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Introduction
The Stream Cipher Sprout

Sprout
• Biryukov, Shamir [Asiacrypt 2001] : State size must be 1.5 to 2 times size of
Secret Key.

• Radical Departure: Sprout by Armknecht and Mikhalev in FSE 2015.

→ State Size equal to size of Secret Key.

→ Avoids Generic TMD Tradeoff Attacks due to Key mixing in state update.

• Grain like structure: LFSR and NFSR of size 40 bits each.

• Much smaller in area than any known stream cipher.

• Cryptanalysis: 1. Lallemand/Naya-Plascencia [Crypto 2015],
2. Esgin/Kara [SAC 2015],
3. Banik [Indocrypt 2015]
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Lizard
The stream cipher Lizard

Lizard
• Stream cipher proposed at IACR TOSC 2017.

• The cipher supports: 120 bit secret key and 64 bit IV.

→ However claims only 80 bit security.

→ 60 bit security from distinguishing attack.

• State size of 121 bits: two NFSRs of 90 and 31 bits each.

• maximum 218 keystream bits per Key-IV pair.

• Interesting key-IV mixing algorithm.
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Lizard
The stream cipher Lizard

Algebraic Structure
• [Phase 1: Key-IV loading:]

b0
j =

{
kj ⊕ vj , for j ∈ {0, 1, 2, . . . , 63}
kj , for j ∈ {64, 65, 66, . . . , 89}

s0
i =

 ki+90, for i ∈ {0, 1, 2, . . . , 28}
k119 ⊕ 1, for i = 29
1, for i = 30
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Lizard
The stream cipher Lizard

Algebraic Structure
• [Phase 2: Mixing:]

For t = 0, 1, 2, . . . , 127, we compute:

bt+1
i = bt

i+1, for i ∈ {0, 1, . . . , 88}
bt+1

89 = zt ⊕ st
0 ⊕ f2(Bt)

st+1
i = st

i+1, for i ∈ {0, 1, . . . , 29}
st+1

30 = zt ⊕ f1(St)

where f1(St), f2(Bt) and zt are Boolean functions.
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Lizard
The stream cipher Lizard

Algebraic Structure
[Phase 3: Second key Addition:] After this the 120 bit key is added to the state as
follows:

b129
j = b128

j ⊕ kj , for j ∈ {0, 1, 2, . . . , 89}

s129
i =

{
s128

i ⊕ ki+90, for i ∈ {0, 1, 2, . . . , 29}
1, for i = 30
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Lizard
The stream cipher Lizard

Algebraic Structure
[Phase 4: Diffusion:] For t = 129, 130, 131, . . . , 256, we compute:

bt+1
i = bt

i+1, for i ∈ {0, 1, . . . , 88}
bt+1

89 = st
0 ⊕ f2(Bt)

st+1
i = st

i+1, for i ∈ {0, 1, . . . , 29}
st+1

30 = f1(St)
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Lizard
The stream cipher Lizard

⊕

⊕ ⊕

Phase 1

Phase 2

Phase 3

Phase 4

128 rounds

128 rounds

IV (64 bits)

Key (120 bits)

Note
• Phase 2 and Phase 4 are individually invertible.

• But Phase 3 makes the whole Initialization procedure non-injective

• And also inefficient to invert.
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Lizard
The stream cipher Lizard

Summary: We will show how to
• For the same key, find 2 IVs that generate same keystream bits.

• Find pairs K0, IV0 and K1, IV1 that generate same keystream bits.

• Distiguishing attack using slid pairs (251.5 IV trials)

• Key recovery attack on Lizard reduced to 223 rounds.

10 Subhadeep Banik Some cryptanalytic results on Lizard 5.3.2018



Lizard
The stream cipher Lizard

Algorithm P2−1

1 Input: St, Bt: The NFSR states at time t

2 Output: St−1, Bt−1: The NFSR states at time t− 1

• s← st
30, b← bt

89.

• B′ = (bt
0, b

t
1 . . . , b

t
88), S′ = (st

0, s
t
1 . . . , s

t
29)

• ẑ = z(S′, B′)

• ŝ = s⊕ f ′1(S′)⊕ ẑ, b̂ = b⊕ f ′2(B′)⊕ ŝ⊕ ẑ

• St−1 ← (ŝ, st
0, s

t
1 . . . , s

t
29)

• Bt−1 ← (b̂, bt
0, b

t
1 . . . , b

t
88)

• Return St−1, Bt−1
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Lizard
To find IV collisions for same key

⊕
IV (64 bits)

Key (120 bits) ⊕
IV (64 bits)

Key (120 bits)

Select R

R||0 R||1

Compute P2−1 Compute P2−1

T0 T1

{0, 1}120 randomly

Details
• If T0[64 to 119] = T1[64 to 119] and T0[120] = T1[120] = 1 then we stop.

• Select α R←− {0, 1}64 randomly.

• Set K = α || T0[64 to 118] || T [119]⊕ 1

• Set IV0 = α⊕ T0[0 to 63] and IV1 = α⊕ T1[0 to 63]
12 Subhadeep Banik Some cryptanalytic results on Lizard 5.3.2018



Lizard
To find IV collisions for same key

⊕
IV (64 bits)

Key (120 bits) ⊕
IV (64 bits)

Key (120 bits)

Select R

R||0 R||1

Compute P2−1 Compute P2−1

T0 T1

{0, 1}120 randomly

Details
• A total of 58 bit conditions need to be satisfied.

• 258 random trials needed.

• Any value of α can be used

• Thus gives us 264 collisions !!!
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Lizard
K0, IV1 and K1, IV1 that generate same keystream

⊕

⊕ ⊕

IV (64 bits)

Key (120 bits)
Fix to 57 bit const

Vary over {0, 1}64

Run P2

M

b
b

b

M

S

S

M0

M1

TABLE

56 bits

Details
• 64th to 119th bits of S0 = F (M0||L||1) and S1 = F (M1||L||1) are equal.

• α R←− {0, 1}64

• ∆ := S0[0 to 63]⊕ S1[0 to 63]
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Lizard
K0, IV1 and K1, IV1 that generate same keystream

⊕

⊕ ⊕

IV (64 bits)

Key (120 bits)
Fix to 57 bit const

Vary over {0, 1}64

Run P2

M

b
b

b

M

S

S

M0

M1

TABLE

56 bits

Details
• Set K0 = α || L[0 to 54] || L[55]⊕ 1, Set IV0 = α⊕M0.

• Set K1 = α⊕∆ || L[0 to 54] || L[55]⊕ 1, Set IV1 = α⊕∆⊕M1.

• 264 collisions, Complexity =
√

256 = 228 trials.
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Lizard
K0, IV1 and K1, IV1 that generate same keystream

Key − IV Keystream
K0: 0000 0000 0000 0000 6850 8c64 c649 74 23f4 9770 0a91 3089 d800 ...
IV0: 724b b286 2f5c f1b2
K1: 1e45 1adc 2ad8 3124 6850 8c64 c649 74 23f4 9770 0a91 3089 d800 ...
IV1: 3e18 82d1 d5ac 0376

Table: Key-IV pairs that produce identical keystream bits
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Lizard
Distinguishing attack

Questions
• Given a key K, how many pairs of IVs are there that generate same keystream?

• Given a key K, does there exist IVs that produce slid keystream bits ?

• If yes how many ?
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Lizard
Distinguishing attack

Theorem

Let p be an integer greater than zero. Then, for every 120-bit secret key K,

1 There exists around 26 IV Collisions on average,

2 There exists around 27 IV pairs (IV0, IV1) on average, such that the key-IV pairs
K, IV0 and K, IV1 produce exactly p-bit shifted keystream sequences.
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Lizard
Proof is by construction

Let G : F121
2 → F121

2 be the function that maps the input of Phase 4 to its
output
Input: A 121 bit string U , a 120-bit key K, Output: The values 0/1/2.
Subroutine θ(U,K)

1 Compute Û = (K||0)⊕G−1(U).

2 If Û [120] = 0 then abort and return 0.

3 Compute U ′0 = F−1(Û [0 to 119] || 0)

4 Compute U ′1 = F−1(Û [0 to 119] || 1)

5 Set r ← 0.

6 If U ′0[64 to 120] = K[64 to 118] || K[119]⊕ 1 || 1, increment r ← r + 1.

7 If U ′1[64 to 120] = K[64 to 118] || K[119]⊕ 1 || 1, increment r ← r + 1.

8 Return r.
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Lizard
Proof is by construction

⊕ ⊕
=0 → REJECT

0 1

57 bits 57 bits

U

P4−1

P2−1 P2−1

Function θ(U)

= 2 if both states

= 1 if only state

= 0 otherwise

= 0 here

ddU ∈ {0, 1}121

R R

Proof
• #IV collision is the no. of times the Subroutine returns 2 over 2121 values of U

• 115 bit conditions need to be satisfied: 2121−115 = 26
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Lizard
Slid pairs

Slid pairs
• Let g be the function that maps one Phase 4 iteration.

• Number of times θ(U,K) and θ(gp(U),K) both return non-zero.

Pr[θ(U,K) 6= 0] = Pr[θ(U,K) = 2 | A] · Pr[A] + Pr[θ(U,K) 6= 0 | Ac] · Pr[Ac]

= 0 · 1
2 + Pr[B ∨ C | Ac] · 1

2
= 1

2 · (Pr[B | Ac] + Pr[C | Ac])

= 1
2 · (2

−57 + 2−57) = 2−57

• Assuming the distributions are i.i.d total probability is 2−114.

• #Slid pairs = 2121−114 = 27
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Lizard
Constructing Distinguisher

Using Slid pairs
• Generate 218 keystream bits [z0, z1, . . . , z218−1] for the unknown key K and
some randomly generated Initial Vector IV .

• For i = 0 to 218 − 121

→ Store [zi, zi+1, . . . , zi+120] in a Hash table along with the IV.

→ Continue the above steps with more randomly generated IVs

→ Stop either IV Collision or p-bit shifted keystream (for 1 ≤ p ≤ 218 − 121).
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Lizard
Constructing Distinguisher

Complexity
• Space of Initial Vectors as an undirected Graph G = (W,E), all the IVs are
nodes.

• An edge (IV1, IV2) ∈ E iff (K, IV1) and (K, IV2) produce either an IV collision
or p-bit shifted keystream(for 1 ≤ p ≤ 218 − 80).

• Cardinality of edge-set E is expected to be (218 − 121) · 27 + 26 ≈ 225.

• By Birthday bound
(

N
2
)
· 225 =

(264

2
)
→ N ≈ 251.5.

23 Subhadeep Banik Some cryptanalytic results on Lizard 5.3.2018



Lizard
Impossible Collision attack

Similar to Impossible Differential attack
• 26 IV collisions per key on average.

• In phase 1, attacker exhausts entire codebook of IVs (264)

• Gets 26 IV pairs which produce same keystream.
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Lizard
Impossible Collision attack

⊕ ⊕

⊕ = Function of 51 keybits

K K

IV0 IV1

P2 P295 rnd

Details

• The algebraic expression of B95[0]⊕ B̂95[0] has 51 key bits.

• Possible to search over smaller space,
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Lizard
Impossible Collision attack

Impossible Collision Attack

1 Given around 26 colliding pair of IVs.

2 For each guess of the 51-bit key
→ Compute δ = B95[0]⊕ B̂95[0] for the next colliding IV pair.

→ If δ = 1, reject the key and start with another key guess

→ Else go to the previous step and try out another IV pair.
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Lizard
Impossible Collision attack

Complexity of Attack
• Start with 264 encryptions to find all the colliding pairs.

• The filtering algorithm for 251 keys takes at most 26 computations of δ per key
guess

• So 257 calculations of δ.

• Brute force search over the remaining 69 keybits.
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Lizard
Impossible Collision attack
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Figure: Plot of (A) # Monomials, (B) # Keybits in Bi[0]

More rounds
• Can be extended to 3 more rounds...
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THANK YOU
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