
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2017, No. 4, pp. 82–98. DOI:10.13154/tosc.v2017.i4.82-98

Some cryptanalytic results on Lizard
Subhadeep Banik1,4, Takanori Isobe2, Tingting Cui3,4 and Jian Guo4

1 Security and Cryptography Laboratory (LASEC), École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

subhadeep.banik@epfl.ch
2 University of Hyogo, Hyogo, Japan
takanori.isobe@ai.u-hyogo.ac.jp

3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, Shandong, China

cuitingtinggirl@163.com
4 Cryptanalysis Taskforce, Nanyang Technological University, Singapore, Singapore

guojian@ntu.edu.sg

Abstract. Lizard is a lightweight stream cipher proposed by Hamann, Krause and
Meier in IACR ToSC 2017. It has a Grain-like structure with two state registers of
size 90 and 31 bits. The cipher uses a 120-bit secret key and a 64-bit IV. The authors
claim that Lizard provides 80-bit security against key recovery attacks and a 60-bit
security against distinguishing attacks. In this paper, we present an assortment of
results and observations on Lizard. First, we show that by doing 258 random trials
it is possible to find a set of 264 triplets (K, IV0, IV1) such that the Key-IV pairs
(K, IV0) and (K, IV1) produce identical keystream bits. Second, we show that by
performing only around 228 random trials it is possible to obtain 264 Key-IV pairs
(K0, IV0) and (K1, IV1) that produce identical keystream bits. Thereafter, we show
that one can construct a distinguisher for Lizard based on IVs that produce shifted
keystream sequences. The process takes around 251.5 random IV encryptions (with
encryption required to produce 218 keystream bits) and around 276.6 bits of memory.
Next, we propose a key recovery attack on a version of Lizard with the number of
initialization rounds reduced to 223 (out of 256) based on IV collisions. We then
outline a method to extend our attack to 226 rounds. Our results do not affect the
security claims of the designers.
Keywords: Grain v1, Lizard, Stream Cipher

1 Introduction
Lightweight stream ciphers have become immensely popular in the cryptological research
community, since the advent of the eStream project [est08]. The three hardware finalists
included in the final portfolio of eStream i.e. Grain v1 [HJM07], Trivium [CP08] and
MICKEY 2.0 [BD08], all use bitwise shift registers to generate keystream bits. After the
design of Grain v1 was proposed, two other members Grain-128 [HJMM06] and Grain-128a
were added to the Grain family mainly with an objective to provide a larger security
margin and include the functionality of message authentication respectively. In FSE 2015,
Armknecht and Mikhalev proposed the Grain-like stream cipher Sprout [AM15] with a
startling trend: the size of the internal state of Sprout was equal to the size of its key.
After the publication of [BS00], it is widely accepted that to be secure against generic
Time-Memory-Data tradeoff attacks, the internal state of a stream cipher must be at
least twice the size of the secret key. However the novelty of the Sprout design ensured
that the cipher remained secure against generic Time-Memory-Data (TMD) tradeoff

Licensed under Creative Commons License CC-BY 4.0.
Received: 2017-09-01, Accepted: 2017-11-01, Published: 2017-12-15

https://doi.org/10.13154/tosc.v2017.i4.82-98
mailto:subhadeep.banik@epfl.ch
mailto:takanori.isobe@ai.u-hyogo.ac.jp
mailto:cuitingtinggirl@163.com
mailto:guojian@ntu.edu.sg
http://creativecommons.org/licenses/by/4.0/

Subhadeep Banik, Takanori Isobe, Tingting Cui and Jian Guo 83

attacks. The smaller internal state makes the cipher particularly attractive for compact
lightweight implementations. However, Sprout has been cryptanalyzed in more ways than
one [Ban15, EK15, LNP15, ZG15] and so naturally there has been a lot of research going
into design of secure lightweight stream ciphers.

At the FSE 2017 conference of IACR ToSC, two lightweight stream ciphers Lizard [HKM17]
and Plantlet [MAM16] were proposed. While Plantlet was a re-design of Sprout after patch-
ing some existing weaknesses, Lizard was a new construction. It uses a Grain-like structure
with two state registers of size 90 and 31 bits. The cipher uses a 120-bit secret key and
a 64-bit IV. The authors claim 80-bit security against generic TMD tradeoff attacks,
and 60-bit security against distinguishing attacks. Unlike members of the Grain family
[ÅHJM11, HJM07, HJMM06], Sprout [AM15] and Plantlet [MAM16], the Key-IV mixing
in Lizard is not efficiently invertible. This guarantees that even if an attacker manages to
recover the internal state of Lizard, it does not lead to a key recovery attack. The authors
also recommend that not more than 218 keystream bits be generated from one Key-IV
pair, and hence Lizard is not suitable for applications requiring encryption of large bulks of
data.

In this paper we present an assortment of security results on Lizard. Our results
specifically exploits some unique characteristics of the key-IV initialization function used
in Lizard, one of them being that the initialization function is not one-to-one. Our results
can be summarized as follows:

• We show that by performing around 258 random experiments, it is possible to get
264 triplets (K, IV1, IV2) such that the Key-IV pairs (K, IV1) and (K, IV2) produce
identical keystream bits.

• We show that by performing only around 228 random trials it is possible to obtain
264 Key-IV pairs (K1, IV1) and (K2, IV2) that produce identical keystream bits.

• We show that one can construct a distinguisher for Lizard based on IVs that produce
shifted keystream sequences. The process takes around 251.5 random IV trials with
each trial encryption required to produce 218 keystream bits. and around 276.6 bits
of memory. As we will show, these observations imply that one must be careful while
constructing has functions or MACs out of this construction.

• We first propose a key recovery attack on a version of Lizard with the number of
initialization rounds reduced to 223 (out of 256) based on IV collisions. We then
outline a method to extend our attack to 226 rounds. Both attacks require time
complexity equal to 269 encryptions and 271.5 bits of memory.

Our work provides some insights into the issues that arise if the key-IV initialization
function of a stream cipher is not one-to-one. It leaves the stream cipher open to situations
where the two different key-IV pairs produce same keystream segments, which can be
exploited further to mount key recovery attacks, which is exactly what we have done
in this work, although on a reduced round version of Lizard. Although finding internal
collision may not always leave the cipher vulnerable, it may be judicious to avoid it. The
stream cipher MICKEY [BD08] also has a key-IV initialization that is not one-to-one,
but the cipher is designed in such a way that it is infeasible to find distinct key-IV pairs
that give rise to a collision in the internal state. Therefore, we can conclude that if
at all it is necessary for a stream cipher to have an initialization function that is not
one-to-one, it may be beneficial to design the cipher in a way that renders finding internal
collisions practically infeasible, although internal collisions do not necessarily leave the
cipher vulnerable as in the case of Lizard.

84 Some cryptanalytic results on Lizard

⊕

f2 f1

bt0 bt89 st0 st30

st0

a

zt

⊕NFSR2 NFSR1

(A)

⊕

f2 f1

bt0 bt89 st0 st30

st0

a

zt

NFSR2 NFSR1

(B)

Figure 1: Block Diagram of Lizard (A) In Phase 2 of Initialization, (B) During keystream
generation

1.1 Organization of the Paper
We summarize the contributions in this paper as follows. In Section 2, we present the
mathematical description of the Lizard stream cipher. In Section 3, we present the algorithm
to obtain key-IV pairs (K, IV1) and (K, IV2) produce identical keystream bits. In Section
4, we show how to obtain 264 Key-IV pairs (K1, IV1) and (K2, IV2) that produce identical
keystream bits. In Section 5, we show how to construct a distinguisher for Lizard based
on IVs that produce shifted keystream sequences. Finally in Section 6, we propose a key
recovery attack on a version of Lizard with the number of initialization rounds reduced to
223 and 226 (out of 256) based on IV collisions. In Section 7, we conclude the paper.

2 Description of Lizard
The exact structure of Lizard is explained in Figure 1. It consists of two NFSRs of size 90
and 31 bits each. Certain bits of both the shift registers are taken as inputs to a combining
Boolean function, whence the keystream is produced. The 121-bit inner state of Lizard is
distributed over the two NFSRs, NFSR1 and NFSR2, whose contents at time t = 0, 1, . . .
is denoted by St = (st

0, s
t
1, . . . , s

t
30) and Bt = (bt

0, b
t
1, . . . , b

t
89) respectively. We also have,

for t ∈ N \ {0, 128}, st+1
i = st

i+1 for i = 0 to 29 and bt+1
i = bt

i+1 for i = 0 to 88. The
keystream is produced after performing the following steps:

Phase 1: Key-IV loading: Let K = (k0, k1, . . . , k119) denote the 120-bit key and IV =
(v0, v1, . . . , v63) be the 64-bit public IV. The registers of the keystream generator are
initialized as follows:

b0
j =

{
kj ⊕ vj , for j ∈ {0, 1, 2, . . . , 63}
kj , for j ∈ {64, 65, 66, . . . , 89}

s0
i =

 ki+90, for i ∈ {0, 1, 2, . . . , 28}
k119 ⊕ 1, for i = 29
1, for i = 30

Phase 2: Mixing: During this phase the cipher is clocked for 128 cycles without producing
any keystream bits. During this phase the registers are updated as follows. For
t = 0, 1, 2, . . . , 127, we compute:

Subhadeep Banik, Takanori Isobe, Tingting Cui and Jian Guo 85

bt+1
i = bt

i+1, for i ∈ {0, 1, . . . , 88}
bt+1

89 = zt ⊕ st
0 ⊕ f2(Bt)

st+1
i = st

i+1, for i ∈ {0, 1, . . . , 29}
st+1

30 = zt ⊕ f1(St)

where f1(St), f2(Bt) and zt are computed as follows:

f1(St) = st
0 ⊕ st

2 ⊕ st
5 ⊕ st

6 ⊕ st
15 ⊕ st

17 ⊕ st
18 ⊕ st

20 ⊕ st
25 ⊕ st

8 · st
18 ⊕ st

8 · st
20⊕

st
12 · st

21 ⊕ st
14 · st

19 ⊕ st
17 · st

21 ⊕ st
20 · st

22 ⊕ st
4 · st

12 · st
22 ⊕ st

4 · st
19 · st

22⊕
st

7 · st
20 · st

21 ⊕ st
8 · st

18 · st
22 ⊕ st

8 · st
20 · st

22 ⊕ st
12 · st

19 · st
22 ⊕ st

20 · st
21 · st

22⊕
st

4 · st
7 · st

12 · st
21 ⊕ st

4 · st
7 · st

19 · st
21 ⊕ st

4 · st
12 · st

21 · st
22 ⊕ st

4 · st
19 · st

21 · st
22⊕

st
7 · st

8 · st
18 · st

21 ⊕ st
7 · st

8 · st
20 · st

21 ⊕ st
7 · st

12 · st
19 · st

21 ⊕ st
8 · st

18 · st
21 · st

22⊕
st

8 · st
20 · st

21 · st
22 ⊕ st

12 · st
19 · st

21 · st
22

f2(Bt) = bt
0 ⊕ bt

24 ⊕ bt
49 ⊕ bt

79 ⊕ bt
84 ⊕ bt

3 · bt
59 ⊕ bt

10 · bt
12 ⊕ bt

15 · bt
16 ⊕ bt

25 · bt
53⊕

bt
35 · bt

42 ⊕ bt
55 · bt

58 ⊕ bt
60 · bt

74 ⊕ bt
20 · bt

22 · bt
23 ⊕ bt

62 · bt
68 · bt

72⊕
bt

77 · bt
80 · bt

81 · bt
83

Lt = bt
7 ⊕ bt

11 ⊕ bt
30 ⊕ bt

40 ⊕ bt
45 ⊕ bt

54 ⊕ bt
71

Qt = bt
4 · bt

21 ⊕ bt
9 · bt

52 ⊕ bt
18 · bt

37 ⊕ bt
44 · bt

76

Tt = bt
5 ⊕ bt

8 · bt
82 ⊕ bt

34 · bt
67 · bt

73 ⊕ bt
2 · bt

28 · bt
41 · bt

65 ⊕ bt
13 · bt

29 · bt
50 · bt

64 · bt
75⊕

bt
6 · bt

14 · bt
26 · bt

32 · bt
47 · bt

61 ⊕ bt
1 · bt

19 · bt
27 · bt

43 · bt
57 · bt

66 · bt
78

T̃t = st
23 ⊕ st

3 · st
16 ⊕ st

9 · st
13 · bt

48 ⊕ st
1 · st

24 · bt
38 · bt

63

zt = Lt ⊕Qt ⊕ Tt ⊕ T̃t

Phase 3: Second key Addition: After this the 120 bit key is added to the state as follows:

b129
j = b128

j ⊕ kj , for j ∈ {0, 1, 2, . . . , 89}

s129
i =

{
s128

i ⊕ ki+90, for i ∈ {0, 1, 2, . . . , 29}
1, for i = 30

Phase 4: Diffusion: During this phase the cipher is again clocked for 128 cycles with-
out producing any keystream bit. However the feedback of the keystream bit is
discontinued. Thus for t = 129, 130, 131, . . . , 256, we compute:

86 Some cryptanalytic results on Lizard

bt+1
i = bt

i+1, for i ∈ {0, 1, . . . , 88}
bt+1

89 = st
0 ⊕ f2(Bt)

st+1
i = st

i+1, for i ∈ {0, 1, . . . , 29}
st+1

30 = f1(St)

After Phase 4 is completed, the cipher starts producing the keystream bit zt while following
the same update rule.

3 Finding IV collisions for the same key
Phase 2 of the initialization process essentially clocks the two NFSRs for 128 cycles without
producing keystream. Since the update functions of both the shift registers are of the form
xt

0⊕f(xt
1, x

t
2, . . . , x

t
n−1), the update function is one-to-one and efficiently invertible [Fre82].

As such the function F which maps the 121-bit input of Phase 2 to its output is essentially
a permutation on F121

2 . Since the same is true for Phase 4, the function map for this phase
is also a permutation over the same domain. In fact, we present explicitly the process to
invert one round of the state updates in Phases 2 and 4 (see Algorithms P2−1 and P4−1).
The algorithms when iterated 128 times will invert the function maps of Phases 2 and 4
respectively. Before we present the algorithms, let us define f1(St) = st

0⊕f ′1(st
1, s

t
2, . . . , s

t
30)

and f2(Bt) = bt
0 ⊕ f ′2(bt

1, b
t
2, . . . , b

t
89) and the function z(St, Bt) = zt.

Algorithm P2−1

1. Input: St, Bt: The NFSR states at time t

2. Output: St−1, Bt−1: The NFSR states at time t− 1

• s← st
30, b← bt

89.
• B′ = (bt

0, b
t
1 . . . , b

t
88), S′ = (st

0, s
t
1 . . . , s

t
29)

• ẑ = z(S′, B′);
• ŝ = s⊕ f ′1(S′)⊕ ẑ, b̂ = b⊕ f ′2(B′)⊕ ŝ⊕ ẑ
• St−1 ← (ŝ, st

0, s
t
1 . . . , s

t
29)

• Bt−1 ← (b̂, bt
0, b

t
1 . . . , b

t
88)

• Return St−1, Bt−1

In Phase 3 of the initialization process, the designers set the last bit of NFSR2 i.e. s129
30

to 1. This makes the initialization process a non-injective function, so that there may
be two different initial states that lead to the same 121-bit state after Phase 3. That is
to say, it is possible to get a triplet K, IV1, IV2 so that after completion of Phase 2, the
system initialized with K, IV1 and the system initialized with K, IV2 differ only in the
last bit. Since Phase 3 adds the key to the first 120 bits and forces the last bits of both
systems to 1, the internal states of both systems thereafter will be identical and they
would obviously produce the same keystream bits. We call this event an IV collision. In

Subhadeep Banik, Takanori Isobe, Tingting Cui and Jian Guo 87

Algorithm P4−1

1. Input: St, Bt: The NFSR states at time t

2. Output: St−1, Bt−1: The NFSR states at time t− 1

• s← st
30, b← bt

89.
• B′ = (bt

0, b
t
1 . . . , b

t
88), S′ = (st

0, s
t
1 . . . , s

t
29)

• ŝ = s⊕ f ′1(S′), b̂ = b⊕ f ′2(B′)⊕ ŝ
• St−1 ← (ŝ, st

0, s
t
1 . . . , s

t
29)

• Bt−1 ← (b̂, bt
0, b

t
1 . . . , b

t
88)

• Return St−1, Bt−1

the original Lizard paper [HKM17], the authors had proven that, if the key K is unknown,
then it would take around 260.5 random IV trials with K to find an IV collision for K.
What we show in this section is not opposed to the findings of [HKM17]. We show that
by performing around 258 random experiments it is possible to tabulate a set of 264 IV
collisions for 264 specific different keys. We do not assume the unknown key setting as in
[HKM17].

Our algorithm can be described as follows. Let F : F121
2 → F121

2 be the function which
maps the 121-bit input of Phase 2 to its output. Since F is a permutation, so is F−1.
Let R be any 120-bit string. Consider the two 121-bit strings R0 = R||0 and R1 = R||1.
Applying F−1 on each of these gives us T0 = F−1(R0) and T1 = F−1(R1). Now if there
exists a triplet K, IV0, IV1 such that T0 = K[0 to 63] ⊕ IV0 || K[64 to 119] || 1 and
T1 = K[0 to 63]⊕ IV1 || K[64 to 119] || 1, then the systems initialized with K, IV0 and
K, IV1 after Phase 3 will both lead to the internal state R ⊕K||1. The states for both
systems are identical hereafter and so they produce identical keystream bits. We put the
above ideas into the form of an algorithm as follows:

Algorithm to generate IV Collision

1. Set Success ← 0

2. Do the following till Success =1

• Select R R←− {0, 1}120 randomly.
• Define R0 := R||0 and R1 := R||1
• Compute T0 = F−1(R0) and T1 = F−1(R1)
• If T0[64 to 119] = T1[64 to 119] and T0[120] = T1[120] = 1 then set Success =1
• If Success =1 then exit from loop else continue.

3. Select α R←− {0, 1}64 randomly.

4. Set K = α || T0[64 to 118] || T [119] ⊕ 1, Set IV0 = α ⊕ T0[0 to 63] and IV1 =
α⊕ T1[0 to 63]

5. Return K, IV0, IV1.

88 Some cryptanalytic results on Lizard

The above subroutine can be described as follows: we select a 120-bit string R and
run the F−1 function on R||0 and R||1 (F−1 may be computed efficiently by 128 runs of
P2−1) to get the 121-bit strings T0 and T1 respectively. We stop only if:
A. The 64th to 119th bits of T0 and T1 are identical. These bits of initial state are

composed with the last 56 bits of the secret key. So if T0 and T1 are to come from
the initialization with the same key, the 64th to 119th bits need to be identical.

B. The last bit of both T0 and T1 is equal to 1. This is because in Phase 1, the starting
state is initialized with the last bit equal to 1.

Both these events would be satisfied with probability 2−58 for a random R, and so the
loop needs to be iterated around 258 times before Success. Once the algorithm has the
required pair T0, T1, we can make not one but 264 triplets K, IV1, IV2 such that K, IV1
and K, IV2 will lead to an IV Collision. This is because the first 64 bits of the initial state is
the bitwise xor of the IV and first 64 keybits. So we take any random 64-bit string α and
set K = α || T0[64 to 118] || T [119]⊕ 1 (the last bit is inverted because the specifications
of Phase 1 indicate that the last key bit is inverted during the initialization). Then by
setting IV0 = α⊕ T0[0 to 63] and IV1 = α⊕ T1[0 to 63] we ensure that after Phase 1, we
have the required values of the initial states equal to T0 and T1. Since any value of α can
be used, this gives us a set of 264 triplets.

4 K0, IV0 and K1, IV1 that produce same keystream
Since Lizard uses an internal state of 121 bits and the key and IV in total is 184 bits
long, it seems inevitable that there would exist two Key-IV pairs K0, IV0 and K1, IV1 that
would lead to identical internal states after Phase 3, and hence produce exactly the same
keystream bits. We call this event a Key-IV Collision. In this section, we will show that it
is possible to find a Key-IV Collision after performing around 228 random experiments. We
will use the following subroutine:

Algorithm to generate Key-IV Collision

1. Set Success ← 0 and Fix a value of L R←− {0, 1}56.

2. Do the following till Success =1

• Select M R←− {0, 1}64 randomly and define R := M || L || 1
• Compute S = F (R)
• Let Ŝ = S[64 to 119], store Ŝ in a hash table along with current value of M .
• If there is a collision in the hash table then Success =1.
• If Success =1 then exit from loop else continue.

3. Let M0 and M1 be the values of M which result in collision.

4. That is, 64th to 119th bits of S0 = F (M0||L||1) and S1 = F (M1||L||1) are equal.

5. Select α R←− {0, 1}64 randomly and define ∆ := S0[0 to 63]⊕ S1[0 to 63]

6. Set K0 = α || L[0 to 54] || L[55]⊕ 1, Set IV0 = α⊕M0 .

7. Set K1 = α⊕∆ || L[0 to 54] || L[55]⊕ 1, Set IV1 = α⊕∆⊕M1

8. Return K0, IV0 and K1, IV1.

Subhadeep Banik, Takanori Isobe, Tingting Cui and Jian Guo 89

Table 1: Key-IV pairs that produce identical keystream bits
Key − IV Keystream
K0: 0000 0000 0000 0000 6850 8c64 c649 74 23f4 9770 0a91 3089 d800 5513 58e1 6352 ...
IV0: 724b b286 2f5c f1b2
K1: 1e45 1adc 2ad8 3124 6850 8c64 c649 74 23f4 9770 0a91 3089 d800 5513 58e1 6352 ...
IV1: 3e18 82d1 d5ac 0376

The above algorithm can be described thus. We fix a 56-bit constant L which we will use
to construct the 64th to 119th bits of the initial state. Then we choose a 64-bit constant
M randomly and use it to construct the 1st 64 bits of the internal state. We run the state
update function F of Phase 2 on M ||L || 1 and store the result in the variable S. We take
the 56-bit value Ŝ which is the 64th to 119th bit of S and store it in a hash table along
with the value of M . We keep doing this until we find a collision. Since we are looking for
a collision over a 56-bit space, by birthday arguments this part of the algorithm should
yield Success in around

√
256 = 228 trials.

Once we have a collision we proceed as follows. Let M0 and M1 be the values of M
that produce a collision. Then we will have the 64th to 119th bits of S0 = F (M0||L||1) and
S1 = F (M1||L||1) equal. Phase 3 will set the 120th bit of both systems to 1, and so it is the
first 120 bits we need to concentrate on. For identical keystream bits, we need that the states
of both systems after the key addition of Phase 3 be equal. The 64th to 119th bit of S0 and
S1 are already equal, so we need that the difference of the two keys K0 and K1 (in bits 0 to
63) that are to be added to S0 and S1 be equal to ∆ = S0[0 to 63]⊕S1[0 to 63]. This ensures
that both systems have identical internal states after Phase 3. So again, we take any 64-bit
constant α and set K0 = α || L[0 to 54] || L[55]⊕1 and K1 = α⊕∆ || L[0 to 54] || L[55]⊕1.
We must now ensure that the IVs be chosen so that the 2 systems start with the initial
states M0 || L || 1 and M1 || L || 1 respectively. This can be done by setting IV0 = α⊕M0
and IV1 = α⊕∆⊕M1. In Table 1 we tabulate a class of Key-IVs that produce the same
keystream bits, that were found using the procedure listed above. Note that we can take
any 64-bit constant α and add it to the first 64 bits of both the Keys and the IVs to get
another set of Key-IV pairs that produce the same keystream bits. Thus we have 264 such
pairs from one run of the above algorithm.

4.1 Discussion
To explain the significance of this result and the one in the previous section, we can try to
compare our findings to the case of an ideal stream cipher. If an attacker executes the
following procedures on an ideal stream cipher:

1. He chooses a key and IV randomly.

2. He generates keystream bits using the key-IV pair.

3. He then stores keystream bits in a table.

4. He repeats the above process either with same key and different IVs to find IV
Collisions or different key-IV pairs to find Key-IV Collisions .

For an ideal stream cipher with size of internal state equal to 121 bits, given 2x trials,
the number of collisions is expected to be around 22x−121. If 2x = 258, the number of
collisions is 2−5 and in the second case when 2x = 228 the number of collisions is 2−65 on
average. On the other hand, for Lizard, for both cases we can find 264 collisions. It is a
significantly large number.

90 Some cryptanalytic results on Lizard

Secondly, stream cipher update functions have been often used as compression functions
in hash function contructions [CGN06, AHMNP13]. So one must be very careful while
using Lizard as a component in Hash function and MACs. Since we show 264 collisions in
228 time, this means that the Lizard permutation may not be suitable for use in certain
schemes like the Merkel-Damgård (MD) construction. To understand why, let P be the
initialization function (comprising of Phases 1 to 4) used in Lizard. Imagine a scenario,
in which a one-way variant of P is used as the compression function of the MD scheme.
Which is to say we initialize the construction with the IV and the first message block is
used in the role of the key. In order to make the function one-way, we could feed forward
the state after phase 3 to the output of P. For every successive message block, we operate
P by simply xoring the message block to the initial state as in Phase 1 and 3 (ignoring
the IV), and running Phase 2, 4 as usual. Now, if (K0, IV0) and (K1, IV1) is a collision
for P that we found in 228 trials, then the message-IV pair (K0||M, IV0) and (K1||M, IV1)
form a collision for the construction (where M is any sequence of message blocks). Since a
generic collision can be found for any hash function in 2h/2 queries (where h is the size of
the hash output), this implies that the digest size in the above scheme can not exceed 56
bits.

5 Distinguisher based on Shifted keystream bits

In [HKM17], the authors had proven that, if the key K is unknown, then it would take
around 260.5 random IV trials with K to find an IV collision for K. In this section, we
show that even if the key is secret, (as is the setting followed in a chosen-IV distinguisher)
then it takes much lesser number of trials to find IVs which produce shifted keystream bits
when used with the given secret key. Before we outline our algorithm, let us look to the
following theorem concerning shifted keystream bits in Lizard.

Theorem 1. Let p be an integer greater than zero. Then, for every 120-bit secret key K
in Lizard,

1. There exists around 26 IV Collisions on average,

2. There exists around 27 IV pairs (IV0, IV1) on average, such that the key-IV pairs
K, IV0 and K, IV1 produce exactly p-bit shifted keystream sequences.

Proof. The proof is by construction. Let us define G : F121
2 → F121

2 to be the function
that maps the input of Phase 4 of Lizard to its output (note that G−1 can be computed
efficiently by iterating the Algorithm P4−1 a total of 128 times). Consider the following
subroutine:

Subhadeep Banik, Takanori Isobe, Tingting Cui and Jian Guo 91

Input: A 121-bit string U , a 120-bit key K, Output: The values 0/1/2.
Subroutine θ(U,K)

1. Compute Û = (K||0)⊕G−1(U).

2. If Û [120] = 0 then abort and return 0.

3. Compute U ′0 = F−1(Û [0 to 119] || 0)

4. Compute U ′1 = F−1(Û [0 to 119] || 1)

5. Set r ← 0.

6. If U ′0[64 to 120] = K[64 to 118] || K[119]⊕ 1 || 1, increment r ← r + 1.

7. If U ′1[64 to 120] = K[64 to 118] || K[119]⊕ 1 || 1, increment r ← r + 1.

8. Return r.

The above subroutine θ takes as input a 121-bit string U , a 120-bit key K and finds if
the string U is a valid internal state at the beginning of the keystream generation phase
(i.e. end of Phase 4) when used with the key K. In other words it finds out if there exists
an IV such that K, IV leads to the internal state U after the four phases of initialization.
The subroutine first peels off the effect of Phase 4 and 3 by applying G−1 and adding K
to obtain Û . Since Phase 3 of the forward initialization process sets the last bit to 1, the
last bit of a valid initialization must result in Û [120] = 1, failing which the subroutine
returns 0. After this, the algorithm runs F−1 on both Û [0 to 119] || 0 and Û [0 to 119] || 1
to get U ′0 and U ′1 respectively (since Phase 3 sets the last bit automatically to 1, both
Û [0 to 119] || 0 and Û [0 to 119] || 1 are candidates for valid states at this point). The last
57 bits of either U ′0 and U ′1 have to be equal to K[64 to 118] || K[119]⊕ 1 || 1 for a valid
initialization, and the subroutine returns 2 if both the conditions in lines 6, 7 are met, and
1 if only one condition is met. Otherwise the subroutine returns 0. Note that we do not
need to impose a similar condition on the first 64 bits, since these are supposed to be the
bitwise xor sum of the key and the IV. So whenever either one or both conditions in Lines
6 or 7 are satisfied, U ′i [0 to 63]⊕K[0 to 63] (for i = 0 or 1 or both), gives us the value of
the IV, that along with K leads to the state U after Phase 4.

One can use the above subroutine to estimate the number of IV Collisions for a single
key K. It is given as the number of times θ(U,K) returns 2, when U is iterated over
all the possible 2121 values. Note that for the subroutine to return 2, a total of 115 bit
conditions need to be satisfied, one in Line 2 and 57 each in Lines 6, 7. Assuming that
these bit conditions are satisfied according to i.i.d uniform distributions, the total number
of times the subroutine returns 2 can be estimated as 2121−115 = 26. Thus on average, for
each K there exist 26 IV pairs that collide.

We can also use the algorithm to estimate the number of IV pairs that result in exactly
p-bit shifted keystream sequences (for p > 0). Let g : F121

2 → F121
2 that maps the transition

resulting from one clock cycle in Phase 4 (which is also the state update during the
keystream generation phase). Note that therefore G = g128. To estimate the number
of such pairs we need to find the number of times θ(U,K) and θ(gp(U),K) both return
non-zero values. The probability that θ(U,K) gives a non zero value is given as (we denote

92 Some cryptanalytic results on Lizard

by A the event the condition in Line 2 is satisfied and the routine returns 0, B by the
event when the condition in Line 6 is satisfied and C by the event when the condition in
Line 7 is satisfied)

Pr[θ(U,K) 6= 0] = Pr[θ(U,K) 6= 0 | A] · Pr[A] + Pr[θ(U,K) 6= 0 | Ac] · Pr[Ac]

= 0 · 1
2 + Pr[B ∨ C | Ac] · 1

2
= 1

2 · (Pr[B | Ac] + Pr[C | Ac]− Pr[B ∧ C | Ac])

≈ 1
2 · (2

−57 + 2−57) = 2−57

Assuming that θ(U,K) and θ(gp(U),K) are identically and uniformly distributed, the
probability that both return non-zero is 2−2·57 = 2−114, and so the number of IV pairs
that result in p-bit shifted keystream sequences, for a given K, is 2121−114 = 27 on average.
The proof depends on the assumption that θ(U,K) and θ(gp(U),K) are identically and
uniformly distributed. This is a fair assumption to make since the key-IV mixing in the full
version in Lizard is adequate, we can assume that the function mapping the state before
initialization and after initialization is a PRF, and hence the reason for the assumption.

The authors of Lizard recommend that a single Key-IV pair be used to generate not
more than 218 keystream bits. For any fixed K, imagine the space of initial vectors as an
undirected graph G = (W,E), where W = {0, 1}64 is the vertex set which contains all the
possible 64-bit IVs as nodes. An edge (IV1, IV2) ∈ E if and only if (K, IV1) and (K, IV2)
produce either an IV collision or p-bit shifted keystream sequence (for 1 ≤ p ≤ 218 − 121).
From the above discussion, it is clear that the cardinality of edge-set E is expected to be
(218 − 121) · 27 + 26 ≈ 225. So we can formulate a distinguisher as follows

1. Generate 218 keystream bits [z0, z1, . . . , z218−1] for the unknown key K and some
randomly generated initial vector IV .

2. For i = 0 to 218 − 121

• Store [zi, zi+1, . . . , zi+120] in a Hash table along with the IV that generated it (a
total of 121 + 64 = 185 bits are stored).

3. Continue the above steps with more randomly generated IVs till we obtain two initial
vectors for K that generate either IV Collision or p-bit shifted keystream for some p
with 1 ≤ p ≤ 218 − 121.

The question now remains how many random IVs do we need to try before we get
a match. When we run the Distinguisher algorithm for N different IVs, we effectively
add

(
N
2
)
edges to the coverage and a match occurs when one of these edges is actually a

member of the edge-set E. Since there are potentially
(264

2
)
edges in the IV space, by the

Birthday bound, a match will occur when the product of
(

N
2
)
and the cardinality of E

which is around 225 is equal to
(264

2
)
. From this equation solving for N , we get N ≈ 251.5.

This gives a bound for the time and memory complexity of the Distinguisher. The time
complexity is around 251.5 encryptions with different IVs, and the memory required is
251.5 · (218 − 121) · 185 ≈ 277 bits.

Subhadeep Banik, Takanori Isobe, Tingting Cui and Jian Guo 93

5.1 Decreasing the Memory Complexity:
We can obtain better bounds on memory if we restrict the range of p. Suppose the
distinguisher uses an upper bound P . In that case, cardinality of E is around P · 27. The
equation we need to solve to get N becomes(

N

2

)
· P · 27 =

(
264

2

)
⇒ N ≈

√
2121

P

Thus the time complexity is
√

2121

P encryptions and memory required is
√

2121

P ·(P−121)·185
bits. For example for P = 211, the time complexity is 255 and memory complexity is 273.4

bits.

5.2 Further Discussion
Note that when P = 0, i.e. when we only consider IV collisions, this reduces to the
chosen-IV distinguisher already mentioned by the authors of Lizard in [HKM17]. Note
also that when P = 0, we do not need to generate 218 keystream bits for each key, IV
pair since 121 keystream bits will be sufficient to observe the collision. In particular,
our result is a generalization of the chosen-IV distinguisher of [HKM17] in the sense that
whereas the designers consider only IV collisions, we additionally use shifted key streams
for distinguishing attacks. However the complexity of the attack is not better than a
classical TMD-TO distinguishers (like those of Babbage/Golic). Thus, our results reveal
that even if shifted keystreams are additionally used with IV collisions, the distinguishing
attack does not work well against Lizard-type construction. However, these are helpful to
understand the security of the Lizard-like construction.

A TMD distinguisher on Lizard would work as follows: the attacker stores around
260.5 pairs of 121-bit internal state and the corresponding 121-bit keystream segment that
it produces in a hash table. In the online stage, the attacker needs to try to produce
keystream from around 2121−60.5 = 260.5 random IVs (with some unknown key) to get
a match in the table, and can recover the internal state corresponding to a keystream
segment. It is clear that the distinguisher we provide has computational complexity worse
than a classical TMD attack. However our analysis provides some insight to the working
of such structures. Even if the designer can prevent IV collision by not setting the last
bit Phase 3 equal to 1 (or by expanding the state by one bit as in Plantlet), the analysis
for finding shifted keystream bits still holds. The analysis provides a method to get two
IVs (for an unknown key) that produces the same internal state, albeit at different clock
cycles during the keystream stage. Such IV pairs can not be obtained in the classical TMD
attack. Consider a MAC scheme in which, the Lizard keystream is used to generate a tag
for a given message under a key, IV. The message is assumed to be xored to the internal
state in some manner and the tag is produced as a function of the keystream (we have
already seen constructions like [RS16] do this). If K, IV1 and K, IV2 produce a collision
t cycles apart, then this means that we have a collision for K, IV1,M and K, IV2, 0t||M ,
where M is any message string. Since the method takes around 251.5+18 ≈ 269.5 hash
insertions, this shows that the length of the tag should be more than 140 bits.

Of course such an attack can be prevented by length padding. But depending on the
actual algebraic structure of the message addition, the attacker may find ways around
this. For example, the attacker could try and find fixed points for the internal state, i.e.
message strings λ for which the internal state is preserved before and after incorporating
the message into the state (for example, in [Ban15], the author uses SAT solvers to find
fixed points in Sprout to find keystream of short period). Then λi can be used as a
prefix to get the lengths of 0t||M and λi||M to match. Thus, a designer must take into
consideration these points before constructing a digest out of this structure.

94 Some cryptanalytic results on Lizard

6 Impossible Collision attack
In this section, we present an attack on round reduced Lizard stream cipher in which Phase
2 is reduced to 95 (out of 128) rounds, and Phase 4 is run for the full 128 rounds. The
attack is similar to Impossible Differential attacks in the context of block ciphers. In
impossible differential attack on a block cipher, the attacker uses an input and output
differential which never occurs in the plaintext-ciphertext pairs produced by the cipher. If
the impossible differential characteristic involves only a fraction of the keybits, the attacker
can discard all those candidate keys that result in the characteristic, and hence reduce
the size of the keyspace. An impossible collision attack follows roughly the same idea.
From Theorem 1, we know that for any key K, there exist on average 26 pairs of IVs that
produce identical keystream bits. This should also hold in the round reduced version of
Lizard in which Phase 2 is reduced to 95 rounds. The attacker first exhausts the entire
codebook of the 64-bit IVs to obtain 264 sets of keystream sequences generated by the
secret key and each of the IVs. This, therefore, takes time equivalent to 264 encryptions.
On average, he is expected to find 26 pairs of IVs that generate identical keystream bits.

Let IV0 = [v0, v1, v2, . . . , v63] and IV1 = [v̂0, v̂1, v̂2, . . . , v̂63] be one of the IV-pairs that
result in an IV collision for the given secret key K = [k0, k1, k2, . . . , k119] in round reduced
Lizard. Then we know that after 95 rounds of Phase 2, the key-IV pairs K, IV0 and K, IV1
will lead respectively to the internal states B95 and B̂95, which would differ only in the
120th bit. Using a computer algebra software like SAGE [Dev17], we can compute the
algebraic expression for B95[0], i.e. the 0th bit of B95. It is given as :

B95[0] =
⊕
i∈A

xi ⊕ x6 · x24 · x32 · x48 · x62 · x71 · x83 ⊕ x7 · x33 · x46 · x70 ⊕ x8 · x64 ⊕

x9 · x26 ⊕ x11 · x19 · x31 · x37 · x52 · x66 ⊕ x13 · x87 ⊕ x14 · x57 ⊕ x15 · x17 ⊕
x18 · x34 · x55 · x69 · x80 ⊕ x20 · x21 ⊕ x23 · x42 ⊕ x25 · x27 · x28 ⊕ x30 · x58 ⊕
x39 · x72 · x78 ⊕ x40 · x47 ⊕ x43 · x68 · x96 · x119 ⊕ x49 · x81 ⊕ x53 · x104 · x108 ⊕
x60 · x63 ⊕ x65 · x79 ⊕ x67 · x73 · x77 ⊕ x82 · x85 · x86 · x88 ⊕ x98 · x111

where A = {5, 10, 12, 16, 29, 35, 45, 50, 54, 59, 76, 84, 89, 95, 118} and the xi’s are defined
as:

xi =

 ki ⊕ vi, for i ∈ {0, 1, 2, . . . , 63}
ki, for i ∈ {64, 65, 66, . . . , 118}
ki ⊕ 1, for i = 119

The expression consists of 38 monomials and involves 83 bits of the secret key and 50
bits of the IV. Let us now look at the algebraic expression for B95[0] ⊕ B̂95[0] which is
given as follows:

B95[0]⊕ B̂95[0] =
⊕
i∈A

(vi ⊕ v̂i) ⊕ (x7 · x33 · x46 ⊕ x̂7 · x̂33 · x̂46) ∗ x70 ⊕ (v8 ⊕ v̂8) ∗ x64 ⊕

(x9 · x26 ⊕ x̂9 · x̂26) ⊕ (x11 · x19 · x31 · x37 · x52 ⊕ x̂11 · x̂19 · x̂31 · x̂37 · x̂52) ∗ x66 ⊕
(v13 ⊕ v̂13) ∗ x87 ⊕ (x14 · x57 ⊕ x̂14 · x̂57) ⊕ (x15 · x17 ⊕ x̂15 · x̂17) ⊕
(x18 · x34 · x55 ⊕ x̂18 · x̂34 · x̂55) ∗ x69 · x80 ⊕
(x20 · x21 ⊕ x̂20 · x̂21) ⊕ (x23 · x42 ⊕ x̂23 · x̂42) ⊕ (x25 · x27 · x28 ⊕ x̂25 · x̂27 · x̂28) ⊕
(x30 · x58 ⊕ x̂30 · x̂58) ⊕ (v39 ⊕ v̂39) ∗ x72 · x78 ⊕ (x40 · x47 ⊕ x̂40 · x̂47) ⊕
(v43 ⊕ v̂43) ∗ x68 · x96 · x119 ⊕ (v49 ⊕ v̂49) ∗ x81 ⊕ (v53 ⊕ v̂53) ∗ x104 · x108 ⊕
(x60 · x63 ⊕ x̂60 · x̂63)⊕ (x6 · x24 · x32 · x48 · x62 ⊕ x̂6 · x̂24 · x̂32 · x̂48 · x̂62) ∗ x71 · x83,

Subhadeep Banik, Takanori Isobe, Tingting Cui and Jian Guo 95

where A = {5, 10, 12, 16, 29, 35, 45, 50, 54, 59} and x̂i := ki ⊕ v̂i for i ∈ {0, 1, 2, . . . , 63}. We
can see from the above equation, that B95[0] ⊕ B̂95[0] is a function of 51 keybits only.
This gives us an opportunity to reduce the keyspace. We start with any colliding pair of
IVs. We know that for the correct key K, the first 120 bits of B95 and B̂95 are equal. In
particular, we concentrate our attention on δ := B95[0]⊕ B̂95[0]. For the correct guess of
key, δ must be zero. So if any candidate key results in δ = 1, we can immediately discard it,
since a collision is impossible for this candidate key. Hence the name Impossible Collision.
Moreover, δ depends on only 51 key bits, so we have the added advantage of searching
over only a limited keyspace. Our algorithm is as follows:

Impossible Collision Attack

1. Given around 26 colliding pair of IVs.

2. For each guess of the 51-bit key

• Compute δ = B95[0]⊕ B̂95[0] for the next colliding IV pair.
• If δ = 1, reject the key and start with another key guess else go to the previous

step and try out another colliding IV pair.

So for each guess of the key, we compute δ for each of the 64 colliding IV pairs, and
reject immediately if δ = 1 for any pair. The correct key guess will give δ = 0 for all
colliding pairs, whereas any incorrect keybit survives all the 64 filters with a probability of
2−64. And since the keyspace we are searching in has only 251 candidates, it is very likely
that any incorrect guess gets rejected in the process.

Note that it may be possible, that for certain values of IV0, IV1, δ is identically 0,
which makes these IV pairs unusable for key filtering. This happens when the difference
between IV0, IV1 is zero in all the 41 bit locations that nonlinearly affect the expression
for δ. Assuming these variables follow i.i.d uniform distributions, this event is likely to
occur with a very low probability 2−41. The probability that it happens for more than
three colliding pairs is less than 2−120. So we are always likely to have enough colliding
pairs to perform the attack.

6.1 Complexity of the attack
We begin with 264 encryptions with all the possible IVs to find all the colliding pairs. The
filtering algorithm for 251 keys takes at most 26 computations of δ for each key guess and
so for this part of the algorithm the complexity is bounded by 257 calculations of δ. We
need to do a brute force search over the remaining 69 keybits which would take another
269 encryptions. The total complexity is the sum of the above terms and so is dominated
by the 269 term. The memory complexity is bounded by the memory required to find the
collisions. This can be estimated to be around 264 ∗ (121 + 64) ≈ 271.5.

6.2 Extending attack to 226 rounds
The algebraic complexity of Bi[0] both in terms of the number of monomials and the
number of keybits involved rises very quickly after i = 95, as is shown graphically in Figure
2. For i = 96, Bi[0] is a function of 101 keybits and so any attack under 280 computations
seems infeasible. Therefore extending the attack to more rounds seems difficult at first
glance. However, we outline a method to extend the attack to 226 (=98+128) rounds
using the same attack complexities. To do so, let us look at the following lemma

96 Some cryptanalytic results on Lizard

88 90 92 94 96 98 100 102 104 106
101

102

103

104

105

106

107

i

#
M
o
n
o
m
ia
ls

in
B

i [
0
]

(A)

88 90 92 94 96 98 100 102 104 106
70

80

90

100

110

120

130

i

#
K
ey
b
it
s
in

B
i [
0]

(B)

Figure 2: Plot of (A) # Monomials, (B) # Keybits in Bi[0]

b b b b b b

b b b b b b

b b b b b b

b b b b b b

t

t− 1

t− 2

t− 3

St Bt

0 1 2 3 89 0 1 2 30

Unequal Bit Unknown Bit Equal Bit

StBtBt St

Figure 3: Backward Differential characteristic for 3 rounds in Phase 2

Lemma 1. Let (Bt, St), (B̂t, Ŝt) ∈ {0, 1}121 be two internal states in Phase 2 of Lizard,
such that they differ only in the 120th bit. In other words Bt[i] = B̂t[i], ∀ i ∈ [0, 89],
St[i] = Ŝt[i], ∀ i ∈ [0, 29] and St[30] = Ŝt[30] ⊕ 1. Then Bt−3[0] = B̂t−3[0] ⊕ 1 with
probability equal to 1. Thus the inequality of the last bit in round t is reflected with
probability 1, in the 0th bit in round t− 3.

Proof. The proof is straightforward and can be obtained by running the P2−1 algorithm
on (Bt, St) and (B̂t, Ŝt) three times, or by an analysis of the differential trails of the cipher.
In Figure 3, we present a backward differential characteristic for 3 rounds in Phase 2. It is
clear to see that the proof holds.

The above result can be used to extend the attack to upto 98 rounds of Phase 1. We
know that for an IV collision to occur for t = 98 rounds, the differential characteristic in
the states initialized with IV0 and IV1 must be 0120||1. Lemma 1 implies that for this to
happen, at round t − 3 i.e. round 95, the 0th bits must have a probability 1 difference,
which is to say that B95 ⊕ B̂95[0] = 1 with probability 1. In the previous attack we had
utilized the fact that for Phase 2 reduced to 95 rounds, collision implies B95 ⊕ B̂95[0] = 0
with probability 1. Thus we can repeat the previous attack with the following slight
difference.

Subhadeep Banik, Takanori Isobe, Tingting Cui and Jian Guo 97

1. Compute δ = B95[0]⊕ B̂95[0] for some 51-bit keyguess.

2. Instead of δ = 1, reject the key if δ = 0 and start with another key guess else try
out another colliding IV pair.

This gives us an attack on Phase 2 reduced to 98 rounds and so 226 rounds in total.
The attack complexities are exactly the same as in the previous attack.

7 Conclusion
In this paper we present a study of the stream cipher Lizard. In the first part we show that it
is possible, with some effort, to find distinct key-IV pairs that produce identical keystream
bits. Thereafter we construct a distinguisher for Lizard based on IVs that produce shifted
keystream sequences. Finally we propose two key recovery attack on Lizard with 223 and
226 initialization rounds. The attack is similar to impossible differential attacks on block
ciphers, and makes use of sparse key-IV mixing up to 95 (resp. 98) rounds of the Phase 2
initialization in the cipher.

Acknowledgement
Subhadeep Banik was supported by Commission for Technology and Innovation (Confédéra-
tion Suisse) grant no CTI 19339.1. Takanori Isobe was supported in part by Grant-in-Aid
for Young Scientist (B) (KAKENHI 17K12698) for Japan Society for the Promotion of
Science.

References
[ÅHJM11] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a:

a new version of Grain-128 with optional authentication. IJWMC, 5(1):48–59,
2011.

[AHMNP13] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-
Plasencia. Quark: A Lightweight Hash. J. Cryptology, 26(2):313–339,
2013.

[AM15] Frederik Armknecht and Vasily Mikhalev. On Lightweight Stream Ciphers
with Shorter Internal States. In Gregor Leander, editor, FSE, volume 9054
of Lecture Notes in Computer Science, pages 451–470. Springer, 2015.

[Ban15] Subhadeep Banik. Some Results on Sprout. In Alex Biryukov and Vipul
Goyal, editors, INDOCRYPT, volume 9462 of Lecture Notes in Computer
Science, pages 124–139. Springer, 2015.

[BD08] Steve Babbage and Matthew Dodd. The MICKEY Stream Ciphers. In
Matthew J. B. Robshaw and Olivier Billet, editors, The eSTREAM Finalists,
volume 4986 of Lecture Notes in Computer Science, pages 191–209. Springer,
2008.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs
for Stream Ciphers. In Tatsuaki Okamoto, editor, ASIACRYPT, volume
1976 of Lecture Notes in Computer Science, pages 1–13. Springer, 2000.

98 Some cryptanalytic results on Lizard

[CGN06] Donghoon Chang, Kishan Chand Gupta, and Mridul Nandi. RC4-Hash: A
New Hash Function Based on RC4. In Rana Barua and Tanja Lange, editors,
INDOCRYPT, volume 4329 of Lecture Notes in Computer Science, pages
80–94. Springer, 2006.

[CP08] Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B.
Robshaw and Olivier Billet, editors, The eSTREAM Finalists, volume 4986
of Lecture Notes in Computer Science, pages 244–266. Springer, 2008.

[Dev17] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 8.0), 2017. http://www.sagemath.org.

[EK15] Muhammed F. Esgin and Orhun Kara. Practical Cryptanalysis of Full
Sprout with TMD Tradeoff Attacks. In Orr Dunkelman and Liam Keliher,
editors, SAC, volume 9566 of Lecture Notes in Computer Science, pages
67–85. Springer, 2015.

[est08] The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ci-
phers., September 2008.

[Fre82] Harold Fredricksen. A survey of full length nonlinear shift register cycle
algorithms. SIAM Review, 24(2):195–221, April 1982.

[HJM07] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher
for constrained environments. IJWMC, 2(1):86–93, 2007.

[HJMM06] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A
Stream Cipher Proposal: Grain-128. In 2006 IEEE International Symposium
on Information Theory, pages 1614–1618, July 2006.

[HKM17] Matthias Hamann, Matthias Krause, and Willi Meier. LIZARD - A
Lightweight Stream Cipher for Power-constrained Devices. IACR Trans.
Symmetric Cryptol., 2017(1):45–79, 2017.

[LNP15] Virginie Lallemand and María Naya-Plasencia. Cryptanalysis of Full Sprout.
In Rosario Gennaro and Matthew Robshaw, editors, CRYPTO (1), volume
9215 of Lecture Notes in Computer Science, pages 663–682. Springer, 2015.

[MAM16] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On Ciphers
that Continuously Access the Non-Volatile Key. IACR Trans. Symmetric
Cryptol., 2016(2):52–79, 2016.

[RS16] Ronald L. Rivest and Jacob C. N. Schuldt. Spritz - a spongy RC4-like stream
cipher and hash function. IACR Cryptology ePrint Archive, 2016:856, 2016.

[ZG15] Bin Zhang and Xinxin Gong. Another Tradeoff Attack on Sprout-Like Stream
Ciphers. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT (2),
volume 9453 of Lecture Notes in Computer Science, pages 561–585. Springer,
2015.

	Introduction
	Organization of the Paper

	Description of Lizard
	Finding IV collisions for the same key
	K0,IV0 and K1,IV1 that produce same keystream
	Discussion

	Distinguisher based on Shifted keystream bits
	Decreasing the Memory Complexity:
	Further Discussion

	Impossible Collision attack
	Complexity of the attack
	Extending attack to 226 rounds

	Conclusion

