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Abstract. We examine how two parallel modes of operation for Authenticated
Encryption (namely CTR+PMAC and OTR mode) work when evaluated in a multi-
party computation engine. These two modes are selected because they suit the PRFs
examined in previous works. In particular the modes are highly parallel, and do not
require evaluation of the inverse of the underlying PRF. In order to use these modes
one needs to convert them from their original instantiation of being defined on binary
blocks of data, to working on elememts in a large prime finite field. The latter fitting
the use case of many secret-sharing based MPC engines. In doing this conversion
we examine the associated security proofs of PMAC and OTR, and show that they
carry over to this new setting.
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1 Introduction
The development of low complexity blockciphers and pseudorandom functions (PRFs) has
attracted considerable interest lately. The initial motivation was their suitability to low
power devices, as used in IoT applications [LK06, DPAR00, BCG+12]. Recently, these
ciphers found a second application for use in systems which compute on encrypted data,
such as Multi-Party Computation (MPC) systems and Fully Homomorphic Encryption
(FHE) mechanisms. In these latter contexts, evaluating the AES function has long been
a standard benchmark [PSSW09, DK10, DKL+12, NNOB12, LR15], however we contend
that AES is unsuitable for many secure computation applications.

Grassi et al. [GRR+16] already make the case for using blockciphers and PRFs over
finite fields of large prime characteristic in MPC applications, as especially MPC systems
based on secret sharing typically provide efficient arithmetic operations over such prime
fields1. A key application of blockciphers and PRFs is to authenticate and encrypt data.
In an MPC context, the symmetric key and the data would typically reside in the MPC
system, where encryption and decryption would take place to create ciphertexts for storage
or transmission of sensitive information outside the MPC system. The trivial solution
would be to encrypt parties shares separately in such applications, producing a linear (in
the number of players) increase in the communication and/or storage of such encrypted
data. The next (slightly less) trivial solution would be to use a standard mode-of-operation
based on a standard PRF such as AES. But, continual conversion to and from a binary
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field as required for say AES would be prohibitively expensive in this context. Thus, a
mode of operation based on a PRF over the underlying finite field of the MPC system
would seem to offer advantages.

The usual modes of operation for authenticated encryption have a strong binary focus,
moreover due to the different cost metrics for secret sharing based MPC, conventional
wisdom on what makes for an efficient mode of operation no longer applies. Hence
authenticated encryption (AE) suitable for MPC should be benchmarked directly; as the
different environment is likely to produce different cost considerations.

When benchmarking AE for MPC, the two main metrics of interest are the overall
throughput and latency of what is called the online phase. Both metrics are driven primarily
by communication between the various parties and much less by the local computation
(which traditionally plays a dominant role). Our focus will be on the paradigm of secret
sharing based MPC, as typified by the BDOZ [BDOZ11], SPDZ [DPSZ12, DKL+13], or
VIFF [DGKN09] systems. In these systems, the data to be kept secure is secret shared
amongst the parties. The computation itself is typically expressed as algebraic operations
over a large finite field Fp where, loosely speaking, the secret shared values behave a little
like vectors with any open values being treated as scalars. Consequently, additions of
secret shared data and scalar multiplications are both cheap (can be performed locally),
yet multiplication of secret shared data is expensive. Indeed, this last step requires
communication and is often performed by consuming a so-called “Beaver triple,” which
has been precomputed in an offline phase.

As a crude estimate, the latency of an overall computation is then dominated by
the multiplicative depth (of secret shared values), whereas the throughput is a function
of the total number of such multiplications. However, the physical limitations of the
network’s bandwidth and latency also play a major part in determining overall throughput
and latency. The differences in the computational model affect the design of PRFs and
blockciphers in the MPC arena, as exemplified by the blockcipher MiMC [AGR+16] and
pseudorandom function Leg [GRR+16]. However, the effect on possible modes of operation,
to transform these primitives in practically more relevant authenticated encryption, has
thus far not been explored in detail.

Our Contribution We examine how the currently best PRFs for secret shared MPC over
Fp, namely MiMC and Leg, can be used to enable nonce-based authenticated encryption,
where we benchmark a number of orthogonal options. As alluded to before, we are assuming
that the key and the plaintext message are held in secret shared form, but that the nonce
and the resulting ciphertext are in the clear. This assumption crucially informs our study.

Our first step is to select potential modes of operation for secret-sharing based MPC-
driven, nonce-based AE. In making such a selection there are a number of design desiderata
to take into account the somewhat unusual computational model. Firstly, the underlying
PRF is only ever evaluated in the forward direction, both during encryption and decryption
(even though MiMC as a blockcipher does have an inverse, it is rather inefficient). Secondly,
the mode should allow a high degree of parallelism of the PRF calls to take full advantage
of the ability of secret-sharing based MPC engines to evaluate many operations in parallel.
Finally, the further computational overhead (beyond PRF calls) may be complicated,
provided it can be performed locally. To enable local computation, it can be worth opening
secret shared elements, provided this opening does not negatively affect security.

When examining various possible modes for authenticated encryption, we found two
candidates that best met our overall design criteria: on the one hand, a single combined
mode based on OTR [Min14], and on the other an Encrypt-then-MAC methodology using
either CTR-Mode plus PMAC [BR02], or CTR-Mode plus Hash-then-Encrypt (where in
both cases the CTR-Mode is nonce-based by exploiting a tweakable PRF). We converted
the original PMAC and OTR algorithms (which use finite fields of characteristic two) into
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variants that process blocks consisting of finite field elements in Fp, where p is a large
prime (say p > 2128). The resulting algorithms we dub pPMAC and pOTR. Here we took
care to ensure that the modifications made do not invalidate any of the original security
proofs.

Modern modes of operation, including PMAC and OTR, are usually cleanest described
based on a tweakable primitive, and we follow suit. This obviously does necessitate the
investigation of tweakable PRFs in our MPC context. Luckily, creating tweakable PRFs
turns out much easier than in the traditional, binary field setting. In that latter setting,
Rogaway’s XE transform [Rog04] takes a PRF Ek(m) and turns it into a tweakable PRF
Ẽi,Nk (m) with a tweak (i,N) using a sequence of constants Mi in the following manner:

Ẽi,Nk (m) = Ek(m⊕ (Mi · Ek(N))) .

It is important that the constants Mi do not repeat, and be easy to compute. This led
many authors to select Mi = 2T1 · 3T2 for two functions T1, T2 depending on i. This choice
is prompted by the characteristic two field, with the exact tweak applied depending on the
field order. In our setting of large prime characteristic, we obtain a trivial schedule by
using a standard integer representation of the field:

Ẽi,Nk (m) = Ek(m+ (i · Ek(N))) .

With CTR-then-pPMAC as an encryption methodology on a message consisting of `
finite field elements (i.e. ` blocks in this context), we apply one round of ` tweakable-PRF
evaluations to encrypt the ` message blocks, then another round of `− 1 tweakable-PRF
evaluations to produce a final MAC block, to which a final tweakable-PRF evaluation
is performed. Ignoring non-message dependent PRF evaluations this means we need to
evaluate 2 · ` PRF evaluations in a total of three parallel rounds. For the CTR+Hash-then-
MAC mode we apply one round of ` tweakable-PRF evaluations to encrypt the ` message
blocks, then a hash function in the clear to produce an intermediate open value, to which
a final tweakable-PRF evaluation is performed. This means we need to evaluate ` + 1
PRF evaluations in a total of two parallel rounds. For the OTR mode we evaluate first a
PRF on a nonce block, then apply ` PRF calls in two rounds (essentially performing a
two round Feistel network). A final PRF evaluation produces the tag. Overall, we require
`+ 2 PRF evaluations over four parallel rounds to evaluate OTR mode. Not surprisingly,
we find that CTR+Hash-then-MAC turns out to be the most efficient of these modes of
operation.

In a second step we implemented the modes using the above two PRFs to see which
performed better in practice. Our experiments are carried out using the publicly available
SPDZ engine [DPSZ12, DKL+13], though any classical protocol based on Shamir secret
sharing could also be used. Previously, Grassi et al. [GRR+16] conducted experiments
under the assumptions that the input and the output to the PRF need to be kept in secret
shared form. However, when used within one of the above modes of operation this may no
longer true, enabling further optimizations to be made into precisely how the PRFs are
evaluated within the MPC system. A topic which we explore in this paper.

Grassi et al. furthermore imply that the Leg PRF is to be preferred over the MiMC
PRF, as the Leg PRF (based on the Legendre symbol) had both a lower online round cost
and lower offline pre-processing costs. Their experiments seemed to confirm this preference.
Interestingly, when used within a mode of operation supporting parallel processing of the
blocks, we find that the MiMC PRF performs much better. Though the Leg PRF has low
round complexity and low computational cost (when computational cost is measured in
an MPC environment), its per-round communication cost is high. Thus for each round
of communication the number of bits sent between the MPC servers is much larger than
that for MiMC. When many PRF applications are done in parallel this high per round
communication cost causes network bottlenecks, resulting in a linear scaling in the runtime
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as the number of blocks processed increases. For MiMC, reaching network saturation takes
longer and so, as the number of blocks processed is increased, the runtime only degrades
sub-linearly. Hence, MiMC will often significantly outperform Leg.

Related Work Several recent papers have examined new low complexity blockciphers
and PRFs in the context of both MPC and FHE applications. For example, a blockcipher
called LowMC [ARS+15] is suitable for both MPC and FHE applications, whereas a a
stream cipher called Kreyvium [CCF+16], based on the Trivium stream cipher, is targeted
at FHE applications. Another stream cipher, FLIP, was cryptanalysed shortly after it was
presented [MJSC16, DLR16]. The blockcipher MiMC [AGR+16] was originally targeted at
SNARK applications, but later found to have potential for MPC style applications: Grassi
et al. [GRR+16] discuss the MiMC blockcipher and a new PRF based on the Legendre
symbol in the context of the SPDZ MPC engine.

As well as examining the basic PRF primitives, Grassi et al. [GRR+16] also touched
upon basic techniques to provide domain extension, concentrating on the established
CBC-MAC construction and the Merkle–Damgård construction. However, both of these
methods are sequential in nature, and hence are significantly less efficient in an MPC
context than the highly parallel modes examined by us. Moreover, Grassi et al. [GRR+16]
neither address codomain extension (notwithstanding one of their section headings) nor
authenticated encryption, even though both are crucial for encryption applications.

2 Preliminaries
In this section we recall the basic notions of authenticated encryption (AE) and its
constituent building block pseudorandom function (PRF), as well as generic design con-
siderations in the context of multiparty computation (MPC), including details on the
two existing PRFs designed for MPC that we will build upon. Throughout we will write
AO1,...,Oc for an algorithm A with access to c oracles O1, . . . , Oc. For a finite field Fp we
let F×p = Fp \ {0}.

2.1 Tweakable Pseudorandom Functions
A Pseudo-Random Function (PRF) is a keyed function F : K ×X → Y , where K is called
the key space. The key k ∈ K is typically chosen at random and the function keyed with k
is denoted Fk.

A PRF is pseudorandom if an adversary cannot tell the difference between oracle access
to Fk, for undisclosed k uniformly chosen at random from K, on the one hand and oracle
access to a function selected uniformly at random from the set Rand(X ,Y) of all functions
which map X to Y, on the other. More formally, for an adversary A the PRF advantage
against F (or Fk(·)) is defined as

Advprf
F

def=
∣∣∣Pr

[
k $← K : AFk(·) ⇒ 1

]
− Pr

[
ρ

$← Rand(X ,Y) : Aρ(·) ⇒ 1
] ∣∣∣

where we will informally say F is a PRF if this advantage is sufficiently small for all
reasonably resourced adversaries. It is easy to formalize our work to an asymptotic
setting where security equates to negligible advantages with respect to all probabilistic
polynomial-time adversaries operating against function families (indexed by a security
parameter).

In analogy with tweakable blockciphers, we shall also consider PRFs. A tweakable
PRF (tPRF) takes as additional input a tweak T chosen from a set of tweaks T , thus
F̃ : K × T × X → Y. Security is defined in much the same way as for a PRF, except that
the adversary can query the function on tweak–message pairs and the adversary’s goal
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is to distinguish F̃k from a random function ρ̃ ∈ Rand(T × X ,Y). More formally, for an
adversary A the tPRF advantage against F̃ is defined as

Advtprf
F̃

def=
∣∣∣Pr

[
k $← K : AF̃k(·,·) ⇒ 1

]
− Pr

[
ρ̃

$← Rand(T × X ,Y) : Aρ̃(·,·) ⇒ 1
] ∣∣∣

When considering PRFs with domain and co-domain such that X = Y = Fp, we shall
write Ek(m), without requiring Ek(·) being a permutation. And in the tweakable setting,
for the special case that X = Y = Fp we introduce the notation Ẽi,Nk (m), with the tweak
(i,N) ∈ F×p × Fp = T . Given a PRF Ek(·) we can create a tweakable PRF Ẽ·,·k (·) using
Rogaway’s XE framework [Rog04] adapted to Fp by setting Ẽi,Nk (m) = Ek(m+ (i ·Ek(N))),
for i 6= 0, as in Figure 1.

Algorithm Ẽi,N
k (m):

1: L← Ek(N)
2: ∆← i · L
3: Y ← Ek(∆ +m)
4: return Y

Figure 1: XE-based tweakable pseudorandom function over Fp

Theorem 1. Let E be any PRF with X = Y = Fp and let Ẽ be the tweakable PRF with
tweak space F×p × Fp as defined in Figure 1. Let A be an arbitrary adversary against the
PRF advantage of Ẽ making at most q queries to its oracle, then there exists a similarly
resourced adversary B against E satisfying

Advtprf
Ẽ

(A) ≤ Advprf
E (B) + 3q2/2p .

Proof. We closely follow Rogaway’s original proof for XE [Rog04, Theorem 7], making
only minimal changes to adapt from the Fn2 case to the more forgiving Fp case and to
take advantage of operating on functions, as opposed to permutations. The latter allows
us to avoid two PRP–PRF switches in the proof, resulting in a slightly tighter bound as
a result. As is customary, without loss of generality we assume the adversary does not
repeat queries.

Let game G0 be the original game where an adversary has access to Ẽ that calls E in
the background and let G1 be the game where the internal calls to E are replaced by calls
to a random function. This standard hop incurs the tPRF advantage, that is

Pr
[
AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
≤ Advprf

E (B) ,

where B is the adversary that runs A and answers the latter’s queries by evaluating Ẽ
using calls to its own oracle. The number of queries B makes is at most twice that of A
and the runtime overhead is limited to a few finite field operations per query.

Next consider the games G2 and G3 as depicted in Figure 2. Game G2 is identical to
G1 where the internal random function has been implemented using lazy sampling. By
inspection, games G2 and G3 are identical until bad, and game G3 is identical to providing
access to a random tweakable function, hence

Advtprf
Ẽ

(A) ≤ Pr
[
AG0 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]
= Pr

[
AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
+ Pr

[
AG2 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]
= Advprf

E (B) + Pr [A sets bad in G3 ] .
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Oracle Ẽi,N
k (m):

1: if N 6∈ N then
2: N ∪← N
3: if N ∈ X then
4: set badxn

5: LN
$← Fp

6: else
7: LN

$← Fp

8: X ← m+ i · LN

9: if X ∈ X then
10: set badxx

11: LX
$← Fp

12: else if X ∈ N then
13: set badnx

14: LX
$← Fp

15: else
16: LX

$← Fp

17: X ∪← X
18: return LX

Figure 2: Games G2 and G3, where only G3 includes the boxed statements.

What remains to bound is the probability A sets bad in G3. The first observation
here is that in G3 the oracle’s output is independent of the input, which allows us to
consider non-adaptive adversaries only: given a sequence of queries (Nj , ij ,mj) what is
the probability that the lazy sampling results in bad being set?

Without loss of generality, we assume that the queries are sorted on their first component.
This allows us to track the probability that one of the bad events happens as LN gets
sampled (see Figure 3). Furthermore, we rely on ij ∈ F×p means it has a multiplicative
inverse so that, for a given triple (X,mj , ij), it holds that

Pr
[
Ln

$← Fp : X = mj + ijLn

]
= Pr

[
Ln

$← Fp : Ln = i−1
j (X −mj)

]
= 1/p .

Bounding the probability that in the for loop badxx gets set is then easy: by using a union
bound over X ∈ X this equals |X |/p. Similarly, the probability that badxn/nx gets set is at
most |N |/p. The overall probability can then be bounded by union bound by

Pr [A sets bad ] ≤
q∑
l=1

(q + l − 1)/p ≤ 3q2

2p ,

where we used |X | ≤ l − 1 and N ≤ q.

Pseudorandom functions can double as message authentication codes (MACs). While
it is possible to consider MACs in a more general context than PRFs (for instance allow
probabilistic tagging and introduce a separate verification function) and with a weaker
unforgeability security notion, we will treat MACs as a deterministic keyed function
MacGen : K ×X → Y whose security notion coincides with that of a PRF.

We are primarily interested in pPMAC, which is an adaptation of PMAC—or more
accurately of PMAC1 [Rog04]—to Fp. It can be considered a domain extension of Ek(·)
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Oracle (N, (ij ,mj)j):

1: LN
$← Fp

2: for j do
3: X ← mj + ijLN

4: if X ∈ X then
5: set badxx
6: else if X ∈ N then
7: set badxn/nx

8: X ∪← X

Figure 3: Bounding bad; here N is initialized to contain all N to be queried.

with domain (and codomain) Fp to MacGen with domain X = F∗p and codomain Y = Fp,
where F∗p denotes the arbitrary length strings of Fp elements, though there will be an
effective upper bound on the maximum length we can cope with.

2.2 Authenticated Encryption
For simplicity, we only consider AE schemes without associated data, although we are
confident that the techniques we develop in later sections apply in equal measure to AEAD
schemes. An AE scheme is defined by two algorithms (AE-EF,AE-DF), where we use the
subscript F to denote that both the input and output will be vectors of elements in a finite
field (typically F = Fp due to their relevance to MPC applications).

The encryption AE-EF always takes as input a key k, a message m ∈ F∗, and an
additional input N ∈ F or IV ∈ F, where the difference in notation refers to the distinction
between nonce-based security (N) versus IV-based security (IV). The output consists of a
ciphertext c ∈ F∗ and a separate tag T ∈ F. Thus we have that

(c, T )← AE-EF(k, N,m)

with N possibly replaced by IV depending on the context. Henceforth we will assume that
the scheme is length-preserving, meaning that |c| = |m| irrespective of AE-EF’s inputs.
The decryption function AE-DF receives as input a key k, and (N, c, T ) (or (IV, c, T )) and
outputs a purported plaintext m ∈ F∗ or ⊥ if the input is deemed invalid. We impose
both correctness and tidiness [NRS14] on the pair (AE-EF,AE-DF), so that

(correctness) for all inputs AE-DF(k, N,AE-EF(k, N,m)) = m and

(tidiness) for all inputs, if AE-DF(k, N, c) = m 6=⊥, then AE-EF(k, N,m) = c

which implies that as functions AE-DF is completely defined by AE-EF.
Our choice for a separate tag in the syntax is customary in part of the literature and

preempts later constructions where there is a clear authentication tag, although especially
for encode-then-encipher constructions the split would be artificial.

Security for an AE scheme is defined by two notions: PRIV and AUTH. Informally,
the first property defines what it means for a ciphertext to keep the message hidden,
whereas the second defines what it means for the ciphertext to be authenticated. The
PRIV adversary works as a basic IND-CPA adversary against the encryption scheme. In
particular the adversary AE has access to an encryption oracle implementing either AE-EF
for the underlying AE scheme, or an oracle $ which just outputs random finite field elements
of the correct length. The adversary will query this oracle with (Ni,mi) (resp. just mi)
in the nonce-based (resp. IV-based) setting, to obtain tuple (ci, Ti) (resp. (ci, Ti) plus the
IVi chosen by the experiment). The only constraint on the adversary’s calls to this oracle
come in the nonce-based setting, where the calls must be nonce-respecting, i.e. if i 6= j
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then Ni 6= Nj . For an adversary A we let q denote the number of queries and σM the
total length of all messages queried to the oracle, so σM

def=
∑q
i=1 |mi|.

The adversary’s goal is to distinguish between a genuine encryption oracle (which also
outputs the IV) and one that just outputs random values (ci, Ti) (resp. (IVi, ci, Ti)) of the
corresponding length. Thus we define the advantage of an adversary as follows:

Advpriv
AE[F](A) def=

∣∣∣Pr
[

k $← K : AAE-EF ⇒ 1
]
− Pr

[
A$ ⇒ 1

] ∣∣∣ .
An AUTH adversary A can access both oracles AE-EF and AE-DF, where it can

make q encryption queries and qv decryption queries. The encryption queries we de-
note by (N1,m1), . . . , (Nq,mq) (resp. m1, . . . ,mq), and as above we require that, in
the nonce-based setting, they are nonce-respecting. Decryption queries are denoted by
(N ′1, c′1, T ′1), . . . , (N ′qv

, c′qv
, T ′qv

), (resp. (IV′1, c′1, T ′1), . . . , (IV′qv
, c′qv

, T ′qv
)); there are no re-

strictions on what can be passed to the decryption oracle by the adversary. We let σM be
as above and additionally use σC to denote the total length of the ciphertexts passed to
the decryption oracle, so σC′

def=
∑qv

i=1 |c′i|. The adversary wins, or is said to have forged a
message, if it passes a query to AE-DF which does not return ⊥ and which was not obtained
from a query to AE-EF. Let this query be denoted by (N ′i∗ , c′i∗ , T ′i∗) (resp. (IV′i∗ , C ′i∗ , T ′i∗))
for some i∗ ∈ {1, . . . , qv}. In other words, the adversary wins if there is no j ∈ {1, . . . , q}
for which c′i∗ = cj , T ′i∗ = Tj and N ′i∗ = Nj (resp. IV′i∗ = IVj). We define the adversary’s
advantage by

Advauth
AE[F](A) def= Pr

[
k $← K : AAE-EF,AE-DF forges

]
.

2.3 MPC Model
MPC systems ideally support an arbitrary number of players and various collusions of
dishonest parties. The most efficient MPC systems of this type, such as BDOZ [BDOZ11],
SPDZ [DPSZ12, DKL+13], and VIFF [DGKN09], are based on secret sharing and are
typified by a number of shared properties and constraints.

The inputs to the computation are elements of a finite field Fp. Those elements x that
have to be kept secret are held in secret shared form. To denote that a variable is held in
secret shared form we shall write [x]. A variable which is not secret shared will be said to
be in the clear. A secret shared value can be turned into a clear value at any point in the
computation; such an operation is called an opening.

Computation itself is split between a relatively inefficient pre-processing phase followed
by a more efficient online phase. The pre-processing phase is often called the offline
phase and is mostly independent of any inputs from the parties; it is mainly tasked with
producing shared Beaver triples ([x], [y], [x ·y]). However, the offline phase can also produce
other shared data that may depend on persistent user inputs, for instance we will assume
that the sharing [k] of some symmetric primitive’s key will be available during the offline
phase. Consequently, by producing more complex pre-processed data one can perform
more complex operations in the online phase more cheaply. At a minimum, we also assume
the pre-processing produces shared random bits [b] where b ∈ {0, 1} and shared random
squares ([r], [r2]) where r ∈ Fp.

To measure the MPC complexity of a function we concentrate on the online phase.
The function evaluation will require parties to both perform local computations and to
communicate with one another (this holds both for the offline and online phase by the
way). The local computation is usually mostly ignored when considering MPC complexity,
instead the focus is strongly on the communication. This communication is performed in
rounds, where all parties can send as much data to any other party as they wish, based
on the information they have received in previous rounds. The two main metrics for
the communication are the round complexity and the number of openings (how many
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secret shared elements are opened to elements in the clear). Unless the amount of data
communicated in a single round floods the network capacity, the round complexity strongly
determines the latency required to compute the desired function securely. The number of
openings is a strong indicator of throughput as it indicates how much data the network has
to accommodate. Openings themselves take one round, but in one round many openings
could potentially be performed in parallel.

The main operations over Fp are addition and multiplication. Both addition of secret
shared values and scalar multiplication by clear values can be performed locally (i.e. without
interaction) and are deemed efficient: neither contributes to the number of rounds or
openings of the overall computation. On the other hand, multiplication of secret shared
values does require a round of interaction between the players: it requires two openings,
which can be done in parallel thus consuming one round. Additionally, the multiplication
will consume one of the pre-processed Beaver Triples. A value can also be squared by
consuming a shared random square; this only requires one opening, yet still takes one
round of interaction.

To reduce the number of online rounds when optimizing MPC, the main techniques
are moving input-independent computation to the pre-processing stage, parallelizing
computations during the online stage, and performing early openings to allow cheaper,
subsequent operations on clear instead of shared elements. We will see examples of all
three techniques in what follows.

2.4 Two Candidate PRFs for MPC
2.4.1 MiMC

Minimal multiplicative depth cipher (MiMC) is a cipher which works in both binary and
prime fields [AGR+16, GRR+16], though we will only consider the prime field variant
MiMC : Fp × Fp → Fp with p ≡ 2 mod 3. The cipher is a classical iterated Even–Mansour
cipher using a simple algebraic round permutation inspired by a cipher by Nyberg and
Knudsen [NK95]. When incorporating the key addition prior to applying the permutation,
the round function is defined by

Fi(x) = (x+ k + ci)3 ,

where the ci ∈ Fp are randomly chosen round constants that “are fixed once and can be
hard-coded into the implementation” [AGR+16]. This round function is iterated r times,
with a final key addition for whitening purposes:

FMiMC(k, x) = (Fr−1 ◦ Fr−2 ◦ ... ◦ F0)(x) + k .

Originally, r = dlog3 pe rounds were suggested for security [AGR+16, Section 5]. For a
prime p of 128 bits this would lead to r = 82 rounds for full keyed-permutation security.
However, if the attacker only has access to a limited number n ≤ 2115 of plaintext/ciphertext
pairs then the number of rounds can be reduced to r = 73 [AGR+16, Section 4.3].

2.4.2 Legendre Symbol Leg

In 1988 Damgård proposed the use of the Legendre symbol to yield a PRF with input
and output in Fp [Dam90]. Although at that time there was no security proof that the
resulting PRF is secure, several reductions were made later to the decision shifted Legendre
symbol (DSLS) problem [vDHI03, Cv07].

The PRF Legbit : Fp × F∗p −→ {0, 1} is initialized with a random key k
$← Fp. To

evaluate it on input x, we simply call the Legendre symbol on k + x and normalise the
output to be in {0, 1} as opposed to {−1, 1}. It is known that Legbit is a pseudorandom
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function if there is no probabilistic polynomial time adversary to solve DSLS efficiently
[GRR+16].

This function can be extended to produce a field element by selecting a vector of
keys k = (ki) ∈ FLp and by computing Leg(x) =

∑L−1
i=0 2i · Legbit(ki, x) (mod p), for some

value L. Assuming Leg outputs an unbiased random bit, for general p one still needs
to select L = d2 · log2 pe to ensure statistical closeness to the uniform distribution over
Fp, however if p is chosen sufficiently close to a power of two then one can relax to
L = dlog2 pe [GRR+16].

3 MPC Complexity of MiMC and Leg
When evaluating a tweakable PRF in an MPC setting, the key will always be secret and the
tweak will always be in the clear, but whether the main input and output are held in the
clear or are secret shared will depend on the application. Consequently, when optimizing
MiMC and Leg we need to make a distinction between four cases, depending on whether
the input and/or output is held in the clear or is secret shared. These four variants we
will denote by the notation in Figure 4 in subsequent diagrams, with an opening operation
denoted by a coloured circle (red denoting a shared data item, and blue a data item held
in the clear).

m m m m d

Ẽ
i,N

k Ẽ
i,N

k Ẽ
i,N

k Ẽ
i,N

k

c c c c d

Figure 4: Pictorial notation to define processing of open versus shared data.

In prior work on the MPC evaluation of MiMC and Leg, only the fourth and, for
Leg only, the third variant were discussed [GRR+16]. As we will see, the other variants
are more useful when defining modes of operation, and they can have a remarkably
reduced MPC complexity. Another major consideration is whether one is interested in
online times subject to standard pre-processing (in which multiplication triples, random
squares and random bits are prepared ahead of time), or whether one is interested in
key dependent pre-processing for the specific PRF in question, or even tweak (and key)
dependent pre-processing for the specific tweakable PRF in question.

In the tweakable context, we can express the design in a similar pictorial way as
in Figure 5. However, the distinction as to whether the actual message is in the clear
disappears, as even in this case the input to the second PRF call is made on shared
data due to the need to keep the output of the first PRF shared. Thus we really only
have two cases to consider for general PRFs, although specific PRFs may have additional
optimizations (see below for one such optimization in the case of the Leg PRF).

3.1 MiMC in MPC
Recall the MiMC PRF is defined by

Ek(x) = FMiMC(k, x) = (Fr−1 ◦ Fr−2 ◦ · · · ◦ F0)(x) + k ,

where
Fi(x) = (x+ k + ci)3 .
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Figure 5: Composing a tweakable PRF from a non-tweakable PRF in the case of clear
text message/shared output (resp. clear message and clear output)

Grassi et al. [GRR+16] consider two methods for computing MiMC in an MPC setting:
MiMCbasic and MiMCcube. Given our focus on online times for latency and throughput,
only MiMCcube is of interest to us; henceforth we’ll simply call it MiMC.

Using Standard Pre-Processing The computation of [y] ← [x] + [k] + ci can always
be performed locally, so of interest is the cubing [y3]. The standard MPC method to
compute MiMC uses a special pre-processed tuple ([v], [v2], [v3]) for which v $← Fp. This
pre-processed tuple itself could be computed using squaring and multiplication during the
offline phase, or it can be done in the online phase. Given this tuple, to obtain [y3] from
[y] we open z = y − v to all parties and then compute locally:

[y3] = 3 · z · [v2] + 3 · z2 · [v] + z3 + [v3] .

Assuming the required r tuples ([v], [v2], [v3]) have been computed during the offline phase,
the online phase reduces to one opening and one communication round per cipher round,
for a total of r openings and r communication rounds for full evaluation of the cipher. If
the tuple is produced in the online phase then we require 3 · r openings and r + 1 rounds
of communication (as all r tuples can be processed simultaneously). In the case where the
output is in the clear we require an additional opening and round.

Using Key Dependent Pre-Processing If the input to MiMC is in the clear then a
marginal improvement in performance results from the local evaluation of the first round
function F0([k], x) = (x + [k] + c0)3, where we need the values ([k], [k2], [k3]) to be
precomputed. As the improvement is only minor over the general method above, we ignore
this optimization in what follows.

Using Tweak Dependent Pre-Processing When evaluating the tweakable-PRF on a
fixed nonce N known at pre-processing time, say N = 0 or N = 1, we could precompute
the value of [M ] = E[k](N). We treat this case as tweak dependent pre-processing, as
opposed to key dependent pre-processing, as it assumes knowledge of the application usage
of the PRF at pre-processing time.

3.2 Leg in MPC
Recall the Leg PRF is defined by

Ek(x) = Leg(x) =
L−1∑
i=0

2i · Legbit(ki, x) (mod p)
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where k = {ki}L−1
i=0 . When evaluating Leg it suffices to compute the L invocations of

Legbit in parallel, followed by local computations for the linear combination of the Legbit
outputs into Leg(x) (after all, multiplications by public constants and additions can be
done locally without any interaction between parties). If the final output of Leg should be
in the clear, then the Legbit already may be in the clear (implicitly this observation uses
that the indistinguishability of Leg follows from that of Legbit). Thus the MPC complexity
of Leg is equivalent to that of computing Legbit in parallel.

Note, we could use a tweak to also define the extra keys needed in the extension of
Legbit to Leg, thus saving storage at the expense of the evaluation of the tweak. Thus the
tweakable Leg, would be built out of a tweakable Legbit with two tweak inputs (one for the
domain extension to Leg and one for the actual tweak on the Leg function itself).

Using Standard Pre-Processing Grassi et al. [GRR+16] present an efficient method to
compute Legbit (reproduced in Figure 6) when the input [x] and output [y] are both secret
shared. Grassi et al. already observe that the two steps leading up to the computation of
u can be pre-processed and that the step following the computation of u can be performed
locally. The computation of u itself takes one round (containing two openings) to compute
[t] · ([k] + [x]) and one to open the result. Thus if a fixed quadratic non-residue α and the
data tuples ([b], [t]) are produced during the offline phase, then the online computation of
the PRF Legbit([x]) will require two rounds of communication and three openings. Without
the special pre-processed tuples we would require an extra round and two extra openings.

Let α be a fixed, quadratic non-residue modulo p and [k] the shared secret key.
Eval: To evaluate Legbit on input [x] with key [k]:

1. Take a random square [s2] and a random bit [b] from the offline phase.
2. [t]← [s2] · ([b] + α · (1− [b]))
3. u← Open([t] · ([k] + [x]))

4. Output [y]←
((

u
p

)
· (2 · [b]− 1) + 1

)
/2

Figure 6: Securely computing the Legbit PRF with secret-shared input and output
(Redacted copy of [GRR+16, Figure 7]).

Grassi et al. additionally suggest an alternative, conceptually easier evaluation when
the input is shared but the output should be in the clear: on input [x] take a preprocessed
square [s2], evaluate Open([s2] · ([k] + [x])) and output the Legendre symbol of the result.
This version still requires two rounds of interaction and three openings, but it only consumes
standard pre-processed data.

Using Key Dependent Pre-Processing However, the implementation suggestions by
Grassi et al. are not the end of the story. We first investigate what happens when the
input x is provided in the clear, and we allow key dependent pre-processing.

Our key observation is that if the input x is in the clear, then we can store ([b], [t], [t·k]) in
the offline phase. This allows simplification of Step 3 from Figure 6 to u← Open([t·k]+x·[t]),
which requires only one round of interaction as multiplication by clear values is free. Step
4 proceeds (locally) as before, leading to a shared output.

If both input and output are in the clear, the product [s2 · k] can be preprocessed and
the only online communication remaining is for Open([s2 · k] + x · [s2]), namely one round
and one opening. The advantage of this method over the one with shared output is a
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reduction in the consumption of offline material. However, in our tweakable PRF setting
we see this optimization is never used.

Let α be a fixed, quadratic non-residue modulo p and [ki] the shared secret key (for position i)
Preprocess: For each future evaluation prepare tuples as follows:

1. For j ∈ {1, . . . , L}

• Take random squares [s(n)
j

2] and random bits [b(n)
j ].

• [t(n)
j ]← [s(n)

j
2] · ([b(n)

j ] + α · (1− [b(n)
j ]))

• [(tk)(n)
i ]← [t(n)

i ] · [ki]
2. For i ∈ {1, . . . , L}

• Take random squares [s(x)
i

2] and random bits [b(x)
i ].

• [t(x)
i ]← [s(x)

i
2] · ([b(x)

i ] + α · (1− [b(x)
i ]))

• [(tk)(x)
i ]← [t(x)

i ] · [ki]
3. For i, j ∈ {1, . . . , L}

• [(tb)ij ]← [t(x)
i ] · [b(n)

j ]
4. Output all the shares

Eval: To evaluate Leg on input [x] with key [k] and tweaks i and N , leading to shared
output.

1. Retrieve a preprocessed tuple.
2. For i = j ∈ {1, . . . , L}

(a) vj ← Open([(tk)(n)
j ] +N · [t(n)

j ])

(b) [xt(x)
i ]← [x] · [t(x)

i ]
3. For i ∈ {1, . . . , L}

• Locally compute [(tL)i]←
∑L

j=1 2j−1 ·
((vj

p

)
· (2 · [(tb)ij ]− [t(x)

i ]) + [t(x)
i ]
)

• ui ← Open([(tk)(x)
i ] + [xt(x)

i ] + i · [tLi])

• Locally compute [yi]←
((

ui
p

)
· (2 · [b(x)

i ]− 1) + 1
)
/2

4. Output [y]←
∑L

i=1 2i−1 · [yi]

Figure 7: Securely computing the tweakable Leg PRF with shared input, fresh N -tweak,
and shared output.

Figure 7 presents a method to compute Leg as a whole for key dependent pre-processing
of the tweakable cipher when presented with a fresh value N . The method presented works
for a shared input [x], requiring multiplications in Step 2b. These can be done in parallel
with the openings of Step 2a, thus for a shared input, the online costs amounts to two
rounds of interaction and 3L+ 1 openings. If x is clear, then Step 2b can be performed
locally, reducing the total number of openings to L+ 1; the number of rounds remains 2.

For more complicated calculations, such as re-use of the same N in a future sequential
call to the tweakable PRF, some pipelining might be feasible. For instance, the respective
Steps 2a can still be performed in parallel. However, the gains over a straightforward
approach—treating the sequential composition of two tweakable PRF calls as three se-
quential PRF calls—are not worth the significant increase in consumption of pre-processed
data. Whereas standard pre-processing only precomputes O(L) elements, for Figure 7
we need to pre-process O(L2) elements instead. Due to the high pre-processing cost for
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relatively marginal on-line gains, we discard the method of Figure 7 for the remainder of
this paper.

Using Tweak Dependent Pre-Processing Recall that we adapted XE-tweaking of the
form

Ẽi,Nk (m) = Ek(m+ (i · Ek(N))) , for i 6= 0 .

Due to the linearity of Leg as a function of Legbit, we are essentially interested in the
evaluation of

Legbit(m+ (i · Ek(N))) ,

in a number of scenarios, depending on whether the input m, resp. output, are clear or
shared, and whether N is fixed or fresh (we will always assume i to be fresh and in the
clear, and N to be in the clear).

For the scenario with a clear input m and a shared output, Figure 8 presents a method
to compute Legbit, when the N part of the tweak is fixed (and hence can be pre-processed).
This method requires, in the online phase, only a single round of openings. In the case
where m is shared, one can save pre-processing [t · k] and compute the second line of the
Evaluation method by u← Open([t] · ([k] + [m]) + i · [t ·M ])); which requires an additional
round of interaction and an additional two openings.

Let α be a fixed, quadratic non-residue modulo p and [k] the shared secret key.
Preprocess: Assume [M ] ← E[k](N) has already been computed. Then for each future

evaluation prepare tuples as follows:

1. Take a random square [s2] and a random bit [b].
2. [t]← [s2] · ([b] + α · (1− [b]))
3. [t · k]← [t] · [k]
4. [t ·M ]← [t] · [M ]
5. Output ([b], [t], [t · k], [t ·M ])

Eval: To evaluate Legbit on input m with key [k] and tweaks i and N , leading to shared
output.

1. Retrieve a preprocessed tuple ([b], [t · k], [t ·M ])
2. u← Open([t · k] +m · [t] + i · [t ·M ]))

3. Output [y]←
((

u
p

)
· (2 · [b]− 1) + 1

)
/2

Figure 8: Securely computing the tweakable Legbit PRF with clear input, fixed N -tweak,
and shared output.

3.3 Summary
It is clear the design choices for implementation depend very much on how much specialised
pre-processing one wants to perform. In the rest of this paper we restrict ourselves to
the case where we allow key-dependent, but not tweak dependent pre-processing. In this
context our tweakable PRF this is then produced via our non-tweakable PRF via the
methodology given in Figure 5. Note, when the message in this diagram is given in the
clear, this makes no difference to the execution of the second PRF call, as the input is
already in shared form.
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In addition, any second call to the tweakable PRF with the same value N in the
tweak can be done without the need to call the first PRF again. When the output of the
tweakable PRF is to be returned in an open form, the second PRF call can be performed
more efficiently in the case of Leg by using the key-dependent pre-processing variant. This
leads to the online costs given in Table 1.

Table 1: Summary of costs for our PRFs MiMC and Leg. The first line for each PRF is
the cost of the first such tweakable PRF call, and the second is the cost of subsequent PRF
tweakable calls with the same N component in the tweak (clearly their is no second line
when we use tweakable pre-processing). The values SP, KP, and TP stand for standard
pre-processing, key dependent pre-processing and tweak dependent pre-processing. Note
the costs when the input message is in the clear are identical to when the input message is
in shared form. The pre-processing costs are given in the number of data items needed to
be preduced by the pre-preprocessing.

Ẽ
i,N

k Ẽ
i,N

k

Rnds Open Prep Rnds Open Prep

MiMC (SP)
2 · r + 1 6 · r 4 · r 2 · r + 2 6 · r + 1 4 · r

r 3 · r 2 · r r + 1 3 · r + 1 2 · r
MiMC (TP) r 3 · r 2 · r r + 1 3 · r + 1 2 · r

Leg (SP)
4 10 · L 8 · L 5 8 · L 6 · L
2 5 · L 4 · L 2 3 · L 2 · L

Leg (KP)
3 4 · L 8 · L 3 4 · L 6 · L
2 3 · L 4 · L 2 3 · L 2 · L

Leg (TP) 2 3 · L 2 · L 3 3 · L+ 1 2 · L

4 Encrypt-then-MAC in Characteristic p

In this section we examine an Encrypt-then-MAC paradigm to obtain AE for mes-
sages/ciphertexts consisting of vectors in Fp. To enable the efficient computation we
select a nonce-based IND-CPA encryption mode which is highly parallel (specifically a
modification of CTR mode). For the MAC algorithm we present two possibilities, a
Hash-then-MAC method (which is suitable as we always MAC clear data), as well as a
new MAC algorithm which we call pPMAC. Here pPMAC is the obvious port of PMAC
from binary fields to the field Fp, where we examine the PMAC proof to ensure that the
scheme is still secure.

4.1 Encrypt-then-MAC
The encrypt-then-MAC paradigm originally applied probabilistic encryption followed by
authentication of the resulting ciphertext [BN08]. The probabilistic encryption itself
only needs to be PRIV or IND-CPA secure. Moving to a nonce-setting is relatively
straightforward [NRS14]: assuming one has a MAC function, one simply needs to combine
a nonce based encryption (E,D) scheme which is just PRIV (i.e. IND-CPA) secure, and
then authenticate the nonce and the obtained ciphertext with a tag generated from a
secure MAC function MacGen. This composition corresponds to scheme ‘N2’ as studied
by Namprempre et al. [NRS14]. This scheme is the only one of the four secure schemes
(N1 up to N4) that feeds the ciphertext as opposed to the message to the MAC function.
As in our context ciphertext is in the clear whereas messages is shared—and we do not
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believe that the slightly increased parallellism allowed by N1’s encrypt-and-MAC approach
outweighs this advantage—we opted for this N2 mode.

To obtain a nonce based scheme two variants of CTR mode are possible, either

ci ← mi + Ẽ1,N
k (i) = mi + Ek(i+ Ek(N))),

ci ← mi + Ẽi,1k (N) = mi + Ek(N + i · Ek(1))).

The latter variants is preferred as Ek(1) can be precomputed when allowing key dependent
pre-processing; it corresponds to a simplified variant of CTR-in-Tweak [PS16].

To this CTR mode nonce-based IND-CPA encryption we then add authentication via
a MAC function. See Figure 9, where we use this CTR mode as the underlying encryption
scheme and an arbitrary MAC function. In this figure we present the algorithm, making
specific reference to what data is shared and what is open. The reader should note that in
decryption we need to perform a secure comparison between the input tag (in the clear),
and the computed tag (in shared form). This is easily accomplished, by opening the value
[r] · ([Tag′]− Tag), for a random value r from the pre-processing, and comparing the value
to zero.

Given a message [m] = [m1], . . . , [m`] for mi ∈ Fp and a pair of keys [k] = ([k], [k′]) for the
PRF E[k](·) we define the AE mode CTR+MAC as:

AE-EF([k], N, [m]):
1: for i = 1, ` do
2: [ci]← [mi] +

[
Ẽi,1

k (N)
]

3: Open [ci].
4: c← c1, . . . , c`.
5: Tag← MacGen([k′], N‖c).
6: Return (c,Tag).

AE-DF([k], N, c,Tag):
1: for i = 1, ` do
2: [mi]← ci −

[
Ẽi,1

k (N)
]

3: [m]← [m1], . . . , [m`].
4: [Tag′]← MacGen([k′], N‖c).
5: if [Tag′] 6= Tag then return ⊥.
6: Return [m].

Figure 9: AE mode CTR+MAC in the nonce-based setting

4.2 The PMAC Algorithm over Fp

The original PMAC algorithm [BR02] operates (after suitable padding) on elements in
the finite field F2n . The algorithm makes use of various constants, which in the original
PMAC are taken to be from a Gray code to enable efficient computation. In addition a
“large” constant called Huge is defined, which is equal to 1/x for x being the formal root
of the defining polynomial for the field. The tag is produced by utilizing an encryption
function defined by Ek(m) : F2n −→ F2n .

PMAC1 [Rog04] is a conceptually simpler version of PMAC that recasts the masked
blockcipher calls as direct, tweakable blockcipher ones instead. This abstraction is especially
potent when moving to Fp and using a tweakable PRF. As we will be using F×p as tweak
space, we can set Huge = p− 1 (to be used by the final Ẽ call) and use tweak i to process
message block mi, for i ∈ {1, . . . , p − 2}. Hence our Fp variant of PMAC1, henceforth
referred to as pPMAC, takes in a message which is at most p− 2 finite field elements long
and produces an element of the finite field Fp as final tag; the precise pPMAC algorithm
is given in Figure 10.

While the security of PMAC over F2n has achieved ample attention [MM07, DY15,
LPSY16], the security for our pPMAC version doesn’t seem to follow directly from prior
work. Hence we present Theorem 2 to bound an adversary’s distinguishing advantage.
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The algorithm pPMAC-Gen(k,m) is defined by:
1: Write m as ` finite field elements m1, . . . ,m` where mi ∈ Fp.
2: if ` ≥ p then return ⊥.
3: for i = 1, `− 1 do
4: Yi ← Ẽi,0

k (mi)
5: Σ← Y1 + · · ·+ Y`−1 +m`

6: Tag← Ẽp−1,0
k (Σ).

Figure 10: pPMAC in Fp

Luckily, the proof is a fairly straightforward adaptation of Rogaway’s [Rog04, Section
11], where the use of a tweakable PRF instead of a tweakable blockcipher allows some
simplifications and tightening of the bound.

Theorem 2. Let A be a PRF-adversary against pPMAC making q queries having a total
message length of σ finite field elements. Then there exists an adversary B attacking Ẽ
making at most σ+ q oracle queries and running in time comparable to that of A such that

Advprf
pPMAC[̃E]

(A) ≤ Advtprf
Ẽ

(B) + q(q − 1)
2p .

Proof. Let G0 be the original pPMAC game and let G1 be the game with the keyed Ẽ
replaced by an ideal tweakable random function. Let B be the adversary against Ẽ that
runs A and uses its Ẽ oracle to evaluate pPMAC for A, then

Pr
[
AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
= Advtprf

Ẽ
(B) ,

where the number of Ẽ calls induced by A’s queries is at most σ + q and B’s overhead
otherwise is minimal.

Let G2 be the game where bad is set if two inputs cause colliding final Ẽ calls (with
tweak Huge). As the tweak Huge cannot be used for any other Ẽ calls, if no such collisions
appear we can replace the tag output by a freshly drawn Fp elements in G2. Then G1 and
G2 are identical until bad. Morever, to analyse the probability that A sets bad in G2 we
may restrict without loss of generality to non-adaptive adversaries.

For any given pair of distinct queries, there has to be at least one Ẽ call that is made
with distinct inputs (if the messages are identical until the final message block, no collision
is possible). For a collision to occur, fix the outputs for all the other message blocks (of
this query pair) and one of the distinct message blocks of the colliding pair, then the Ẽ
value (for the corresponding distinct input) has to hit a specific value, which happens only
with probability 1/p. A union bound over all

(
q
2
)
pairs results in the stated bound.

In an MPC context, we are primarily interested in an implementation where both
the message and the tag are available in the clear, as our use case concentrates on the
Encrypt-then-MAC setting where pPMAC will be applied on an already opened ciphertext.
Figure 11 shows the implications for the underlying tweakable PRF calls, in the key
dependent pre-processing setting. Note that the ‘N ’-tweak is fixed to N = 0 which allows
preprocessing of [M ] = E[k](0) as required in each call to Ẽi,0[k] (m). Also, notice that a naive
implementation of the tweakable PRF will result that the remaining PRF applications will
be on shared inputs even if m itself is clear, courtesy of [M ] being shared. When combined
with our CTR mode encryption we obtain an AE method given in Figure 12.
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Leg m1 m2 m3 m`−1 m`
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2 Ẽ
p−1,0
k

Tag

Figure 11: Implementing pPMAC in MPC for clear inputs and clear outputs. The number
of rounds of interaction for the Leg tweakable PRF using key dependent pre-processing
are given to the left.

4.3 Hash-then-MAC
Whilst having pPMAC as a general MAC function might be useful in some other contexts,
in terms of creating a MAC for use in an Encrypt-then-MAC AE scheme the pPMAC
function is overkill. A simpler alternative, described in Figure 13 is to simply hash the
clear ciphertext values ci and then apply a single invocation of the PRF to the output
Note, the tweak N value can be the same for this PRF call, as for the PRF calls in the
CTR mode.

One has to convert the output of the hash function function H into an element modulo
p, so it can be passed into our PRF. We require that the value passed to the PRF satisfies
the collision resistance property. If H is chosen to be a standard hash function such as
SHA-256 or SHA-3, then simply truncating the hash value to log2 p bits and treating the
result as an integer modulo p will suffice.
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1,0
k Ẽ
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Figure 12: CTR+pPMAC Encryption Mode. The number of rounds of interaction for the
Leg tweakable PRF using key dependent pre-processing are given to the left.
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action for the Leg tweakable PRF using key dependent pre-processing are given to the
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5 OTR in Characteristic p

OTR is a nonce-based AE mode of operation for blockciphers [Min14]. It has a number
of advantages that make it eminently suitable for adaptation to an MPC context, in
particular its use of the forward direction of the blockcipher only (even for decryption)
and its high level of parallellization for both encryption and decryption. The original
OTR mode allows the encryption of arbitrary length bitstrings using arbitrary length
bitstrings of associated data. In this section we will adapt Minematsu’s OTR to encrypt
arbitrary vectors of Fp elements based on a tweakable pseudorandom function, where we
discard any associated data. Consequently, much of the complexity of the original OTR,
for instance related to padding to some multiple of the blocklength, disappears. Although
OTR strictly speaking is a blockcipher mode of operation, Minematsu already presents
OTR as a tweakable blockcipher mode of operation instantiated with a specific tweakable
blockcipher. Our version of Fp will be based on this perspective, making use of an Fp
tweakable PRF Ẽ (which need not need be invertible). The tweaks needed in our Fp variant
are fairly straightforward. This contrasts with a relatively complex tweak schedule in the
original OTR to avoid colliding masks over the finite field F2n (cf. [BS16]). Finally, in
order to present a cleaner implementation we removed the final block switch.

1: Write m as ` finite field elements m1, . . . ,m`

2: if ` ≥ p/2 then return ⊥.
3: Σ← 0 where mi ∈ Fp.
4: for i = 1, b`/2c do
5: c2·i−1 ← Ẽ2·i−1,N

k (m2·i−1) +m2·i

6: c2·i ← Ẽ2·i,N
k (c2·i−1) +m2·i−1

7: Σ← Σ +m2·i

8: if ` is odd then
9: c` ← Ẽ`,N

k (0) +m`

10: Σ← Σ +m`

11: c← (c1, . . . , c`)
12: Tag← Ẽ−`,N

k (Σ)
13: return (c,Tag)

Figure 14: The Algorithm OTR-E(N,m)

Our modified construction is presented in Figure 14 and Figure 15: encryption takes the
key k as well as a nonce N ∈ Fp and a message m ∈ F∗p, producing a ciphertext c ∈ F∗p and
a tag Tag ∈ Fp, whereas decryption takes the key k as well as N ∈ Fp, a ciphertext c, and
a tag Tag to produce a message m (or an invalid ciphertext symbol ⊥). Encryption only
works for messages with fewer than p/2 elements, with longer messages (and ciphertexts)
rejected out of hand.

A diagramatic representation of encryption is given in Figure 16, where we additionally
highlight some MPC implementation details. OTR’s core encryption component is a two-
round Feistel structure, Here one cannot use an output in the clear for the PRF—which
would potentially be faster, especially for Leg—as this would be tantamount to using a
public string as one-time pad and hence woefully insecure.

Decryption follows in a similar manner, see Figure 17. Note that, as for our previous
MAC-then-Encrypt constructions, a secure comparison is needed to process the computed
tag in the decryption algorithm.
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1: Write c as ` finite field elements c1, . . . , c` where ci ∈ Fp.
2: if ` ≥ p/2 then return ⊥.
3: Σ← 0
4: for i = 1, b`/2c do
5: m2·i−1 ← c2·i − Ẽ2·i,N

k (c2·i−1)
6: m2·i ← c2·i−1 − Ẽ2·i−1,N

k (m2·i−1)
7: Σ← Σ +m2·i

8: if ` is odd then
9: m` ← c` − Ẽ`,N

k (0)
10: Σ← Σ +m`

11: m← (m1, . . . ,m`)
12: Tag′ ← Ẽ−`,N

k (Σ)
13: if Tag′ = Tag then
14: return m
15: return ⊥

Figure 15: The Algorithm OTR-D(N, c,Tag)
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Figure 16: The OTR encryption mode. On the left hand side we present the number of
rounds of interaction of each stage for the Leg PRF, assuming key dependent preprocessing.

5.1 Security of pOTR

Minematsu proved that the original (bit-oriented) OTR is a secure AEAD scheme against
nonce-respecting adversaries. Our modified Fp largely inherits the original properties,
but for completeness we provide the relevant theorems and proofs below, where we of
course draw heavily on Minematsu’s work. For OTR’s security analysis Minematsu uses an
alternative and conceptually cleaner mode, dubbed OTR [Min14, Fig. 5], that is based on
a tweakable n-bit URF. This mode already matches ours a lot closer, as we use a tweakable
PRF and the switch from a tweakable PRF to a tweakable URF is standard (incurring
precisely the tweakable PRF advantage). We will ignore the parameter τ (in OTR[τ ])
for the length of tags, as it becomes moot in our Fp setting. Minematsu additionally
introduces OTR′, but in the absence of associated data this mode collapses to OTR. Thus
we can safely refer to the security result for OTR′ [Min14, Theorem 3] and its proof [Min14,
Appendix A]. The proof for privacy is essentially unchanged (and still straightforward),
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whereas for authenticity we can simplify the proof considerably as there are fewer cases to
consider due to our switch from bitstrings to elements of Fp.

Theorem 3. Let A be a PRIV adversary against OTR making q queries having a total
message length of σ finite field elements. Then there exists an adversary B attacking Ẽ
making at most σ+ q oracle queries and running in time comparable to that of A such that

Advpriv
OTR(A) ≤ Advtprf

Ẽ
(B)

Proof. The first, standard step is to substitute the tweakable PRF with its ideal cousin,
the tweakable URF, throughout. An adversary A that could distinguish between these two
worlds can be turned into a reduction B that wins the PRF’s security game by explicitly
evaluating the OTR construction using a tweakable PRF/URF oracle. A counting exercise
will show that A’s queries to the construction induce exactly σ+q queries to the underlying
tweakable primitive.

With the tweakable URF in place, the key observation is that A is nonce-respecting
and that, for the encryption of a single message, the tweaks count from 1, . . . , ` and, as we
enforce ` < p/2, the tweak −` used for authentication will be distinct from these tweaks
(modulo p). Consequently, each tweak (i,N) is used at most once and we can replace
the outputs of the tweakable URF with independently and uniformly drawn Fp elements,
ignoring the input. These random Fp elements act as a one-time pad; inspection shows
that all ciphertext elements ci as well as the Tag are thus affected, making them perfectly
indistinguishable from independently and uniformly drawn Fp elements as desired.

Theorem 4. Let A be an AUTH adversary against OTR making qe encryption queries
and qv decryption queries, jointly having a total message length of σ finite field elements.
Then there exists an adversary B attacking Ẽ making at most σ + qe + qv oracle queries
and running in time comparable to that of A such that

Advauth
OTR[̃E]

(A) ≤ Advtprf
Ẽ

(B) + 3qv/p

Proof. Again, the first, standard step is to substitute the tweakable PRF with its ideal
cousin, the tweakable URF R̃, throughout, incurring the same term as in the bound above.

With the tweakable URF in place, Minematsu’s original security proof consists of a
number of steps. Firstly, we only need to consider an adversary making a single forgery
attempt using the decryption oracle, so qv = 1, and then extend it to an arbitrary number
of decryptions using a standard guessing argument [BGM04]. Furthermore, without loss
of generality, we may assume that A makes all its encryption queries before the final
decryption query.

We denote the adversary’s forgery attempt by (N ′, c′,Tag′). For the forgery to be
counted, it needs to be fresh, that is (N ′, c′,Tag′) 6= (Nj , cj ,Tagj) for all encryption
queries j ∈ [1, . . . , q]. As for each nonce and ciphertext vector there is one unique valid
tag (by inspection of the decryption algorithm), we in fact need that (N ′, c′) 6= (Njcj)
for all j. For the forgery attempt (N ′, c′), we will use Tag∗ to denote the unique valid
tag corresponding to it, whereas for all internal variables related to (N ′, c′) we will use a
prime, for instance m′1 for the first tentative message block and Σ′ for the unique input
(used by decryption) to the tweakable URF that produces Tag∗.

The adversary’s advantage is upper bounded by the maximum probability it can find
a forgery (N ′, c′,Tag′) given an transcript of encryption queries {(Nj ,mj , cj , Tj)}, j ∈
[1, . . . , q]. Here the maximum is over all possible transcript and the probability is over the
‘residual’ randomness of the tweakable URF, that is to sample the tweakable URF on values
that are needed to evaluate Tag∗ and have not yet been sampled during the encryption
queries. As is customary, at this stage we can restrict to deterministic, computationally
unbounded adversaries.
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To upper bound this maximum probability FPz, we will consider four cases (down
from the original’s 13): the forgery uses a fresh nonce; the forgery uses a nonce for an
encryption query and matches the even message length; the forgery uses a past nonce and
matches the odd message length; and finally the forgery uses a past nonce, but using a
different message length.

Case 1: N ′ 6= Nj for all j ∈ [1, . . . , q].
In this case, during decryption the tweak is fresh and hence the Tag∗ will be an
independent, uniformly random value, so the probability that Tag′ is correct satisfies
FPz = 1/p.

Case 2: N ′ = Nj with |c′| = |cj |, even, for some j ∈ [1, . . . , q].
Let’s write (c′1, . . . , c′`) for c′ and (c1, . . . , c`) for cj , so dropping the j index. As c′ 6= c
we know that for some i it holds that c′i 6= ci, where we will concentrate on the largest
such i. As ` is even, all ciphertext blocks come with a ‘twin’ that is processed as part of
the same Feistel structure. Let h = d(i+ 1)/2e, then the indices of the two blocks (i.e. i
and its twin) are 2h− 1 and 2h. For the remainder of this case analysis, we will deal
with this structure only, ignoring whether both of only one (and which) of the ciphertext
blocks differ between c′ and cj .
Figure 17 provides an overview of how decryption works, where we annotated three
special collision events: e3 corresponds to the event Tag∗ = Tag′, e2 corresponds to the
event that Σ′ = Σj , and finally e1 corresponds to the event that m′2·h−1 = m2·h−1. Our
overall strategy will be to bound

FPz ≤ Pr[e3] ≤ Pr[e3|¬e2] + Pr[e2|¬e1] + Pr[e1] ,

where all constituent three probabilities turn out to be at most 1/p, so the sum is at
most 3/p.

Let’s start with Pr[e3|¬e2]. In this case, Tag∗ is the result of a fresh query R̃〈N,−`〉(Σ′),
so the probability that it hits the adversary’s Tag′ is exactly 1/p.
If on the other hand e2 occurred, then Tag∗ = Tagj so if the adversary had indeed set
Tag′ = Tagj , the forgery attempt will be successful. To bound the probability of e2
occurring, we go back to the point where m′2·h gets added to the checksum. Let’s denote
with Σh−1 the checksum so far (for the j-the query) and with Σh the checksum after
adding m2·h, with similar primed notation for the values when running decryption on
the forgery attempt. Then e2 occurs iff Σh = Σ′h.
Tracing through the decryption algorithm (and see Figure 17) tells us that

m′2·h−1 = c′2·h − R̃〈N,2·h〉(m′2·h) and

m′2·h = c′2·h−1 − R̃〈N,2·h−1〉(m′2·h−1)

and therefore that

Σh = Σ′h
Σh−1 +m2·h = Σ′h−1 +m′2·h

Σh1 +m2·h = Σ′h−1 + c′2·h−1 − R̃〈N,2·h−1〉(m′2·h−1)

R̃〈N,2·h−1〉(m′2·h−1) = Σ′h−1 − Σh1 + c′2·h−1 −m2·h

If e1 didn’t occur, the R̃〈N,2·h−1〉(m′2′·h−1) call is fresh, so the probability it hits the value
on the right hand side is exactly 1/p.
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Finally, we are left with the event e1, namely that m′2·h−1 = m2·h−1. Although it is not
a given that an adversary will be able to turn this event into a forgery, we are generously
granting a win regardless. We will assume that c′2·h−1 6= c2·h−1, because otherwise the
event e1 is not possible (by inspection). Our assumption implies that the R̃〈N,2·h〉(c′2·h−1)
call is fresh, and since it needs to hit a unique value in order for e1 to occur, e1 happens
with probability 1/p.

Case 3: N ′ = Nj with |c′| = |cj |, odd, for some j ∈ [1, . . . , q].
As before, we write (c′1, . . . , c′`) for c′ and (c1, . . . , c`) for cj , so dropping the j index. As
c′ 6= c we know that for some i it holds that c′i 6= ci, where we will concentrate on the
largest such i, where we use a special ordering that makes the final, odd block (i = `)
the smallest. If, under this ordering, ‘i > `’ there is a difference in one of the blocks
used in the Feistel structure and the analysis for ` even from above applies. Otherwise
if i = `, the only difference occurs for the `th block, so c′` 6= c`. Observing that

m′` = c′` − R̃〈N,`〉(0) and m` = c` − R̃〈N,`〉(0)

we obtain that m′` and m` always differ, and as a consequence so will Σ′ and Σ. This
means that Tag∗ = R̃〈N,−`〉(Σ′) is the result of a fresh call, hitting the adversary’s Tag′
with probability exactly 1/p.

Case 4: N ′ = Nj with |c′| 6= |cj | for some j ∈ [1, . . . , q].
The length `′ = |c′| is used as part of the tweak for the final R̃ call, as Tag∗ = R̃〈N,−`′〉(Σ′).
Irrespective of Σ′, this −`′ 6= −`j and therefore the tweak (N,−`′) is fresh and the
output Tag∗ is random and independent, hitting the adversary’s Tag′ with probability
exactly 1/p.

Overall we obtain that FPz ≤ 3/p gives an AUTH bound for any number of queries qv
greater or equal than one, and so Advauth

OTR(A) ≤ 3qv/p.
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Figure 17: The OTR decryption case.

6 Experimental Results
We consider two measurements latency and throughput, with various message lengths.
Latency shows the total time required for a message to be encrypted and authenticated
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whereas throughput gives the maximum number of executions which can be done in parallel.
The experiments were ran between two machines each with Intel i7-4790 CPUs running
at 3.60GHz, 16GB of RAM connected through a LAN network of 1Gbps with an average
ping of 0.3ms (roundtrip) and implemented using the SPDZ software2. WAN experiments
were simulated using Linux tc tool with an average ping latency of 100ms (roundtrip). To
give precise timings, each experiment was averaged with at least 5 executions where each
execution authenticated at least 1000 messages. We choose to exclude the times in the
online phase for computing the key dependent pre-processing such as Ek(0) or Ek(1) since
this is done just once before the start of authentication.

Table 2 contains the preprocessing costs for encryption (similar costs apply for decryp-
tion). For this we counted the number of triples and bits required to evaluate each mode of
operation instantiated with different PRF’s, these costs are given in terms of the message
length `; i.e. the number of finite field elements being encrypted. For Leg we assume
a finite field size of p ≈ 2128, where p is chosen such that we can select L = 128 in the
construction of the Leg PRF. The amount of data sent per party and computational cost is
estimated, in the table, using the currently best-known method for producing triples and
bits in Fp with active security [KOS16]. According to [KOS16] bits and triples have the
same cost in arithmetic circuits Fp so we merge the costs into one column which is called
Triples. As expected, OTR has a lower preprocessing cost, than using CTR+pPMAC, since
the number of PRF calls is reduced by half compared to pPMAC. Whilst CTR+HtMAC
is slightly better than OTR in terms of pre-processing costs.

Table 2: Preprocessing costs for Encryption using OTR, CTR+pPMAC, and CTR+Hash-
then-MAC (HtMAC) in MPC for an ` length message.

PRF Mode Triples
Leg CTR+pPMAC 1024 · `− 256

MiMC CTR+pPMAC 292 · `
Leg CTR+HtMAC 512 · `+ 128

MiMC CTR+HtMAC 146 · `+ 146
Leg OTR 512 · `+ 728

MiMC OTR 146 · `+ 292

Table 3: Preprocessing cost (MBytes) and throughput (seconds) for encrypting message
blocks of size `, with two parties over a LAN and a simulated WAN network using
CTR+HtMAC and MASCOT [KOS16].

PRF ` = 1 2 4 8 16 32
MBytes { Leg 14.42 25.95 49.02 95.16 187.43 371.98
per party MiMC 6.58 9.87 16.45 29.60 55.91 108.54

LAN Throughput { Leg 7.57 4.20 2.23 1.15 0.58 0.29
per second MiMC 16.58 11.05 6.63 3.68 1.95 1.00

WAN Throughput { Leg 0.38 0.21 0.11 0.06 0.03 0.01
per second MiMC 0.82 0.55 0.33 0.18 0.10 0.05

For the case of CTR and Hash-then-MAC in Table 3 we give what these offline estimates
would translate into in terms of MBytes of communication per party and throughput per

2https://github.com/bristolcrypto/SPDZ-2

https://github.com/bristolcrypto/SPDZ-2
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second, for varying values of the number of message blocks ` for a LAN and WAN setting.
These numbers are derived from the estimates in the MASCOT paper [KOS16], which is
currently the most efficient offline processing step for engines such as SPDZ. In Table 4 we
present our results for the online phase, in terms of latency and throughput for CTR and
Hash-then-MAC, in the LAN and WAN setting.

Table 4: Online phase latency (ms) and best throughput (seconds) for encrypting message
blocks of size `, with two parties over a LAN and a simulated WAN network, using
CTR+HtMAC.

PRF ` = 1 2 4 8 16 32
LAN Latency { Leg 1.17 1.97 2.75 4.61 8.20 15.68

(ms) MiMC 6.63 13.27 13.42 13.74 14.25 15.35
WAN Latency { Leg 154 256 258 262 274 295

(ms) MiMC 3760 7521 7521 7521 7521 7523
LAN Throughput { Leg 1389 895 527 285 149 76

per second MiMC 8853 5697 3589 2010 1079 561
WAN Throughput { Leg 151 100 59 33 17 8

per second MiMC 428 234 203 127 74 39

In Table 5 we present the online costs, as a function of ` for our various constructions.
For each variant we give the number of rounds and the number of openings. As we have
selected highly parallel modes of operation, the round complexity does not depend on the
message length. Intuitively, the online round complexity should define the latency of a
protocol and the online opening complexity should define the throughput. However, due to
the nature of actual physical networks we expect that as soon as we reach the maximum
capacity of the network, in terms of data sent (i.e. openings) per round, the latency will
drop off rapidly. Thus as ` increases we expect to see an increase in latency, despite latency
“theoretically” being a constant. The key question is then how big does ` need to be before
the latency for a specific PRF and mode decreases linearly in `?

Table 5: Online Costs for OTR and CTR+pPMAC in MPC.

PRF Mode Online cost
Rounds (Enc/Dec) Openings

Leg CTR+pPMAC 7/6 768 · `+ `
MiMC CTR+pPMAC 221/147 146 · `+ `+ 1

Leg CTR+HtMAC 5/4 384 · (`+ 1) + `
MiMC CTR+HtMAC 148/75 73 · (`+ 1) + `+ 1

Leg OTR 6/9 384 · (`+ 128) + `
MiMC OTR 220/295 73 · (`+ 2) + `+ 1

To investigate this potential drop off in latency we carried out experiments in the LAN
setting, the results of which are detailed in Figure 18 (for small messages) and Figure 19
(for long messages for the MiMC PRF). We see that despite ciphers based on the Leg
PRF having lower round complexity, this does not translate into low latency as soon as
the size of ` increases. For small values of ` we do benefit from using Leg, but not for
larger values. This is because we reach network capacity for only a few parallel calls to
Leg; as evaluting the PRF itself takes up a lot of network capacity. On the other hand



320 Modes of Operation Suitable for Computing on Encrypted Data

with MiMC we require more rounds, but in each round we need to send much less data,
so even as ` increases the latency does not increase that much. Eventually we see that
for large messages MiMC ends up having the same growth as we experience with Leg for
smaller messages.
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Figure 18: Latency of Encryption for OTR vs CTR+pPMAC vs CTR+Hash-then-MAC
with MiMC and Leg. In this and in other figures in this section: OTR is marked in blue,
CTR+pMAC is marked in red, and CTR+Hash-then-MAC is marked in Green. Use of
the Leg PRF is marked with a dot on the line, and use of the MiMC PRF is marked with
a cross.
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Figure 19: Latency of Encryption for OTR vs CTR+pPMAC vs CTR+HtMAC with
MiMC, for large message sizes.

In Figure 20 and Figure 21 we examine throughput for both Leg and MiMC in the
LAN setting. Not surprisingly for all options throughput decreases as ` increases, and
we get a better throughput if we select MiMC and use the CTR+HtMAC cipher. Indeed
contrary to the conclusion in [GRR+16] we conclude that MiMC is better than Leg for
both throughput and latency. The primary reason for this conclusion is that, unlike the
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work in [GRR+16], we consider how these MPC-friendly PRFs work in a larger application
and not in isolation.
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Figure 20: Throughput of OTR vs CTR+pPMAC vs CTR+HtMAC with MiMC and Leg
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Figure 21: Throughput of OTR vs CTR+pPMAC vs CTR+HtMAC with MiMC and Leg
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