Some cryptanalytic results on Lizard

Subhadeep Banik ${ }^{1,4}$, Takanori Isobe ${ }^{2}$, Tingting Cui ${ }^{3}$, Jian Guo ${ }^{4}$
${ }^{1}$ LASEC, EPFL Switzerland
${ }^{2}$ University of Hyogo, Japan
${ }^{3}$ Shandong University, China
${ }^{4}$ NTU, Singapore

Fast Software Encryption 2018, Brugges
5th March 2018

Outline

- Introduction
- After Sprout
- Lizard

Sprout

- Biryukov, Shamir [Asiacrypt 2001] : State size must be 1.5 to 2 times size of Secret Key.
- Radical Departure: Sprout by Armknecht and Mikhalev in FSE 2015.
\rightarrow State Size equal to size of Secret Key.
\rightarrow Avoids Generic TMD Tradeoff Attacks due to Key mixing in state update.
- Grain like structure: LFSR and NFSR of size 40 bits each.
- Much smaller in area than any known stream cipher.
- Cryptanalysis: 1. Lallemand/Naya-Plascencia [Crypto 2015],

2. Esgin/Kara [SAC 2015],
3. Banik [Indocrypt 2015]

Lizard

- Stream cipher proposed at IACR TOSC 2017.
- The cipher supports: 120 bit secret key and 64 bit IV.
\rightarrow However claims only 80 bit security.
$\rightarrow 60$ bit security from distinguishing attack.
- State size of 121 bits: two NFSRs of 90 and 31 bits each.
- maximum 2^{18} keystream bits per Key-IV pair.
- Interesting key-IV mixing algorithm.

Algebraic Structure

- [Phase 1: Key-IV loading:]

$$
\begin{aligned}
b_{j}^{0} & = \begin{cases}k_{j} \oplus v_{j}, & \text { for } j \in\{0,1,2, \ldots, 63\} \\
k_{j}, & \text { for } j \in\{64,65,66, \ldots, 89\}\end{cases} \\
s_{i}^{0} & = \begin{cases}k_{i+90}, & \text { for } i \in\{0,1,2, \ldots, 28\} \\
k_{119} \oplus 1, & \text { for } i=29 \\
1, & \text { for } i=30\end{cases}
\end{aligned}
$$

The stream cipher Lizard

Algebraic Structure

- [Phase 2: Mixing:]

For $t=0,1,2, \ldots, 127$, we compute:

$$
\begin{aligned}
& b_{i}^{t+1}=b_{i+1}^{t}, \quad \text { for } \quad i \in\{0,1, \ldots, 88\} \\
& b_{89}^{t+1}=z_{t} \oplus s_{0}^{t} \oplus f_{2}\left(B^{t}\right) \\
& s_{i}^{t+1}=s_{i+1}^{t}, \quad \text { for } \quad i \in\{0,1, \ldots, 29\} \\
& s_{30}^{t+1}=z_{t} \oplus f_{1}\left(S^{t}\right)
\end{aligned}
$$

where $f_{1}\left(S^{t}\right), f_{2}\left(B^{t}\right)$ and z_{t} are Boolean functions.

Algebraic Structure

[Phase 3: Second key Addition:] After this the 120 bit key is added to the state as follows:

$$
\begin{gathered}
b_{j}^{129}=b_{j}^{128} \oplus k_{j}, \quad \text { for } j \in\{0,1,2, \ldots, 89\} \\
s_{i}^{129}= \begin{cases}s_{i}^{128} \oplus k_{i+90}, & \text { for } i \in\{0,1,2, \ldots, 29\} \\
1, & \text { for } i=30\end{cases}
\end{gathered}
$$

Algebraic Structure

[Phase 4: Diffusion:] For $t=129,130,131, \ldots, 256$, we compute:

$$
\begin{aligned}
& b_{i}^{t+1}=b_{i+1}^{t}, \text { for } i \in\{0,1, \ldots, 88\} \\
& b_{89}^{t+1}=s_{0}^{t} \oplus f_{2}\left(B^{t}\right) \\
& s_{i}^{t+1}=s_{i+1}^{t}, \text { for } i \in\{0,1, \ldots, 29\} \\
& s_{30}^{t+1}=f_{1}\left(S^{t}\right)
\end{aligned}
$$

The stream cipher Lizard

Note

- Phase 2 and Phase 4 are individually invertible.
- But Phase 3 makes the whole Initialization procedure non-injective
- And also inefficient to invert.

Summary: We will show how to

- For the same key, find 2 IVs that generate same keystream bits.
- Find pairs $K_{0}, I V_{0}$ and $K_{1}, I V_{1}$ that generate same keystream bits.
- Distiguishing attack using slid pairs ($2^{51.5}$ IV trials)
- Key recovery attack on Lizard reduced to 223 rounds.

Algorithm $P 2^{-1}$
(1) Input: S^{t}, B^{t} : The NFSR states at time t
(2) Output: S^{t-1}, B^{t-1} : The NFSR states at time $t-1$

- $s \leftarrow s_{30}^{t}, \quad b \leftarrow b_{89}^{t}$.
$\bullet B^{\prime}=\left(b_{0}^{t}, b_{1}^{t} \ldots, b_{88}^{t}\right), \quad S^{\prime}=\left(s_{0}^{t}, s_{1}^{t} \ldots, s_{29}^{t}\right)$
- $\hat{z}=z\left(S^{\prime}, B^{\prime}\right)$
- $\hat{s}=s \oplus f_{1}^{\prime}\left(S^{\prime}\right) \oplus \hat{z}, \quad \hat{b}=b \oplus f_{2}^{\prime}\left(B^{\prime}\right) \oplus \hat{s} \oplus \hat{z}$
- $S^{t-1} \leftarrow\left(\hat{s}, s_{0}^{t}, s_{1}^{t} \ldots, s_{29}^{t}\right)$
- $B^{t-1} \leftarrow\left(\hat{b}, b_{0}^{t}, b_{1}^{t} \ldots, b_{88}^{t}\right)$
- Return S^{t-1}, B^{t-1}

Lizard

To find IV collisions for same key

Details

- If $T_{0}[64$ to 119$]=T_{1}[64$ to 119$]$ and $T_{0}[120]=T_{1}[120]=1$ then we stop.
- Select $\alpha \stackrel{R}{R}_{\gtrless^{2}}\{0,1\}^{64}$ randomly.
- Set $K=\alpha \| T_{0}[64$ to 118] || $T[119] \oplus 1$
- Set $I V_{0}=\alpha \oplus T_{0}[0$ to 63$]$ and $I V_{1}=\alpha \oplus T_{1}[0$ to 63$]$

To find IV collisions for same key

Details

- A total of 58 bit conditions need to be satisfied.
- 2^{58} random trials needed.
- Any value of α can be used
- Thus gives us 2^{64} collisions !!!

Lizard
$K_{0}, I V_{1}$ and $K_{1}, I V_{1}$ that generate same keystream FEDERALE DE LAUSANNE

Details

- 64th to 119th bits of $S_{0}=F\left(M_{0}\|L\| 1\right)$ and $S_{1}=F\left(M_{1}\|L\| 1\right)$ are equal.
- $\alpha \stackrel{R}{r}_{\leftarrow}\{0,1\}^{64}$
- $\Delta:=S_{0}[0$ to 63$] \oplus S_{1}[0$ to 63$]$

Lizard
$K_{0}, I V_{1}$ and $K_{1}, I V_{1}$ that generate same keystream FEDERALE DE LAUSANNE

Details

- Set $K_{0}=\alpha \| L[0$ to 54$] \| L[55] \oplus 1$, Set $I V_{0}=\alpha \oplus M_{0}$.
- Set $K_{1}=\alpha \oplus \Delta \| L[0$ to 54$] \| L[55] \oplus 1$, Set $I V_{1}=\alpha \oplus \Delta \oplus M_{1}$.
- 2^{64} collisions, Complexity $=\sqrt{2^{56}}=2^{28}$ trials.

Key - IV	Keystream
$K_{0}: 00000000000000006850$ 8c64 c649 74 $I V_{0}: 724 \mathrm{~b}$ b286 2f5c f1b2	23f4 9770 0a91 3089 d800
$K_{1}: 1 e 45$ 1adc 2ad8 31246850 8c64 c649 74 $I V_{1}: 3 e 18$ 82d1 d5ac 0376	23f4 9770 0a91 3089 d800

Table: Key-IV pairs that produce identical keystream bits

Questions

- Given a key K, how many pairs of IVs are there that generate same keystream?
- Given a key K, does there exist IVs that produce slid keystream bits ?
- If yes how many ?

Theorem

Let p be an integer greater than zero. Then, for every 120-bit secret key K,
(1) There exists around 2^{6} IV Collisions on average,
(2) There exists around 2^{7} IV pairs $\left(I V_{0}, I V_{1}\right)$ on average, such that the key-IV pairs $K, I V_{0}$ and $K, I V_{1}$ produce exactly p-bit shifted keystream sequences.

Proof is by construction

Let $G: \mathbb{F}_{2}^{121} \rightarrow \mathbb{F}_{2}^{121}$ be the function that maps the input of Phase 4 to its output
Input: A 121 bit string U, a 120-bit key K, Output: The values $0 / 1 / 2$. Subroutine $\theta(U, K)$
(1) Compute $\hat{U}=(K \| 0) \oplus G^{-1}(U)$.

2 If $\hat{U}[120]=0$ then abort and return 0 .
(3) Compute $U_{0}^{\prime}=F^{-1}(\hat{U}[0$ to 119] || 0$)$
(4) Compute $U_{1}^{\prime}=F^{-1}(\hat{U}[0$ to 119$] \| 1)$
(5) Set $r \leftarrow 0$.

6 If $U_{0}^{\prime}[64$ to 120$]=K[64$ to 118$]\|K[119] \oplus 1\| 1$, increment $r \leftarrow r+1$.
7) If $U_{1}^{\prime}[64$ to 120$]=K[64$ to 118$]\|K[119] \oplus 1\| 1$, increment $r \leftarrow r+1$.

8 Return r.

Lizard

Proof is by construction

Proof

- \#IV collision is the no. of times the Subroutine returns 2 over 2^{121} values of U
- 115 bit conditions need to be satisfied: $2^{121-115}=2^{6}$

Slid pairs

Slid pairs

- Let g be the function that maps one Phase 4 iteration.
- Number of times $\theta(U, K)$ and $\theta\left(g^{p}(U), K\right)$ both return non-zero.

$$
\begin{aligned}
\operatorname{Pr}[\theta(U, K) \neq 0] & =\operatorname{Pr}[\theta(U, K)=2 \mid A] \cdot \operatorname{Pr}[A]+\operatorname{Pr}\left[\theta(U, K) \neq 0 \mid A^{c}\right] \cdot \operatorname{Pr}\left[A^{c}\right] \\
& =0 \cdot \frac{1}{2}+\operatorname{Pr}\left[B \vee C \mid A^{c}\right] \cdot \frac{1}{2} \\
& =\frac{1}{2} \cdot\left(\operatorname{Pr}\left[B \mid A^{c}\right]+\operatorname{Pr}\left[C \mid A^{c}\right]\right) \\
& =\frac{1}{2} \cdot\left(2^{-57}+2^{-57}\right)=2^{-57}
\end{aligned}
$$

- Assuming the distributions are i.i.d total probability is 2^{-114}.
- \#Slid pairs $=2^{121-114}=2^{7}$

Using Slid pairs

- Generate 2^{18} keystream bits $\left[z_{0}, z_{1}, \ldots, z_{2^{18}-1}\right]$ for the unknown key K and some randomly generated Initial Vector $I V$.
- For $i=0$ to $2^{18}-121$
\rightarrow Store $\left[z_{i}, z_{i+1}, \ldots, z_{i+120}\right]$ in a Hash table along with the IV.
\rightarrow Continue the above steps with more randomly generated IVs
\rightarrow Stop either IV Collision or p-bit shifted keystream (for $1 \leq p \leq 2^{18}-121$).

Complexity

- Space of Initial Vectors as an undirected Graph $G=(W, E)$, all the IVs are nodes.
- An edge $\left(I V_{1}, I V_{2}\right) \in E$ iff $\left(K, I V_{1}\right)$ and $\left(K, I V_{2}\right)$ produce either an IV collision or p-bit shifted keystream(for $1 \leq p \leq 2^{18}-80$).
- Cardinality of edge-set E is expected to be $\left(2^{18}-121\right) \cdot 2^{7}+2^{6} \approx 2^{25}$.
- By Birthday bound $\binom{N}{2} \cdot 2^{25}=\binom{2^{64}}{2} \rightarrow N \approx 2^{51.5}$.

Impossible Collision attack

Similar to Impossible Differential attack

- 2^{6} IV collisions per key on average.
- In phase 1, attacker exhausts entire codebook of IVs $\left(2^{64}\right)$
- Gets 2^{6} IV pairs which produce same keystream.

Impossible Collision attack

Details

- The algebraic expression of $B^{95}[0] \oplus \hat{B}^{95}[0]$ has 51 key bits.
- Possible to search over smaller space,

Impossible Collision attack

Impossible Collision Attack

(1) Given around 2^{6} colliding pair of IVs.

2 For each guess of the 51-bit key
\rightarrow Compute $\delta=B^{95}[0] \oplus \hat{B}^{95}[0]$ for the next colliding IV pair.
\rightarrow If $\delta=1$, reject the key and start with another key guess
\rightarrow Else go to the previous step and try out another IV pair.

Impossible Collision attack

Complexity of Attack

- Start with 2^{64} encryptions to find all the colliding pairs.
- The filtering algorithm for 2^{51} keys takes at most 2^{6} computations of δ per key guess
- So 2^{57} calculations of δ.
- Brute force search over the remaining 69 keybits.

Figure: Plot of (A) \# Monomials, (B) \# Keybits in $B^{i}[0]$

More rounds

- Can be extended to 3 more rounds...

THANK YOU

