

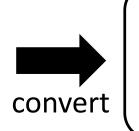
MILP Modeling for (Large) S-boxes to Optimize Probability of Differential Characteristics

Ahmed Abdelkhalek¹, Yu Sasaki², <u>Yosuke Todo</u>², Mohamed Tolba¹, and Amr M. Youssef¹ 1:Concordia University, 2: NTT Talk @ FSE2018, 5 March 2018

MILP for Differential Cryptanalysis

• Mouha et al. at Inscrypt 2011:

Problem of finding optimal differential trail



Optimization problem in MILP

- Advantage:
 - The task of cryptographers is light.
 - We have several off-the-shelf solvers, where the speed of solving is dramatically improved recently.

Previous consensus

- 1. 4-bit S-box is possible, but 8-bit is difficult.
- 2. # of active S-box is possible, but the probability is difficult.

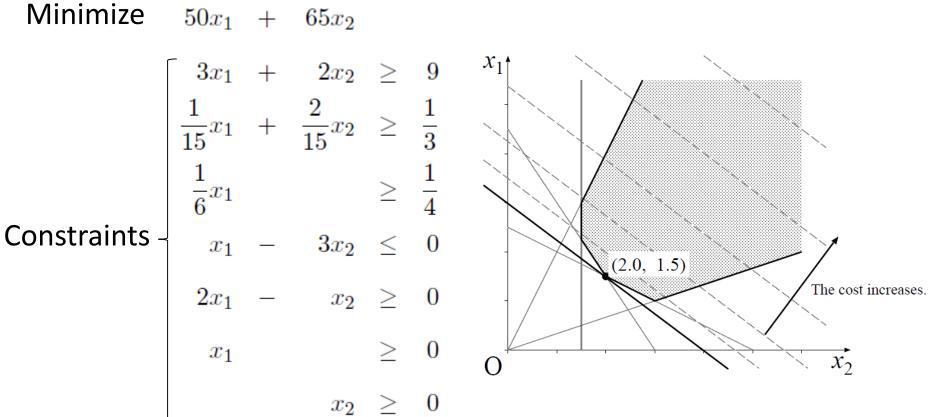
New Observations

- 1. The algorithm to find minimized CNF of Boolean function enables us to evaluate 8-bit S-boxes.
- 2. Indicator constraints enables us to evaluate probability.

Applications

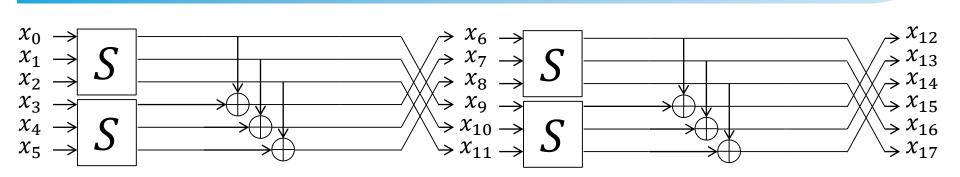
- SKINNY-128: the max diff prob reaches 2⁻¹²⁸ with 14 rounds (prev. 15 rounds)
- AES-round based Func from FSE2016: improved the max probability of diff trail

 Optimize objective function within the solution range satisfying all the constraints.



🕐 NTT

MILP Model for 3-Round Toy Cipher



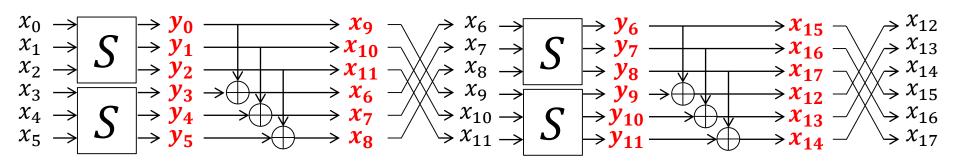
• 6-bit round function: 3-bit S-box, 3-bit xor, swap

To make the MILP model,

define a binary variable $x_i \in \{0,1\}$ for each round;

- $x_i = 0$ denotes the bit *i* has no difference
- $x_i = 1$ denotes the bit *i* has difference

Constraints for Linear Operations



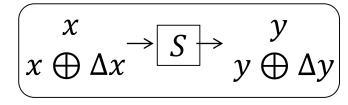
- $a \oplus b = c$ can be modeled with 4 inequalities by removing each impossible (a, b, c).
 - $\begin{array}{ll} (a,b,c) \neq (0,0,1) \implies & a+b+(1-c) \geq 1 \\ (a,b,c) \neq (0,1,0) \implies & a+(1-b)+c \geq 1 \\ (a,b,c) \neq (1,0,0) \implies & (1-a)+b+c \geq 1 \\ (a,b,c) \neq (1,1,1) \implies (1-a)+(1-b)+(1-c) \geq 1 \end{array}$

	-	sentation vex hull	–	condition Sun et al.)
tool	SAGE	Math	N	I/A
support alg	greedy	Sub MILP	greedy	Sub MILP
type	heuristic	optimal	heuristic	optimal
coefficients	any ir	nteger	{-1,	0, 1}
#inequ.	sn	nall	la	rge
8-bit S-box	infea	asible		?

Our Focus

Differential Distribution Table (DDT)

We compute the probability that Δx propagates to Δy for each $(\Delta x, \Delta y)$.



Input Difference	Output Difference (Δy)										
(Δx)	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7			
0x0	1	0	0	0	0	0	0	0			
0x1	0	2 ⁻²	2 ⁻²	0	0	2 ⁻²	2 ⁻²	0			
0x2	0	2 ⁻²	2 ⁻²	0	0	2 ⁻²	2 ⁻²	0			
0x3	0	0	0	2 ⁻¹	0	0	0	2 ⁻¹			
0x4	0	0	0	0	2 ⁻¹	0	0	2 ⁻¹			
0x5	0	2 ⁻²	2 ⁻²	0	0	2 ⁻²	2 ⁻²	0			
0x6	0	2 ⁻²	2 ⁻²	0	0	2 ⁻²	2 ⁻²	0			
0x7	0	0	0	2 ⁻¹	2 ⁻¹	0	0	0			

Truncated DDT (*-DDT)

- es we only care whether
- To count the # of active S-boxes, we only care whether each pattern is possible (non-zero probability) or impossible (zero probability). We call it "*-DDT".

Input Difference	Output Difference (Δy)										
(Δx)	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7			
0x0	1	0	0	0	0	0	0	0			
0x1	0	1	1	0	0	1	1	0			
0x2	0	1	1	0	0	1	1	0			
0x3	0	0	0	1	0	0	0	1			
0x4	0	0	0	0	1	0	0	1			
0x5	0	1	1	0	0	1	1	0			
0x6	0	1	1	0	0	1	1	0			
0x7	0	0	0	1	1	0	0	0			

Logical condition model

• We remove impossible propagations.

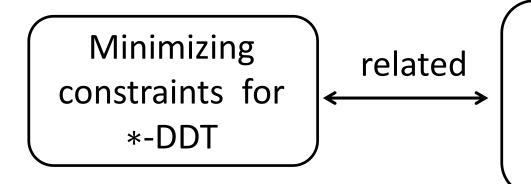
2	$x_2 + x_1$	$x_1 + z_2$	$x_0 + $	$y_2 +$	$y_1 +$	(1 -	$y_0)$	≥1		
Input Difference	Output Difference (Δy)									
(Δx)	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7		
0x0	1	0	0	0	0	0	0	0		
0x1	0	1	1	0	0	1	1	0		
0x2	0	1	1	0	0	1	1	0		
0x3	0	0	0	1	0	0	0	1		
0x4	0	0	0	0	1	0	0	1		
0x5	0	1	1	0	0	1	1	0		
0x6	0	1	1	0	0	1	1	0		
0x7	0	0	0	1	1	0	0	0		

Innovative R&D by NT

- 1. The number of constraints for each S-box is exponential to the S-box size.
 - 4-bit to 4-bit S-box: feasible.
 - About 2⁷ linear inequalities are required.
 - 8-bit to 8-bit S-box: difficult.
 - About 2¹⁵ linear inequalities are required.
- 2. Probability of differential transition is ignored.
 - An attempt was proposed by Sun et al. in 2014:
 - feasible only up to 4-bit to 4-bit S-box
 - Probability must be 2^{-x} where x is an integer.

New Method to Model *-DDT

Copyright©2018 NTT corp. All Rights Reserved.



Finding the minimum product-of-sum representation of a Boolean function

a well-studied topic!!

- Define a 2*n*-bit to 1-bit Boolean function that outputs 1 only if the propagation is possible.
- Let us consider the product-of-sum (resp. Conjunctive Normal Form)
- CNF of an example 3-bit S-box

$$f(x_2, x_1, x_0, y_2, y_1, y_0) = (x_2 \lor x_1 \lor x_0 \lor y_2 \lor y_1 \lor \overline{y_0}) \land (x_2 \lor x_1 \lor x_0 \lor y_2 \lor \overline{y_1} \lor y_0) \land (x_2 \lor x_1 \lor x_0 \lor \overline{y_2} \lor \overline{y_1} \lor y_0) \land (x_2 \lor x_1 \lor x_0 \lor \overline{y_2} \lor y_1 \lor y_0) \land \dots$$

 $\wedge (\overline{x_2} \vee \overline{x_1} \vee \overline{x_0} \vee \overline{y_2} \vee \overline{y_1} \vee y_0) \wedge (\overline{x_2} \vee \overline{x_1} \vee \overline{x_0} \vee \overline{y_2} \vee \overline{y_1} \vee \overline{y_0})$

• Such Boolean function must be 1.

 $\begin{aligned} f(x_2, x_1, x_0, y_2, y_1, y_0) \\ &= (x_2 \lor x_1 \lor x_0 \lor y_2 \lor y_1 \lor \overline{y_0}) \land (x_2 \lor x_1 \lor x_0 \lor y_2 \lor \overline{y_1} \lor y_0) \\ &\land (x_2 \lor x_1 \lor x_0 \lor y_2 \lor \overline{y_1} \lor \overline{y_0}) \land (x_2 \lor x_1 \lor x_0 \lor \overline{y_2} \lor y_1 \lor y_0) \land \\ & \cdots \\ &\land (\overline{x_2} \lor \overline{x_1} \lor \overline{x_0} \lor \overline{y_2} \lor \overline{y_1} \lor y_0) \land (\overline{x_2} \lor \overline{x_1} \lor \overline{x_0} \lor \overline{y_2} \lor \overline{y_1} \lor \overline{y_0}) \end{aligned}$

- In other words, all sum representations in the Boolean function must be 1.
- Convert the sum repr. to linear inequality.

•
$$x_2 \vee x_1 \vee x_0 \vee y_2 \vee y_1 \vee \overline{y_0} = 1$$

 $\Rightarrow x_2 + x_1 + x_0 + y_2 + y_1 + (1 - y_0) \ge 1$

Our goal is to find minimized representations. 41 terms $f(x_2, x_1, x_0, y_2, y_1, y_0)$ $= (x_2 \lor x_1 \lor x_0 \lor y_2 \lor y_1 \lor \overline{y_0}) \land (x_2 \lor x_1 \lor x_0 \lor y_2 \lor \overline{y_1} \lor y_0)$ $\wedge (x_2 \lor x_1 \lor x_0 \lor y_2 \lor \overline{y_1} \lor \overline{y_0}) \land (x_2 \lor x_1 \lor x_0 \lor \overline{y_2} \lor y_1 \lor y_0) \land$ $\wedge (\overline{x_2} \vee \overline{x_1} \vee \overline{x_0} \vee \overline{y_2} \vee \overline{y_1} \vee y_0) \wedge (\overline{x_2} \vee \overline{x_1} \vee \overline{x_0} \vee \overline{y_2} \vee \overline{y_1} \vee \overline{y_0})$ Minimize 13 terms $f(x_2, x_1, x_0, y_2, y_1, y_0)$ $= (x_2 \lor x_1 \lor y_2 \lor \overline{y_1}) \land (x_2 \lor x_1 \lor \overline{y_2} \lor y_1) \land (x_2 \lor \overline{x_1} \lor y_2 \lor y_1)$ $\wedge (\overline{x_2} \lor x_1 \lor y_2 \lor y_1) \land (x_2 \lor \overline{x_1} \lor \overline{y_2} \lor \overline{y_1}) \land (\overline{x_2} \lor x_1 \lor \overline{y_2} \lor \overline{y_1}) \land$ $\wedge (x_3 \lor \overline{x_2} \lor \overline{x_1} \lor y_1) \land (\overline{x_3} \lor y_3 \lor y_2 \lor y_1)$

Every term is converted into 1 linear constraint.

- This problem has well been studied in the area of logic circuits.
 - Quine-McCluskey (QM) algorithm
 - optimal but exponential
 - Espresso algorithm
 - heuristic but efficient

inequalities to represent *-DDT of 8-bit S-boxes

Structure	# non-zero entries	QM	Espresso
AES S-box	33150	-	8302
SKINNY-128 S-box	54067	372	376

New Methods to Evaluate Probability

Copyright©2018 NTT corp. All Rights Reserved.

• Separate DDT to multiple tables so that each table contains entries with the same probability.

$$\frac{pb-DDT}{0} \quad \text{if the entry in DDT has probability } pb$$

• Use indicator constraints (with the big-M method) to activate only a single pb-DDT.

Input Difference (Δx)			Ou	_	Differen (y)	nce			
(Δx)	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	Innovative R&D by NTT
0x0	1	0	0	0	0	0	0	0	
0x1	0	2^{-2}	2^{-2}	0	0	2^{-2}	2^{-2}	0	
0x2	0	2^{-2}	2^{-2}	0	0	2^{-2}	2^{-2}	0	DDT
0x3	0	0	0	2^{-1}	0	0	0	2^{-1}	
0x4	0	0	0	0	2^{-1}	0	0	2^{-1}	
0x5	0	2^{-2}	2^{-2}	0	0	2^{-2}	2^{-2}	0	
0x6	0	2^{-2}	2^{-2}	0	0	2^{-2}	2^{-2}	0	
0x7	0	0	0	2^{-1}	2^{-1}	0	0	0	

Input Difference (Δx)			Ou	tput I $(\Delta$	Differen (y)	nce			
(Δx)	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	Innovative R&D by NTT
0x0	1	0	0	0	0	0	0	0	
0x1	0	2^{-2}	2^{-2}	0	0	2^{-2}	2^{-2}	0	
0x2	0	2^{-2}	2^{-2}	0	0	2^{-2}	2^{-2}	0	DDT
0x3	0	0	0	2^{-1}	0	0	0	2^{-1}	
0x4	0	0	0	0	2^{-1}	0	0	2^{-1}	
0x5	0	2^{-2}	2^{-2}	0	0	2^{-2}	2^{-2}	0	
0x6	0	2^{-2}	2^{-2}	0	0	2^{-2}	2^{-2}	0	
0x7	0	0	0	2^{-1}	2^{-1}	0	0	0	

2⁻¹-DDT

Δx	Δy											
Δx	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7				
0x0	0	0	0	0	0	0	0	0				
0x1	0	0	0	0	0	0	0	0				
0x2	0	0	0	0	0	0	0	0				
0x3	0	0	0	1	0	0	0	1				
0x4	0	0	0	0	1	0	0	1				
0x5	0	0	0	0	0	0	0	0				
0x6	0	0	0	0	0	0	0	0				
0x7	0	0	0	1	1	0	0	0				

2^{-2} -DDT											
Δx	Δy										
Δu	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7			
0x0	0	0	0	0	0	0	0	0			
0x1	0	1	1	0	0	1	1	0			
0x2	0	1	1	0	0	1	1	0			
0x3	0	0	0	0	0	0	0	0			
0x4	0	0	0	0	0	0	0	0			
0x5	0	1	1	0	0	1	1	0			
0x6	0	1	1	0	0	1	1	0			
0x7	0	0	0	0	0	0	0	0			

Flag Variables

2^{-1} -DDT

Δx	Δy										
Δx	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7			
0x0	0	0	0	0	0	0	0	0			
0x1	0	0	0	0	0	0	0	0			
0x2	0	0	0	0	0	0	0	0			
0x3	0	0	0	1	0	0	0	1			
0x4	0	0	0	0	1	0	0	1			
0x5	0	0	0	0	0	0	0	0			
0x6	0	0	0	0	0	0	0	0			
0x7	0	0	0	1	1	0	0	0			

2^{-2} -DDT

Δx	Δy											
Δx	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7				
0x0	0	0	0	0	0	0	0	0				
0x1	0	1	1	0	0	1	1	0				
0x2	0	1	1	0	0	1	1	0				
0x3	0	0	0	0	0	0	0	0				
0x4	0	0	0	0	0	0	0	0				
0x5	0	1	1	0	0	1	1	0				
0x6	0	1	1	0	0	1	1	0				
0x7	0	0	0	0	0	0	0	0				

$Q_1 \in \{0, 1\}$

$\boldsymbol{Q_2} \in \{\mathbf{0},\mathbf{1}\}$

- $Q_1 + Q_2$ is 1 if the S-box is active.
- Linear inequalities for 2^{-i} -DDT are activated If $Q_i = 1$.
 - Such constraint is called *indicator constraint* in MILP.

Experimental Data for pb-DDT

Structure		Num. of zero entries	QM	Espresso
AESShow	2^{-7}	33406	-	8241
AES S-box	2^{-6}	65281	-	350
	2^{-7}	62848	206	208
	2^{-6}	60530	275	283
	$2^{-5.4}$	65472	33	34
	2^{-5}	62708	234	239
	$2^{-4.4}$	65458	42	52
	2^{-4}	64884	147	159
SKINNY-128 S-box	$2^{-3.7}$	65534	15	15
	$2^{-3.4}$	65518	24	28
	$2^{-3.2}$	65534	15	15
	2^{-3}	65435	62	67
	$2^{-2.7}$	65534	16	16
	$2^{-2.4}$	65532	17	17
	2^{-2}	65513	37	40

Application to Skinny

Copyright©2018 NTT corp. All Rights Reserved.

- Proposed at CRYPTO2016 by Beierle et al.
- Tweakable block cipher supporting n-bit block and n-, 2n-, and 3n-bit tweakey, where n ∈ {64,128}.

In this talk, we focus our attention on the single-key analysis of SKINNY-128.

Rounds	9	10	11	12	13	14
LB [BJK+16]	2 ⁻⁸²	2 ⁻⁹²	2^{-102}	2^{-110}	2^{-116}	2 ⁻¹²²
Tight bound	2 ⁻⁸⁶	2 ⁻⁹⁶	2^{-104}	2^{-112}	2 ⁻¹²³	$\leq 2^{-128}$

- To achieve these results, we use several heuristic strategy.
 - We first get better upper bound heuristically.
 - Then we get the tight bound by using the knowledge of the upper bound.

Please refer to our paper in detail.

Concluding Remarks

- New MILP model
 - QM and Espresso for modeling *-DDT.
 - *pb*-DDT and indicator constraints.
- Applications
 - Improved diff resistance of SKINNY-128
 - Evaluated prob of AES-round based function.
- MILP can be applied to 8-bit Sboxes!!

Thank you for your attention!!

