b is not MDS.

Proof. It is not difficult to see that C and D are identical, and that B + C is singular
since it is lower-triangular (See Figure 5). Then there must exist a nonzero x such
that (B + C)x = 0. As (C + D)x = 0 also holds, the vector v = (0,0,x,x) results in
wt(v) + wt(MI4,bv) ≤ 4, which is a contradiction.

Lemma 3. For I = {0, l, l + b, l + s+ b, 3b}, where l > b/2, MI4,b is not MDS.

Proof. Note that s ≤ b/2 < l. Consider the sub-matrix T =
(
B C
D A

)
,
(
T1 T2

)
and

column vector v = (eb + el+s−b + es, el+s−b + es). After labeling the diagonals (See
4For each block to be invertible, it holds that l + s ≥ b. According to the previous discussion, the

intermediate blocks (i.e. B and C) do not have diagonal 0, which implies l + s is strictly larger than b.
Thereby l > b/2 since s is a proper divisor of b (which is at most b/2).
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Figure 6), we make simple computations to obtain that the (l + s − b)-th column of T1
is es + el+s + e2b, the s-th column of T1 is eb+s−l + es+b, and the b-th column of T1
is eb−l + e2b. Similarly, the (l + s − b)-th and s-th columns of T2 are es + el+s and
es−l+b + eb−l + es+b respectively. Since the sum of all these columns is 0, i.e. Tv = 0, T
is singular and MI4,b is not MDS.

Figure 6: Singular sub-matrix in MI4,b with I = {0, l, l + b, l + s+ b, 3b}

Lemma 4. For I = {0, l, l + b, l + 2b, l + s+ 2b}, where l > b/2, MI4,b is not MDS.

We can prove Lemma 4 in a similar way to Lemma 2. After eliminating all the other
case, we find the only possible candidate rotational-XOR MDS diffusion layer MI4,b, with
|I| = 5 and i1 = 0.

Theorem 4. Any rotational-XOR MDS diffusion layer MI4,b, with |I| = 5 and i1 = 0,
must satisfy that

I = {0, l, l + b, l + 2b, 3b}

for some 0 < l < b from a equivalent point of view.

We will later give the sufficient and necessary conditions for such MI4,b to be MDS.
According to our result, we can recognize that for any b ≥ 4, there always exists rotational-
XOR MDS diffusion layer MI4,b with |I| = 5, which prove the tightness for the bound of
cardinality of I.

Corollary 2. If MIn,b, n > 4, is a rotational-XOR MDS diffusion layer, |I| ≥ n+ 2.5

5 Direct Construction of Rotational-XOR MDS Diffusion
Layers

In this section, we deduce a direct construction of MDS MI4,b with |I| = 5. Along
the same line, all perfect linear layers are of the form Circ(A,B,B,A + B), where
A = diag(0) + diag(l) and B = diag(l) + diag(l − b).

5Since the proof process is a little repetitive, we describe it in Appendix B.



Zhiyuan Guo et al. 179

5.1 Direct construction of MDS MI
4,b with I = {0, l, l + b, l + 2b, 3b}

By exhaustive search of all square sub-matrices of M , we obtain the result below.

Lemma 5. Let M = Circ(A,B,B,A + B) be a circulant matrix with A,B,A + B ∈
GL(b,F2). Then M is an MDS matrix if and only if the following three statements hold.

(1) |A+B +BA−1B| 6= 0.

(2) |A+B +BA−1BA−1B| 6= 0.

(3) |A+BA−1B +BA−1BA−1B| 6= 0.

Proof. According to Proposition 2, M is an MDS matrix if and only if all square sub-
matrices of order t, 1 ≤ t ≤ 4, are non-singular. With the help of elementary linear algebra,
we obtain |M | = |B|4, which implies conditions for the case of t = 1 and t = 4 are trivially
satisfied. To ensure all square sub-matrices of order 2 are invertible, we further require
|A+B +BA−1B| 6= 0. Similarly, for the case of t = 3, not only |A|, |B| and |A+B|, but
also the three determinants above need to be non-zero.

Remark 1. Note that the forms of these three determinants are not unique due to the
varying procedure of computation. Nevertheless, all possible determinants we compute are
equivalent to these three under the condition that A,B,A+B are all invertible.

Next, we elaborate on a necessary and sufficient condition for each nontrivial determi-
nant being non-zero.

Theorem 5. Assume A = diag(0) + diag(l) and B = diag(l) + diag(l − b) are two b×b
binary matrices where 0 < l < b. Then |A+B +BA−1BA−1B| is non-zero if and only if
l 6= 3b mod 7.

Proof. According to the definitions, it is easy to see |A| 6= 0, |B| 6= 0, and thus it holds
that

|A+B +BA−1BA−1B| 6= 0⇔ |I +A−1B +A−1BA−1BA−1B| 6= 0.
Let W = A−1B, then

I +A−1B +A−1BA−1BA−1B = I +W +W 3.

On the one hand, for any eigenvalue of W , denoted by λ, it satisfies |λI − U | = 0,
which is equivalent to λb + (λ+ 1)b−l = 0 since

λA−B =



λ λ+ 1

λ
. . .

λ+ 1

1
. . .

. . .
1 λ


.

On the other hand, based on linear algebra theory, I + W + W 3 is non-singular if
and only if 1 + λ+ λ3 6= 0. Now we consider the opposite direction, i.e. we compute the
conditions for 1 + λ+ λ3 = 0. Notice that 1 + λ+ λ3 is a primitive polynomial of order 7
over F2, and λ+ 1 = λ3. Then we obtain

λb + (λ+ 1)b−l = 0⇔ λb + λ3(b−l) = 0⇔ b = 3(b− l) mod 7.

Therefore, I +W +W 3 is non-singular if and only if l 6= 3b mod 7, and we complete the
proof.
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Likewise, we claim that |A + B + BA−1B| 6= 0 if and only if l 6= 2b mod 3, and
|A+BA−1B +BA−1BA−1B| 6= 0 if and only if l 6= 5b mod 7. The relevant explications
are similar to the proof above, except that primitive polynomials are changed (from
1 + λ+ λ3) to 1 + λ+ λ2 and to 1 + λ2 + λ3 respectively.

Theorem 6. Let A = diag(0) + diag(l) and B = diag(l) + diag(l − b) be two b×b
binary matrices, where 0 < l < b. A rotational-XOR diffusion layer MI4,b denoted by
Circ(A,B,B,A+B) is MDS, if and only if all conditions below are fulfilled.

(1) l 6= 2b mod 3.

(2) l 6= 3b mod 7.

(3) l 6= 5b mod 7.

This statement is an immediate combination of Lemma 5 and Theorem 5, so we omit
the proof here. According to Theorem 6, we deduce a direct construction of rotational-XOR
MDS diffusion layers, without any auxiliary search. Indeed, once b is given, the set of
candidates for l is determined:

Λ = {l|0 < l < b, l 6= 2b mod 3, l 6= 3b mod 7, l 6= 5b mod 7}.

In other words, an arbitrary l ∈ Λ corresponds to a perfect rotational diffusion layer MI4,b,
where I = {0, l, l+b, l+2b, 3b}. Alternatively,MI4,b can be represented as Circ(A,B,B,A+
B), where A = diag(0) + diag(l), B = diag(l) + diag(l − b).

5.2 The inverse of proposed diffusion layers
At the end of this section, we present the inverse of rotational-XOR diffusion layers
constructed in Section 5.1.

Theorem 7. Let MI4,b · x = x⊕ (x ≪ l)⊕ (x ≪ (l+ b))⊕ (x ≪ (l+ 2b))⊕ (x ≪ 3b)
and x ∈ (Fb2)4, 0 < l < b. Then

(MI4,b)−1 · x = (x ≪ (4b− 4l))⊕ (x ≪ (b− 4l))⊕ (x ≪ (4b− l))⊕
(x ≪ (3b− 4l))⊕ (x ≪ (b− 3l))⊕ (x ≪ (b− 2l))⊕
(x ≪ (2b− 2l))⊕ (x ≪ (2b− l))⊕ (x ≪ (3b− l))⊕
(x ≪ (3b− 3l))⊕ (x ≪ (2b− 4l))

where x ≪ i is equivalent to x ≪ (i mod 4b).

Proof. Starting from the expression of MI4,b · x, we have

(MI4,b)2 · x = x⊕ (x ≪ 2l)⊕ (x ≪ (2l + 2b))⊕ (x ≪ (2l + 4b))⊕ (x ≪ 6b)
= x⊕ (x ≪ 2b)⊕ (x ≪ (2l + 2b)).

Furthermore, (MI4,b)4 · x = x⊕ (x ≪ (4l + 4b))⊕ (x ≪ 4b) = x ≪ 4l, implying that

(MI4,b)4 · (x ≪ (4b− 4l)) = x.

Consequently, it holds that

(MI4,b)−1 · x = (MI4,b)3 · (x ≪ (4b− 4l)) = ((MI4,b)2 ·MI4,b) · (x ≪ (4b− 4l)),

which completes the proof.
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Remark 2. As can be seen from (MI4,b)2, any rotational-XOR MDS diffusion layer we
construct cannot be involutory.

Corollary 3. Assume MI′

4,b = (MI4,b)−1 and I = {0, l, l + b, l + 2b, 3b}. Any two terms in
I ′ are not congruent modulo 4b.

Proof. Let I ′1 = {2b − l, 3b − l, 4b − l}, I ′2 = {b − 2l, 2b − 2l}, I ′3 = {b − 3l, 3b − 3l} and
I ′4 = {b− 4l, 2b− 4l, 3b− 4l, 4b− 4l}. According to Theorem 7,

I ′ = I ′1 ∪ I ′2 ∪ I ′3 ∪ I ′4.

Elements from the same I ′j , 1 ≤ j ≤ 4, are not congruent modulo 4b.
If two elements are congruent modulo 4b, they must come from different set I ′i, I ′j ,

i 6= j. Suppose kb− il = rb− jl mod 4b, and k, r are possible coefficients of b in I ′i, I ′j .
Then

(k − r)b = (i− j)l mod 4b.

Since 0 < l < b, the only possibility is l = b/2, which implies l = 2b mod 3. This contradicts
the MDS condition for MI4,b.

Remark 3. Any two terms in I ′ are not congruent modulo 4b, and then for a rotational-XOR
MDS matrix we construct, its inverse matrix contains exactly 11 rotations.

6 Discussion and Implementation
Before comparing the implementation cost, we make a thorough discussion for various
parameters. Since MI4,b is uniquely determined by I, and the set I of each MDS matrix
satisfies I = {0, l, l + b, l + 2b, 3b}, we extract l to illustrate our instances. For example,
MI4,4 with l = 3 can be characterized as

MI4,4 · x = x⊕ (x ≪ 3)⊕ (x ≪ 7)⊕ (x ≪ 11)⊕ (x ≪ 12),

where x is a 16-bit input vector. For the other expression, MI4,4 corresponds to the
rotational-XOR linear layer Circ(A,B,B,A+B), which is constructed by the following
4× 4 matrices:

A =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 and B =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

.
6.1 Rotational-XOR diffusion layers for various parameters
First, we utilize Theorem 6 to directly generate rotational-XOR MDS diffusion layers
with commonly used sizes in the modern cryptography, that is, MI4,b with b = 2k, where
k = 2, 3, 4, 5. The total number of l which satisfies conditions of Theorem 6 and typical
instance of I are summarized in Table 1.

We point out that all these proposals listed in Table 1 are immediate results of Theorem
6. In other words, as there is no further partition, the number of equivalence classes for
each parameter is smaller than the second item (i.e. the total number of l). For example,
when b = 16, direct constructions from Theorem 6 are l = 1, 4, 7, 9, 12 and 15. While
according to Proposition 5, they are pairwise equivalent. Namely, l = 1 and l = 15, l = 4
and l = 12, l = 7 and l = 9 belong to three different equivalent classes.

Next, we emphasize that our construction is applicable for any b ≥ 4, and thereby it
becomes possible for direct generating MDS MI4,b even for sizes which are not often used.
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Table 1: Direct construction of MDS MI4,b with b = 4, 8, 16, and 32

b total number of l example of I
4 2 {0, 1, 5, 9, 12}
8 2 {0, 2, 10, 18, 24}
16 6 {0, 7, 23, 39, 48}
32 14 {0, 9, 41, 73, 96}

For example, when considering MDS MI4,5, I = {0, 2, 7, 12, 15} and I = {0, 3, 8, 13, 15} are
both perfect solutions. For MI4,7, I = {0, l, l + b, l + 2b, 3b}, to be MDS, l = 1, 3, 4 and 6
are all feasible choices.

Last, to confirm the validity of our construction, we make exhaustive search for MDS
MI4,b with b ≤ 16. Remarkably, our proposals for each parameter exactly covered the whole
perfect instances (in the sense of equivalence). For example, experimental results show
that there are in total 8 MDS MI4,8’s with |I| = 5, and their I’s are

{0, 2, 10, 18, 24}, {0, 8, 10, 18, 26}, {2, 8, 16, 18, 26}, {2, 10, 16, 24, 26},

{0, 6, 14, 22, 24}, {0, 8, 14, 22, 30}, {6, 8, 16, 22, 30}, {6, 14, 16, 24, 30}.
According to Proposition 4, the first 4 matrices and last 4 matrices are in two different
equivalence classes. This means exhaustive search result is consistent with our construction,
since I = {0, 2, 10, 18, 24} and I = {0, 6, 14, 22, 24} are immediate solutions of Theorem 6.

6.2 XOR count and comparison with previous constructions
XOR count Hardware efficiency can have very different meanings depending on the
utilization scenario targeted by designers. A classical metric is to estimate silicon area
needed by the primitive to perform cryptographic operations. As expounded in [KPPY14],
low XOR count is strongly correlated to the minimization of hardware area. Since all
rows for a circulant matrix (and also for a Hadamard matrix) are equivalent in terms of
XOR count, we use the amount of XORs required to evaluate the first row to evaluate
the lightweightness of a given matrix. A comparison of our constructions with previous
ones is given in Table 2. It is not difficult to see that our results are very close to the best
existing constructions.

Implementation tradeoffs Since our construction uses a bit-wise circulant structure,
there are various trade-offs in its implementation. All constructions in Table 2 use circulant
(or circulant-like) structure, so the XOR costs of their unrolled implementations are 4 times
higher than the row-based implementation. As a consequence, our results are still very
similar to the best existing ones. In addition, our construction uses a bit-wise circulant
structure, therefore its implementation allows more fine-grained trade-offs. In an extreme
case, we can implement only the first output bit (rather than the first row), and then
compute all the other bits through rotations.

Indeed, whichever instance we choose in our construction, the XOR cost is always
proportional to the bit-width of current implementation. Specifically, for any nb × nb
binay matrix, the XOR cost of the trivial unrolled implementation is 4nb. As for the
row-based implementation (in which we only compute one entry, i.e. b-bit, each time), this
value becomes 4b. Clearly, the ratio of total XOR cost versus implementation bit-width is
a constant 4. For larger matrices (e.g. nb = 64, 128, · · · ), this nice property becomes a
significant advantage: despite the fact that there are fewer methods for generating huge
MDS, Table 2 indicates that the XOR cost of our direct construction should stay close to
the best possible results.
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Table 2: Comparison of MDS matrices with commonly used sizes

Matrix type Elements The first row XOR count Reference
Hadamard F24/0x13 (0x01, 0x02, 0x08, 0x09) 17 [SKOP15]
Hadamard GL(4,F2) (I, A,B,C) 16 [LW16]
Circulant GL(4,F2) (I, I, A,B) 15 [LW16]
Circulant F24/0x13 (0x01, 0x01, 0x09, 0x04) 15 [LS16]
Circulant F24/0x13 (0x01, 0x01, 0x04, 0x09) 15 [KPPY14]
Circulant GL(4,F2) (A,B,B,A+B) 16 This paper
Circulant F28/0x11b (0x02, 0x03, 0x01, 0x01) 38 [DR02]
Hadamard F28/0x1c3 (0x01, 0x02, 0x04, 0x91) 37 [SKOP15]
Circulant F28/0x11b (0x01, 0x01, 0x04, 0x8e) 33 [KPPY14]
Circulant F28/0x1c3 (0x01, 0x01, 0x02, 0x91) 32 [LS16]
Circulant GL(8,F2) (I, I, A,B) 27 [LW16]
Circulant GL(8,F2) (A,B,B,A+B) 32 This paper

Software performance Though the current lightweight constructions focus mainly on
hardware implementation, it would be a bonus if cryptographic primitives can also be
efficiently implemented in software platforms, considering an encryption algorithm might be
used in various platforms. Apparently, our construction favors implementations with nb-bit
processors. For any 32× 32 binary matrix in Table 2, computing a 32-bit output requires
4 XORs and 4 rotations, with no extra memory cost. As many 32-bit processors have
built-in rotation instructions, performing such transformation takes only 8 instructions.
However, other examples in Table 2 take at least 3×4 XORs, no matter how multiplication
operation is implemented. Therefore, the trivial implementation of our construction on
32-bit platforms outperforms most previous ones.

In addition to the trivial implementation, there are various optimizations improving
software performance. For example, utilizing the look-up table or the bit-slice technique
may lead to more efficient implementation. However, those optimizations only make
sense when we have plenty of memory or we need to encrypt many blocks.6 Besides, in
practice, both the large table look-up and the pack/unpack operation may take a long
time to proceed. Even though such optimizations do improve the overall performance,
our construction has similar performance as previous ones. But for 8-bit platforms, our
proposal becomes less effective: since nb-bit rotations cannot be efficiently implemented
in a w-bit processor (w < nb), both our 16× 16 and 32× 32 instances do not work well
with 8-bit processors. Nevertheless, to date, few constructions perform well on all types of
platforms: our work here is no exception.

7 Conclusion
In this paper, we study the construction of rotational-XOR MDS diffusion layer over (Fb2)4.
By presenting a series of theory on such type of matrices, we propose a powerful method
to directly generate perfect MI4,b for arbitrary b ≥ 4. From the designer’s point of view,
our strategy provides a quite comprehensive solution to the construction of such 4 × 4
MDS matrices. Despite of a few limitations, our proposal contributes to the diversity of
diffusion primitives. As far as we know, it is the first time that lightweight rotational-XOR
MDS diffusion layers have been constructed without any auxiliary search.

6Unless the cryptographic scheme is designed in a bit-slice manner.
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A Possible Forms of Rotational-XOR MDS Matrices
To facilitate the description, we illustrate the four block in the first row for each possible
form in Figure 7.

Figure 7: The shapes of the first row in each of seven possible forms

B Proof of Corollary 2
First, by using a similar method in Lemma 2, we obtain the statement below.

Lemma 6. For an MDS Circ(A1, · · · , An), if two consecutive blocks are identical, say
A1 = A2, the sum of any other two consecutive blocks is non-singular.

Next, we prove that if MIn,b, n > 4, is a rotational-XOR MDS diffusion layer, then
|I| ≥ n+ 2.

Proof. It is obvious that |I| > n, so we only need to prove that MIn,b is not MDS for n > 4
and |I| = n+ 1. Each row in MIn,b has exactly n+ 1 1’s, so n must be even for MIn,b to be
invertible. In what follows, we consider the case of n = 6.
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Due to the invertibility, there is at least one non-negative diagonal in each block. Since
|I| = n + 1, there is exactly one block with two non-negative diagonals. Similar to the
discussion in the case of n = 4, such block is always the first block in the first row. Note
that there are only 7 possible shapes of the blocks in MIn,b (See Figure 8). We discuss
all possible cases of the first row. There are some points that need to be taken into
consideration for MIn,b to be MDS:

Figure 8: The possible shapes of blocks in MIn,b with n > 4 and |I| = n+ 1

(1) Based on our constraint, the first block can only be Figure 8-(1), Figure 8-(6), or
Figure 8-(7). Then, any other block has exactly one non-negative diagonal, i.e. the
other blocks are Figure 8-(2), Figure 8-(3), Figure 8-(4), Figure 8-(5).

(2) Each negative diagonal is from the previous block. Once the identity matrix (Figure
8-(2), which comes immediately after Figure 8-(5)) appears, all subsequent blocks, if
any, are identity matrices. However, according to the discussion right above Section
4, the identity matrix should not occur in an MDS MIn,b with |I| = n+ 1;

(3) There is at most one block in the form of Figure 8-(4). If Figure 8-(4) does not
appear, the four middle blocks become identical, which is a contradiction. So Figure
8-(4) occurs exactly once and must be in the third or fourth place (otherwise there
are still 3 identical blocks).

(4) The last block should be either Figure 8-(5) or Figure 8-(3), and accordingly the first
block is Figure 8-(1) or Figure 8-(6) (or Figure 8-(7)).

As a consequence, only three cases are left:

(a) Figure 8-(4) appears in the third place. Here the fourth and fifth blocks are identical.
Meanwhile, the last block is Figure 8-(5), and the first block is Figure 8-(1). The
sum of these two blocks is singular, which is a contradiction according to Lemma 6.

(b) Figure 8-(4) occurs in the fourth place and the last block is Figure 8-(3). Here the
second block and third block are identical, and the first block is Figure 8-(6). Since
the sum of the last two blocks (they are identical) is singular, this case is excluded.

(c) Figure 8-(4) appears in the fourth place and the last block is Figure 8-(5). Similar
to the analysis in (a), this case is ruled out.

The discussion above is for n = 6, nevertheless, for other cases, it is even more true since
more blocks are repeated. To summarize, any rotational-XOR MDS diffusion layer MIn,b
with n > 4 must satisfy |I| ≥ n+ 2.
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