
Optimizing Implementations of
Lightweight Building Blocks

Jérémy Jean Thomas Peyrin Siang Meng Sim Jade Tourteaux

ANSSI, France

NTU, Singapore

FSE 2018 @ Bruges, Belgium

March 6, 2018

Jeremy.Jean@ssi.gouv.fr

mailto:Jeremy.Jean@ssi.gouv.fr


Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Hardware Implementations

Generalities

Two principal families:

FPGA: Field-Programmable Gate Array

ASIC: Application Specific Integrated Circuit

Several-step process: design, synthesis, place and route, ...

Library: collection of (vectorial) Boolean operations

Many Different Metrics (not exhaustive)

Area. Size of the implementation (in #transistors)

Latency. Time needed to the evaluation of the circuit

Energy. Number of Joules required for the execution

Our Goal

Given a function F, a library (i.e., collection of gates) and an
optimization criteria (e.g., area minimization), find a small
implementation of F by interconnecting gates from the library.

1/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Example of Simple Gates

nor : c = ¬(a _ b)

a

b
c

or : c = a _ b

a

b
c

xor : c = a� b

a

b
c

not : b = ¬a

a b

nand : c = ¬(a ^ b)

a

b
c

and : c = a ^ b

a

b
c

xnor : c = ¬(a� b)

a

b
c

Surface Metric Simplified

We normalize the area of library gates by the one of NAND2 GE
Ex.: on UMC 180nm, one NOT uses 6.451 µm2 and NAND2 9.677 µm2, so NOT 0 67 GE.

Sizes of Common Gates (in GE)

Library
NAND

NOT
XOR AND NAND3 XOR3

NOR XNOR OR NOR3 XNOR3

UMC 180nm 1.00 0.67 3.00 1.33 1.33 4.67
TSMC 65nm 1.00 0.50 3.00 1.50 1.50 5.50

2/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Contributions

Our Contribution: LIGHTER

Synthesis of functions on small domain (4 and 8 bits)

Graph-based algorithm finding efficient implementations

Two cases: linear and nonlinear (bijective) functions

C/C++ code available online:

http://jeremy.jean.free.fr/pub/fse2018_layer_implementations.tar.gz

Linear

New metric for XOR count

Up to 8 bits permutations

Several new MDS matrices

Improved implementations of
known matrices

Nonlinear

More general than linear case

Tuned for any HW library

Can target SW and HW

Applications to several
4-bit lightweight Sboxes

3/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks

http://jeremy.jean.free.fr/pub/fse2018_layer_implementations.tar.gz


Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Graph-Based Algorithm for Logic Synthesis

Let a set of Boolean instructions, e.g.:

x x y x x y x x y x x

Graph Modelling

Let G V E the weighted DAG with:
V : the set of all n-bit permutations
E: the set of edges between two vertices linked by an
instruction of
an edge using instruction o is weighted by o

Finding a small -implementation of F w.r.t. to is
equivalent to finding (one of) the shortest path Id F in G

Norm Depends on Context

Hardware area optimization: o o GE needed for o
Software optimization: o o 1
all instructions have the same cost minimize their number

FHE or masking: NonLinear 1000 and Linear 1

4/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Algorithm (High-Level)

Graph Traversal Algorithm

Bidirectional Dijkstra’s Algorithm (MITM-like approach)
Successors of v V : functions reachable from v by applying
instructions in
Need to invert some edges to get the implementation (Id F)

Id

•

•

...

•

•

...

•

. . .

. . .

. . .

•

•

•

. . .

. . .

. . .

•

•

...

•

F

o1

o2

o3
o4

5/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Instruction Set Heuristic

Examples of Invertible Instructions in

x0

x1

x2

y0

y1

y2

x0

x1

y0

y1

Consequences

Easy inversion of the backward subgraph (rooted on F)

Makes the algorithm complexities smaller

Optimality only proven for implementations using

Returned implementation not optimal on any instruction set

6/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Application to Nonlinear Functions

7/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Nonlinear Permutations: Goal and Previous Work

Goal

For a given library, find small circuits of a given nonlinear
permutation w.r.t. the area of the final circuit

SAT-Based Approach by [Sto16]

Encode the minimization problem to SAT

Several metrics: # HW gates, depth, # SW instructions, ...

But: no distinction between the gates (constant norm)

Open problem: Possible to encode any norm in SAT?

Sbox Implementations from Cipher Designers

PRESENT ASIC implementation by A. Poschmann [BKL 07]

Size: 28 GE optimized for area and delay (UMC 180nm)
Improved to 22.33 GE by Osvik [YKPH11]

PICCOLO [SIH 11] Sbox chosen for low area Size: 24 GE (130nm)

8/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Method of Comparison

Fair Hardware Comparisons are Difficult

We compare our algorithm to ABC [BM10] (state-of-the-art academic
synthesizer)

For a given Sbox, we perform synthesis in three cases:
Using our algorithm from the table description (LUT)

Using ABC from the LUT

Using ABC from the netlist generated by our algorithm

Optimization: area only

Libraries: UMC 180nm and TSMC 65nm

Notes on Instructions Used and Libraries

Let the set of all the gates from a given library

Our algorithm: invertible combinations of gates in a subset of

When running ABC, we let it use all gates in

So: netlists from our algorithm can only be smaller on full

9/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Nonlinear Permutations: Results on UMC 180nm

Results

Sbox ABC (from LUT) Ours (from LUT) ABC (from ours)

PICCOLO 21 00 GE 13 00 GE no improvement

SKINNY 22 33 GE 13 33 GE no improvement

TWINE 26 33 GE 21 67 GE no improvement

PRESENT 24 33 GE 21 33 GE no improvement

Rectangle 25 33 GE 18 33 GE no improvement

LBlock S0 20 33 GE 16 33 GE no improvement

Remarks

PRESENT: 21.33 GE, smallest known to date (used in [JMPS17]),
however long critical path

PICCOLO: the original NOR/XOR is replaced by OR/XNOR (3
transistors saved)

10/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Results on UMC 180nm: PICCOLO

PICCOLO Sbox - 14 GE [SIH 11]
M
S
B

L
S
B

PICCOLO Sbox - 13 GE (new)

M
S
B

L
S
B

11/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Application to Linear Functions

12/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Linear Permutations: How To Count XORs

A Simple XOR Count: #XOR = 8 (d-XOR)

1 1 0 1
1 1 1 0
1 1 1 1
1 0 1 0

b3
b2
b1
b0

b3 b2 b0
b3 b2 b1

b3 b2 b1 b0
b3 b1

An Improved XOR Count: #XOR = 4 (s-XOR)

b3
b2
b1
b0

b1
b2
b0
b3

R3 R3 R0

b1
b2
b0

b3 b1

R1 R1 R3

b1
b3 b2 b1

b0
b3 b1

R2 R2 R1

b1
b3 b2 b1

b3 b2 b1 b0
b3 b1

R0 R0 R2

b3 b2 b0
b3 b2 b1

b3 b2 b1 b0
b3 b1

13/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Linear Permutations: Results

Local Optimization

We applied the graph algorithm to the linear permutations of GF 2c

corresponding to field multiplications: x x, GF 2c

Results for Field Elements

Found optimal s-XOR implementations up to 12 XORs for matrix
dimensions up to 8 (memory limitations)
For more than 12, we provide a heuristic (non-optimal results)
With more heuristics, we can consider higher dimensions

(e.g., dimension 32 with the AES matrix, see next talk)

Results for MDS Matrices

Optimized s-XOR field elements search for new MDS matrices
For instance, for 4 4 involutory matrices over GF 24

2 1 1 9
1 4 f 1
d 9 4 1
1 d 1 2

is s-XOR optimal

14/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

Conclusion and Future Works

Versatile Tool LIGHTER

For crypto implementers (HW/SW): Finds efficient implementations
of known functions

For cipher designers: Helps choose building blocks

For special crypto applications: FHE, masking, ...

The tool can be parameterized to many different scenarios

Future Works

More complex hardware gates (easy)

Optimize for delay (easy/moderate)

Search for new building blocks (no MITM) (moderate)

Probabilistic version of the algorithm (moderate)

Remove (or relax) heuristic on invertible instructions (hard)

15/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks



Introduction Graph-Based Algorithm Nonlinear Functions Linear Functions Conclusion

The End.

Thank you for your attention!

http://jeremy.jean.free.fr/pub/fse2018_layer_implementations.tar.gz

16/16 Jérémy Jean (ANSSI) / Optimizing Implementations of Lightweight Building Blocks

http://jeremy.jean.free.fr/pub/fse2018_layer_implementations.tar.gz

	Introduction
	Graph-Based Algorithm
	Nonlinear Functions
	Nonlinear Permutations

	Linear Functions
	Linear Functions

	Conclusion
	Appendix

