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Abstract. In this paper, based on the work pioneered by Aumasson and Meier, Dinur
et al., and Guo et al., we construct some new delicate structures from the round-
reduced versions of KECcCAKhash function family. The new constructed structures are
called cross-linear structures, because linear polynomials appear across in different
equations of these structures. And we apply cross-linear structures to do preimage
attacks on some instances of the round-reduced KECCAK. There are three main
contributions in this paper. First, we construct a kind of cross-linear structures by
setting the statuses carefully. With these cross-linear structures, guessing the value
of one linear polynomial could lead to three linear equations (including the guessed
one). Second, for some special cases, e.g. the 3-round KECcCcAKchallenge instance
KECCAK[r = 240,¢ = 160,n, = 3], a more special kind of cross-linear structures
is constructed, and these structures can be used to obtain seven linear equations
(including the guessed) if the values of two linear polynomials are guessed. Third, as
applications of the cross-linear structures, we practically found a preimage for the
3-round KEccAkChallenge instance KECcCAK[r = 240, ¢ = 160, n, = 3]. Besides, by
constructing similar cross-linear structures, the complexity of the preimage attack
on 3-round KECCAK-256/SHA3-256/SHAKE256 can be lowered to 2150 /2151 /2153
operations, while the previous best known result on KECCAK-256 is 2192,
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1 Introduction

The KECcAKsponge function family [BDPA11] is designed by Bertoni et al. and became a
candidate of the SHA-3 competition [NIS] in 2008. It won this competition in 2012, and
the U.S. National Institute of Standards and Technology (NIST) standardized KECCAKas
Secure Hash Algorithm-3 [0ST15] (SHA-3) in 2015. KECccAKhas received numerous security
analysis since it was public available in 2008.

On practical collision attacks, Dinur et al. obtained practical complexities up to 4 out of
24 rounds of KECCAK-224/256 [DDS12, DDS14]. Recently, Song et al. proposed a practical
collision attack on KECCAK-224 reduced to 5 rounds [SLG17]. Dinur et al. also presented
theoretical complexities up to 5 rounds of KECCAK-256 [DDS13]. On practical preimage
attacks, Naya-Plasencia et al. [NPRM11] and Morawiecki et al. [MS13] had presented
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attacks up to 2 rounds. Guo et al. [GLS16] developed the technique of linear structures,
and presented a practical attack to SHAKE128. Besides, theoretical preimage attacks on
KEccaKkreduced to 4 rounds were also given by them. Theoretical preimage attacks up to
7/8/9 rounds on KECCAK-224/256/512 are considered in [Ber10, CKMS14, MPS13].

To encourage the practical analysis of the KECCAKsponge functions, the KECCAKteam
organized the “KEcCAKCrunchy Crypto Collision and Preimage Contest” (KECCAKChallenge
for short) and presented challenges for reduced-round KECCAKinstances, namely KEc-
CAK[c = 160, = b — ¢] with b > 200 [BDPA], where ¢ is the capacity and b is the width.
The capacities of the challenges are fixed to 160 bits, which implies a security level of 230
against generic collision search. The width b of KECCAK-f[b] is in {200, 400, 800, 1600}.
The width values support the chosen capacity. Up to now, the best preimage solution
was on 4 rounds and was submitted by Liu and Guo in December 2016, and the best
collision was on 6 rounds and was submitted by Song et al. in February 2017 [SLG17].
The KECCAKteam summaries the challenge status as “Remarkably, the smaller versions
are harder to break. Although they have a smaller state, they offer much less degrees of
freedom, especially relative to the capacity that is the same for all versions.”

The traditional method of finding a preimage for a given hashing value is usually based
on solving a polynomial system generated by the hashing algorithm and hashing value.
However, this system is often difficult to solve, due to the large number of unknowns
and the high nonlinearity of polynomials. The Groébner basis method is an important
tool for solving non-linear polynomial systems, and has been extensively studied [Fau99,
Fau02, GIW16, SW11, YSL16]. But the Grobner basis method is not capable to solve
non-linear systems in such large size, so SAT solvers and linear techniques are more
popular for attacking these systems. At present, lower rounds, for instance 1 or 2 rounds,
of the KEccakChallenge instances are solved directly by SAT solvers [MS13]. Higher
rounds of instances cannot be solved for 5 years, until Guo et al. found the linear
structures of the systems. Guo et al. linearized the polynomial system at most 2 forward
rounds and 1 backward round by decreasing the degrees of freedom. So they successfully
found the preimages for the challenge instances KECCAK[r = 640,¢ = 160,n, = 3]
and KECCAK|[r = 1440,¢ = 160,n, = 3], which have 640 and 1440 degrees of freedom
respectively, where n,. is the round of this instance. They also extended their method to
find a preimage for the instance KECCAK[r = 1440, ¢ = 160, n, = 4], which is the best
result up to now.

Just as summarized by the KECCAKteam, the instance KECCAK[r = 240, ¢ = 160,n, =
3] is more difficult since it has much fewer degrees (240) of freedom, so it cannot be
linearized by Guo et al’s method. We focus on attacking this instance in this paper,
because it has more similar initial status with KECcCAK-256/SHAKE 256/SHA3-256 than
the instance KECCAK[r = 1440, ¢ = 160, n, = 3]. Figure 1 shows the initial statuses of
the three instances (a) KECCAK[r = 240, ¢ = 160}, (b) KECCAK[r = 1440, ¢ = 160], and
(¢) KEccaK[r = 1088, ¢ = 512], respectively. From this figure, we can see that, although

(a) KECCAK[T = 240, ¢ = 160] (b) KECCAK(r = 1440, ¢ = 160] (c) KECCAKIr = 1088, ¢ = 512]
[] = message [J=o0

Figure 1: Initial statuses of three instances, represented by slices.
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KEccaK[r = 1440, ¢ = 160] and KECccAK[r = 1088, ¢ = 512] has the same width, say
1600, the capacity of KECCAK[r = 1088, ¢ = 512] is 512. This means 8 lanes of the initial
status are 0, which is quite similar to the instance KECCAK[r = 240, ¢ = 160] where 10
lanes are 0. Our experiments verified the above observation, since the methods used to
attack KECCAK[r = 240, ¢ = 160, n,, = 3] can be directly used to obtain a better attack
complexity of 3-round KECCAK[r = 1088, ¢ = 512]/SHAKE 256/SHA3-256.

The contributions of this paper are summarized in three aspects:

1. We construct a new kind of structures for the KECCAKinstances. In these structures,
linear polynomials exist across different polynomials, so we call these structures as
cross-linear structures. Using these cross-linear structures, more linear equations
can be obtained by enumerating some values of polynomials. Specifically, by setting
the statuses of the instances carefully, we can formulate the preimage problem as
quadratic polynomial equations that have two important properties. First, the
quadratic part of each constructed polynomial equation consists of only one product
of two linear polynomials. For sake of convenience, we call these linear polynomials
as cross-linear factors of the quadratic parts. Second, the same cross-linear factor
always appears across (at least) two different polynomials. For this system, if the
values of k cross-linear factors are guessed, then 3 - k linear equations (including the
guessed one) are obtained. For simplicity, we call this kind of cross-linear structures
as “1 — 3” cross-linear structures. Using “1 — 3” cross-linear structures, a preimage
of the instance KECCAK[r = 240, ¢ = 160, n,. = 3] can be found in 28 operations.

2. For some special instances, e.g. the KEccakChallenge instance KECCAK|[r = 240, ¢ =
160, n, = 3], a more special kind of cross-linear structures is constructed. Because
the operation p of the KECCAK-permutation fortunately generates some particular
differences of the subscripts of unknowns, more relations can be built. Thus, by
guessing the values of two correlative cross-linear factors, we can obtain 7 linear
equations (including the guessed). The “2 — 77 cross-linear structures enable us to
find a preimage of the instance KECCAK[r = 240, ¢ = 160, n, = 3] in 2° operations.

3. We did a practical preimage attack on the 3-round instance KECCAK[r = 240, ¢ =
160, n,, = 3] in the KEcCAKChallenge. We formulated 80 quadratic polynomials in 80
unknowns from the preimage problem by guessing the values of 31 linear polynomials.
We guessed the values of another 14 linear polynomials to get 49 linear equations
totally by using the “2 — 7” cross-linear structures. Then we obtained 80 linear
equations in 80 unknowns. Even if there exists a solution to this linear system, it may
not be the ¢rue solution of the formulated system. At last, we verified the solution
by the original 80 polynomials. Totally, the attack costs 5 days with 8 GPU cards,
and we finally found a true solution as well as a preimage to this KECCAKinstance.

A solution for the 3-round preimage challenge with width 400 is listed as below, where
the length of the message is 238 bits and the preimage is expressed in hexadecimal.

Image of the challenge: 5¢ 9d 5e 4b 38 5e 9c 4f 8e 2e.

Preimage: 53 73 €0 75 3d ec af 5b 2e ¢1 00 00 00 00 00 00 00 00 00 00 53 73 €0 75
3d ec af 5b 2e cl.

By using the similar attack done on the KEccAkChallenge instance and dealing
with the paddings carefully, we obtained new theoretical preimage complexities, say
2150 /9151 /9153 gperations, on 3-round KECCAK-256/SHA3-256/SHAKE256, while
the previous known best result on KECCAK-256 is 2'9% [GLS16].

This paper is organized as follows. Some preliminaries and notations are given in Sec.
2. Our main results are presented in Sec. 3. We conclude this paper in Sec. 4.
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2 Preliminaries

2.1 The sponge construction

The sponge construction is used in KECcCAKalgorithm. As shown in Figure 2, it processes
messages in two phases—absorbing phase and squeezing phase. With these two phases, a
sponge construction encrypts an input stream of any length and produces an output bit
stream of any desired length.
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Figure 2: The sponge construction.

At the beginning, the internal state of b-bits is initialized to be all 0’s, which is the
initial value (IV). The message is padded and split into blocks of r-bits. In absorbing
phase, the first r bits of b-bits state are XORed with the message block, followed by the
application of permutation f. This procedure is repeated until all the message blocks are
processed. Then in squeezing phase, the first r bits are outputted. With an additional
application of f, another r output bits are obtained. The algorithm iterates this step until
the required number of digest bits are all produced.
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Figure 3: The KECCAKstate.

2.2 The Keccak-f permutations

According to the KEccakreference [BDPA11], there are 7 KECCAK-f permutations,
indicated by KECCAK-f[b], where b € {25, 50, 100, 200, 400, 800, 1600}. We call b the width
of the permutation. Usually, KECCAK-f[1600] are used widely in practice, which can be
described as a 5 x 5 64-bits lanes as depicted in Figure 3. In this paper, we use L to
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denote the bit length of lanes. In KECCAK-f[1600], we have L = 64. Each bit is denoted
as Alz,y, z]. The integer triples (x,y, z) are the indices of bits, where = and y are from
the set {0,1,2,3,4} while 0 < z < L — 1. Expressions in z and y are taken modulo 5 while
z modulo L without other specifications.
The function KECCAK-f[1600] consists of 24 rounds permutation R. Each round R
consists of five steps:
R=10xomopod,

0: A[x,y,z] = A[‘T>y’2] D @?:O(A[‘T - 1>ja Z] D A[:E + 1,j7Z - 1])>

p: A[J?, Y, Z] = A[Z‘,y, (Z + r[m,y])],

m: Aly, 2z + 3y, z] = Alz, y, 2],

X Alz,y, 2] = Alz,y, 2] & ((~ Alz + 1,9, 2)) & Alz + 2, y, 2]),

v : A0,0, z] = A[0,0, 2] ® RC|[z]. In the above definitions, bit-wise XOR is denoted by “®”,
bit negation by “~”, and bit-wise logic AND by “&”. Besides, “r[z,y]” denotes for lane
dependent rotation constants which are the values presented in Table 1 modulo the lane
length L, and “RC” are round-dependent round constants. The details of RC' are omitted
since it does not affect our attacks. The readers could find more details about KECCAKin
[BDPA11].

Table 1: The offsets of p.

x=3 x=4 x=0 x=1 x=2
y=2 | 153 231 3 10 171
y=1 55 276 36 300 6
y=0 | 28 91 0 1 190
y=4 | 120 78 210 66 253
y=3 | 21 136 105 45 15

2.3 Instances of Keccak

The hash function KECCAK]r, ¢, [] means the instance of KECCAKsponge function family
with parameters capacity ¢, bitrate r, and output length [. The official versions KECCAK-]
have r = 1600 — ¢ and ¢ = 2 - I, where | € {224, 256,384,512}. Their padding rules are
identical. The message is padded by appending a bit string of “10*¥1”, where “0*” means
the shortest string of 0’s such that the padded message is of multiple of r bits.

The SHA-3 standard only has digest sizes 224, 256, 384, and 512. It is similar to
Keccaxkexcept for the padding rule. SHA-3 pads the message with another two bits “01”
before applying the KEccaKpadding rule, i.e., the padded string becomes “0110*1”.

The SHA-3 family also includes two SHAKE instances (SHAKE128 and SHAKE256),
which are called extendable-output functions (XOF’s). More accurately, SHAKE128(M, [
and SHAKE256(M,!) are defined as KECCAK[r = 1344,¢ = 256] and KECCAK[r =
1088, ¢ = 512]. And the messages M are padded with a suffix “1111”.

Without the specification, our attacks in this paper on KEcCAKapplies to SHA-3
and SHAKE under the same parameters. We will only consider preimage attacks on the
instance with output length [ = 256.

2.4 The Keccak Crunchy Crypto Collision and Pre-image Contest

KEccakChallenge, which is short for “KEccAKCrunchy Crypto Collision and Preimage
Contest” [BDPA], organized by the KECCAKteam in order to boost security analysis.
The KECCAKteam presented challenges for reduced-round instances with ¢ = 160 and
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Row 0| 20| @us| 83| Qus| Bea| | & |87 | Bss| Bgof Bgs 85| a1) 87| Bga| 879
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[] = single unknown
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Figure 4: The initial status setting of the preimage attack on KECCAK[r = 240,c =
160, n,. = 3]. The constant parts in the bits of Row 2 are omitted.

b € {200, 400,800, 1600}. The output is truncated to 160 bits for collision challenges and
80 bits for preimages, thus both challenges have the theoretical complexity of 289.

Most of the challenges of 1 or 2 rounds were computed by SAT method around the
year of 2011. There are no substantial progresses on the preimage attacks for a long time,
after a preimage of KECCAK[r = 40, ¢ = 160, n,, = 1] was found in 2013. In 2016, Guo et
al. developed the linear structures, and found 3 preimages of KECCAKChallenge instances
of 3 and 4 rounds [GLS16]. They studied the nonlinear operator x, and found a method
to keep the system linear after the operation x. Specifically, they presented the techniques
of keeping 2 and 3 rounds linear at the cost of some degrees of freedom. Their techniques
are capable of attacking instance with r = 640, 1440 on 3 rounds, but cannot work on the
challenge instance KECCAK[r = 240, ¢ = 160, n,, = 3] and other smaller versions, because
these instances offer much less degrees of freedom. The details of preimage attacks on the
4 round challenge instance are not publicly available yet.

After the discovery of linear structures, attacks on the collision challenges are also
improved. Up to now, the best collision attacks are made by Song et al. on 6 rounds
KEccaKChallenge instances [SLG17].

3 Main results

We construct two kinds of structures such that linear polynomials appear across different
equations, and guessing some of the values of these linear polynomials could lead to much
more linear equations. We call these new kinds of structures as cross-linear structures, and
the mentioned linear polynomials are called cross-linear factors. With the first kind of
cross-linear structures, we can get 3 - k linear equations if the value of k linear polynomial
are guessed, while by using the second cross-linear structures, 7 - k linear equations can be
obtained by guessing values of 2 - k correlative polynomials. For simplicity, we call these
two structures as “1 — 3” and “2 — 7” cross-linear structures respectively. To illustrate
these two structures more clearly, we show them by detailing the procedure of finding a
preimage of the challenge instance KECCAK[r = 240, ¢ = 160, n, = 3] in SubSec. 3.1 and
3.2. In SubSec. 3.3, we give an improved complexity analysis on 3-round KECCAK-256 as
well as SHA3-256 and SHAKE256. Some discussions are made in the last subsection.

3.1 The “1 — 3” cross-linear structures

In this subsection, we illustrate the “1 — 3” cross-linear structures by detailing the
preimage attack on KECCAK[r = 240, ¢ = 160, n, = 3]. First, we formulate the polynomial
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Figure 5: The first round of the preimage attack on KECCAK[r = 240, ¢ = 160, n, = 3].
The bits in white boxes are 0. The bits in (light) yellow boxes are called linear bits, because
they can be represented by linear polynomials with the unknowns in the initial status.
Particularly, bit in light yellow boxes is represented by a single unknown. Gray boxes
mean the bits in them are constants. The constants in the linear/yellow boxes are omitted.

system deduced by this challenge; second, we show the “1 — 3” cross-linear structures of
this KECCAKinstance; at last, we generalize this “1 — 3” cross-linear structures for more
generic cases.

Formulation of the system: Figure 4, 5, 6, and 7 show the initial status and the
statuses after the 1st, 2nd, and 3rd rounds KECCAK-f permutation. In these figures, white,
black, gray, light yellow, yellow, blue, and green boxes means the bits in these boxes are 0’s,
1’s, constants, linear bits represented by 1 single unknown and no constant parts, linear
bits, quadratic bits, and known bits respectively. Bits are called linear or quadratic if they
can be represented as linear or quadratic polynomials in the unknowns of the initial status.
Please remark that the constants in the linear and quadratic bits are always omitted in
the figures.

Figure 4 is the initial status. To construct the cross-linear structures, we set the bits in
Row 1 of all slices to 0. The bits in Row 3 and Row 4 are set to 0 by default. All unknowns
a;’s appear in Row 0 and Row 2 where i =0,1,---,159. By the padding rule of KECCAK,
we have a159 = 1. To avoid the mixture of bits brought by the operation 6, we assume
the sums of every column are all the same, i.e. a; + a;480 = ¢ where ¢ =0,1,--- ,79, such
that the status before and after 6 are identical, which is similar to that done in [GLS16].
The sum c of each column can either be 0 or 1. We hope to consider all the possibilities,
so we need to enumerate the values of ¢, or equivalently, to enumerate the values of arg
because we always have arg + a159 = a79 + 1 = ¢. By enumerating ary9, we then have
a;180 = G; +¢c=a; +arg+ 1 for i =0,1,---,79. This means the bits in Row 2 can be
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represented as the bits in Row 0 plus a constant. Therefore, the initial status becomes the
bottom one of Figure 4. For simplicity, the constants in Row 2 are omitted. This setting
of the initial status is quite important for constructing the cross-linear structures, because
the origin of the “cross” just lies in the fact that Row 0 and Row 2 of the initial status
share the same unknowns.

Figure 5 (a) is the new initial status after fixing the value of azg. After the operation
p, the subscripts of a;’s are changed, as shown in Figure 5 (b). Please note that, the
differences of subscripts on fixed positions are fixed modulo the length of lane, where
the length in this challenge instance is 16. For example, the difference of the subscripts
between position (Row 0, Column 0) and position (Row 2, Column 2) is always 37, e.g.
(ao,asy), (a1, ass), ---. This fact is very important to the cross-linear structures.

The operation 7w permutes the bits in each slice, and we obtain the status (c) of Figure
5. In this status, the unknowns appear only in Column 0 and Column 2, while the bits in
other columns are all 0’s.

Since no adjacent bits in the rows are both linear in status (c), the nonlinear operation
x will not generate nonlinear bits. Column 0 of each slice is the sum of unknowns, and the
gray bits in Figure 5 (d) are all constants.

87| & Ay Ay 30

3| 35, 37| 85 a, D = const
8ss( g1 85| A a7 |8 D = linear
2 2 | oa; B = quadratic
a73 a34 a76 a42 a39 a61

A [ & Ay | as A

3y [ Bs3 3 | 3 as

a56 a'lﬁ a51 a23 aﬁ a23

8| Ao 8 | 85

874 [ Ags pob Q77 | Qg3 . Ayl s

39| A1 3| 3 3

85 [ 8sq 3 | 85 £

357 [ A7 8o [ 324 3 A

8| A7 8z | Agg

875 [ 3gp 87g | B4 8y B3

Qg6 [ A5 A5 | A3 359

3, | A5 3 | 8 a3

8sq [ Ao 8sg [ 82 8 @

31 [ 3es 3| 37

87, | 83 75| An g 8gp 2n round end

(a) (b) (c) (d)

Figure 6: The second round of the preimage attack on KEcCcAK[r = 240, ¢ = 160, n,. = 3].
The bits in gray boxes are constants. Linear bits and quadratic bits are the bits can be
represented as linear and quadratic polynomials of unknowns, and they are shown in yellow
and blue boxes respectively. The constant parts in the linear and quadratic boxes, as well
as the linear parts in quadratic boxes, are omitted,

Figure 6 shows the statuses of the second forward round. To decrease the number of
nonlinear bits after the operation x in status (d), fewer linear bits in (c) should appear.
For this aim, we should prevent the propagation of bits done by #. However, no degrees
of freedom are left now. We have to enumerate the values of the sums of Column 2 and
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Column 3 in (a). Specifically, there are 16 slices, and we want to guess the values from the
parities of these two columns, so we need to enumerate values for 2 x 16 = 32 variables in
total. Due to the linear dependence, 31 instead of 32 values need to be guessed, which will
be illustrated more clearly after the expressions of these 32 values are given sooner. Please
also note that the bits in Column 0 are the sums of bits in Column 2 and Column 3, so
the sums of bits in Column 0 can be inferred directly.

The status (b) in Figure 6 is obtained after the operations 6 and p. The constant parts
in linear boxes of Column 2 and Column 3 are omitted, 7.e. the real representation of the
bit in this linear box is the unknown marked inside the box plus a constant.

Doing the operations 7, x, and ¢ consequently, we get the status (d), in which there is
exactly only one quadratic bit in each row and column of each slice. In Figure 6, these
quadratic bits are marked in blue, and their constant and linear parts are omitted as well.

Remark that the quadratic parts of the quadratic bits in blue are all products of two
linear polynomials, e.g. ago, @ea, a76, a4, * -+, in status (c) in Figure 6. We call these linear
polynomials cross-linear factors, since these factors are linear and appear in different
positions of slices. For example, the unknown ag appears both at (Row 1, Column 0,
Slice 2) and (Row 2, Column 1, Slice 15) in Figure 6 (c). The property will make these
cross-linear factors appear across different equations constructed by the challenge problem.

3 round end

' =Eu -
(d)

(a) (b1) (b2) ()
[] =linear [ = quadratic [l = known

Figure 7: The third round of the preimage attack on KECCAK[r = 240, ¢ = 160, n,. = 3].
Linear and quadratic bits are represented as yellow and blue boxes. Green boxes mean the
bits in them are known.

Figure 7 shows the statuses of the third forward round. The status of Figure 6 (d)
is the input of the third round, shown in Figure 7 (a). On one hand, all bits become
quadratic bits after the forward 6 operation, and the status is shown in (b1). On the other
hand, we can obtain the status (b2) backward from the output of the 3rd round. The
values of green bits are known by the KEccakChallenge, and the bits in Row 0 of (c) are
also known by Guo et al. [GLS16]. After the inverse operations of 7 and p. The bits in the
diagonals of the status (b2) are all known. From (b1) and (b2), we formulate 5 x 16 = 80
quadratic polynomials in 80 variables, where 16 is the length of the lane. Remember that
we have guessed the values of 31 linear polynomials at status (a) in Figure 6, and we also
enumerate the value of arg initially. So far, we have got all the equations we need to solve.

The quadratic equations are:

A32 4y (T+i) * A48+~ (13+i) T A484~(11+4) ~ A644~(15+4) ny” =cpy

Ary(T44) * A164++(6+i) T Q164+~ (6+i) * A324~(9+i) T lind) = ¢,

Q48+~ (12+i) * A64+(i) T Qy(3+i) * A6+~ (11+i) T ling) = cf,

A164(T+i) * @32+4(10+4) T @324~y (6+i) * Vd84~(12+i) T linff) = Cz(f)y
Qry(444) * Q644 (124i) T Ay (6+i) * Q164 (5+i) T @324~ (7+i) * A48+~ (13+i) T ling) = Cél),
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where (k) = k mod 16, lingi) and cg-i) are linear polynomials and constant values for
i=1,2,3,45and i=0,1,---,15. And the 32 guessed sums are:

Oy (1347) T @164~ (6+i) T A3247(5+4) T Q48+~ (7+i) T Q64+~ (9+i) = Céi), (1)
Gy (i) T A164~7(15+i) T B324~(2+4i) T Ca8+~(4+i) T B6d+~y(5+i) = ng), (2)

where (k) = k mod 16, and 06 , 0(7) are constant values for ¢ = 0,1,--- ,15.
As we claimed early, 1 of the above 32 values is dependent on the others To show the

(@) () _ 79 —
linear dependence by summlng up ¢’ and c7 over i, we have S 0 C6 =D i) =

21150 c7 Thus taking cg () for example, we have c(o) 21151 Cg )+ Z C7) This means

the value of 06 is determined by the other 31 values, so it suffices to guess the other 31
ones instead of all 32.

Remark 1. If we do not assume the values of the 32 sums of Column 2 and Column 3 at
status (a) in Figure 6, we can also formulate 80 quadratic polynomial equations. But the
structures of the system becomes too complicated to illustrate the cross-linear structures.

The “1 — 3” cross-linear structure in Keccak[r = 240,¢ = 160,n, = 3]: The
quadratic equations constructed above can be simplified by linear algebraic operations,
and we get:

Ary(1444) * Q164 (13+i) T Q48+~(i) * Q64+~ (ati) T lin = ¢,
164~ (1344) * A324~(i) T A48 4~(i) * Ueat~(4+i) T 1IN = ¢,
324~ (1244) " U484~ (2+i) T @484~ (i) * Bed4~(4+i) T lin = ¢,
U644y (1547) " Qry(T+i) T Qa8 4~ (i) * Q6at~(4+i) T lin = ¢,
A8y (541) * A64-+~(9+i) T Qa8 4~(3+i) * Uodtry(T+i) T A8t~ (i) * A6atr(4+i) T lin =10,  (3)

where (k) = k mod 16, and ¢ = 0,1,--- ,15. In the above equations, lin’s and ¢’s mean
linear polynomials and constant values, and they are different in different equations, while
we omit the subscripts for simplicity. In fact, the equation (3) with 0 < i < 15 can be
inter-reduced with each other further, and we get:

O484+(i) * Goa+r(a+i) +lin =c. (4)

Consequently, by substituting a4g;~ () - @Gea4~(a+i) to the previous equations, we have

Ary(1444) * Q164 (13+4) T 1IN = ¢, (5)
A164~(13+1) " A324~(i) T lin = ¢, (6)
324~ (1241) * U4g4~(244) T lin = c. (7)
A6a4(15+i) * Gy(7+i) +lin =c. (®)

For the system of equations (4) ~ (8), if guessing the value of any I cross-linear factor,
we will obtain 3 linear equations. This is because that any 1 cross-linear factor appears
in 2 different equations, and guessing the value of this cross-linear factor obtains 1 linear
equation directly by the guess, and also linearizes the 2 equations it appears. Because
of this, we call the special structures represented by equations (4) ~ (8) as “1— 3”
cross-linear structures.

So far, we have got 32 linear equations (31 linear independent guessed sums and 1 from
arg), and we will get 2 more by the guess of ayg and the “1— 3” cross-linear structures.
Next, we can guess the values of any 16 cross-linear factors, and obtain 3 x 16 more linear
equations. Then, we have got 31 + 1+ 2+ 3 x 16 = 82 linear equations in 80 unknowns.
There is a solution to this linear system with probability 1/4. At last, we verify the
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obtained solution by the original 80 quadratic polynomials or simply by the equations
that are not linearized. Because solving the linear system and verifying on the original
polynomials takes constant time. The total practical preimage attack costs 232116 = 248
operations.

Generalizing the “1 — 3” cross-linear structures: For other KECCAKinstances, if
the initial status is set the same as those in Figure 5 (a), then we can obtain a similar
status to Figure 7 (a). The key point is that for this status, in each column of each slice,
there is only one quadratic bit and it is just the product of two cross-linear factors. This
ensures most of the quadratic bits after the operation 6 in the 3rd round have similar
structure as discussed above. That is, there are two products of cross-linear factors in
most of the quadratic bits. By transformations or guessing values of cross-linear factors,
the “1 — 37 cross-linear structures can be constructed as well. Another example will be
shown in SubSec. 3.3.

3.2 The “2 — 7" cross-linear structures

Due to the special operation p of the KEccakChallenge instance KECCAK[r = 240, ¢ =
160, n,. = 3], the practical preimage attack complexity can be even lowered, because we
can obtain even more linear equations by using the characteristic of p.

We rearrange the subscripts in the equation (2), (5) and (6). We obtain the following
new ones:

O (1447) T @164+~(1341) T A324~() + Q484+~ (24+i) T B64+~(3+i) = Cs 9)

Ay (1444) * A164~(13+1) T 1IN = ¢, (10)

A164~(13+4) " A324~(i) T lin = ¢, (11)

where v(k) = k mod 16, ¢ = 0,1,--- ,15. Again, lin’s are linear polynomials and ¢’s are

constant values, and they are different in different equations. Substituting a- (1444 from
(9) into (10), we get:

(@164 (1344) F A324~(i) T Qa84~(2+4) T Q6aqry(341)) * Q164 (13+4) T lin = ¢,

and equivalently,

164~ (13+4) * @324~(i) T Q161 (13+1) * (Qa84(2+6) T eatr(344)) T lin = c.

Adding the equation (11) to the above equation, we finally obtain:

A16+4(13+i) * (@484~ (24i) T G6a4(3+4)) + lin = c. (12)

This relation means that if both the values of asg4~(24i) and agaq~(344) are known, we will
get one more linear equation.

By the results in the last subsection, guessing the value of any 1 cross-linear factor leads
to 3 linear equations. Combining equation (12), if we guess the value of as(244) and
U644~ (3+i), then we will find 7 linear equations. Thus, we call the structures in equations
(4) ~ (8) and (12) as the “2— 7 cross-linear structures.

Here we list these 16 cross-linear factor pairs satisfying the “2— 77 cross-linear struc-
tures:

{(a487 a65)) (a49a a66>7 (a/507 a67)7 (a513 a/68)7 T (GGQ, 0/79)7 (a/637 a64)}'

As mentioned above, guessing any pair in this set, 7 linear equations are obtained. But it
does not mean if we pick up k pairs randomly, we can always get 7 - k linear equations.
We have to avoid guessing the variables as cross-linear factors in the same quadratic term.
For example, the unknowns guessed should not contain both a4g(;) and aesq(444) With
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the same ¢, because in that case, both of these two unknowns are the cross-linear factors
of the quadratic term in equation (4). More specifically, specifying values of (a49, ags) and
(ag2,a79), we can find only 13 linear equations instead of 14, because ags - ags appears in
equation (4) when i = 14.

For an attack of KECCAK[r = 240,¢ = 160,n, = 3|, by enumerating the values of
{(ass, ae5), (as2,a69), (as3,ar), (asa,ar), (ass,ars), (ae2,ar9), (aes3,a6s)}, we obtain
14/2 x 7 = 49 linear equations. Note that arg has already been scheduled for enumeration.
The other steps are similarly as those in the SubSec. 3.1. We first solve the linear system,
and then verify the solutions on the original system. The total practical preimage attack
takes 231714 = 245 gperations.

Practical attack on the challenge Keccak[r = 240,c = 160,n, = 3]: During the
practical attack on this challenge, we implemented the codes in CUDA C++. The
estimated time for enumerating all values is 8 days in 8 GPU cards (NVIDIA GTX 1080T1).
We were lucky to find the solution on the fifth day. A solution for the 3-round preimage
challenge with width 400 is listed as below, where the length of the message is 238 and the
preimage is expressed in hexadecimal.

Image of the challenge: 5¢ 9d 5e 4b 38 be 9c 4f 8e 2e.

Preimage: 53 73 €0 75 3d ec af 5b 2e ¢1 00 00 00 00 00 00 00 00 00 00 53 73 €0 75 3d ec af
5b 2e cl.

By using almost the same method, we also obtain a preimage to the 3-round challenge
KEccAK[r = 640,c = 160, n,, = 3| in a few seconds. This preimage is different from the
one given by the previous challengers. The length of the message is 636 bits and we list
the message below.

Image of the challenge: 00 7b b5 ¢5 99 80 66 Oe 02 93.
Preimage: 2d dd 42 83 72 ca 84 d5 4e 20 36 69 02 55 3a 13 ad 6e 53 99 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff F ff ff ff ff ff ff {F ff fF ff fF ff ff ff ff 2d dd
42 83 72 ca 84 d5 4e 20 36 69 02 55 3a 13 ad 6e 53 99.

3.3 A preimage attack on 3-round Keccak-256

The idea presented in Sec.3.1 also applies to KECCAK-256. Most of the attacking procedures
are the same except some minor differences. In this subsection, we focus on dealing with
these minor differences.

There are two main differences between KECCAK-256 and KECCAK[r = 240,¢ =
160, n, = 3] —— the padding rule and the length of output bits which also affects the
capacity of the initial status. For KECCAK-256, the last 8 lanes of Figure 8 (a) are 0’s,
and the messages are contained in the other 17 lanes. By the padding rule, we can set the
first and second lanes in Row 3 to 0 except for the last bit in the position (Row 3, Column
1) of the last slice (Slice 63). Similarly to the top status of Figure 4, the bits in Row 0
and Row 2 are set as unknowns. To avoid the propagation of the 8 step, we also assume
the sums of each column in the initial status to a constant whose value is enumerated in
this attack. And we use 1 linear constrain to set whether bits in Row 0 and Row 2 are
identical or opposite. By doing so, Row 0 and Row 2 share the same unknowns like the
bottom status of Figure 4. Please note that with this linear constrain, each bit in Row 0
is still always represented as a single unknown, while the linear bits in Row 2 may contain
constant parts which are omitted in the figures as well.

So far, the main difference of KECCAK-256 and KECCAK|[r = 240, ¢ = 160, n,, = 3] lies
in that, there is 1 bit padding at the position (Row 3, Column 1) of Slice 63, shown in
Figure 8 (a). Next, we show how to deal with this padding. Figure 8 illustrates the first
forward round of KECCAK-256, and focuses on the status containing this padding.

Figure 8 (a) is the initial status of the last slice with the padding bit 1 in Row 3. The
sum of Column 1 is still assumed as a constant similarly to that done in Sec. 3.1. After
the operations 6, p and m, we can find the statuses of slices that are affected by this bit



Ting Li, Yao Sun, Maodong Liao and Dingkang Wang 51

Slice 63 Slice 44 Slice 44 Slice 44
Qg3 | A7) Ang1| Apsg Azl Y C C P 3y, 1z Q0| gy
aZDB a41 a41 a41 aZUE
pob T oy
Q3 [Buo7 |Puot [Boss | Bard ——> [Qa1 |Qgs [z |Qoua [Bosr | ——> | oy A e | Aoy

Ay W 8gg | Bz73
a, B 861 Ao 1stround end
(a) (b) (c) (d)

[(J=0 =1 [1=const []=unknown []=linear [] =linear produced by 1

Figure 8: The First round of the preimage attack on KECCAK-256. Constant parts in the
Row 2 of (a) are omitted.

1, and these slices are shown in (b) and (c). After the operation y, we obtain the status
(d). Both orange and yellow bits are linear bits in Figure 8 (d). We highlight the orange
bit because it is produced by bit 1 during the operation x. Please note that a4; appears
twice in status (d), and that is to say, we will obtain two constant bits if we enumerate
the value of a41. More importantly, by this enumeration, the status (d) becomes the same
as that in Sec. 3.1. And hence, the second round is the same as Figure 6.

2nd round end

(a) (b) (c) (d)
[ =const []=linear [l = quadratic
Figure 9: The second round of the preimage attack on KECCAK-256.

Figure 9 shows the statuses in the second forward round. Please note that, we will also
enumerate the sums of Column 2 and Column 3 as done in Sec. 3.1. But there is a little
difference. We have to enumerate the values of all 2 x 16 — 1 sums in Sec. 3.1, because no
degrees of freedom are left in that instance. But here, we still have 64 degrees of freedom,
so we can directly set the value of 64 sums, and enumerate the values of the other 64 — 1
sums. Note that there is still a sum linear dependent on the others.

Figure 10 shows the procedure of setting up the algebraic system. There are 4 lanes of
the output bits known by this 3-round reduced KECCAK-256. With the inverse of operation
t, X, and , the values of 4 green bits in each slice are known as shown in status (b2).
Thus, we obtain 4 x 64 quadratic equations from status (b1) and (b2).

34 round end

p om X ol
«—

(a) (b1) (b2) (c) (d)
B =known []=linear [l = quadratic
Figure 10: The third round of the preimage attack on KECCAK-256.
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Similar to the attack on KECCAK[r = 240, ¢ = 160, n,. = 3], we obtain the following
quadratic polynomials:

A128+4~7(26+i) * Q192+~ (48+1) + 1924~/ (62+4) ~ 4256+~ (18+1) + lm(()l) = c(()z)v (13)
Ay (58+i) " Q64+~ (41+4) T Q644 (41+44) * Q1284+ (12+44) T lmgz) = C§1)7 (14)
1924~/ (63+4) * B256+~/(19+1) T G256-+~/(30+4) * Gr’(38+4) T ling) = cg), (15)
Q64+~ (42+4) * B128+~/(13+i) T @128+~ (25+4) * 1924~/ (47+4) T liné’) = C:(J,Z), (16)

where v'(k) = k mod 64, liny) are linear polynomials and ng) are the constant values of
bits at the positions (Row 7, Column j), where j = 0,1,2,3 and ¢ = 0,1,---,63. Since
we only have 4 known values in the first row of Figure 10 (d), we only have 4 groups of
equations.

Due to the lack of one group of equations, the above 4 groups of equations cannot be
simplified to the form of the equations (4) ~ (8) directly. To construct the cross-linear
structures, we reorder the subscripts of equations (13) ~ (16) and rearrange them to the
following form:

Oy (58+4) * Q64+ (41+4) T Q64+~/ (41+4) * Q128+~ (12+i) T linﬁ” = 651)7 (17)

. (¥ (i—-1 "(i—-1
644~/ (41+4) * 1284~/ (12+4) T Q128+~ (24+4) * 1924~/ (46+4) T lm;(; (=) = C;(; ( )), (18)

(v (-2 "(i—2
Q1284+ (24+i) * 1924~/ (46+4) T Q1924+ (60+i) * A256-+~/ (16+4) T+ lmfﬁ =2 — ng ¥ ))7 (19)

1924~/ (60+i) * A256+~/(16+i) T Q2564+~ (27+4) * Ay (35+4) T lmg/ =) = Cg/ (1_3)), (20)
where ¢ = 0,1,---,63. In each of these equations, there are two products of cross-linear
factors, which makes the equations nonlinear. A product of cross-linear factors often
appears in two different equations, e.g., a1921+/(60+i) * @256+ (16+i) appears in equations
(19) and (20). Besides, a cross-linear factor usually appears in three different equations.

Next, we decrease the number of products of cross-linear factors in each equation to 1
by enumerating the values of another 31 cross-linear factors. Since the value of a4; has to
be enumerated as discussed before, we enumerate the values of the following 31 cross-linear
factors:

{a1,a3,as, -+ ,aso} U {ass, ass,--- ,ae3}.

Then if ¢ = 0,2,4,--- ,62, then equations (17) ~ (20) can be transformed by linear algebra
to the following form:

Oy (58+4) * OB4+~/ (41+44) T (a’256+fy’(27+i) * Gy (3544) T linf)) = 067 (21)
064+~ (41+4) * B128+4~/(12+4) T (a256+'y’(27+i) " Ay (3544) T “”,1) = Cl1a (22)
128+~ (24+4) * 1924~/ (46+i) T+ (a256+v’(27+i) "Gy (35+4) T lm/z) = Clza (23)
1924~ (6044) * Q2564+~ (1644) + (A256-4~/ (2744) * Ay’ (35+4) T ling) = ¢, (24)

where lin} are linear polynomials and c; are constants for j = 0, 1,2, 3. Note that a.(3514)’s
have been guessed as constants, so there is only one product of cross-linear factors in each
equation. Similarly, if i = 1,3,5,--- ,63, then equations (17) ~ (20) can be transformed

by linear algebra to the following form:
64t (4141) * Q128+~ (12+1) T (A7 (58+44) * Aeatry/ (4144) T ling) = (25)

G128~/ (24+3) * @192+~ (46+i) T (a'y/(58+i) A4ty (4144) T lin,{) = 0/1/7 (26)
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1924~/ (60+4) * 4256+~ (16+i) T (a'y’(58+i) " QG447 (4144) T lm/zl) = 0/2/7 (27)
2564/ (27+4) * O/ (3541) T (A (5841) = Aoatry (a14+4) + ling) = ci, (28)

where lin/] are linear polynomials and ¢} are constants for j = 0,1,2,3. Because a./(ss44)’s
are constants, there is only one product of cross-linear factors in each equation as well.
This means we have constructed the “1 — 3” cross-linear structures. And hence, from the
equations (21) ~ (28), we can get 3 linear equations by guessing the value of 1 cross-linear
factor. For example, if we guess the value of ajag195, then the equation (25) with i = 13
and equation (26) with ¢ = 1 can be linearized, and we also have the linear equation by
guessing a12g25-

For the attack on this 3-round KECCAK-256, we have obtained 2 x 64 —1 linear equations
from assuming the sums of columns in Figure 9 (a), and 32 linear equations by guessing
aop+1 for K =0,1,---,31. Besides, we use 1 linear equation to set the constants in Row 0
and Row 2 in initial status. Since there are 5 x 64 unknowns, we still need 3 x 64 —32 = 160
linear equations. These equations can be obtained by guessing 54 cross-linear factors. For
example, we can guess the values of the values of aj28,a128+1, - , 128453, and then we
will obtain 2 x 54 linear equations from equations (22) and (23) or equations (25) and (26).
Now we have 2 x 64 + 32 4+ 3 x 54 = 322 linear equations in 5 x 64 = 320 unknowns. A
solution to this system can be got in constant time, and then we verify this solution by
the original equations (13) ~ (16) in constant time.

The complexity of the above attack is estimated as follows. Since there are 5x64—256 =
64 degrees of freedom, we can directly set the value of 64 sums of columns in Figure 9 (a).
So we totally need to enumerate the values of 1+ (64 — 1) 4+ 32 + 54 = 150 unknowns.
Since the time for solving a linear system and verifying on original equations is constant,
the complexity on finding a preimage for the 3-round KECCAK-256 is 2159 operations.

3.4 Some discussions

If there is no solution to Keccak[r = 240, ¢ = 160, n,, = 3] by the setting in Figure
4: By the settings of discussed in SubSec. 3.1, the freedom degree of the constructed system
is 0. Although there is a solution to this system with probability 1, we also considered the
failure cases.

If the settings in Figure 4 do not work, we can set 1 bit in Row 1 of some slice to 1
instead of 0. This setting affects the forms of some statuses, but will not affect the whole
method.

Figure 11 shows the statuses in the first round with a bit 1 at the position (Row 1,
Column 2, Slice 2). Here we work on with this setting. The statuses (a), (b) and (c)
are almost the same with Figure 5 and we trace the slices affected by the bit 1. In the
status (d), one more linear bit as; (orange one) is generated compared to the status (d) in
Figure 5. This additional linear bit will contribute to two more quadratic bits (light blue
ones in Figure 12 (d)) in the following round, which makes it difficult to construct the
cross-linear structures. Thus, similarly as done in SubSec. 3.3, we enumerate as; to avoid
the additional quadratic bits. Moreover, ag; also leads to 3 linear equations so it does not
double the practical complexity. After guessing the value of as1, the statuses in the third
round and the formulation of the system are identical to Figure 7, so we omit it here.

Our attack works on the case with 1 bit in other positions as well. Please remember to
enumerate the corresponding a; to make sure that only 1 quadratic bit appears in each
column in the last status of the 2nd round.

Preimage attacks on 3-round SHAKE256 and SHA3-256: For 3-round SHAKE256
with 256 output bits, the attack in SubSec. 3.3 works as well although the padding rule is
different. From SubSec. 2.3, we know that SHAKE256 is defined as KECCAK[r = 1088, ¢ =
512] and the message M after padding is in the form of M111110*%1. Assume that all
the padding bits are in Row 3 and other message bits in Row 3 are 0. For example, we
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8 | Q6| Agp| g Apy 8 | 851(834 [Asp |89 Y Ay ag| 3
8, a3 3| A,
8y | Q6| Agp| Agg| Apy A3( 8y 837 |55 | A7z 3y s5 85| Agy
aﬁg a22 azz aﬁg
8 az 873( gy
8, | Qyg| Agsf Asp| Bgs 3 auwasa a5 3 Ay Ay A
Asg 3 8 | Asg
poﬁ T oy
3, | Q| Ags| Agp| Ags| ——> | A3 | Ag|qua A1 |A79 | —>| An 31 —_—> 81| A1 A
a5 A Qg A5
) azg Az Ay
a15 a31 a47 a53 a79 a15 a30 a33 a51 aﬁﬁ a'lﬁ a36 a35 a'15
8 A, 8, [ 8
A5 |81 (847 |63 | Q79 Ay [ 8| 8g5| Asg| A7 3y 8y 854 [ 3o
g o) 31 [ 38
| |3 a7, | 8 15t round end

(a) (b) (c) (d)
[1=0 =1 []=const[]=unknown []=linear [] = linear produced by 1

Figure 11: The first round of the preimage attack on KECCAK[r = 240, ¢ = 160, n, = 3]
with a bit 1 in Row 1 of the initial status.

Q| ——> 8| —> — s

a21

(a) (b) (c) (d)
[] = const [] = linear [[] = linear produced by 1 ] = quadratic [] = quadratic produced by 1

2nd round end

Figure 12: The second round of the preimage attack on KECcCAK[r = 240, ¢ = 160, n, = 3]
with a bit 1 in Row 1 of the initial status.

set the last 6 bits at position (Row 3, Column 1, Slice 58 - 63) to 1 and the other bits
to 0 in Row 3. That is to say, we have 6 slices with additional bit 1 in the initial status
and they bring in 6 additional linear bits after the 1st round. The unknowns in these
linear bits are asg, asr, ass, a3y, A40, a41. Similar to the method we used in SubSec. 3.3,
the collection of enumeration unknowns should have included asz7, asg, as1. To guarantee
the cross-linear structures, we add asg, ass, aso into the enumeration unknowns. Thus, we
deduce the linear system and keep the complexity to 21013 = 2153 a5 well. In practical
attacks, other padding bits is allowed as long as they follow the padding rules.

Thus, the above idea also works on the 3-round SHA-3 standard with digest sizes 256.
Instead of padding message with 111110*1, we have the padded message M0110*1. So we
could set the 3 bits in first two lanes in Row 3 to 1 (one should be in the last slice and
the other two in adjacent slices according to the padding rule) while others are set to 0
and guess the value of 3 relevant variables. The other steps are totally the same and this
attack finds a preimage in 2'0+1 = 2151 gperations.
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The key steps of constructing the cross-linear structures: From the above attacks,
we can summarize that there are three key steps of constructing cross-linear structures.

1. First, the columns of the initial status should have at most two unknowns. In
this case, the same unknown could appear at two different positions of the slices.
Consequently, the unknowns appear across different equations.

2. Second, there is at most 1 quadratic bit in each column of the last status of the 2nd
round. This ensures all bits are quadratic bits after the operation 6 of the 3rd round,
and most of these quadratic bits contain only two products of cross-linear factors.

3. Third, we need to decrease the nums of products of cross-linear factors in the
constructed equations by transformations or enumerations.

The “2 — 7” cross-linear structures: The “2 — 7”7 cross-linear structures are
more relevant to operation p. Up to now, we find that this structure only exists in the
KEccAKinstances with width 400.

4 Conclusions

In this paper, we construct two kinds of new structures, cross-linear structures, in the
reduced round instances of KECCAK. We use these structures to successfully find a preimage
of the KEccAkChallenge instance KECCAK[r = 240, ¢ = 160, n,, = 3], and we also obtain
better complexities for the preimage attack on 3-round KECCAK-256/SHAKE256/SHA3-
256. The key steps of constructing the cross-linear structures are that (1) making the
same unknowns appear at different positions of slices, (2) limiting the number of nonlinear
products in the quadratic part of constructed equations, and (3) decreasing the number of
products of cross-linear factors by transformations or enumerations.

We believe the cross-linear structures will play important roles when attacking KEC-
CcAKinstances of higher rounds. In the future, we will try to improve the cross-linear
structure techniques, and break more KEccAKChallenge instances.
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