On Leakage-Resilient Authenticated Encryption with Decryption Leakages

Francesco Berti, Olivier Pereira, Thomas Peters, François-Xavier Standaert,

ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Louvain-la-neuve, Belgium

Main objective

Ciphertext Integrity with

- Randomness misuse
- Leakage in encryption & decryption

We provide

- CIML2: an extension of INT CTXT with misuse and leakage
- DTE2: a mode of operation achieving CIML2
- Analysis of confidentiality of DTE2 in presence of leakage

Scenario: firmware update

Adversaries has

- encrypted firmware
- leakage in decryption

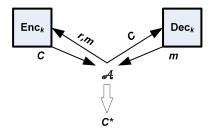
Adversaries should not be able to

- create a valid update
- know the plaintext

Practical issue:

- O'Flynn [OC15]
- Moradi et al. [MBKP11]

Plan


- Background
- Authenticated Encryption with Decryption Leakage
- Why previous solutions do not work
- Eavesdropping with Decryption Leakage

INT - CTXT

Ciphertext Integrity property.

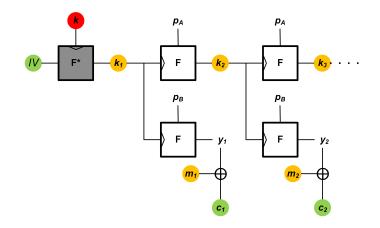
If C* fresh and valid, adversary ${\cal A}$ wins

UCL Crypto Group

Physical leakage

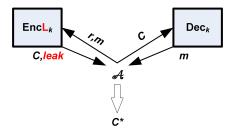
Our model for implementations:

- one component leak free (slow, used twice per enc.)
 [e.g. AES with higher order masking]
- other components with little/no leakage protection [e.g. AES]


Weakly protected components:

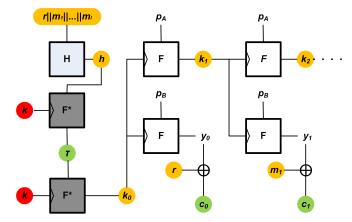
- can leak their full state for integrity
- must resist weak side-channel attacks for privacy

CPA with leakage


It uses rekeying

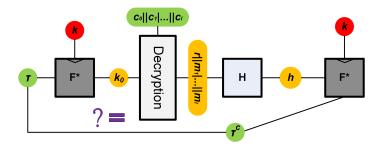
CIML

Ciphertext Integrity with leakage in encryption.


If C* fresh and valid, adversary ${\cal A}$ wins

UCL Crypto Group

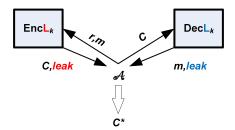
DTE (*Digest, Tag, Encrypt*) [*BKP*⁺16]


Ciphertext $C = (\tau, c)$ with $c = (c_0, ..., c_l)$

Decryption of $(\tau, c_0, .., c_l)$:

- ► DTE is MR + Imcpa + CIML-secure.
- Problem: Authenticity when decryption leaks?
 - No: use the leakage of k_0 to get a correct tag.

Plan


- Background
- Authenticated Encryption with Decryption Leakage
- Why previous solutions do not work
- Eavesdropping with Decryption Leakage

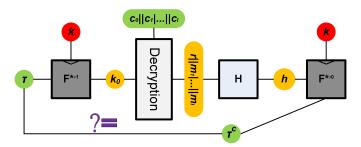
CIML2

Goal: Ciphertext Integrity with in leakage in *both* encryption *and* decryption.

If C* fresh and valid, adversary ${\mathcal A}$ wins

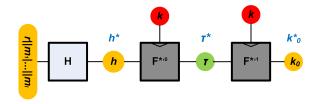
UCL Crypto Group

Plan


- Background
- Authenticated Encryption with Decryption Leakage
- Why previous solutions do not work
- Eavesdropping with Decryption Leakage

DTE'

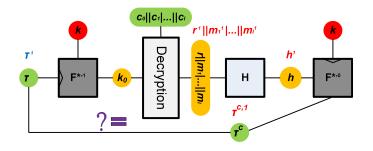
Solution: Tweak DTE



FSE - March, 6th 2018

Attack against DTE' (1/3)

Objective: Obtain a correct chain



Attack against DTE' (2/3)

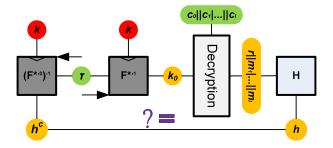
1) Get a correct tag

• Ask the decryption of
$$C^1 = (\tau^1, c^1)$$
. Get $r^1, m^1, h^1, \tau^{1,c}$.

Attack against DTE' (3/3)

We have $r^1, m^1, h^1, \tau^{1,c}$. 2) Get the k_0 associated to $\tau^{1,c}$

• Ask the decryption of $C^2 = (\tau^{1,c}, c^2)$. Get k_0^2 .



DTE2: A CIML2, Imcpa and MR mode

Problem: The Dec oracle says it is invalid because the right tag is $\tau^c \neq \tau$.

Solution: The Dec oracle says it is invalid because the tag τ is the right tag for a certain hash value $h^c \neq h$.

Plan

- Background
- Authenticated Encryption with Decryption Leakage
- Why previous solutions do not work
- Eavesdropping with Decryption Leakage

Confidentiality

We define

 Eavesdropper security with decryption leakage (EavDL) [guarantees that leaking decryption of ciphertexts does not help distinguishing other ciphertexts]

We propose

▶ EDT, a mode achieving EavDL, CIML2 but not MR.

Conclusion

We proposed

- two new definitions:
 - CIML2
 - EavDL
- two new schemes
 - ► DTE2 [MR + CIML2-secure, no EavDL]
 - ► EDT [EavDL + CIML2-secure, no MR]

Questions ?

