Direct Construction of Optimal Rotational-XOR Diffusion Primitives

Zhiyuan Guo^{1,3} Renzhang Liu² Si Gao¹ Wenling Wu¹ Dongdai Lin²

¹TCA Laboratory, Institute of Software, Chinese Academy of Sciences, China ²Institute of Information Engineering, Chinese Academy of Sciences ³State Key Laboratory of Cryptology, P.O. Box 5159, Beijing

gzhyuan@msn.cn Speaker: Ling Song

March 6, 2018

- **1** Introductions and Notations
- **2** Basic Properties and Novel Observations
- **3** Possible Forms and Direct Constructions
- **4** Discussions and Conclusions

- 2 Basic Properties and Novel Observations
- **3** Possible Forms and Direct Constructions
- 4 Discussions and Conclusions

Spreading internal dependencies

- **1** SECURITY : differential/linear cryptanalysis.
- **2** EFFICIENCY: software/hardware performance.

Spreading internal dependencies

- **1** SECURITY : differential/linear cryptanalysis.
- **2** EFFICIENCY: software/hardware performance.

Measured by branch number

- Larger branch number means faster diffusion speed.
- Bigger branch number implies more active S-boxes.

 From a coding theory perspective, Maximum Distance Separable (MDS) codes are quite good choices. From a coding theory perspective, Maximum Distance Separable (MDS) codes are quite good choices.

- There are two major ways to construct lightweight MDS diffusion layers.
 - **1** recursive strategy (serial-based implementation)
 - 2 circulant structure (round-based implementation)

- **1** Hardware implementation often suffers from an area requirement.
- 2 Most methods need to perform an equivalent (or even exhaustive) search.

1 Hardware implementation often suffers from an area requirement.

2 Most methods need to perform an equivalent (or even exhaustive) search.

Could we construct MDS diffusion layers directly over $(\mathbb{F}_2^b)^n$ with excellent hardware/software efficiency?

Definition 1

Let n, b be positive integers and $\mathcal{I} \subset \{0, 1, ..., nb - 1\}$. A rotational-XOR diffusion layer determined by \mathcal{I} over $(\mathbb{F}_2^b)^n$ is denoted by $M_{n,b}^{\mathcal{I}}$, which can be characterized as

$$M_{n,b}^{\mathcal{I}} \cdot \boldsymbol{x} = \bigoplus_{i \in \mathcal{I}} (\boldsymbol{x} \ll i),$$

where \boldsymbol{x} is the $(n \cdot b)$ -bit input vector.

Used as diffusion component in the symmetric-key ciphers

 \blacksquare SM4, DBlock, RoadRunneR...

Used as diffusion component in the symmetric-key ciphers

 \blacksquare SM4, DBlock, RoadRunneR...

• A specific type of circulant matrices: BIT-WISE circulant matrix

• $M_{4,b}^{\mathcal{I}}$ can be expressed as

$$Circ(A, B, C, D) = \begin{bmatrix} A & B & C & D \\ D & A & B & C \\ C & D & A & B \\ B & C & D & A \end{bmatrix}$$

.

- **2** Basic Properties and Novel Observations
- 3 Possible Forms and Direct Constructions
- 4 Discussions and Conclusions

Proposition 1 [ZWFS09]

If $M_{4,8}^{\mathcal{I}}$ is an MDS matrix (i.e. $\mathcal{B}_d(M_{4,8}^{\mathcal{I}}) = 5$) for some set \mathcal{I} , then $|\mathcal{I}| \geq 5$.

Proposition 1 [ZWFS09]

If $M_{4,8}^{\mathcal{I}}$ is an MDS matrix (i.e. $\mathcal{B}_d(M_{4,8}^{\mathcal{I}}) = 5$) for some set \mathcal{I} , then $|\mathcal{I}| \geq 5$.

• In addition to $M_{4,8}^{\mathcal{I}}$, this lower bound is tight for $M_{4,b}^{\mathcal{I}}$ as well.

Proposition 1 [ZWFS09]

If $M_{4,8}^{\mathcal{I}}$ is an MDS matrix (i.e. $\mathcal{B}_d(M_{4,8}^{\mathcal{I}}) = 5$) for some set \mathcal{I} , then $|\mathcal{I}| \geq 5$.

• In addition to $M_{4,8}^{\mathcal{I}}$, this lower bound is tight for $M_{4,b}^{\mathcal{I}}$ as well.

F

Our focus is only placed on the construction of $M_{4,b}^{\mathcal{I}}$ with $|\mathcal{I}| = 5$.

Notation (1)

For a $b \times b$ binary matrix $A = (a_{i,j})$ where $1 \le i, j \le b$, we call <u>A has diagonal σ </u>, if $a_{i,j} = 1$ for all i and j such that $j - i = \sigma$.

Notation (2)

If A has diagonals $\sigma_1, ..., \sigma_t$, and has no 1 at other positions, we denote

$$A = \sum_{i=1}^{t} diag(\sigma_i).$$

Figure:
$$diag(7) + diag(0) + diag(-5)$$

Observation (1)

Theorem 1

A $b \times b$ binary matrix $A = diag(\alpha) + diag(-\beta)$ is non-singular if and only if $(\alpha + \beta)|b$, where $\alpha, \beta > 0$,

Corollary 1

For a $b \times b$ matrix $A = diag(\alpha) + diag(\beta)$, it is invertible if and only if

one of the following conditions is satisfied.

(1) $\alpha \neq \beta$ and one of them is 0.

(2) $\alpha\beta < 0$ and $|\alpha - \beta|$ is a divisor of b.

Observation (2)

Proposition 2

Given an $M_{4,b}^{\mathcal{I}}$ with $\mathcal{I} = \{i_1, ..., i_5\}, 0 \le i_1 < \cdots < i_5 \le 4b - 1$. Then

 $M_{4,b}^{\mathcal{I}'}$ and $M_{4,b}^{\mathcal{I}}$ are of the same branch number, where

 $\mathcal{I}' = \{(i_1 + b) \bmod 4b, \dots, (i_5 + b) \bmod 4b\}.$

Observation (2)

Proposition 2

Given an $M_{4,b}^{\mathcal{I}}$ with $\mathcal{I} = \{i_1, ..., i_5\}, 0 \le i_1 < \cdots < i_5 \le 4b - 1$. Then

 $M_{4\,b}^{\mathcal{I}'}$ and $M_{4\,b}^{\mathcal{I}}$ are of the same branch number, where

 $\mathcal{I}' = \{(i_1 + b) \bmod 4b, \dots, (i_5 + b) \bmod 4b\}.$

Proposition 3

Given an $M_{4,b}^{\mathcal{I}}$ with $\mathcal{I} = \{i_1, ..., i_5\}, 0 \le i_1 < \cdots < i_5 \le 4b - 1$. Then

 $M_{4,b}^{\mathcal{I}'}$ and $M_{4,b}^{\mathcal{I}}$ are of the same branch number, where

$$\mathcal{I}' = \{(4b - i_1) \bmod 4b, \dots, (4b - i_5) \bmod 4b\}.$$

Throughout this paper, we always assume that $M_{4,b}^{\mathcal{I}}$ contains at least one *diagonal* 0 among the five non-negative diagonals.

14 / 25

Throughout this paper, we always assume that $M_{4,b}^{\mathcal{I}}$ contains at least one *diagonal* 0 among the five non-negative diagonals.

Theorem 2

For an MDS $M_{4,b}^{\mathcal{I}} = Circ(A, B, C, D)$ containing at least one diagonal 0 among the five non-negative diagonals, there always exists an

$$M_{4,b}^{\mathcal{I}'} = Circ(A', B', C', D')$$

where $A' = diag(\sigma) + diag(0), \ \sigma > 0$, such that $\mathcal{B}_d(M_{4,b}^{\mathcal{I}'}) = \mathcal{B}_d(M_{4,b}^{\mathcal{I}}).$

Observation (4)

Theorem 3

For any rotational-XOR MDS diffusion layer $M_{4,b}^{\mathcal{I}}$ with $|\mathcal{I}| = 5$, there are at most two indices in $\mathcal{I} = \{i_1, ..., i_5\}$ divisible by b.

Observation (4)

Theorem 3

For any rotational-XOR MDS diffusion layer $M_{4,b}^{\mathcal{I}}$ with $|\mathcal{I}| = 5$, there are at most two indices in $\mathcal{I} = \{i_1, ..., i_5\}$ divisible by b.

$\text{Counterexample} \Rightarrow$

Let $(y_1, y_2, y_3, y_4) = Circ(A, B, C, D) \cdot (e_1, e_1, 0, 0)^T$, $e_1 = (1, 0, ..., 0)$.

Zhiyuan Guo (TCA, ISCAS) Rotational-XOR Diffusion Primitives March 6, 2018

- 2 Basic Properties and Novel Observations
- **3** Possible Forms and Direct Constructions
 - 4 Discussions and Conclusions

Four Blocks in the First Row for Each Possible Form

018 16 / 25

The Only Possible Form of MDS $M_{4,b}^{\mathcal{I}}$

Theorem 4

Any rotational-XOR MDS diffusion layer $M_{4,b}^{\mathcal{I}}$, with $|\mathcal{I}| = 5$ and $i_1 = 0$,

must satisfy that

$$\mathcal{I} = \{0, l, l+b, l+2b, 3b\}$$

for some 0 < l < b from a equivalent point of view.

March 6, 2018 17 / 25

Direct Construction (1)

Alternatively, $M_{4,b}^{\mathcal{I}}$ with $\mathcal{I} = \{0, l, l+b, l+2b, 3b\}$ can be represented as

Circ(A, B, B, A + B),

where A = diag(0) + diag(l), B = diag(l) + diag(l-b).

Direct Construction (1)

Alternatively, $M_{4,b}^{\mathcal{I}}$ with $\mathcal{I} = \{0, l, l+b, l+2b, 3b\}$ can be represented as

Circ(A, B, B, A + B),

where A = diag(0) + diag(l), B = diag(l) + diag(l-b).

Theorem 5

Let M = Circ(A, B, B, A + B), where $A, B, A + B \in GL(b, \mathbb{F}_2)$. M is

MDS if and only if the following three statements hold.

(1)
$$|A + B + BA^{-1}B| \neq 0.$$

(2) $|A + B + BA^{-1}BA^{-1}B| \neq 0.$
(3) $|A + BA^{-1}B + BA^{-1}BA^{-1}B| \neq 0.$

Taking the statement (2) as an example, we deduce the sufficient and necessary condition as follows.

Theorem 6

Suppose A = diag(0) + diag(l) and B = diag(l) + diag(l-b) are two $b \times b$ binary matrices, where 0 < l < b. Then $|A + B + BA^{-1}BA^{-1}B|$ is non-zero if and only if $l \neq 3b \mod 7$.

- $\blacksquare \ |A+B+BA^{-1}BA^{-1}B| \neq 0 \Leftrightarrow |I+A^{-1}B+A^{-1}BA^{-1}BA^{-1}B| \neq 0.$
- Let $W = A^{-1}B$, then

$$I + A^{-1}B + A^{-1}BA^{-1}BA^{-1}B = I + W + W^3.$$

For any eigenvalue of W, denoted by λ , it satisfies

$$|\lambda I - U| = 0 \Leftrightarrow \lambda^b + (\lambda + 1)^{b-l} = 0.$$

• $I + W + W^3$ is non-singular if and only if $1 + \lambda + \lambda^3 \neq 0$. Consider the conditions for $1 + \lambda + \lambda^3 = 0$. Notice $1 + \lambda + \lambda^3$ is a primitive polynomial of order 7 over \mathbb{F}_2 .

 $\lambda^b + (\lambda+1)^{b-l} = 0 \Leftrightarrow \lambda^b + \lambda^{3(b-l)} = 0 \Leftrightarrow b = 3(b-l) \bmod 7,$

which is equivalent to $l = 3b \mod 7$.

Theorem 7

Assume A = diag(0) + diag(l) and B = diag(l) + diag(l-b) are two $b \times b$ binary matrices. Then $M_{4,b}^{\mathcal{I}}$, denoted by Circ(A, B, B, A + B), is MDS, if and only if all conditions below are fulfilled.

l ≠ 2b mod 3.
 l ≠ 3b mod 7.
 l ≠ 5b mod 7.

- 2 Basic Properties and Novel Observations
- **3** Possible Forms and Direct Constructions
- **4** Discussions and Conclusions

Hardware Efficiency

• All rows for a circulant/ Hadamard matrix are equivalent in terms of XOR count, so we use the amount of XORs required to evaluate the first row to evaluate the lightweightness.

Matrix type	Elements	The first row	XOR count	Reference
Hadamard	$\mathbb{F}_{2^4}/0x13$	(0x01, 0x02, 0x08, 0x09)	17	[SKOP15]
Hadamard	$GL(4, \mathbb{F}_2)$	(I, A, B, C)	16	[LW16]
Circulant	$GL(4, \mathbb{F}_2)$	(I, I, A, B)	15	[LW16]
Circulant	$\mathbb{F}_{2^4}/0x13$	(0x01, 0x01, 0x09, 0x04)	15	[LS16]
Circulant	$\mathbb{F}_{2^4}/0x13$	(0x01, 0x01, 0x04, 0x09)	15	[KPPY14]
Circulant	$GL(4, \mathbb{F}_2)$	(A, B, B, A + B)	16	This paper
Circulant	$\mathbb{F}_{2^8}/0x11b$	(0x02, 0x03, 0x01, 0x01)	38	[DR02]
Hadamard	$\mathbb{F}_{2^8}/0x1c3$	(0x01, 0x02, 0x04, 0x91)	37	[SKOP15]
Circulant	$\mathbb{F}_{2^8}/0x11b$	(0x01, 0x01, 0x04, 0x8e)	33	[KPPY14]
Circulant	$\mathbb{F}_{2^8}/0x1c3$	(0x01, 0x01, 0x02, 0x91)	32	[LS16]
Circulant	$GL(8, \mathbb{F}_2)$	(I, I, \overline{A}, B)	27	[LW16]
Circulant	$GL(8, \mathbb{F}_2)$	(A, B, B, A+B)	32	This paper

Our construction favors implementations with nb-bit processors.

■ For any 32 × 32 binary matrix in that table, computing a 32-bit output requires 4 XORs and 4 rotations, with no extra memory cost.

Our construction favors implementations with nb-bit processors.

- For any 32 × 32 binary matrix in that table, computing a 32-bit output requires 4 XORs and 4 rotations, with no extra memory cost.
 - Since many 32-bit processors have built-in rotation instructions, performing such transformation takes only 8 instructions.
 - However, other examples in that table take at least 3 × 4 XORs, no matter how multiplication operation is implemented.

• Once given the block size *b*, the set of candidates for *l* is therewith determined:

 $\Lambda = \{ l | 0 < l < b, l \neq 2b \mod 3, l \neq 3b \mod 7, l \neq 5b \mod 7 \}.$

So an arbitrary $l \in \Lambda$ corresponds to a perfect diffusion layer $M_{4,b}^{\mathcal{I}}$, where $\mathcal{I} = \{0, l, l+b, l+2b, 3b\}.$ • Once given the block size *b*, the set of candidates for *l* is therewith determined:

 $\Lambda = \{ l | 0 < l < b, l \neq 2b \mod 3, l \neq 3b \mod 7, l \neq 5b \mod 7 \}.$

So an arbitrary $l \in \Lambda$ corresponds to a perfect diffusion layer $M_{4,b}^{\mathcal{I}}$, where $\mathcal{I} = \{0, l, l + b, l + 2b, 3b\}.$

 This strategy provides a quite comprehensive solution to designing such 4 × 4 MDS matrices. • Once given the block size *b*, the set of candidates for *l* is therewith determined:

 $\Lambda = \{ l | 0 < l < b, l \neq 2b \mod 3, l \neq 3b \mod 7, l \neq 5b \mod 7 \}.$

So an arbitrary $l \in \Lambda$ corresponds to a perfect diffusion layer $M_{4,b}^{\mathcal{I}}$, where $\mathcal{I} = \{0, l, l + b, l + 2b, 3b\}.$

- This strategy provides a quite comprehensive solution to designing such 4 × 4 MDS matrices.
- It is the first time that lightweight rotational-XOR MDS matrices have been constructed without any auxiliary search.

Thanks for your attention !